
D I S S E R T A T I O N

Combining Metaheuristics and
Integer Programming for Solving
Cutting and Packing Problems

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der
technischen Wissenschaften unter der Leitung von

Univ.-Prof. Dr. Günther Raidl
Institut für Computergraphik und Algorithmen E186

Technische Universität Wien

und

ao. Univ.-Prof. Dr. Ulrich Pferschy
Institut für Statistik und Operations Research

Universität Graz

eingereicht an der Technischen Universität Wien
Fakultät für Informatik

von

Jakob Puchinger
Matrikelnummer 9826289

Paulinengasse 9/14/11, 1180 Wien

Wien, am Jakob Puchinger

ii

Kurzfassung

Thema der vorliegenden Dissertation ist die Kombination von Metaheuristiken und
Algorithmen aus der ganzzahligen Programmierung (Integer Programming IP) zum
Lösen von zwei verschiedenen NP-schweren Pack- und Verschnittproblemen: Das
aus der Glaserzeugung kommende zweidimensionale Bin Packing Problem (2BP)
und das mehrdimensionale Rucksackproblem (Multidimensional Knapsack Problem
MKP), welches erstmals im Zusammenhang mit Investitionsplanung in der Literatur
Erwähnung fand.

Zu Beginn werden Metaheuristiken, im Besonderen evolutionäre Algorithmen und
variable Nachbarschaftssuche sowie ganzzahlige Programmierung eingeführt. Meta-
heuristiken und IP können als komplementär angesehen werden, wenn man die Vor-
und Nachteile beider Methoden betrachtet. Daher scheint es umso natürlicher zu
sein diese verschiedenen Ansätze zu leistungsfähigeren Lösungstrategien zu vereinen.
In der vorliegenden Arbeit werden wir verschiedene moderne Ansätze zur Kombina-
tion von exakten Verfahren und Metaheuristiken überblicksmäßig besprechen. Eine
Klassifikation der behandelten Ansätze in integrative und kollaborative Kombinatio-
nen der oben genannten Verfahren wird vorgestellt. Die Ergebnisse der besprochenen
Verfahren sind in den meisten Fällen sehr vielversprechend.

Wir wenden uns dann dem 2BP zu. Es werden neue IP-Formulierungen vorgestellt:
Ein Modell für eine eingeschränkte Version und eines für das ursprüngliche Prob-
lem. Beide Modelle benötigen nur eine polynomielle Anzahl von Variablen und
Nebenbedingungen und können Symmetrien vermeiden. Diese Modelle werden mit
dem allgemeinen IP-Löser CPLEX gelöst. Außerdem entwickeln wir einen Branch-
and-Price (B&P) Algorithmus der auf eine set-covering Formulierung des Prob-
lems angewandt wird. Die Spaltengenerierung wird mittels dual-optimalen Un-

iii

Kurzfassung

gleichungen stabilisiert. Die Erzeugung der Spalten wird mittels einer aus vier
Methoden bestehenden hierarchischen Strategie gelöst: (a) einer schnellen Heuris-
tik, (b) eines evolutionären Algorithmus, (c) des Lösens einer eingeschränkten
Version des Pricing-Problems mittels CPLEX und schließlich (d) des Lösens des
gesamten Pricing-Problems mittel CPLEX. Die durchgeführten Experimente doku-
mentieren die Vorteile unseres Ansatzes: Die eingeschränkte Version ermöglicht
es rasch hochqualitative Lösungen zu berechnen. Das Lösen des Modells der un-
eingeschränkten Version benötigt wesentlich mehr Rechenaufwand. Mithilfe der
Spaltengenerierung können aber in akzeptabler Zeit sehr gute untere Schranken
erreicht werden. Das vorgestellte B&P-Verfahren mit Stabilisierung und der vier-
stufigen hierarchischen Pricing-Strategie erzielt die besten Ergebnisse in Hinblick
auf die benötigten Laufzeiten, die Lösungsgüte und die Anzahl der optimal gelösten
Instanzen in limitierter Laufzeit.

Weiters betrachten wir das MKP, dessen Struktur wir theoretisch und empirisch
analysieren. Wir stellen auch verschiedene IP-basierte und metaheuristische Ver-
fahren sowie Kombinationen dieser Verfahren vor. Zuerst analysieren wir die Dis-
tanzen zwischen optimalen ganzzahligen Lösungen und optimalen Lösungen der LP-
Relaxierung des MKP. Dazu benutzen wir die kleineren der üblicherweise verwende-
ten Benchmark-Instanzen. Danach führen wir das Core-Konzept für das MKP ein
und unterziehen es einer ausgiebigen theoretischen und empirischen Analyse. Daraus
werden neue, erfolgreiche Ansätze zum Lösen des MKP entwickelt. Wir stellen dann
die neue relaxierungsgesteuerte variable Nachbarschaftssuche (Relaxation Guided
Variable Neighborhood Search) für allgemeine kombinatorische Optimierungsprob-
leme und ihre Implemetierung für das MKP vor. Schließlich werden verschiedene
kollaborative Kombinationen der vorgestellten Verfahren diskutiert und evaluiert.
Die durchgeführten Experimente zeigen, dass unsere Verfahren die besten bisher
bekannten Lösungen berechnen können, wobei die Laufzeiten deutlich unter jenen
der besten aus der Literatur bekannten Ansätze liegen.

