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Abstract

The Bounded-Diameter Minimum Spanning Tree (BDMST) problem is a
hard combinatorial optimization problem with applications in network de-
sign. In this thesis, I present two Lagrangian relaxation approaches for the
BDMST problem with even diameter bound in order to obtain lower bounds
as well as heuristic solutions. The �rst Lagrangian relaxation approach is
based on the so called Predecessor-Depth model. In this model a solution
is formulated by predecessor variables and depth variables. The relaxed
constraints of this model can be listed explicitly. To solve the Lagrangian
duals, Subgradient Optimization is employed. The second Lagrangian relax-
ation approach is based on the so called Predecessor-Jump model. In this
model a solution is formulated by predecessor variables and jump constraints.
There are exponentially many relaxed constraints in this model. Therefore
they cannot be listed explicitly but are separated dynamically. Two dif-
ferent strategies to separate jump constraints are presented. To solve the
Lagrangian duals a Relax-and-Cut approach is developed and Subgradient
Optimization is employed.

A set of benchmark instances used in the literature serve as input for com-
putational experiments. The Lagrangian relaxation approach based on the
Predecessor-Jump model produces signi�cantly better lower bounds than the
approach based on the Predecessor-Depth model. Subsequently, I compare
the computed lower bounds to results from Gruber 2006. The lower bounds
produced with the Lagrangian relaxation approach on the Predecessor-Jump
model are, with one exception, always better than the values of the LP re-
laxation with cuts from Gruber 2006 but require substantially more time to
compute. For two of the instances the optimal objective value is reached.
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Zusammenfassung

Das Problem des minimalen Spannbaums mit beschränktem Durchmesser
(BDMST) ist ein schweres kombinatorisches Optimierungsproblem mit An-
wendungen in der Netzwerkplanung. In der vorliegenden Diplomarbeit prä-
sentiere ich zwei Lagrange Relaxierungsansätze für das BDMST Problem
mit geradem Durchmesser, um untere Schranken und heuristische Lösungen
zu �nden. Der erste Lagrange Relaxierungsansatz basiert auf dem sogenann-
ten Predecessor-Depth Modell. In diesem Modell wird eine Lösung mittels
Predecessor Variablen und Depth Variablen formuliert. Die relaxierten Ne-
benbedingungen können explizit aufgelistet werden. Um das Lagrange duale
Problem zu lösen, wird das Subgradientenverfahren eingesetzt. Der zwei-
te Lagrange Relaxierungsansatz basiert auf dem sogenannten Predecessor-
Jump Modell. In diesem Modell wird eine Lösung mittels Predecessor Va-
riablen und Jump Nebenbedingungen formuliert. Da es exponentiell viele
Jump-Nebenbedingungen gibt, können sie nicht explizit aufgelistet werden
sondern werden dynamisch separiert. Zwei verschiedene Strategien zur Sepa-
rierung von Jump-Nebenbedingungen werden präsentiert. Um das Lagrange
duale Problem zu lösen wird ein Relax-and-Cut Ansatz entwickelt und das
Subgradientenverfahren eingesetzt.

Die entwickelten Ansätze wurden mit, aus der Literatur bekannten, In-
stanzen getestet. Der auf dem Predecessor-Jump Modell basierende Lagran-
ge Relaxierungsansatz liefert signi�kant bessere untere Schranken vergli-
chen mit dem Lagrange Relaxierungsansatz, der auf dem Predecessor-Depth
Modell basiert. Weiters vergleiche ich die berechneten unteren Schranken
mit Ergebnissen aus Gruber 2006. Die unteren Schranken, die mittels des
Predecessor-Jump Modells erzielt wurden, sind mit einer Ausnahme immer
besser als die LP Relaxierungswerte mit diversen Cuts aus Gruber 2006,
brauchen allerdings deutlich mehr Berechnungszeit. Für zwei dieser Instan-
zen wird der optimale Zielfunktionswert erreicht.
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Chapter 1

Introduction

Consider the design of a computer network. The locations of the computers
are �xed and there is a number of potential links connecting the computers.
The cost to build each link are known. A typical network design problem
is to choose a set of links, such that all computers are connected and that
the cost to build the network is as low as possible. This is more formally
expressed in the following de�nition.

De�nition 1 (Minimum Spanning Tree)

We are given an undirected connected graph G = (V,E) and positive
edge cost cv,w ∈ R≥0 ∀(v, w) ∈ E. The Minimum Spanning Tree problem
(MST) asks for an acyclic spanning subgraph T = (V,ET ), ET ⊆ E with
minimal total edge cost

∑
(v,w)∈ET

cv,w.

The MST problem is a well studied combinatorial optimization problem.
It can be solved in polynomial time by either Kruskal's or Prim's algorithm
(see [CLR00, p. 498 �.]). Assume now that we want the network to satisfy
an additional constraint. The maximum number of routers between two
computers in the network shall not exceed a certain limit.1 Formally this is
expressed by the following de�nition.

De�nition 2 (Bounded-Diameter Minimum Spanning Tree)

We are given an undirected connected graph G = (V,E), positive edge
cost cv,w ∈ R≥0 ∀(v, w) ∈ E , and a positive integer D. The Bounded-
Diameter Minimum Spanning Tree problem (BDMST) asks for a minimum
spanning tree T = (V,ET ), ET ⊆ E, such that the path between two arbi-
trary nodes v, w ∈ V in T does not consist of more than D edges.

Note that a BDMST has a �centre�. If D is odd, the centre is an edge.
This means there is an edge (v, w) such that the path from one of the nodes

1Note that limiting the number of routers by k is the same as limiting the number of
links by k + 1.
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CHAPTER 1. INTRODUCTION 7

v or w to any other node does not consist of more than bD2 c edges. If D is
even, the centre is a node. This means there is a node r such that the path
from r to any other node does not consist of more than D

2 edges. This node
r can be seen as the root of the BDMST.

The BDMST problem is also referred to as the Diameter-Constrained
Minimum Spanning Tree (DCMST) problem (see [ADG00]). Figure 1.1
shows a graph along with its MST and BDMST.
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(c) BDMST for D = 4

Figure 1.1: (a) A complete graph with 9 nodes. The edge costs are propor-
tional to the length of the edges. (b) A MST with a diameter of 7 and cost
of 222. (c) A BDMST that satis�es the diameter bound of D = 4 and has
cost of 240.

Another combinatorial optimization problem that is very similar to the
BDMST problem is de�ned as follows.

De�nition 3 (Hop-Constrained Minimum Spanning Tree)

We are given an undirected connected graph G = (V,E), positive edge
cost cv,w ∈ R≥0 ∀(v, w) ∈ E, a positive integer H, and a root node r ∈ V .
The Hop-Constrained Minimum Spanning Tree problem (HMST) asks for a
minimum spanning tree T = (V,ET ), ET ⊆ E, such that the path from r to
an arbitrary node v ∈ V in T does not consist of more than H edges (hops).

This means that a HMST is a tree rooted at r and with a height not
greater than H. The HMST problem can be seen as a specialization of
the BDMST problem with an even diameter bound and with a prede�ned
root node. More speci�cally, asking for a BDMST with an even D and an
additionally speci�ed root node, is the same as asking for a HMST with
H = D

2 .
Let n = |V | denote the number of nodes in the graph. The BDMST prob-

lem is NP-complete if the diameter bound is within the range 4 ≤ D ≤ (n− 2)
and not all the edge costs are equal (see [GJ79, p. 206]).

In this work, I develop two Lagrangian relaxation approaches for the
BDMST problem with an even diameter bound. These relaxations are used
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to build two solvers. With these solvers I compute lower bounds for publicly
available BDMST instances that have previously been investigated in the
literature. I compare the results of my Lagrangian relaxation approaches to
each other and subsequently to results from [Gru06]. For some of the in-
stances from the literature the optimum objective values are known. There-
fore, it can be analyzed how close the lower bounds are to the optimum
values. For other instances no optimum objective values are known. How-
ever, there are heuristic solutions and lower bounds available. Consequently,
it is possible to analyze, whether the new approaches can improve the known
lower bounds.

The remainder of this thesis is structured as follows: Section 1.1 reviews
real world problems related to the BDMST problem. Section 2 discusses the
mathematical and algorithmic basis for the later sections. Section 3 presents
an overview of some models and algorithms that have been published for
the BDMST and HMST problems. Section 4 introduces my new Lagrangian
relaxation approaches to compute lower bounds. Section 5 gives details on
the implementation. Section 6 shows the computational results achieved with
my implementation. Finally, section 7 summarizes my work and suggests
directions for future research.

1.1 Applications

Woolston and Albin describe in [WA88] a heuristic for The Design of Cen-
tralized Networks with Reliability and Availability Constraints. That problem
is about deciding upon the design of a computer network in which a cen-
tral computing resource must be connected to several clients. The network
shall minimize the cost of the communication links while satisfying addi-
tional constraints. Availability is the probability that a client can initiate a
session on the server. One constraint demands that the availability is above
a certain minimum level. Reliability is the probability that a session will not
be interrupted by a failing transmission facility. One constraint demands
that the reliability is above a certain minimum level. As starting solutions
for their heuristic they used either star layouts or minimum spanning tree
layouts. Their computational results on networks with 5 to 25 nodes showed
signi�cant di�erences in the cost of the �nal layout according to which initial
layout was used. Availability and reliability are proportional to the number
of nodes on the path from the client to the server. Therefore using an initial
HMST layout might be a promising alternative.

Bala, Petropoulos and Stern discuss in [BPS93] the topic of Multicasting
in a Linear Lightwave Network, which is a speci�c network design problem.
They explicitly mention that a good network layout for their purposes would
be built of trees with a small diameter. They propose a heuristic to �nd trees
that should tend to smaller diameters. In opposition to this heuristic an algo-
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rithm to solve the BDMST problem could guarantee a certain diameter and
might therefore be an interesting approach for this network design problem.

Raymond presents an algorithm for distributed mutual exclusion in a
computer network with tree topology in [Ray89]. A computer in this net-
work that wants to enter its critical section has to send a request over the
network and await a response. Raymond's algorithm accomplishes to limit
the number of messages that have to be transmitted for a request and a
response with two times the diameter of the network. In a network with
BDMST topology this limit would be a constant.

Bookstein and Klein address the issue of data compression in [BK91].
The data is partitioned into packets and only di�erences between packets
need to be stored. They map the problem of selecting which di�erence-
relations to store, to the problem of �nding a minimum spanning tree. The
decompression of data packets is proportional to the diameter of this tree.
They explicitly mention that �it would be desirable to create trees [· · · ] con-
strained to have a small depth�. An algorithm to solve BDMST could limit
the cost of decompression.



Chapter 2

Methods

The subsequent discussion introduces the mathematical and algorithmic con-
cepts relevant for the Lagrangian relaxation approaches. These concepts
form the building blocks for the later sections.

2.1 Integer Linear Programming

A Linear Program (LP) is about �nding an x ∈ Rn that satis�es a set of m
linear constraints. It is usually expressed like this

minimize z = tx (2.1)

s.t. Qx ≥ g (2.2)

x ∈ Rn (2.3)

where t ∈ Rn, and Q is an (m× n) matrix over R, and g ∈ Rm.
Every x ∈ Rn is called a solution of the LP. If x satis�es the con-

straints (2.2) it is a feasible solution. The objective value of the LP for a
given x is z. Among all feasible solutions an optimal solution1 x∗ exists
that produces the minimal, i.e. the optimal objective value z∗ = tx∗. The
constraints (2.2) can also be written as follows:

n∑
j=1

qi,jxj ≥ gi ∀1 ≤ i ≤ m (2.4)

Subsequently, I will use the notation from equation (2.2) when I want to
refer to a �set� of constraints and the notation from equation (2.4) when I
refer to single constraints.

If we replace the constraints (2.3) with the integrality constraints x ∈
Nn, the problem is called an Integer Linear Program (ILP). If some of the
variables are real valued and some are integers the problem is aMixed Integer

1The optimal solution is not necessarily unique.
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Program (MIP). A special variant of an ILP that will be used in this work
is a 0-1 ILP which is de�ned as follows:

minimize z = tx (2.5)

s.t. Qx ≥ g (2.6)

x ∈ {0, 1}n (2.7)

LPs can be solved e�ciently, for example, by the simplex method or the
interior point method. ILPs and MIPs are more di�cult to solve. General
methods to solve ILPs and MIPs to optimality are Branch and Bound or
Branch and Cut approaches (see [ES00]). These methods rely on the re-
peated division of the problem into smaller subproblems. However, not all
of these subproblems need to be solved to optimality. If a lower bound on the
optimal objective value of such a subproblem can be given and this bound
shows that the optimal solution of this subproblem will not lead to an opti-
mal solution for the original problem, then this subproblem needs not to be
solved. Such lower bounds can also be used by other algorithms to improve
their performance or solution quality, or serve as a basis to decide upon the
quality of a heuristic solution.

One simple method to compute lower bounds is linear relaxation. Con-
sider an ILP I. Dropping the integrality constraints of I results in a LP,
called the linear relaxation IL of I. Since the relaxation increases the set
of feasible solutions, the optimal objective value of the linear relaxation z∗IL
cannot be greater2 than the optimal objective value z∗I of the original prob-
lem. Therefore z∗IL is a lower bound for z∗I . Another way to compute lower
bounds is to use Lagrangian relaxation. This method will be described in
the next section.

2.2 Lagrangian Relaxation

The Lagrangian Relaxation (LR) is a method to compute lower bounds for
LPs3, ILPs or MIPs. In this work we will be facing ILPs and therefore
describe LR in this context, but the principle is the same also with LPs or
MIPs.

The idea of a LR is to relax some of the constraints and �move� them
into the objective function. Assume we are given an ILP

minimize zILP = tx (2.8)

s.t. Qx ≥ g (2.9)

Sx ≥ b (2.10)

x ∈ Nn (2.11)

2Note that we are dealing with minimization problems.
3Although LPs can be solved e�ciently in general, LR might be interesting on certain

LPs that are extremely large or otherwise too complex to be solved directly.
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with two �sets� of constraints Q ∈ RmQ×n and S ∈ RmS×n. The LR resulting
from relaxing the constraints (2.10) would be

minimize zLLBP = tx+ λ(b− Sx) (2.12)

s.t. Qx ≥ g (2.13)

x ∈ Nn (2.14)

Here λ ∈ RmS
≥0 is any positive vector. Its components are called Lagrangian

multipliers. The program (2.12)�(2.14) is called Lagrangian Lower Bound
Program (LLBP). Intuitively, λ can be seen to impose a penalty on violated
constraints. The optimal objective value of a LLBP is a lower bound for the
optimal objective value of the ILP. Beasley demonstrates this fact in [Bea93]
as follows.

The optimal objective value z∗ILP of an ILP as in equations (2.8)�(2.11)
is not smaller than the optimal objective value of

minimize z = tx+ λ(b− Sx) (2.15)

s.t. Qx ≥ g (2.16)

Sx ≥ b (2.17)

x ∈ Nn (2.18)

since λ(b− Sx) ≤ 0. This in turn is not smaller than the optimal objective
value of

minimize zLLBP = tx+ λ(b− Sx) (2.19)

s.t. Qx ≥ g (2.20)

x ∈ Nn (2.21)

since dropping constraints in a minimization problem can only lead to a
smaller optimal objective value.

The key for a useful LR is to relax constraints of an ILP such that the
resulting problem is easier to solve than the original one. The next step
is to �nd the vector λ∗, that produces the best, i.e. greatest lower bound.
This is called the Lagrangian Dual (LD) problem. One heuristic algorithm
to �nd good values for the Lagrangian multipliers and to approach λ∗ is the
Subgradient Optimization described in the next section.

2.3 Subgradient Optimization

The Subgradient Optimization (SG) is a method to heuristically solve a La-
grangian dual problem. It iteratively adjusts the Lagrangian multipliers to
�nd values that produce the best or nearly the best lower bound. It relies on
a solver for the LLBP and on an upper bound zub for the optimal objective
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value of the original problem. An upper bound could, for example, be calcu-
lated by �nding a feasible solution with a heuristic for the original problem.
Assume we are given an ILP as in equations (2.8)�(2.11) and we want to
relax the constraints (2.10). This results in a LLBP as in equations (2.12)�
(2.14). The Subgradient Optimization, as described in [Bea93], is depicted
in Algorithm 1.

Input: LLBP() ; // Lagrangian lower bound program solver
Input: zub ; // upper bound value for original problem
π = πinit ; // subgradient agility, Beasley sugg. πinit = 21

λi = 0 ∀1 ≤ i ≤ mS ; // Lagrangian multipliers2

zmax = −∞ ; // best lower bound so far3

repeat4

x∗LLBP =LLBP(λ) ; // solve the LLBP to optimality5

z∗LLBP = t · x∗LLBP + λ(b− S · x∗LLBP) ; // corresp. objective value6

δ = b− S · x∗LLBP ; // compute subgradients δ ∈ RmS7

∆ =
π(zub − z∗LLBP)∑

1≤i≤mS
δ2
i

; // compute step size ∆ ∈ R
8

λi =max(0, λi + ∆ · δi) ∀1 ≤ i ≤ mS ; // update Lagrangian mult.9

if z∗
LLBP

> zmax then10

zmax = z∗LLBP ; // remember best lower bound11

end12

if no_improvement() then13

π = π
2 ; // reduce agility14

end15

until terminate() ;16

Algorithm 1: Subgradient Optimization algorithm. The function
no_improvement() is true if zmax did not improve in a speci�ed number
of recent iterations (Beasley suggests 30). And terminate() is true if
the optimum has been found (i.e. zub = z∗LLBP) or π becomes smaller
than a speci�ed limit πmin (Beasley suggests 0.005) [Bea93].

2.4 Relax and Cut

The approach described in the previous section relies on a �xed set of con-
straints. Sometimes it might, however, not be desirable to list all constraints
of a certain type explicitly. For example there could be an exponential num-
ber of these constraints or it might be too costly to compute each of these
constraints. This is the case with the LR approach presented in section 4.1.4.

Lucena describes the Relax-and-Cut algorithm in [Luc05]. In the be-
ginning not all relaxed constraints are known. Relax-and-Cut starts with
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an initial set of relaxed constraints. Subsequently it iterates between solv-
ing the Lagrangian Dual and separation of new constraints. The Lagrangian
Dual can, for example, be solved with Subgradient Optimization as described
in the previous section. Lucena di�erentiates between Delayed Relax-and-
Cut and Non Delayed Relax-and-Cut. With Delayed Relax-and-Cut new
constraints are used after the Lagrangian Dual is solved, while with Non
Delayed Relax-and-Cut new constraints are separated and used after every
solution of the Lagrangian Lower Bound Program.

I implemented a Delayed Relax-and-Cut approach that is based on Sub-
gradient Optimization. It is schematically described in the following para-
graph.

1. Initially consider an empty set of relaxed constraints. Formally this
corresponds to all Lagrangian multipliers being 0.

2. Solve the LLBP. Note that without any known relaxed constraints the
objective function becomes zLLBP = tx.

3. Separate initial constraints based on the �rst solution to the LLBP.

4. Perform SG up to some πmin.

5. Separate new constraints that are violated at the end of SG.

6. Reset π and continue at step 4 as long as this improves the best lower
bound for the original problem.

I implement this Relax-and-Cut approach as a modi�cation to SG as shown
in Algorithm 1. It is described in detail in Algorithm 2.

The lines 17-19 of Algorithm 2 clarify what is informally described above
by �at the end of SG�. The obvious strategy would be to separate new con-
straints in the last iteration of SG, i.e. right before it is restarted. To achieve
this, the call to separate() should occur between lines 20 and 21. To be
able to add more constraints at once when calling add_constraints(), I
decided not only to separate new constraints in the last iteration. Instead,
separation is done in a series of iterations before SG will be restarted. Specif-
ically, separation is done from the second-last reduction π

2 ≤ πmin until the
last reduction, i.e. the actual restart.

2.5 Extensions to the Subgradient Optimization

This section describes extensions and modi�cations, that can be applied to
the Subgradient Optimization.
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Input: LLBP() ; // Lagrangian lower bound program solver
Input: zub ; // upper bound value
Input: separate() ; // separate new constraints
π = πinit ; // subgradient agility, Beasley sugg. πinit = 21

S, b ; // relaxed constraints, initially empty, i.e. mS = 02

λ ; // Lagrangian multipliers3

zmax = −∞ ; // best lower bound so far4

repeat5

x∗LLBP =LLBP(λ) ; // solve the LLBP to optimality6

z∗LLBP = t · x∗LLBP + λ(b− S · x∗LLBP) ; // corresp. objective value7

δ = b− S · x∗LLBP ; // compute subgradients δ ∈ RmS8

∆ =
π(zub − z∗LLBP)∑

1≤i≤mS
δ2
i

; // compute step size ∆ ∈ R
9

λi =max(0, λi + ∆ · δi) ∀1 ≤ i ≤ mS ; // update Lagrangian mult.10

if z∗
LLBP

> zmax then11

zmax = z∗LLBP ; // remember best lower bound12

end13

if no_improvement() then14

π = π
2 ; // reduce agility15

end16

if π
2 ≤ πmin then17

separate() ; // separate new constraints18

end19

if π ≤ πmin then20

add_constraints() ; // add recently separated constraints21

π = πinit ; // reset agility, i.e. restart SG22

end23

until terminate() ;24

Algorithm 2: Relax-and-Cut based on Subgradient Optimization.
Here no_improvement() is true if zmax has not improved in a speci-
�ed number of recent iterations (Beasley suggests 30). The function
terminate() is true if the optimum has been found (i.e. zub = z∗LLBP)
or if zmax has not improved in a speci�ed number of recent restarts
(line 22). The function add_constraints() adjusts S, b and mS

and sets λk = 0 for all new constraints. For πmin, Beasley sug-
gests 0.005 [Bea93].
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Adjustment of the Subgradient

The computation of the step size in line 8 of Algorithm 1 is:

∆ =
π(zub − z∗LLBP)∑

1≤i≤mS
δ2
i

(2.22)

The denominator includes the squares of all subgradients, even if the cor-
responding Lagrangian multiplier will not be updated anyway. Precisely, if
λi = 0 and the corresponding subgradient δi < 0, then λi will not be changed
in line 9. Beasley suggests in [Bea93] that in this case the subgradient could
be set to δi = 0. The e�ect will be that the step size ∆ is not reduced due
to the greater denominator.