Zusammenfassend lässt sich feststellen, dass die Kombination der Vorteile von IP-
basierten Verfahren und Metaheuristiken uns ermöglichen, bessere Problemlösungs-
strategien für spezielle kombinatorische Optimierungsprobleme zu entwickeln.
Ausserdem sind die Erfolge unserer Ansätze ein weiterer Anhaltspunkt dafür, dass
derartige Kombinationen einen vielversprechenden Forschungszweig darstellen.

iv

Abstract

The main topic of this thesis is the combination of metaheuristics and integer pro-
gramming based algorithms for solving two different cutting and packing problems,
belonging to the class of NP-hard combinatorial optimization problems: A problem
originating from the glass cutting industry, three-stage two-dimensional bin pack-
ing (2BP), and a problem first mentioned in the context of capital budgeting, the
multidimensional knapsack problem (MKP).

We begin by introducing metaheuristics, in particular evolutionary algorithms and
variable neighborhood search, and integer programming (IP) based methods. IP
and metaheuristic approaches each have their particular advantages and disadvan-
tages. In fact, looking at the assets and drawbacks, the approaches can be seen as
complementary. It therefore appears to be natural to combine techniques of these
two distinct streams into more powerful problem solving strategies. We discuss dif-
ferent state-of-the-art approaches of combining exact algorithms and metaheuristics
to solve combinatorial optimization problems. Some of these hybrids mainly aim
at providing optimal solutions in shorter time, while others focus primarily on ob-
taining better heuristic solutions. The two main categories into which we divide the
approaches are collaborative versus integrative combinations. We further classify the
different techniques in a hierarchical way. As a whole, the work on combinations of
exact algorithms and metaheuristics surveyed, documents the usefulness and strong
potential of this research direction.

As first application we present an integrative combination for solving three-stage
2BP. New integer linear programming formulations are developed: models for a re-
stricted version and the original version of the problem are given. Both only involve
polynomial numbers of variables and constraints and effectively avoid symmetries.

v

Abstract

These models are solved using the general-purpose IP-solver CPLEX. Furthermore,
a branch-and-price (B&P) algorithm is presented for a set covering formulation of
the unrestricted problem. We consider column generation stabilization in the B&P
algorithm using dual-optimal inequalities. Fast column generation is performed by
applying a hierarchy of four methods: (a) a fast greedy heuristic, (b) an evolution-
ary algorithm, (c) solving a restricted form of the pricing problem using CPLEX,
and finally (d) solving the complete pricing problem using CPLEX. Computational
experiments on standard benchmark instances document the benefits of the new
approaches: The restricted version of the integer linear programming model can be
used to obtain near-optimal solutions quickly. The unrestricted version is compu-
tationally more expensive. Column generation provides a strong lower bound for
3-stage 2BP. The combination of all four pricing algorithms and column generation
stabilization in the proposed B&P framework yields the best results in terms of the
average objective value, the average run-time, and the number of instances solved
to proven optimality.

We then study the MKP, present some theoretical and empirical results about its
structure, and evaluate different ILP-based, metaheuristic, and collaborative ap-
proaches for it. A short introduction to the multidimensional knapsack problem is
followed by an empirical analysis of widely used benchmark instances. First the
distances between optimal solutions to the LP-relaxation and the original problem
are studied. Second we introduce the new core concept for the MKP and conduct an
extensive study of it. The empirical analysis is then used to develop new concepts
for solving the MKP using ILP-based and memetic algorithms. We then describe the
newly developed Relaxation Guided Variable Neighborhood Search in general, and
its implementation for the MKP in particular. Different collaborative combinations
of the algorithms presented are discussed and evaluated. Further computational
experiments with longer run-times are also performed in order to compare the so-
lutions of our approaches to the best known solutions for the MKP. Several of the
collaborative and core based approaches were able to reach many of the best known
results from the literature in substantially shorter times.

In summary, we can note that using the advantages of IP-based methods and meta-
heuristics by combining them in different ways improves our problem solving capac-
ities for specific problems. The successful results of our approaches suggest, that
these types of combinations point to a promising research direction for the solution
of NP-hard combinatorial optimization problems.

vi

Acknowledgments

First of all I want to thank Prof. Günther Raidl, who was a great thesis supervisor,
boss and colleague. He introduced me to the world of combinatorial optimization,
metaheuristics and integer programming, and gave me irreplaceable guidance and
advice. I further want to thank Prof. Ulrich Pferschy, my second supervisor. He
gave me valuable advice and hints for all the parts of my thesis, especially for the
MKP. It was really nice and enriching to have the opportunity to work with Ulrich.

I also want to say thank you to my colleagues at the Algorithms and Data Structures
Group: Gabriele Koller was the co-supervisor of my master thesis and helped me
with my first publication. Ivana Ljubic was my roommate at the University until she
finished her PhD, and I had many interesting professional and private discussions
with her. Martin Schönhacker was an important advisor in teaching and university
issues. Martin Gruber was a great co-worker and colleague, and also an important
technical help. Philipp Neuner was of invaluable help in technical questions and we
had great private and scientific discussions. Bin Hu was my always obliging and
supportive new roommate at the University. Matthias Prandtstetter and Daniel
Wagner were nice colleagues with whom I had fruitful discussions. Gunnar Klau
and René Weiskircher are former colleagues with whom I had interesting scientific
discussions and who also gave me support with teaching issues. I also want to thank
Prof. Petra Mutzel, the former head of our group, for her support. Many thanks to
Stefanie Wogowitsch, who was always of great help with all administrative purposes
and with whom I also had great private discussions.