Exceed Upper Bound

If the upper bound zub and the value of the Lagrangian lower bound program
z∗LLBP are close, i.e. they are near the optimal value, the step size can become
very small. The e�ect could be that the Subgradient Optimization gets
slower when approaching the optimum objective value. Beasley suggests to
include a kind of excess-factor in the computation of the step size in line 8
of Algorithm 1:

∆ =
π(1.05zub − z∗LLBP)∑

1≤i≤mS
δ2
i

(2.23)

Direction Vector

Crainic et al. describe in [CFG01] the following scheme to update the La-
grangian multiplier vector λ not only with respect to the current value of
the subgradient vector δ, but also based on previous modi�cations. There-
fore we de�ne a direction vector κ with respect to the current subgradient
vector δ, the previous direction vector κprev, and a weight Θ for the previous
direction.

κ = δ + Θκprev (2.24)

The Lagrangian multipliers are now updated by using κ instead of δ. The
computation of the weight Θ can be done according to themodi�ed Camerini-
Fratta-Ma�oli rule:

Θ =

{
‖δ‖/‖κprev‖, if δ · κprev < 0,
0, otherwise.

(2.25)

The computation of the stepsize is also modi�ed:

∆ =
π(zub − z∗LLBP)

δ · κ
(2.26)
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Algorithm 3 shows the corresponding modi�cation of the Subgradient
Optimization algorithm from section 2.3. These modi�cations can similarly
be applied to the Relax-and-Cut approach based on Subgradient Optimiza-
tion, described in section 2.4.

Input: LLBP() ; // Lagrangian lower bound program solver
Input: zub ; // upper bound value for original problem
π = πinit ; // subgradient agility, Beasley sugg. πinit = 21

λi = 0 ∀1 ≤ i ≤ mS ; // Lagrangian multipliers2

zmax = −∞ ; // best lower bound so far3

κprev = 0 ; // previous direction κ ∈ RmS4

repeat5

x∗LLBP =LLBP(λ) ; // solve the LLBP to optimality6

z∗LLBP = t · x∗LLBP + λ(b− S · x∗LLBP) ; // corresp. objective value7

δ = b− S · x∗LLBP ; // compute subgradients δ ∈ RmS8

Θ =

{
‖δ‖/‖κprev‖ if δ · κprev < 0
0 otherwise

; // prev-dir-weight Θ ∈ R
9

κ = δ + Θ · κprev ; // compute direction κ ∈ RmS10

∆ =
π(zub − z∗LLBP)

δ · κ
; // compute step size ∆ ∈ R11

λi =max(0, λi + ∆ · κi) ∀1 ≤ i ≤ mS ; // update Lagrangian mult.12

if z∗
LLBP

> zmax then13

zmax = z∗LLBP ; // remember best lower bound14

end15

if no_improvement() then16

π = π
2 ; // reduce agility17

end18

κprev = κ;19

until terminate() ;20

Algorithm 3: Subgradient Optimization algorithm with direction vec-
tor κ. The functions no_improvement() and terminate() are de�ned
as in Algorithm 1.

2.6 Minimum Spanning Arborescences

At some point, my LR approaches depend on solving theMinimum Spanning
Arborescence (MSA) problem, which is described below.

De�nition 4 (Spanning Arborescence)

We are given a directed graph G = (V,A). A Spanning Arborescence is a
subgraph T = (V,AT ), AT ⊆ A without cycles, such that there is a particular
node r called the root, for which there is no arc (v, r) ∈ AT ∀v ∈ V , and for
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any node w 6= r there is exactly one arc (v, w) ∈ AT ∀v ∈ V \ {w} directed
towards it.

Given that |V | = n, it is obvious that a spanning arborescence has n− 1
arcs. Based on this, we de�ne the MSA problem.

De�nition 5 (Minimum Spanning Arborescence)

We are given a directed graph G = (V,A) and arc cost cv,w ∈ R ∀(v, w) ∈
A. The Minimum Spanning Arborescence problem asks for a spanning ar-
borescence T = (V,AT ) with minimal total arc cost

∑
(v,w)∈AT

cv,w.

Both, the MSA problem as de�ned above as well as a variant, where the
root node r is prede�ned, are relevant for my LR approaches. However, an
algorithm for solving the unrooted MSA can also solve the rooted variant.
A simple preprocessing step is needed: Delete all arcs directed towards the
prede�ned root r. As a result every spanning arborescence in this reduced
graph is rooted in r. Edmonds published in [Edm67] a polynomial time
algorithm for the MSA problem.

2.7 Arti�cially Rooted HMST Problem

This section discusses how the close relation between the BDMST and the
HMST problem can be used to transform a BDMST problem with an even
diameter bound D into a HMST problem. A similar method was described
in [GM03].

• Consider a BDMST problem on the graph G(V,E) with edge cost cv,w
and an even diameter bound D.

• De�ne a supergraph Gart(Vart, Eart) of G with an additional node rart
(arti�cial root):

� Vart = V ∪ {rart}
� Eart = E ∪ {(rart, v) | v ∈ V }
� crart,v = M ∀v ∈ V , where M is a large constant.

• Consider the HMST problem de�ned on Gart with edge cost cv,w, the
root node rart, and a hop bound of H = D

2 + 1.

• Find an optimum solution T ∗art(Vart, ETart) for the HMST problem.

• Due to the large constant M , T ∗art contains exactly one arc (rart, r).

• The graph T ∗(V,ET ) with ET = ETart \ {(rart, r)} is an optimum so-
lution for the BDMST problem. T ∗ is rooted at r.



Chapter 3

Related Work

Several algorithms dealing with BDMST and HMST problems have been
published so far. Some of these solve the problem to optimality, while others
produce heuristic solutions. This section gives a brief overview over some of
these publications.

Abdalla, Deo, and Gupta present di�erent heuristic algorithms for the
BDMST problem in [ADG00]. Their one-time-tree-construction algorithm
(OTTC) is a greedy construction heuristic. It is a modi�cation of Prim's
algorithm for the minimum spanning tree problem. It grows a spanning tree
by subsequently adding a nearest neighbour. This node is connected with
the cheapest edge that does not violate the diameter bound. In addition,
they present a special heuristic for the BDMST problem with a diameter
bound of D = 4 and two Iterative Re�nement Algorithms.

Julstrom describes in [Jul04] two modi�cations of OTTC. Center based
tree construction CBTC starts from a centre and subsequently connects near-
est neighbours with cheapest edges that do not violate the tree depth con-
straint bD2 c. The centre is a single vertex if D is even, and an edge if D
is odd. A randomized variant of this algorithm chooses the centre and the
subsequent nodes at random. However, each of these nodes is still connected
with the cheapest edge that does not violate the tree depth constraint bD2 c.
This algorithm is called randomized center-based tree construction RTC.

Santos, Lucena, and Ribeiro describe in [dSLR04] a MIP formulation
for the BDMST problem. The model contains 0-1 variables to de�ne which
arcs are in the solution. Additionally, there is an integral variable for every
node. It denotes the number of arcs from the centre to the node. The so
called Miller-Tucker-Zemlin inequalities establish a connection between the
two types of variables. Informally, these inequalities express the fact that,
if an arc (v, w) is in the solution, the path from the centre to w consists of
one arc more than the path from the centre to v. They also present lifted
Miller-Tucker-Zemlin inequalities which tighten the LP relaxation.

Raidl and Julstrom present an evolutionary algorithm (EA) and a ran-

19
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domized greedy heuristic for the BDMST problem in [RJ03]. The heuristic is
similar to RTC as described above. The EA encodes individuals as edge lists.
The applied operators generate trees that are valid, i.e. satisfy the diameter
restriction. The heuristic and the EA are compared on instances with up to
1000 nodes, where the EA produced substantially better solutions than the
construction heuristic.

Julstrom and Raidl describe in [JR03] another evolutionary algorithm
for the BDMST problem. Here, the individuals are encoded as permutations
of the vertices of the graph. These permutations are transformed into trees
by the centre-based greedy heuristic, which is similar to CBTC as described
above. They compare the results of the permutation-coded EA and the edge-
set-coded EA from [RJ03] on instances with up to 500 nodes. They observe
that

on the instances with 70 or more vertices, the permutation-coded
EA consistently identi�ed shorter bounded-diameter spanning
trees in fewer iterations than did the edge-set-coded EA. How-
ever, because the heuristic that decodes permutations requires
time that is O(n2), the permutation-coded EA is slower, and
its disadvantage in time increases with the size of the problem
instances.

Gouveia and Magnanti present in [GM03] ILP models for the BDMST
problem and the Steiner Tree problem with diameter constraint. They
present multicommodity �ow models with hop constraints using di�erent
reformulations. They add an arti�cial root node r with zero-cost edges to
all other nodes. The solution is the required to contain exactly one such
edge (r, j) if D is even or exactly two edges (r, j) and (r, i) together with
the central edge (i, j) if D is odd. Additionally they direct the problem by
replacing every edge (i, j) from the original graph with two oppositely di-
rected arcs. Finally they use hop-indexed variables that state that a speci�c
arc (i, j) is the hth arc in the path going from the root to a node k. Based on
these reformulation techniques they present directed and undirected models
as well as models including the hop-indexed variables or not including them.
They compare the linear relaxations and the optimal solutions obtained via
a Branch and Bound framework.

Dahl, Gouveia and Requejo survey and extend in [DGR06] di�erent ILP
formulations for the HMST problem. The MCF model (multi-commodity
�ow) has been studied in [Gou96] and [Gou98]. It formulates the HMST
problem with design variables that select the arcs, multi-commodity �ow
variables, �ow conservation constraints and coupling constraints. The cou-
pling constraints establish a connection between the design variables and the
�ow variables. They consider the Lagrangian relaxation where the coupling
constraints are relaxed. This results in a decomposition of the problem into a
single inspection subproblem and a set of hop-constrained path subproblems.
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Computational results show that the bounds derived from the Lagrangian re-
laxation are much better than the bounds derived from the linear relaxation
of MCF for small values of H.

The Path model is another ILP formulation described in [DG04]. It is
based on the sets Pk. Pk denotes the set of directed paths from r to k with
not more thanH arcs. The model contains 0-1 variables to decide which path
is chosen for every node k. They prove that the value of the linear relaxation
of the Path model is greater than the value of the linear relaxation of the
MCF model and suggest a column generation based approach for the Path
model.

The HopMCF model is a reformulation of the Path model presented
in [Gou98]. It allows walks instead of paths1. To formulate the walk from r
to k they de�ne H+ 1 levels. Level 0 contains only the root node r, whereas
level H contains only the node k. In all other levels the original nodes V \{r}
are replicated. The nodes from all levels de�ne the node set of an extended
graph. The arc set of the original graph is replicated between every two
consecutive levels. This de�nes the arc set of the extended graph. Every
path from r (level 0) to k (level H) in this extended graph corresponds to a
walk in the original graph with not more than H arcs. They prove that the
linear relaxation of HopMCF is equal to the linear relaxation of the Path
model.

Additionally they consider the Lagrangian relaxation approach based on
the HopMCF model as described in [GR01]. The �ow conservation con-
straints are relaxed, which leads to a relaxed problem that is decomposed
into |A| subproblems.

Their Jump formulation is the basis of one of my Lagrangian relaxation
approaches, it is described in detail in section 4.1.2. Additionally, they
present special ILP formulations for HMST with H = 2 and H = 3, re-
spectively. They give computational results to compare the lower bounds
achieved with the linear relaxation of their models and with the Lagrangian
relaxations.

Gruber and Raidl present in [GR05a] a compact 0-1 ILP for the BDMST
problem that is formulated with predecessor variables and depth variables.
This model is described in detail in section 4.2.1. They use this model
in a Branch and Cut framework with connection and cycle elimination cuts.
Connection cuts ensure that the sets S and V \S must be connected, for every
choice of S ⊂ V . Cycle elimination cuts state that, out of every cycle C of G,
at most |C|−1 arcs may be in the solution. They compute linear relaxations
and optimal objective values for a set of benchmark instances. I use their
model as a basis for my Lagrangian relaxation approach in section 4.2.2.

Gruber extends the work from [GR05a] in [Gru06]. He introduces di-
rected connection cuts and path cuts. Directed connection cuts are the

1In a walk the arcs may be repeated, whereas this is not allowed in a path.
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directed version of the connection cuts mentioned above. Path cuts ensure
that out of every path P of G, which has a length of |P | = D + 1, at most
D arcs may be in the solution. I use the computational results in section 6
to compare the lower bounds achieved with my Lagrangian relaxation ap-
proaches to the lower bounds from Gruber. A simple construction heuristic
is also described. Assume that an assignment of all nodes to levels [0..H]
is given. The level construction heuristic �nds for every node a predecessor
with lowest cost, among all nodes at a lower level. This heuristic is used in
my approaches to create heuristic solutions from interim results computed
by the Lagrangian relaxation approaches.

Gruber and Raidl present in [GR05b] a variable neighbourhood search
approach for the BDMST problem. Four di�erent types of neighbourhoods
are described. Gruber, Hemert and Raidl [GHR06] continue and improve
the work from [GR05b]. They integrate the neighbourhood searches into an
evolutionary algorithm (EA), and an ant colony optimization (ACO) algo-
rithm. The three di�erent approaches: VNS, EA and ACO are compared
computationally. Their computational experiments on BDMST instances
with up to 1000 nodes lead to the observation that

the EA and the ACO outperform the VNS on almost all used
benchmark instances. Furthermore, the ACO yields most of the
time better solutions than the EA in long-term runs, whereas the
EA dominates when the computation time is strongly restricted.
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Lagrangian Relaxation

Approaches

This section describes the two Lagrangian relaxations that form the basis of
my LR approaches. Each of my LRs relies on a certain 0-1 ILP model. One
of these models formulates the HMST problem, i.e. a rooted problem1. The
other one directly formulates the BDMST problem with an even diameter
bound, i.e. an unrooted problem.

Both models have in common that they are directed models. This means
that they are built upon a bidirected interpretation Gd(V,A) of the undi-
rected graph G(V,E) as de�ned by the HMST/BDMST problem(s). For
every edge (v, w) ∈ E in the original Graph G, the set of arcs A contains
two directed arcs (v, w) and (w, v). Both arcs are associated the same cost
c(v, w) = c(w, v). The two models describe a subgraph T (V,AT ) of the
directed graph Gd(V,A), AT ⊂ A.

The next two sections give precise formulations of the ILP models, the ap-
plied Lagrangian relaxations, and algorithms to solve the resulting LLBPs.
Both sections close with the descriptions of how these LLBP solvers are
embedded in Subgradient Optimization or Relax-and-Cut to solve the La-
grangian duals.

4.1 Jump-Relaxation

4.1.1 Predecessor-Jump Model

This section describes a 0-1 ILP model for a HMST problem with a hop
bound H in the bidirected graph Gd(V,A) rooted at r. This model consists

1This work only investigates BDMST problems. The scheme described in section 2.7
will be applied to transform BDMST problems into HMST problems.
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of predecessor variables pv,w ∈ {0, 1} ∀(v, w) ∈ A de�ned as follows:

pv,w =


1, if v is the predecessor of w in the directed path

from r to w in T , i.e. (v, w) ∈ AT
0, otherwise

(4.1)

The HMST problem can be formulated as follows:

minimize z =
∑

(v,w)∈A

pv,wcv,w (4.2)

s.t. p forms a spanning arborescence rooted at r (4.3)∑
(v,w)∈J

pv,w ≥ 1 ∀J (4.4)

Here the constraint (4.3) ensures that the set of arcs AT = {(v, w) ∈ A |
pv,w = 1} forms a spanning arborescence inGd. There is no formal expression
for this constraint as my solver satis�es it immediately. This is shown in
section 4.1.4. The constraints (4.4) are the so called jump constraints as
presented by [DGR06].

Jump constraints can be described as follows: Consider an arbitrary node
k ∈ V and a partition of the node set V into H+2 nonempty, disjoint sets Vi
where

⋃H+1
i=0 Vi = V , V0 = {r}, and VH+1 = {k}. The set of jump arcs for

this partition is now de�ned as J = {(v, w) ∈ A | v ∈ Vi, w ∈ Vj , j ≥ i+ 2},
i.e. the set of arcs that �jump� over at least one partition (see Figure 4.1). J
is called a jump and Γ denotes the set of all jumps.

Note that every tree that satis�es the hop constraints contains at least
one arc out of every jump. Assume the contrary: Consider a node k, a
node partition as described above, and the jump J de�ned according to that
partition. Now assume that the tree T satis�es the hop constraints but does
not contain any of the arcs of J . In T , there must be a directed path from
r to k. This path does � by assumption � not contain a jump arc. Thereby
it consists of at least H + 1 arcs. This violates the hop constraints and
contradicts the assumption.

It follows that every HMSTmust satisfy the constraints
∑

(v,w)∈J pv,w ≥ 1
for every possible jump J . Note that it is not necessary to enumerate every
jump J ∈ Γ explicitly. Instead, violated jumps will be computed dynami-
cally in a Relax-and-Cut algorithm. Subsequently, the corresponding jump
constraint will be added to the Lagrangian relaxation approach.

4.1.2 LR for the Predecessor-Jump Model

The jump constraints (4.4) are relaxed in the usual Lagrangian way. This
results in a LLBP with the following objective function:∑

(v,w)∈A

pv,wcv,w +
∑
J∈Γ

λJ(1−
∑

(v,w)∈J

pv,w) (4.5)



CHAPTER 4. LAGRANGIAN RELAXATION APPROACHES 25

Figure 4.1: Assume a HMST problem with |V | = 10 nodes and a hop bound
of H = 2. The �gure shows one possible node partition into H + 2 = 4
disjoint sets. Depending on the arc set A, the jump arcs for this partition
could be the depicted arcs.

The objective function (4.5) can be rewritten as follows:

∑
(v,w)∈A

pv,wcv,w +
∑
J∈Γ

λJ −
∑
J∈Γ

 ∑
(v,w)∈J

pv,wλJ

 =

∑
(v,w)∈A

pv,w

cv,w − ∑
J∈Γ|

(v,w)∈J

λJ


︸ ︷︷ ︸

+
∑
J∈Γ

λJ︸ ︷︷ ︸ (4.6)

The resulting objective function (4.6) consists of two parts. The predecessor
variables pv,w occur only in the �rst part. The second part is a constant
term for every given set of Lagrangian multipliers. To make this clearer,

I de�ne αv,w =
(
cv,w −

∑
J∈Γ|

(v,w)∈J

λJ

)
and the constant term L =

∑
J∈Γ λJ .

The LLBP can now be rewritten as:

minimize

 ∑
(v,w)∈A

pv,wαv,w

+ L (4.7)

s.t. p forms a spanning arborescence rooted at r (4.8)

Essentially the LLBP can be solved by solving a MSA problem. This MSA
problem has arc cost α which are computed from the original arc cost c and
the current values of the Lagrangian multipliers λ.
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4.1.3 Jump Constraint Separation

This section describes the two strategies that I have implemented to sepa-
rate jump constraints. As demonstrated in section 4.1.1 every node partition
induces a jump constraint. It seems unpractical to enumerate every possible
node partition to compute all jump constraints. Instead, the Relax-and-Cut
approach as described in Algorithm 2 was utilized. Therefore, a method to
separate jump constraints is required. I separated violated constraints in
an optimal solution of the LLBP for some given λ. As shown in the previ-
ous section, the solution to the LLBP is a minimum spanning arborescence
T (V,AT ).

Both strategies start by calculating the depth d(v) for every node v in
T , i.e. the number of arcs on the unique path from r to v. Every node
v with a depth of d(v) = H + 1 is the endpoint of a path with H + 1
arcs, i.e. a path that violates the hop constraints2. For each of these paths
((r, v1), (v1, v2), . . . , (vH , v)) we can easily create a partitioning

⋃H+1
i=0 Vi =

V , which induces a violated jump constraint. Practically, all the nodes of
the violating path from r to v are assigned to the sets Vi according to their
depth:

1. r ∈ V0

2. vi ∈ Vi ∀1 ≤ i ≤ H

3. v ∈ VH+1

The two partitioning strategies now di�er in the way they distribute the
other nodes: Put each node w that is not in the violating path into{

V1 with strategy [V1], or
Vi, i = min(H, d(w)) with strategy [Vdepth].