Special thanks to my family, in particular to my parents to whom I owe everything.

Last but not least I want to thank Miriam for her endless support and love.

vii

viii

Contents

1. Introduction 1

2. Metaheuristics 9

2.1. Constructive Heuristics and Local Search 9
2.1.1. Constructive Heuristics . 10

2.1.2. Local Search . 10
2.2. Evolutionary and Memetic Algorithms 12

2.2.1. Principles . 12
2.2.2. Memetic Algorithms . 16

2.3. Variable Neighborhood Search . 17
2.3.1. Variable Neighborhood Descent 17

2.3.2. Variable Neighborhood Search 18

3. Exact Algorithms – Integer Programming 21

3.1. Linear and Integer Programming . 21
3.1.1. Linear Programs . 22
3.1.2. Integer Programs . 23

3.1.3. Geometric interpretation and the simplex algorithm 24
3.2. LP-based Branch-and-Bound . 27
3.3. Branch-and-Cut . 29

3.3.1. Cutting Plane Algorithm . 29
3.3.2. Branch-and-Cut . 30

3.4. Branch-and-Price . 31

3.4.1. Column Generation . 31
3.4.2. Branch-and-Price . 33

ix

Contents

4. Combining Metaheuristics and Exact Algorithms 35

4.1. Introduction . 35

4.2. Collaborative Combinations . 37

4.2.1. Sequential Execution . 37

4.2.2. Parallel or Intertwined Execution 39

4.3. Integrative Combinations . 40

4.3.1. Incorporating Exact Algorithms in Metaheuristics 40

4.3.2. Incorporating Metaheuristics in Exact Algorithms 43

4.4. Conclusions . 46

5. Three-Stage Two-Dimensional Bin Packing 47

5.1. Introduction . 47

5.2. Previous Work . 48

5.3. Three-Stage Two-Dimensional Bin Packing 53

5.4. Integer Linear Programming Models 54

5.4.1. Restricted Three-Stage Two-Dimensional Bin Packing 54

5.4.2. The Unrestricted Case . 56

5.5. A Column Generation Approach . 58

5.5.1. The Set Covering Model for 3-Stage 2BP 58

5.5.2. The Pricing Problem . 60

5.5.3. Stabilizing Column Generation 60

5.6. The Branch-and-Price Framework 64

5.6.1. Generating an Initial Feasible Solution 65

5.6.2. Branching . 66

5.6.3. Generating Columns using a Greedy Heuristic 67

5.6.4. Generating Columns using an Evolutionary Algorithm 68

5.6.5. Pricing by Solving the Restricted 3-Stage 2DKP 71

5.6.6. Exact Pricing Algorithm . 73

5.7. Computational Experiments . 73

5.7.1. Settings and Parameters . 73

5.7.2. Computational Results . 74

5.8. Conclusions . 83

6. The Multidimensional Knapsack Problem 85

6.1. Introduction . 86

6.2. The MKP and its LP-relaxation . 89

6.2.1. Empirical Analysis . 89

6.2.2. Local Branching Based Approaches 91

6.3. The Core Concept . 94

6.3.1. The Core Concept for KP . 94

6.3.2. The Core Concept for MKP 95

x

Contents

6.3.3. Experimental Study of MKP Cores and Core Sizes 97
6.3.4. A Memetic Algorithm . 99
6.3.5. Weak Approximate Cores . 101
6.3.6. Computational Experiments 101

6.4. Relaxation Guided VNS for the MKP 104
6.4.1. Relaxation Guided VNS . 104
6.4.2. Relaxation Guided VNS for the MKP 107
6.4.3. Extending RGVNS for the MKP 110

6.5. Collaborative Approaches for the MKP 113
6.5.1. Collaborative MA and B&C 113
6.5.2. Collaborative RGVNS and B&C 114
6.5.3. Computational Experiments 114

6.6. Further Computational Experiments 117
6.7. Conclusions . 118

7. Conclusions and Future Research Directions 121

A. Additional Tables for the MKP 125

A.1. Distances between LP-relaxed and optimal solutions 125
A.2. MKP Core Structure . 129
A.3. Fixed MKP Core Results . 132

Bibliography 135

Curriculum Vitae 147

xi

xii

Chapter 1

Introduction

Cutting and packing problems are combinatorial optimization problems (COPs) usu-
ally occurring in a multitude of industrial applications such as

• glass, paper and steel cutting,

• container or pallet loading,

• VLSI design,

• portfolio optimization

• and many others.

Usually items have to be cut from raw material such that the resulting waste should
be kept minimal, or the number of bins/containers needed to pack given items has to
be minimized. Another kind of packing problem is the so called knapsack problem,
where items with an associated profit have to be selected and packed into one or
more knapsacks, and the resulting total profit has to be maximized. There are
several variants of the knapsack problem, such as the classical knapsack problem,
the multidimensional knapsack problem, the multiple knapsack problem, and many
others.

Most COPs, and therefore most cutting and packing problems, are, in general,
difficult to solve. In theoretical computer science, this is captured by the fact that
many such problems are NP-hard [42]. Because of the inherent difficulty and the
enormous practical importance of NP-hard COPs, a large number of techniques for
solving such problems have been proposed over the last decades.