(4.9)

These rules ensure that none of the arcs in the minimum spanning arbores-
cence T is a jump arc, i.e. we have constructed a violated jump constraint.
Adding this constraint will make it less likely that T will be the optimum
solution to the LLBP with any λ in the further execution of the Subgradient
Optimization.

4.1.4 LR Approach for the Predecessor-Jump Model

After presenting all necessary parts for the �rst Lagrangian relaxation ap-
proach, I discuss how these parts work together to compute lower bounds
for the BDMST problem with an even diameter bound.

2If there is no such node, then T satis�es the hop constraints, i.e. T is a feasible solution
for the original problem.
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1. Transform the BDMST problem into a HMST problem with an arti�-
cial root node as described in section 2.7.

2. Transform the graph from the HMST problem into its bidirected in-
terpretation as described in section 4.

3. Perform the Relax-and-Cut algorithm as described in Algorithm 2.

• The LLBP is given as in section 4.1.2, i.e. equation (4.7) and
equation (4.8).

• The LLBP can be solved by Edmonds algorithm for the Minimum
Spanning Arborescence problem, described in section 2.6.

• Start with an empty set of jump constraints.

• Separate jump constraints via one of the strategies described in
section 4.1.3.

4.2 Predecessor-Depth-Relaxation

4.2.1 Predecessor-Depth Model

This 0-1 ILP model is taken from [GR05a]. It formulates a BDMST problem
with an even3 diameter bound D in the bidirected graph Gd(V,A). As
mentioned in section 1, there is a root node r in every BDMST, the centre.
The depth of a node d(v) is the number of arcs on the directed path from r
to v.

The Predecessor-Depth model consists of predecessor variables pv,w ∈
{0, 1} ∀(v, w) ∈ A and depth variables uv,l ∈ {0, 1} ∀v ∈ V, 0 ≤ l ≤ H which
are de�ned as follows:

pv,w =


1, if v is the predecessor of w in the directed path

from r to w in T , i.e. (v, w) ∈ AT
0, otherwise

(4.10)

uv,l =

{
1, if v has a depth of l, i.e. d(v) = l

0, otherwise
(4.11)

3They also describe another similar model for BDMST with an odd D. The LR ap-
proach presented in this section could be extended to use that model to �nd lower bounds
for problems with an odd D. This idea is discussed in section 7.
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The BDMST problem can be formulated as follows:

minimize z =
∑

(v,w)∈A

pv,wcv,w (4.12)

s.t.
H∑
l=0

uv,l = 1 ∀v ∈ V (4.13)∑
v∈V

uv,0 = 1 (4.14)∑
v|(v,w)∈A

pv,w = 1− uw,0 ∀w ∈ V (4.15)

pv,w ≤ 1− uw,l + uv,l−1 ∀(v, w) ∈ A,∀1 ≤ l ≤ H (4.16)

Here the constraints (4.13) ensure that each node gets assigned to a
unique depth. Constraint (4.14) forces exactly one node to depth 0, i.e.
the root node of the BDMST. Constraints (4.15) ensure that each node
has exactly one predecessor except the node at level 0. Finally, the con-
straints (4.16) establish a connection between the predecessor variables and
the depth variables. If v is the predecessor of w then the depth of v must be
1 less than the depth of w.

4.2.2 LR for the Predecessor-Depth Model

The constraints (4.16) are relaxed in the usual Lagrangian way. This results
in a LLBP with the following objective function:

∑
(v,w)∈A

pv,wcv,w +
H∑
l=1

 ∑
(v,w)∈A

λv,w,l (pv,w − 1 + uw,l − uv,l−1)

 (4.17)

Equation (4.17) can be rewritten as

∑
(v,w)∈A

pv,wcv,w +
H∑
l=1

 ∑
(v,w)∈A

pv,wλv,w,l


+

H∑
l=1

 ∑
(v,w)∈A

(uw,l − uv,l−1)λv,w,l


−

H∑
l=1

 ∑
(v,w)∈A

λv,w,l

 =
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which in turn can be expressed as follows:

∑
(v,w)∈A

pv,w

(
cv,w +

H∑
l=1

λv,w,l

)
︸ ︷︷ ︸

+
H∑
l=1

 ∑
(v,w)∈A

(uw,l − uv,l−1)λv,w,l


︸ ︷︷ ︸

−
H∑
l=1

 ∑
(v,w)∈A

λv,w,l


︸ ︷︷ ︸

(4.18)

The resulting objective function (4.18) consists of three parts. The third
part is a constant term4 L =

∑H
l=1

∑
(v,w)∈A λv,w,l. The �rst part depends

only on the predecessor variables pv,w. The coe�cients can be expressed as

αv,w =
(
cv,w +

∑H
l=1 λv,w,l

)
. The second part depends only on the depth

variables u. This part contains a sum over all arcs but the depth variables
are indexed with nodes. It is possible to reorder the summands and com-
bine the coe�cients of all occurrences of any depth variable uv,l into one
coe�cient βv,l. This way we can write

H∑
l=0

(∑
v∈V

uv,lβv,l

)
=

H∑
l=1

 ∑
(v,w)∈A

(uw,l − uv,l−1)λv,w,l

 (4.19)

where the β values are computed by the simple Algorithm 4.

βv,l = 0 ∀v ∈ V, 0 ≤ l ≤ H ; // initialize β
foreach l, 0 ≤ l ≤ H do1

foreach (v, w) ∈ A do2

βw,l = βw,l + λv,w,l ;3

βv,l−1 = βv,l−1 − λv,w,l ;4

end5

end6

Algorithm 4: Compute coe�cients β for the LLBP.

4Note that we are talking about the LLBP and hence the Lagrangian multipliers λ are
constants in this context.
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The LLBP can now be rewritten as:

minimize
∑

(v,w)∈A

pv,wαv,w︸ ︷︷ ︸
+

H∑
l=0

(∑
v∈V

uv,lβv,l

)
︸ ︷︷ ︸− L︸︷︷︸ (4.20)

s.t. constraints (4.13)�(4.15) (4.21)

Only the constraint (4.15) contains both the predecessor variables pv,w
and the depth variables uv,l. That allows us to split the problem into two
nearly independent problems.

Consider the �rst part of the objective function (4.20) with the con-
straints (4.13)�(4.15). This asks for a subgraph5 with minimum cost where
each node, except one, has exactly one predecessor. This is a minimum
spanning arborescence problem without a prede�ned root node.

Next, consider the second part of the objective function (4.20) with con-
straints (4.13)�(4.15). This requires the assignment of a unique depth to
every node6. The only additional restriction is that the root node from the
MSA problem above must be assigned to depth 0. To all other nodes an arbi-
trary depth out of 1 ≤ l ≤ H can be assigned. The only connection between
these problems is that both must use the same root node r. This means
essentially that we can solve the LLBP by solving the following problem

zLLBP = min
r∈V

(zMSA(r) + zMA(r)− L) (4.22)

which consists of a minimum spanning arborescence problem

minimize zMSA(r) =
∑

(v,w)∈A

pv,wαv,w (4.23)

s.t. p forms a spanning arborescence rooted at r (4.24)

and a minimum assignment problem.

minimize zMA(r) =
H∑
l=0

(∑
v∈V

uv,lβv,l

)
(4.25)

s.t.
H∑
l=0

uv,l = 1 ∀v ∈ V (4.26)∑
v∈V

uv,0 = 1 (4.27)

ur,0 = 1 (4.28)

5That is, assign 1 to some of the p variables.
6That is, assign 1 to the corresponding uv,l variable.
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The assignment problem can be simpli�ed.

minimize zMA(r) =
H∑
l=0

(∑
v∈V

uv,lβv,l

)
(4.29)

s.t.
H∑
l=1

uv,l = 1 ∀v ∈ V, v 6= r (4.30)

ur,0 = 1 (4.31)

uv,0 = 0 ∀v ∈ V, v 6= r (4.32)

The optimal solution to the minimum assignment problem is simply:

zMA(r) = βr,0 +
∑
v∈V,
v 6=r

min
1≤l≤H

(βv,l) (4.33)

Algorithm 5 describes the algorithm to solve the LLBP as given in equations
(4.20)�(4.21).

4.2.3 LR Approach for the Predecessor-Depth Model

Now I have presented all necessary parts for the second Lagrangian relaxation
approach. The following shows how these parts work together to compute
lower bounds for BDMST problems with an even diameter bound.

1. Transform the graph from the BDMST problem into its bidirected
interpretation as described in section 4.

2. Perform the SG as described in Algorithm 1.

• The LLBP is given as in section 4.2.2, i.e. equation (4.22).

• The LLBP can be solved by Algorithm 5.
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Input: MSA() ; // MSA solver
Input: αv,w ∀(v, w) ∈ A ; // arc cost
Input: βu,l ∀u ∈ V, 0 ≤ l ≤ H ; // assignment cost
Input: L ; // constant term
/* these values will contain the optimal solution at the end */
z∗ =∞ ; // objective value1

r∗ ; // root node2

p∗ ; // predecessor variables3

u∗ ; // depth variables4

foreach r ∈ V do5

/* minimum spanning arborescence */
p = MSA(r) ; // solve the MSA problem6

zMSA =
∑

(v,w)∈A pv,w · αv,w ; // corresponding objective value7

/* minimum assignment */
uv,l = 0 ∀v ∈ V, 0 ≤ l ≤ H ; // initialize8

ur,0 = 1 ; // root node is at depth 09

foreach v ∈ V, v 6= r do10

i = minarg1≤l≤H(βv,l) ; // depth value with smallest cost11

uv,i = 1 ;12

end13

zMA =
∑H

l=0

(∑
v∈V uv,l · βv,l

)
;14

/* remember best solution so far */
if (zMSA + zMA − L) < z∗ then15

z∗ = zMSA + zMA − L ;16

r∗ = r ;17

p∗ = p ;18

u∗ = u ;19

end20

end21

Algorithm 5: Algorithm to solve a Lagrangian Lower Bound Program
of the Predecessor-Depth relaxation for given values of α, β, and L.



Chapter 5

Implementation

This section describes my implementation of the LR-approaches. I developed
a command line application (lrbdmst) in C++ under Linux. The following
section presents the class hierarchy, while section 5.2 lists the external pack-
ages, and �nally section 5.3 gives brief usage instructions.

5.1 Class Hierarchy

The global structure consists of two parts. The �rst part provides the func-
tionality of Subgradient Optimization and Relax-and-Cut and is independent
of any actual optimization problem. The second part is the BDMST-related
part. It can itself be divided into parts for instance representation, solution
representation, and for each of the two Lagrangian relaxation approaches.
The more important classes are depicted in Figure 5.1 and are subsequently
described in more detail.

5.1.1 Subgradient Optimization

Constraint

An abstract class representing a constraint.

Subgradient_Solver

Provides the functionality described in Algorithm 1, Subgradient Op-
timization, and Algorithm 2, Relax-and-Cut. It has a reference to a
LLBP_Solver object.

LLBP_Solver

An abstract class representing a solver for a given Lagrangian lower
bound program. It holds a set of Constraint objects and a correspond-
ing set of Lagrangian multipliers.

33
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5.1.2 Instance Representation

BDMST_Instance

Represents an instance of the BDMST problem. Essentially this is a
graph with edge weights and a diameter bound D.

Bidirected_Instance

A subclass of BDMST_Instance. This class provides the mapping from
a BDMST instance to its bidirected interpretation as described in sec-
tion 4.

Bidirected_ArtificialRooted_Instance

A subclass of Bidirected_Instance. This class provides the mapping
from a bidirected interpretation of a BDMST instance to an instance
with an arti�cial root node as described in section 2.7.

5.1.3 Solution Representation

LP_Solution

An abstract class that speci�es a very simple interface to a LP solution.

BDMST_Solution

An abstract subclass of LP_Solution that speci�es a very simple in-
terface to a BDMST solution.

Predecessor_Solution

An abstract subclass of BDMST_Solution that speci�es the interface of
a predecessor solution for a BDMST problem. Essentially this speci�es
predecessor variables pv,w ∈ [0, 1].

Predecessor_IntSolution

A subclass of Predecessor_Solution that actually implements the
predecessor variables as integers, i.e. pv,w ∈ {0, 1}.

GR05_IntSolution

A subclass of Predecessor_IntSolution that provides additional depth
variables uv,l ∈ {0, 1}.

5.1.4 LLBP Solver for the Predecessor-Jump Approach

Jump_Solver

A subclass of LLBP_Solver. It solves the LLBP described in sec-
tion 4.1.2, i.e. it computes the new arc costs α and solves the resulting
minimum spanning arborescence problem. It works on Bidirected_-

ArtificialRooted_Instance and Predecessor_IntSolution.
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Jump_Constraint

A subclass of Constraint representing a jump as described in sec-
tion 4.1.1. Essentially this is a list of arcs.

Jump_Constraint_Factory

A static factory that creates new Jump_Constraint objects. It im-
plements the two jump constraint separation strategies described in
section 4.1.3.

5.1.5 LLBP Solver for the Predecessor-Depth Approach

GR05_Solver1

A subclass of LLBP_Solver. It solves the LLBP described in sec-
tion 4.2.2, i.e. it implements Algorithm 5. It works on Bidirected_-

Instance and GR05_Solution.

GR05_Constraint

A subclass of Constraint representing a constraint as given in equa-
tion 4.16. Essentially it consists of references to one predecessor vari-
able and two depth variables.

5.1.6 main() Method

The main method is implemented in the �le lrbdmst.cpp. Basically, it is
responsible for the following:

1. Parse the command line.

2. Read the BDMST instance from a �le.

3. Calculate an upper bound for the optimal objective value.

4. Create a LLBP_Solver, i.e. either

• a Jump_Solver, or

• a GR05_Solver.

5. Create a Subgradient_Solver.

6. Initiate the computation with a call to Subgradient_Solver::run().

1The name �GR05� is a reference to the paper in which the corresponding ILP-Model
was published, i.e. Gruber and Raidl 2005.
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5.2 External Packages

The following libraries and external modules were used:

LEDA, version 5.1.1
Library Of E�cient Data Types And Algorithms, mainly used for the
representation of graphs (see [LED06]).

GOBLIN, version 2.7.2
A Graph Object Library for Network Programming Problems. It pro-
vides an implementation of Edmonds algorithm to solve the minimum
spanning arborescence problem. This implementation can solve the
rooted and the unrooted variants (see [FPSE06]).

ilp, as of September 18th, 2007
A set of classes from the ilp program by Martin Gruber.

• Parse BDMST instances from �les in various formats.

• Initially compute a heuristic solution for the BDMST problem by
means of the CBTC and RTC heuristics to provide an upper bound
for the optimal objective value.

• Compute heuristic solutions for the BDMST problem by means of
the level construction heuristic during the execution of the Sub-
gradient Optimization.

log4cpp, version 0.3.5rc3
A �library of C++ classes for �exible logging� [Bak05].

5.3 Usage

This section includes the usage message of my program and describes the
connection between some of the parameters to the corresponding part of this
thesis.

Usage: ./lrbdmst --instance instance_file [options]

Compute a lower bound for the objective value of the

Bounded Diameter Minimum Spanning Tree problem (BDMST)

by means of Lagrangian Relaxation and Subgradient Optimization.

Author: Peter Putz

General Options:

-h, --help: prints this usage message

-H, --version: prints current version

Instance Selection Options:

-I, --instance_type: the following instance types can be used

'gnuplot' or 'gp' [see option '-g'],
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'santos' or 's',

'gouveia' or 'g',

'ea',

'rand_ea' or 'r'

-i, --instance: instance filename

-d, --diameter: the diameter of the BDMST to be computed

-g, --gp_lines: in case of a GNUPLOT instance this option can be used to

specify the name of the file holding the line information

-G, --gouveia_edges: number of the edges that will be used in a Gouveia

instance ('-1' for the complete, fully connected graph)

Langrange Relaxation Options:

-l, --lagrange_relaxation_method: which Lagrange Relaxation Method shall

be used:

'gr05' Based on the model described by Gruber and Raidl 2005

(variables: predecessor p_{v,w} and height u_{v,l}),

with relaxation of their equation (5), resulting in a

decomposition into a minimum arborescence and an assignment

problem.

'jump' Based on the predecessor model, with relaxation of

the jump constraints as desc. by Dahl, Gouveia and Requejo 2006.

-j, --jump_separation: which strategy shall be used for node partitioning

when generating jump constraints: put a node v, which is not in the

violating path

'1' into V_1

'd' into V_d, d = min(depth(v),H)

Can also be combined '1d', i.e. generate two constraints: one according

to V_1 and one according to V_d.

Subgradient Optimization Options:

-m, --maxIterations: maximum number of iterations to perform for the SG

-a, --SG_baseAgility_TerminationLevel: the minimal subgradient agility

value (the default is 0.005 as suggested by Beasley 1993)

-A, --SG_baseAgility_ReductionAfterNoImprove: reduce (i.e. halve) the

agility after that many iterations without improvement

(the default is 30 as suggested by Beasley 1993)

-r, --SG_repetitionsLimit: the maximum number of repetitions of the SG

(only makes sense if constraints are separated dynamically,

i.e. -l jump)

-R, --SG_repetitionsNoImproveLimit: the maximum number of consecutive

repetitions of the subgradient optimization without improving the

lower bound

(only makes sense if constraints are separated dynamically,

i.e. -l jump)

Miscellaneous Options:

-u, --upper_bound_method: use this primal heuristic to compute an

initial upper bound:

'rtc' Randomized Tree Construction,

'cbtc' Center Based Tree Construction.

-U, --upper_bound_iterations: the selected heuristic for the upper bound

[see option -u] will stop to build new starting solutions after '-U'

iterations (new solutions) without further improvement

-v, --vnd:
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neighbourhoods and their order within the VND; used to locally improve

starting solutions created by one of the primal heuristics

[see option -u]:

'none' no VND,

'e' edge exchange,

's' subtree optimization/node swap,

'c' level center exchange,

'l' level change

-V, --lev_nh_switch: percentage of the nodes when to switch from a level

to a neighbour list based predecessor search. This is used for the

initial upper bound.

Output Options:

-o, --outputPrefix: all created output files will have names starting with

outputPrefix (defaults to "output/instancefilename")

-w, --writeMinArbosGnuplot: (yes|no) write the minimum arborescence in

each iteration in gnuplot format to a file

-W, --writeMinArbosGoblin:(yes|no) write the minimum arborescence in each

iteration in goblin format to a file

-L, --logrc: log4cpp configuration file (log4cpp.properties)

The most relevant parameters and the corresponding parts in this thesis are
given as follows:

• --lagrange_relaxation_method

Switch to choose between the model described in section 4.2.1 and
the corresponding Lagrangian relaxation approach from section 4.2.2
(gr05), and the model from section 4.1.1 with the Lagrangian relax-
ation approach given in section 4.1.2 (jump).

• --jump_separation

In case the parameter --lagrange_relaxation_method jump is given,
this parameter selects the jump separation strategy, where 1 corre-
sponds to [V1] and d to [Vdepth] (see section 4.1.3).

• --SG_baseAgility_TerminationLevel

This value corresponds to πmin in Algorithm 1 for which [Bea93] sug-
gests 0.005.

• --SG_baseAgility_ReductionAfterNoImprove

This value represents the maximum number of recent iterations without
improving zmax, for which [Bea93] suggests 30 (see Algorithm 1).

• --SG_repetitionsNoImproveLimit

This value represents the maximum number of recent restarts without
improving zmax (see Algorithm 2).
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5.4 Auxiliary Scripts

As noted above the program lrbdmst is a command line application. The
default behaviour is to write a block of information for every iteration of
the Subgradient Optimization to stdout. Usually this results in rather vo-
luminous log�les which are not perfectly suited to get an overview of the
computation. Another aspect is that usually a single computation on one
BDMST instance is not signi�cant. To get meaningful results, a series of
computations has to be executed. It is desirable to compare one series of
computations to another one, e.g. two series perform SG on the same set of
instances but with di�erent parameters.

To tackle these problems I developed a set of bash and perl scripts.
Note that none of them are required for the proper functioning of lrbdmst.
They are intended to allow the scheduling of sequential experiments, to help
with the reproducibility of computations, as well as to ease the analysis
and comparison of results. The scripts provide usage descriptions, and the
README �le included with lrbdmst gives brief introductions and typical usage
examples. For the sake of completeness the more important scripts are listed
here. Those scripts that are meant to help with log�le analysis rely on
ExpLab [HKPS03] which provides the data format sus together with tools
that transform log�les into the sus format, �lter, sort or join multiple sus-
�les, and export the sus format into tables or plots.

./bin/labrunner2.pl

Execute lrbdmst on a set of BDMST instances, all with the same
parameters.

./bin/log2sus.sh

Transform a log�le as written by lrbdmst into sus. One iteration of
the Subgradient Optimization is represented as one table row. Suitable
to analyze one execution of lrbdmst.