1

Chapter 1. Introduction

The available techniques for solving difficult COPs can be roughly classified into two
main categories: exact and heuristic algorithms. Exact algorithms are guaranteed
to find an optimal solution for every instance of a COP. The run-time, however,
often increases dramatically with the instance size, and in practice only small or
medium-sized instances can be solved to proven optimality. In this case, the only
possibility for larger instances is to trade optimality for run-time, yielding heuristic
algorithms. In other words, the guarantee of finding an optimal solution is sacrificed
for the sake of getting a good solution in a limited available time.

Two realizations of these categories have had significant success: integer (linear)
programming (IP), as an exact approach, and local search with various extensions
and independently developed variants, in the following called metaheuristics (MH),
as a heuristic approach.

Some well known IP methods are branch-and-bound, Lagrangian relaxation based
methods, and cutting-plane techniques based on linear programming, such as
branch-and-cut, branch-and-price, and branch-and-cut-and-price [92, 132]. In re-
cent years remarkable improvements have been reported for IP when applied to
particular problems (see for example [3] for the traveling salesman problem).

The main advantage of IP methods is that they yield proven optimal solutions
or solutions with bounds or guarantees on the quality of the objective function.
However, for many of the available IP algorithms the size of the instances that can
be solved in practice is still relatively small, and the computation time increases
in general exponentially with increasing instance size. Often, memory requirements
are also a limiting factor to applicability.

Metaheuristic methods include, among others, simulated annealing, tabu search,
variable neighborhood search and various population-based models such as evolu-
tionary algorithms and memetic algorithms. See [1, 49, 62] for more general in-
troductions to local search based approaches and metaheuristics. These methods
have shown significant success in achieving near-optimal (and sometimes optimal)
solutions to difficult practical COPs.

Specific advantages of metaheuristics are that in many cases they are found to be
the best performing algorithms for large problems in practice, they can examine a
large number of possible solutions in a relatively short computation time, and they
are typically easier to understand and implement than advanced exact methods.
However, disadvantages of metaheuristics are that they cannot prove optimality,
they do not give tight quality guarantees for approximate solutions, and they cannot
provably reduce the search space.

IP and metaheuristic approaches each have their particular advantages and disad-
vantages. In fact, looking at the assets and drawbacks, the approaches can be seen

2

Chapter 1. Introduction

as complementary. It therefore appears to be natural to combine the techniques of
these two distinct streams into more powerful problem solving strategies.

Apart from obvious combinations such as applying local search based heuristics to
get tighter bounds for e.g. branch-and-bound algorithms and approaches in the con-
text of preprocessing, combining exact optimization techniques and metaheuristics
is still an underrepresented research area. In Chapter 4 we give a survey and classifi-
cation of different combination approaches, which we mainly classify into integrative
and cooperative combinations.

The main subject of this thesis is the combination of exact and metaheuristic al-
gorithms for solving cutting and packing problems. Looking at their assets and
drawbacks, the approaches can be seen as complementary. It appears to be natural
to combine ideas from both streams. In the last years there have been several hy-
bridization approaches that are often significantly more effective in terms of running
time and/or solution quality since they benefit from synergy. On the one hand,
we developed an integrative combination applied to two-dimensional bin packing,
in which the property of exact algorithms of being able both to find the global
optimum and to give quality guarantees for feasible solutions identified during opti-
mization was retained. On the other hand, we developed a cooperative framework
for combining exact algorithms and metaheuristics, which was tested mainly on the
multidimensional knapsack problem.

We will now formally introduce combinatorial optimization problems and further
describe the two problem classes, bin packing and knapsack problems, addressed
throughout this thesis.

Combinatorial Optimization Problems

Combinatorial Optimization Problems are optimization problems where an optimum
object is sought from a finite collection of objects. A formal definition of COPs as
we will treat them here is given in [1]:

Definition 1 A combinatorial optimization problem is specified by a set of problem
instances and is either a minimization or a maximization problem.

Definition 2 An instance of a combinatorial optimization problem is a pair (S, f),
where the solution set S is the set of feasible solutions and the cost/profit function
f is a mapping f : S → R. The problem is to find a globally optimal solution, i.e.
an x∗ ∈ S such that f(x∗) ≤ f(x) ∀x ∈ S in case of a minimization problem and
f(x∗) ≥ f(x) ∀x ∈ S in case of a maximization problem. Furthermore, f ∗ = f(x∗)

3

Chapter 1. Introduction

denotes the optimal cost/profit, and S∗ = {x ∈ S | f(x) = f ∗} denotes the set of
optimal solutions.

Difficult to solve COPs are said to be NP-hard. It is assumed that they cannot be
solved by algorithms having their run-times bounded by a polynomial in the size
of the input. We give a formal definition of NP-hardness below. For a detailed
treatment of computational complexity we refer to [42].

A decision problem Pd is a problem that takes an input (an instance of the problem)
and requires as output either 0 or 1 (yes or no). If there exists an algorithm capable
to produce the correct answer for any input of length n in a polynomially bounded
number of steps, Pd is said to be solvable in polynomial time. P denotes the class
of all decision problems for which there exists a polynomial-time algorithm. The
class of problems for which answers can be verified by an algorithm, with run time
polynomial in the size of the input is denoted NP . A decision problem Pd ∈ NP is
said to be NP-complete, if it is possible to polynomially transform every problem
from NP to Pd. A decision problem is called NP-hard, if it is at least as hard
as every problem in NP . An optimization problem is therefore already NP-hard
if its underlying decision problem (deciding whether the optimization problem has
a solution with objective better than a given constant) is NP-complete. In this
thesis we consider NP-hard COPs only, for an in-depth comprehensive overview on
efficiently solvable COPs we refer to [111].

Bin Packing Problems

Bin packing problems occur in applications such as glass manufacturing, container
and vehicle loading, or scheduling. The main differences occurring in different bin
packing applications are the dimension and the type of allowed packing patterns.
Many exact and heuristic approaches have been developed in the last decades for
solving different variants of bin-packing problems. An annotated bibliography on
cutting and packing problems is given in [31]. A recent survey on two-dimensional
bin-packing is given in [75].

In one-dimensional bin packing, n items with given lengths li i = 1, · · · , n have to
packed without overlapping into bins with length L. The goal is to pack all the
items while minimizing the total number of bins used. This principle also applies
for two-dimensional bin packing where n two-dimensional items with given widths
wi and heights hi i = 1, · · · , n have to be packed into a minimal number of bins
having width W and height H.

4

Chapter 1. Introduction

Knapsack Problems

Knapsack Problems also occur in a number of important real-world applications.
Many very different algorithmic approaches have been developed for the different
variants of the knapsack problem. A comprehensive treatment of knapsack problems
is given in [66].

In the classical 0/1-knapsack problem a set of n items with associated profits pj and
weights wj j = 1, · · · , n is given. A subset has to be selected and packed into a
knapsack having a maximum weight capacity c. The total profit of the items in the
knapsack has to be maximized. In this thesis we will tackle the multidimensional
knapsack problem where n items are given and each item has an associated profit
pj j = 1, · · · , n. We are further given m resources with limited amounts ci i =
1, · · · ,m Each of the items consumes wij of each resource. The objective is to
maximize the profit while not violating the resource constraints.

Overview of the thesis

First we will give a short introduction to metaheuristics and IP-based algorithms in
Chapters 2 and 3. Our main goal is to enable the reader to become familiar with
the terms and notations used throughout this thesis.

In Chapter 4 we discuss different state-of-the-art approaches of combining exact al-
gorithms and metaheuristics to solve combinatorial optimization problems. Some of
these hybrids mainly aim at providing optimal solutions in shorter time, while others
focus primarily on getting better heuristic solutions. The two main categories into
which we divide the approaches are collaborative versus integrative combinations.
We further classify the different techniques in a hierarchical way. As a whole the
surveyed work on combinations of exact algorithms and metaheuristics documents
the usefulness and strong potential of this research direction. An earlier version of
this chapter was published in:

Jakob Puchinger and Günther R. Raidl. Combining metaheuristics and
exact algorithms in combinatorial optimization: A survey and classifica-
tion. In Proceedings of the First International Work-Conference on the
Interplay Between Natural and Artificial Computation, volume 3562 of
LNCS, pages 41-53. Springer, 2005.

In Chapter 5 an integrative combination for solving a two-dimensional bin packing
problem is presented.

5

Chapter 1. Introduction

We consider the three-stage two-dimensional bin packing problem (2BP) which oc-
curs in real-world applications such as glass, paper, or steel cutting. We present
new integer linear programming formulations: models for a restricted version and
the original version of the problem are developed. Both only involve polynomial
numbers of variables and constraints and effectively avoid symmetries. Those mod-
els are solved using the general-purpose IP-solver CPLEX.

Furthermore, a branch-and-price (B&P) algorithm is presented for a set covering
formulation of the unrestricted problem. We consider column generation stabiliza-
tion in the B&P algorithm using dual-optimal inequalities. Fast column generation
is performed by applying a hierarchy of four methods: (a) a fast greedy heuristic, (b)
an evolutionary algorithm, (c) solving a restricted form of the pricing problem using
CPLEX, and finally (d) solving the complete pricing problem using CPLEX. Com-
putational experiments on standard benchmark instances document the benefits of
the new approaches: The restricted version of the integer linear programming model
can be used to quickly obtain near-optimal solutions quickly. The unrestricted ver-
sion is computationally more expensive. Column generation provides a strong lower
bound for 3-stage 2BP.

The combination of all four pricing algorithms and column generation stabilization
in the proposed B&P framework yields the best results in terms of the average
objective value, the average run-time, and the number of instances solved to proven
optimality.

An earlier version of this chapter appeared in:

Jakob Puchinger and Günther R. Raidl. Models and algorithms for three-
stage two-dimensional bin packing. European Journal of Operational
Research, feature issue on Cutting and Packing. Accepted for publication
2005.

Preliminary results of the presented algorithms have been published by the authors
in:

Jakob Puchinger and Günther R. Raidl. An evolutionary algorithm for
column generation in integer programming: an effective approach for 2D
bin packing. In X. Yao et. al, editor, Parallel Problem Solving from
Nature - PPSN VIII, volume 3242 of LNCS, pages 642-651. Springer,
2004.

In Chapter 6, we study the multidimensional knapsack problem, present some the-
oretical and empirical results about its structure, and evaluate different ILP-based,
metaheuristic and collaborative approaches for it.