./bin/lablogs2sus.sh

Transform a set of log�les as written by lrbdmst into sus. One exe-
cution of lrbdmst is represented as one table row. Suitable to analyze
a series of computations.

./bin/comparesus.sh

Compare two sus �les. Suitable to compare two series of computations
with di�erent parameters.

./bin/sus2csv, ./bin/csv2sus.sh
Transform sus to csv and vice versa. The format csv is suited for
import into spread sheet applications.
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Computational Experiments

I tested my implementation on the same benchmark instances that have pre-
viously been investigated by [GR05a]. The tests were restricted to instances
with an even diameter bound. One group of these instances was originally
published by Santos et al. [dSLR04]. The other group is originally taken from
Beasley's OR-Library [Bea05]. These instances were used by Gouveia and
Magnanti [GM03] as BDMST instances. The tests were performed under
the Linux operating system 2.6.8-12-amd64-k8-smp on an AMD Opteron
processor 270, 2000MHz.

I compare my results to so far unpublished data from Gruber [Gru06].
That data consists of LP relaxation values, LP relaxations strengthened
with various cuts, optimal solution values and corresponding CPU times.
Gruber's current research improves previously published results on the Pre-
decessor Depth model in [GR05a].

The two Lagrangian relaxation approaches, together with the di�erent
separation strategies for jump constraints, lead to four interesting classes of
experiments:

1. Predecessor-Depth approach (section 6.2), respectively

Predecessor-Jump approach (section 6.3) . . .

2. . . . with separation strategy [V1]

3. . . . with separation strategy [Vdepth]

4. . . . with both1 separation strategies [V1] and [Vdepth].

The following section discusses some general aspects of the computational
experiments. Sections 6.2 and 6.3 present the results obtained with my
LR approaches for the Predecessor-Depth model and the Predecessor-Jump
model, respectively. The parameters that are applied and the achieved lower

1That is, two constraints are generated at once, one according to each strategy.
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bounds are discussed. Finally, section 6.4 discusses �rst experiments on
larger instances.

6.1 General Aspects of the Computational Experi-

ments

The results for each of these classes of experiments are quite di�erent. While
the Predecessor-Depth approach was relatively insensitive to modi�cations
of the parameters, the results produced by the Relax-and-Cut approach to-
gether with Subgradient Optimization for the Predecessor-Jump approach
varied signi�cantly under di�erent settings. Usually, changing one parameter
improved the results for some of the instances (i.e. running time or lower
bound) but degraded the results for others. In general, it proved to be chal-
lenging to determine good parameters for the Subgradient Optimization.

Section 2.5 lists various modi�cations for the Subgradient Optimization.
In order to avoid alternating between two vectors of Lagrangian multipli-
ers, I utilized Direction Vectors. The Exceed Upper Bound modi�cation was
also applied. Preliminary experiments indicated that on average both mod-
i�cations improve the results slightly. On the other hand, Adjustment of
the Subgradient did not seem to produce any improvement. Therefore, this
modi�cation was not employed for the subsequently described experiments.

I present one run for each of the above classes of experiments. The
parameters for the SG are the same within each of the classes, but are allowed
to di�er between the classes. The presented results are indicators of the
quality of lower bounds, that could be achieved on average in each of the
classes within reasonable time limits. For single instances the results could
usually be improved by tweaking the parameters for that speci�c instance.
However, my goal was to �nd parameters that work well for the whole set of
instances. Besides the parameters for the SG, also the initial upper bounds
had a substantial impact on the behaviour of the SG. Whether a good or an
inferior upper bound was provided, sometimes in�uenced the performance of
the SG signi�cantly. Interestingly, this in�uence is hard to qualify, since a
better upper bound would for some instances result in a better lower bound
and in worse lower bounds for others.

The initial upper bound required by the Subgradient Optimization is
computed by the RTC heuristic from [Jul04]. The best value produced after
100 attempts is taken. If RTC does not �nd any feasible solution2, the initial
upper bound is simply taken to be the sum of the edge costs of the |V | − 1
most expensive edges. Clearly no tree can cost more than this.

When the solution to a LLBP satis�es the diameter constraint, this corre-
sponds to a feasible solution for the BDMST problem. Additionally, both LR

2This can happen on instances that are not complete.
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approaches utilize the level construction heuristic from [Gru06] to �nd feasi-
ble BDMST solutions based on the solutions of the LLBPs. Both types of so-
lutions denote upper bounds for the optimal objective value of the BDMST.
To distinguish between the best feasible solution found directly by the LR
approach, the best heuristic solution and the initial upper bound heuristic,
all three values are provided in the results.

An optimality gap is given for every lower bound. Denote the optimal
objective value that is known from [Gru06] with O and the achieved lower
bound with L. The optimality gap is de�ned as follows:

g =
O − L
O

(6.1)

Additionally, an alternative gap is also given. Note that the Subgradient
Optimization starts with all λi = 0. This means that the value of the
optimal solution to the LLBP in the �rst iteration is equal to the value of
the minimum spanning arborescence, which � under these circumstances �
is in turn equal to the value of the minimum spanning tree. This is true
for both Lagrangian relaxation approaches. Therefore, both LR approaches
compute lower bounds that are greater or equal to the MST objective value.
Accordingly, I decided to take into account, whether the �nal lower bound
improves this initial lower bound. Denote the objective value of the minimum
spanning tree withM . The progress that can potentially be made is (O−M),
while the progress that is actually made is (L−M). Now the gap G is de�ned
as follows:

G =
potential progress− actual progress

potential progress
(6.2)

=
(O −M)− (L−M)

O −M
(6.3)

=
O − L
O −M

(6.4)

This gap G was used as the primal criterion to decide upon the quality of a
lower bound.

A value of 1 (or a value close to 1) indicates that no (or only a very
small) improvement upon the objective value of the MST could be achieved.
A value of 0 (or a value near 0) means that the lower bound is equal to (or
very close to) the optimal objective value.

Note that in experiments where the optimal objective value is reached,
SG stops as soon as the smallest integer greater or equal to the lower bound
is equal to some upper bound3. The values listed in these situations are L
and G = O−L

O−M > 0, indicating a non-optimal gap and lower bound, although

the optimality of dLe with a gap G = O−dLe
O−M = 0 has actually been proven.

3The initial upper bound, a feasible solution value, or a heuristic solution value.
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Furthermore, if � for the same instance � the value of the LP relaxation
with cuts is equal to the optimal objective value, this could mistakenly be
interpreted as if the LP relaxation with cuts leads to a better result than the
lower bound. In fact, both �nd the optimal objective value.

For each of the classes the following data is given:
Inst The type of the instance, i.e. one of

c Complete instances from [dSLR04].
g Sparse instances from [dSLR04].
TE Euclidean instances from [GM03].
TR Random instances from [GM03].

V The number of nodes.
E The number of edges.
D The diameter bound of the instance.
M The cost of the minimum spanning tree.
LP The LP relaxation from [Gru06].
LPC The LP relaxation strengthened with additional cuts from [Gru06].
Opt The optimal objective value from [Gru06].
LB The best lower bound computed by the corresponding LR approach.
F The best feasible solution found during the SG.
H The best heuristic solution found during the SG.
U The initial upper bound used by SG.
it The number of iterations of the SG.
r The number of repetitions of the SG.
C The number of constraints found by the SG.
A The number of arcs per constraint.
t The running time in seconds.

g The gap g = O−L
O .

G The alternative gap G = O−L
O−M .

The computation times for the LP relaxation and for the LP relaxation
with cuts are not listed explicitly. According to [Gru06] the computation
times for the LP relaxation with cuts are always less than 3 seconds for the
instances with up to 40 nodes4. This is by far lower than the computation
times for any of my LR approaches and therefore, a more detailed compar-
ison of running times to the results from [Gru06] would not lead to further
insights.

6.2 Results for the Predecessor-Depth Approach

This section discusses the results obtained from the LR approach for the
Predecessor-Depth model from section 4.2.3. Table 6.1 compares my results
to those from [Gru06].
The following observations can be made:

4On an AMD Opteron processor 270, 2000MHz.
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1. On some instances the computed lower bound is greater than the LP
relaxation. On these instances, also the value of the MST is greater
than the LP relaxation.

2. The LP relaxation with cuts is in all cases greater than the lower bound
computed by the LR approach.

3. On some instances the lower bound does improve upon the value of the
MST. Disappointingly, this is only a minor improvement (G ≥ 0.914)
and on most instances no improvement was achieved at all.

4. No feasible solutions are found.

5. Heuristic solutions are found for all instances, except those of type TE.
In general, they are quite close to the optimum. The optimum is even
reached for some instances.

The results of this approach are relatively stable with respect to di�erent
values for the SG settings. With even extensively more relaxed parameters5

the lower bound only improves marginally while consuming much more time.
The conclusion is that the implemented approach from section 4.2.3 pro-

duces signi�cantly inferior lower bounds than the LP relaxation with cuts
from [Gru06], while � at the same time � requiring multiple orders of mag-
nitude more computation time. Moreover, it improves the value of the MST
only in rare cases and only by some minimal amount. This indicates that
the Lagrangian relaxation of the Predecessor-Depth model presented in sec-
tion 4.2.2 does not qualify as a promising basis for further research.

6.3 Results for the Predecessor-Jump Approach

This section discusses the results obtained from the LR approach for the
Predecessor-Jump model from section 4.1.4. The results herein are also
compared to the values presented in [Gru06] 6.

As mentioned above the combination of Relax-and-Cut and Subgradient
Optimization proved to be very sensitive to even minor changes in its param-
eters when applied to the Lagrangian relaxation for the Predecessor-Jump
model. After extensive testing I decided to set SG_baseAgility_Termination-

Level to 0.05 and SG_baseAgility_ReductionAfterNoImprove to 10, since these
values seemed to be a reasonable compromise between quality of the lower
bound and total running time. More relaxed values improve the lower bounds
slightly on average, but increase the total running time signi�cantly.

5More relaxed values in this context means smaller values for SG_baseAgility_-

TerminationLevel and/or bigger values for SG_baseAgility_ReductionAfterNoImprove.
6Note that the values produced by [Gru06] are based on the Predecessor-Depth model

and not on the Predecessor-Jump model.
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The three di�erent combinations of dynamic constraint separation strate-
gies7 turned out to di�er in their success to improve the lower bound. There-
fore, I decided to use di�erent settings for SG_repetitionsNoImproveLimit for
each of the three combinations. When both strategies are applied, the lower
bounds can be improved early in the Subgradient Optimization and further
improvements are achieved with some regularity. In opposition to this, the
strategies [V1] and [Vdepth], applied for their own, lead to a faster convergence
of the Subgradient Optimization. This happens because fewer improvements
can be achieved. The consequence is that, compared to the con�guration
where both separation strategies are applied, SG terminates after fewer it-
erations and after a shorter computation time. To compensate this and to
allow for a fairer comparison between the di�erent combinations of separation
strategies, I decided to set SG_repetitionsNoImproveLimit to 6 for the combined
strategy, to 8 when only [V1] was applied, and to 10 when only [Vdepth] was
applied. These increased values improved the found lower bounds to some
degree, but clearly any of the strategies [V1] or [Vdepth] applied for their own
produces inferior lower bounds compared to the combined strategy.