6

Chapter 1. Introduction

First, we give a short introduction to the multidimensional knapsack problem, fol-
lowed by an empirical analysis of widely used benchmark instances. First the dis-
tances between optimal solutions to the LP-relaxation and the original problem are
studied. Second we introduce the new core concept for the MKP, which we then
study extensively. The empirical analysis is then used to develop new concepts for
solving the MKP using ILP-based and memetic algorithms. We then describe the
newly developed Relaxation Guided Variable Neighborhood Search in general, and
its implementation for the MKP. Different collaborative combinations of the algo-
rithms presented are discussed and evaluated. Further computational experiments
with longer run-times are also performed in order to compare the solutions of our
approaches to the best known solutions for the MKP. Several of the collaborative
and core based approaches were able to reach many of the best known results from
the literature in substantially shorter times.

Earlier versions of parts of this chapter have been published in:

Jakob Puchinger, Günther R. Raidl, and Martin Gruber. Cooperating
memetic and branch-and-cut algorithms for solving the multidimensional
knapsack problem. In Proceedings of MIC2005, the 6th Metaheuristics
International Conference, pages 775-780, Vienna, Austria, 2005.

Jakob Puchinger and Günther R. Raidl. Relaxation guided variable
neighborhood search. In Proceedings of the XVIII Mini EURO Con-
ference on VNS, Tenerife, Spain, 2005.

Jakob Puchinger, Günther R. Raidl, and Ulrich Pferschy. The Core Con-
cept for the Multidimensional Knapsack Problem. To appear in Evolu-
tionary Computation in Combinatorial Optimization - EvoCOP 2006,
Budapest, Hungary. LNCS, Springer 2006.

We conclude this thesis in Chapter 7 by summarizing the work presented and giving
a look ahead to future tasks and development.

7

8

Chapter 2

Metaheuristics

Local search based metaheuristics have proven to be highly useful in practice. This
category of problem solving techniques includes, among others, simulated annealing
[68], tabu search [51], iterated local search [79], variable neighborhood search [57],
various population-based models such as evolutionary algorithms [4], scatter search
[52] and memetic algorithms [90], and estimation of distribution algorithms such as
ant colony optimization [29]. See also [1, 50, 62] for more general introductions to
local search and metaheuristics.

In this chapter we will give an introduction to evolutionary algorithms and vari-
able neighborhood search, which are the metaheuristics mainly used and referred
to throughout this thesis. Before describing these metaheuristics in detail, we will
introduce some basic notions of heuristics and local search. In the remainder of this
chapter we will consider minimization problems only, since maximization problems
can be treated analogously.

2.1. Constructive Heuristics and Local Search

Constructive heuristics are able to find feasible solutions to COPs without guar-
anteeing their optimality. Having a potentially suboptimal solution, one could try
to improve it. Local Search, a basis of most metaheuristics, is a possible way for
achieving this goal. In the following we will introduce these basic concepts in de-
tail.

9

Chapter 2. Metaheuristics

2.1.1. Constructive Heuristics

Constructive heuristics usually build a solution from scratch incrementally. A com-
mon scheme is to start from an “empty” solution and add an atomic solution com-
ponent at each step. Constructive heuristics always enlarge partial solutions and
never reconsider the choices made during the construction process.

Considering the classical 0/1 single-knapsack problem as an example. A simple
constructive heuristic would try to add one item after the other until no item can
be added anymore. If the locally best item, according to its profit or any other
measure, is chosen, the heuristic is said to be greedy.

Performance guarantees can often be provided for constructive heuristics. More gen-
erally, the theoretical framework of approximation algorithms [129] permits absolute
and relative performance guarantees of heuristics to be given. Furthermore it allows
the inherent algorithmic difficulty of specific COPs to be analyzed, by providing
positive or negative approximability results.

2.1.2. Local Search

Local search [1] is a simple way for improving feasible solutions of a COP. Having a
solution, local search iteratively looks for better neighboring solutions and stops if
no such solutions can be found.

The main component of local search is therefore the neighborhood structure. Fur-
thermore, a definition of the search space, i.e. a representation of solutions x, and
an objective function f(x) associating an objective value to each feasible solution
are needed to define a local search.

Definition 3 A neighborhood structure N : S → 2S is a function associating a set
of neighbors, called neighborhood N (x) ⊆ S to every solution x ∈ S.

Actual neighborhood structures are often defined by a specific move. A move is an
operation applied to a solution x yielding another solution x′. Considering a solution
represented by a bit-string of a given length n, a move could be a flip of a single bit.
The resulting neighborhood of a given solution is then the set of solutions which can
be generated by flipping a single bit of x.

The pseudocode description of basic local search is given in Algorithm 1.

10

2.1. Constructive Heuristics and Local Search

Algorithm 1: Basic local search

x = start solution

repeat
choose x′ ∈ N (x)

if f(x′) ≤ f(x) then
x = x′

until termination condition

The given pseudocode leaves the choice of neighbor x′ open. Usually, one of the
following strategies for choosing x′, called step-functions, is used:

• Random Neighbor: Randomly pick a solution from N (x).

• Next Improvement: Search through N (x) in some order and use the first
solution at least as good as x

• Best Improvement: Use a best neighbor solution from N (x)

If basic local search is applied with the next or best improvement strategies and no
further improvements are possible, a local optimum with respect to N is reached:

Definition 4 A solution x̂ of a minimization problem is locally optimal with respect
to a neighborhood structure N if

f(x̂) ≤ f(x)∀x ∈ N (x̂).

The success of local search strongly depends on the choice of the starting solution,
the neighborhood structure and the step function. Local search is a very simple
and often successful algorithmic framework. There are many problems (e.g. linear
programming) where local and global optima coincide which can be solved to opti-
mality by local search approaches. In NP-hard COPs local and global optima do
not coincide, i.e. there are several local optima different from the global optima. In
order to overcome this drawback of simple local search, several extensions and vari-
ants such as multi-start and iterated local search have been developed. Furthermore,
algorithms such as tabu search, variable neighborhood search, memetic algorithms
and many others incorporate the principles of local search.

11

Chapter 2. Metaheuristics

2.2. Evolutionary and Memetic Algorithms

The biologically inspired field of evolutionary algorithms has its origin in Charles
Darwin’s theory of evolution [22]. As early as 1948 Turing proposed a “genetical or
evolutionary search”, see [123]. Three different implementations of the basic idea
were developed in the 1960s; evolutionary programming by Fogel, Owens and Walsh
[36], the genetic algorithm by Holland[61], and evolution strategies by Rechenberg
and Schwefel [110, 112]. Over the last decades these strategies have been extended,
adapted, and combined in various ways and are now mainly referred to under the
umbrella term evolutionary algorithms [4]. For a more detailed historic overview
and a comprehensive treatment of evolutionary computation we refer to [4, 33].

2.2.1. Principles

The term evolutionary algorithm (EA) represents a much wider class of algorithms
than the original class of genetic algorithms, since in its general form almost all
aspects can be freely defined and adapted to the problem at hand. In Algorithm 2
pseudocode for a generic evolutionary algorithm is given.

Algorithm 2: Generic evolutionary algorithm

P ← set of initial solutions

Evaluate(P)

repeat
Q ← SelectSolutionsForVariation(P)

Q ← GenerateNewSolutionsByVariation(Q)

Evaluate(Q)

P ← SelectSurvivingSolutions(P ,Q)

until termination condition

The depicted EA acts on a set of, usually different, solutions P also called population.
P is usually initialized by random constructive heuristics. The measure for the
number of different solutions in a population is called its diversity. Note that there
is no single measure for diversity, for example either the number of individuals with
different fitness values or the number of really different individuals could be used.

P is then evaluated for the first time, i.e. the fitness of each candidate solution or
individual or chromosome is calculated. The fitness of an individual is a measure

12

2.2. Evolutionary and Memetic Algorithms

for its quality and is closely linked to the objective value of the solution it rep-
resents. The population then undergoes the artificial evolutionary process until a
termination condition is met. First a certain number of individuals is selected to
undergo variation. Then the biologically inspired variation operators, recombination
and mutation, are applied to these candidate solutions, generating new individuals,
which are again evaluated. Finally a second selection takes place to decide which
of the newly created individuals are incorporated into the population, and which of
the old individuals are replaced.

In the remainder of this section we will introduce the different aspects of modern
evolutionary algorithms in more detail.

Representation

When designing evolutionary algorithms, one has to decide about the representation
(genotype) of solutions (phenotypes). A genotype can consist of a binary string,
but also of a permutation encoding, real valued numbers, or any other possibility.
Furthermore a representation can be direct if the genotype directly corresponds to
the phenotype, and indirect if an algorithm has to be applied to the genotype in
order to decode the phenotype.

Consider the knapsack problem. On the one hand solutions can be directly repre-
sented by a bit string corresponding to solution vector x, where each bit represents
the status (packed or not) of an item. On the other hand a permutation of the items
can represent a candidate solution, if it is decoded by a first-fit heuristic, which
packs the items into the knapsack according to the order given by the genotype,
may be used to represent a solution [60].

Evaluation

The evaluation function F (x) is needed to calculate the fitness of each individual
x. The objective value can be directly used as fitness value, but it can often be
advantageous to use a scaled objective value. In case of a constrained problem, if
infeasible individuals appear in the population, a penalty term can be introduced in
order to control infeasibility.

Selection Mechanisms

Parent Selection The selection of the parents that undergo variation is typically
done in a probabilistic way, but giving fitter individuals a higher chance to be chosen

13

Chapter 2. Metaheuristics

than those with lower quality. Frequently used selection mechanisms are fitness
proportional [61], rank-based [5], and tournament [33] selection.

In fitness-proportional or roulette wheel selection, the probability of selecting an
individual x from a population P is given by:

p(x) =
F (x)

∑

y∈P F (y)
.

If the objective value is chosen as fitness, this type of selection can lead to premature
convergence, i.e. the effect of losing population diversity too quickly and getting
trapped in a local optimum, since outstanding individuals have too high selection
probabilities. On the other side if the fitness values of the different individuals
are too similar to one another, better individuals are not significantly preferred
and the evolutionary algorithm tends to perform not better than random search.
How better individuals are preferred to other ones is generally expressed by the
term selection-pressure, for which different specific definitions exist in the literature.
Using a scaled objective function as fitness value can overcome those problems. It
is also used for solving minimization problems, or problems with possibly negative
objective function values. Linear scaling is a linear transformation of the objective
value (a and b are constant parameters):

F (x) = af(x) + b.

In order to avoid negative outliers one can use sigma-scaling [54], where informa-
tion about the mean (f) and the standard deviation (σ) of objective values in the
population is incorporated (c is a constant parameter):

F (x) =

{

f(x)− (f − cσ) if f(x) > f − cσ

0 else

Furthermore, other selection types were developed. In rank-based selection mecha-
nisms, individuals are sorted according to their fitness values and their probability
of being selected is then calculated depending on their rank. The association of
rank-number and selection probability can be done in various ways, such as linearly
or exponentially decreasing.