Results for the Predecessor-Jump Approach with [V1]

Table 6.2 shows the results of the Relax-and-Cut algorithm applied to the
LR approach of the Predecessor-Jump model, together with jump separation
according to the strategy [V1].
The following observations can be made:

1. The lower bounds are better than the values of the minimum spanning
trees for all considered instances (G ≤ 0.759).

2. In almost all cases, the lower bounds are better than the values of the
LP relaxation with cuts from [Gru06].

3. Feasible solutions are found for three instances.

4. Heuristic solutions are found for all but one instance. In general, they
are very close to the optimum. Actually, the optimum is reached for
most of the instances.

5. Two instances can be solved to proven optimality.

Results for the Predecessor-Jump Approach with [Vdepth]

Table 6.3 presents the results of the Relax-and-Cut algorithm applied to the
LR approach of the Predecessor-Jump model, together with jump separation
according to the strategy [Vdepth].
The following observations can be made:

7Only [V1] or only [Vdepth] or both.
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1. The lower bounds are not better than the values of the corresponding
minimum spanning trees for most of the considered instances (G ≥
0.938).

2. More feasible solutions are found compared to the experiments with
the separation strategy [V1].

3. Heuristic solutions are found for all but two instances. In general, they
are very close to the optimum. The optimum is reached for some of
the instances.

Results for the Predecessor-Jump Approach with [V1] and

[Vdepth]

Table 6.4 shows the results of the Relax-and-Cut algorithm applied to the
LR approach of the Predecessor-Jump model, together with jump separation
according to the strategy [V1] and [Vdepth]. In this table the �rst value in
column C gives the number of constraints that were separated according to
[V1], and the second value gives the number of separated constraints accord-
ing to [Vdepth].
The following observations can be made:

1. The lower bounds are better than the values of the corresponding min-
imum spanning trees for all of the considered instances.

2. The lower bound is worse than the value of the corresponding LP
relaxation with cuts for only one instance. For all other instances it is
equally or even better.

3. Compared to the experiments with the separation strategy [Vdepth],
even more feasible solutions are found.

4. Heuristic solutions are found for all but one instance. In general, they
are very close to the optimum. Actually the optimum is reached for
most of the instances.

5. Two instances can be solved to proven optimality.

To summarize, it can be said that combining the two separation strate-
gies actually combines the strength's of both. The lower bounds are, with
one exception, always equal or better than the values of the LP relaxation
with cuts, and for most of the instances feasible solutions can be found.
Unfortunately, the running times to compute the lower bounds are much
longer than the ones of the LP relaxation with cuts. It seems that while the
Lagrangian relaxation presented in section 4.1.2 does produce good lower
bounds, the Relax-and-Cut approach based on Subgradient Optimization
requires too many iterations. It might be promising to substitute the Sub-
gradient Optimization with another scheme for solving Lagrangian duals.
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6.4 Results for Large Instances

This section gives a rough indication of the performance of the Relax-and-
Cut approach applied to the Lagrangian relaxation of the Predecessor-Jump
model on larger instances. They are taken from the euclidean Steiner Tree
problem instances from Beasley's OR-Library [Bea05]. In [GHR06] di�erent
algorithms to �nd heuristic solutions for these instances have been published.
To the best of my knowledge, no optimal objective values are known for these
instances. The combination of both separation strategies, [V1] and [Vdepth] is
applied in the Lagrangian relaxation approach. The lower bounds computed
with the LR approach are compared to the LP relaxation values and the
values of the LP relaxation with cuts from [Gru06]. The large computation
times prohibited extensive experiments. Nevertheless, the following results
allow an estimation of the potential of the implemented LR approach.

Table 6.5 presents the results. In addition to the datasets in the previous
sections, this table also lists computation times for the LP relaxation with
and without cuts:
nr Number of the instance.
tLP Time to compute the LP relaxation LP in seconds.
tLPC Time to compute the LP relaxation with cuts LPC in seconds.

The following observations can be made:

1. The lower bound is better than the value of the minimum spanning
tree for three of the considered instances.

2. The lower bound is better than the value of the LP relaxation for all
of the instances.

3. The lower bound is better than the value of the LP relaxation with
cuts for two instances with 100 nodes.

4. For the instance with 500 nodes, the LP relaxation with cuts could not
be obtained with CPLEX. Even the LP relaxation without cuts shows
a massive increase in computation time. This indicates that instances
of this size are too large to be handled by the current LP approach.
However, also the LR approach fails to produce a satisfying result on
this instance. The lower bound is not greater than the value of the
MST.

In summary, it can be seen that it is possible to produce lower bounds
that are greater than the values of the LP relaxation with cuts from [Gru06].
As noted in the previous section, these results suggest that substituting
the Subgradient Optimization with another method to solve the Lagrangian
duals might be an interesting approach.
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Chapter 7

Conclusion

This section summarizes the work and suggests directions for further re-
search. I described two new Lagrangian relaxation approaches for the BDMST
problem with an even diameter bound. Computational experiments were
conducted on BDMST benchmark instances taken from the literature. Based
on these experiments, the implementation of both approaches can be studied
empirically.

One Lagrangian relaxation approach is based on the Predecessor-Depth
model. This model consists of two types of variables: predecessor variables
and depth variables. The set of constraints that couple the predecessor
variables and the depth variables are relaxed in the usual Lagrangian way.
This leads to a decomposition of the resulting problem into a minimum
spanning arborescence problem and a minimum assignment problem. These
two subproblems can be solved e�ciently. The Lagrangian Dual is solved
with Subgradient Optimization. The initial lower bound computed with this
approach is the value of the minimum spanning tree. Unfortunately, the best
lower bounds computed with this approach are only marginally better than
their initial lower bounds.

The second approach is based on the Predecessor-Jump model. This
model consists of predecessor variables and contains an exponential number
of so called jump constraints. Jump constraints are responsible to limit the
length of paths from the centre to any other node. These constraints are
relaxed in the usual Lagrangian way. The resulting problem is a minimum
spanning arborescence problem, which can be solved e�ciently. This relax-
ation is embedded in a Relax-and-Cut approach. Subgradient optimization
and subsequent jump constraint separation are performed iteratively. To
separate new violated jump constraints, two di�erent schemes were devel-
oped. As with the �rst approach, the initial lower bound is equal to the
value of the minimum spanning tree. The relax and cut approach is able
to produce lower bounds that are better than the value of the MST. The
best lower bounds are obtained when jump constraints according to both
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separation schemes are generated.
The computational results of the experiments with both approaches are

compared to results from [Gru06]. This includes LP relaxation values and
values of LP relaxation strengthened with additional cuts, based on the
Predecessor-Depth model. Most of the lower bounds from [Gru06] are im-
proved by the lower bounds computed with the jump constraints based ap-
proach. However, the computation of these lower bounds requires signi�-
cantly more time than the computation of the LP relaxation with cuts. This
observation holds for the smaller benchmark instances. On the largest tested
instance with 500 nodes the LP relaxation with cuts could not be computed
within on week of computation time. However, the Predecessor-Jump ap-
proach was unable to improve the initial MST lower bound for this instance.

The implemented combination of Relax-and-Cut with Subgradient Op-
timization exhibited two problems: First, it is very sensitive to changes
in its parameters, which makes it di�cult to �nd good parameters for a
whole set of instances. Second, it is slow, i.e. it requires many iterations to
converge. The sensitivity issue was especially troublesome with the jump
constraints based approach. Several modi�cations to the Subgradient Op-
timization where tested. This includes adjustments to the subgradients as
suggested by [Bea93] to avoid unnecessarily low step sizes. Additionally, an
enhancement suggested by [CFG01] was implemented. Instead of the current
value of the subgradient vector, a direction vector that takes also the previ-
ous direction into account was used to update the vector of the Lagrangian
multipliers. However, none of the modi�cations did lead to any signi�cant
improvement regarding the performance of the Subgradient Optimization.

The described approaches were equipped with the so called level con-
struction heuristic from [Gru06]. This heuristic takes the level information
from the solution of the Lagrangian lower bound problem and creates � when
possible � a feasible solution for the BDMST problem. These heuristic so-
lutions provide quite good upper bounds for the optimal objective value of
the BDMST problem.

7.1 Future Work

Future work should attempt to replace the Subgradient Optimization with
another scheme to solve the Lagrangian duals. Any method that either
helps with the sensitivity issue mentioned above, or that is able to improve
the lower bounds faster than the Subgradient Optimization will provide a
valuable improvement. Additionally, modi�cations to the Relax-and-Cut
approach that lead to a greater number of constraints may also result in
better lower bounds and faster convergence.

Investigating large instances, such as attempted in section 6.4, may be
interesting. The LP relaxations with cuts can be computed relatively fast on
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the instances taken from [dSLR04] and [GM03]. On the instances with 100
nodes from [Bea05] an increase in computation time can be noted. According
to [Gru06], the LP relaxation with cuts could not be computed for an instance
with 500 nodes within one week of computation time. Actually, even the LP
relaxations without cuts took nearly 106 seconds to compute for this instance.
Here the Lagrangian relaxation based approach may be able to compete with
the LP relaxation; in terms of the quality of the lower bound, as well as in
terms of processing time.

The LR approach based on the Predecessor-Jump model relies on a trans-
formation of the BDMST problem with an even diameter bound into a HMST
problem. This approach could be modi�ed to be able to solve HMST prob-
lem instances. This would allow to compare the implemented Lagrangian
relaxation approach with results published on HMST1. Another aspect one
may consider, is to modify the approaches to handle BDMST problems with
an odd diameter bound.

Regarding upper bounds and feasible solutions, future research may inte-
grate other, more sophisticated heuristics. This may serve several purposes:
First, it can be expected that this will further improve the upper bounds.
Second, better upper bounds may in turn also enhance the performance of
the Subgradient Optimization.

It may be promising to develop more jump separation schemes, di�erent
from the two that were presented here. This should help to increase the
number of considered constraints which should in turn lead to faster and
earlier improvements in the Subgradient Optimization. It may also improve
the best lower bound that is found.

Last but not least it may be interesting to integrate the jump constraints
into a Branch and Cut approach. Such an implementation is currently under
development by Gruber [Gru06].

1For example, [DGR06] present computational results for the HMST problem.
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