For both of the selection strategies presented here, knowledge of the whole population
is needed and it has to be possible to evaluate each chromosome individually, which
is, for example, not possible in a game-theoretic context. In tournament selection,
k individuals are randomly chosen from the population and the best is selected
from them. The parameter k allows selection pressure to be controlled, since the
larger k is, the higher the probability of selecting above-average individuals becomes.
Tournament selection can be implemented very efficiently and is therefore a widely
used selection strategy in modern EAs [33].

14

2.2. Evolutionary and Memetic Algorithms

Survivor Selection – Replacement Strategy The replacement strategy depends
on the chosen population model. The classical model, coming from the genetic
algorithm, is the generational EA. The model we mainly use for the EAs presented
in this thesis is the steady-state EA.

Generational EA Every generation begins with a population of size µ, from which
µ parents (if the recombination generates 2 offspring individuals) are selected for
recombination and mutation. Variation operators are applied to the selected indi-
viduals, generating λ (= µ) new individuals, the offspring, who replace the entire old
generation. The drawback of this classical model, is that the entire old population
is thrown away, and potentially very high quality solutions are lost.

Steady-State EA Here, the whole population is not changed at once, but only a
part of it [131]. λ (< µ) old individuals are replaced by new ones, the offspring.
Usually a single individual (λ = 1) is created per iteration and it replaces the
worst of the population. Furthermore one can ensure that no duplicate exist in
the population, increasing the populations diversity. One of the main advantages
of this model, is that big population sizes can be handled more easily, and that at
each generation only a single individual needs to be evaluated. The steady-state EA
exhibits faster convergence than the generational EA, which can be a drawback, but
this can be countered with strategies such as duplicate-elimination, where individuals
with the same genotype are not allowed.

Variation Operators

The main variation operators are recombination (also called crossover), which derives
new solutions from the attributes of two parents, and mutation, where small changes
are applied to a single individual.

Recombination Recombination is a variation operator, combining attributes of
two parent individuals into one or several new offspring solutions. The one-point
crossover operator, usually used with a bit-string representation, cuts two parental
chromosomes in two parts at a randomly determined crossover point. Then it re-
combines the first part of the first chromosome with the second part of the second
chromosome. This crossover type can be generalized to two point and multipoint
crossover in a natural way; see Figure 2.1.

In the uniform crossover operator, it is decided randomly for every gene whether
it is taken from the first or the second parent. Partially Mapped Crossover [55],

15

Chapter 2. Metaheuristics

00 00 00 0011 11 11 11

00 11 11 00

00 00 00 0011 11 11 11

00 00 11 11 11 11 00 00 11 00 00 11

Figure 2.1.: One point and two point crossover.

Order Crossover [23], and Uniform Order Based Crossover [117] are examples of
permutation based representation operators.

Mutation The mutation operator is a variation operator usually performing a small
change on a single individual. A typical mutation operator is the bit-flip mutation
for binary-string representation: Each bit of a binary-string with length l is flipped
with a certain small probability pm, where pm could be chosen, for example, as 1/l
with l. In case of a permutation based representation one could use a simple swap
of two genes as a mutation operator.

2.2.2. Memetic Algorithms

Many successful EAs for combinatorial optimization use hybridization, where some
problem specific knowledge or algorithm is introduced into the EA, permitting it to
achieve better solutions in shorter running-times than simple EAs. In 1989 Pablo
Moscato [89] introduced the term memetic algorithm (MA) for local-search and
problem-specific knowledge enhanced EAs.

Dawkins [24] presented the term meme as a unit of imitation in cultural transmission.
Using martial-arts as an example, Moscato writes in [89]:

In the case of martial arts, those undecomposable movements (. . .)
should be considered as memes. A defensive movement is composed
by the coordinated action of many of these memes.

And about the main concept of MAs:

While Genetic Algorithms have been inspired in trying to emulate bi-
ological evolution, Memetic Algorithms (MA) would try to mimic cul-
tural evolution. (. . .) Memetic algorithms are a marriage between a
population-based global search and the heuristic local search made by
each of the individuals.

16

2.3. Variable Neighborhood Search

Problem specific knowledge can and should be used at any point of the algorithm,
for example at the initialization, inside the variation operators, at postprocessing
the results of the variation operators, or in genotype to phenotype mapping.

2.3. Variable Neighborhood Search

Variable neighborhood search (VNS) is a relatively new and successful metaheuristic
framework, developed by Hansen and Mladenovic [58, 59]. It systematically exploits
the idea of neighborhood change. On the one hand better local optima are found
since several neighborhood structures are searched. On the other hand valleys con-
taining these local optima are escaped by exploring parts of the search space chosen
randomly.

Hansen and Mladenovic present the following observations for motivating their al-
gorithmic ideas:

• A local optimum with respect to one neighborhood structure is not necessarily
so for another.

• A global optimum is a local optimum with respect to all possible neighborhood
structures.

• For many problems local optima with respect to one or several neighborhoods
are relatively close to each other.

The last, empirical observation implies that information about global optima can
often be gathered by using the local ones.

2.3.1. Variable Neighborhood Descent

In Variable Neighborhood Descent (VND) the first of the above observations is ex-
ploited. A kind of local search using several systematically changing neighborhoods
N1, . . . , Nkmax

is performed. The pseudocode for VND is given in Algorithm 3.

In [59] the following questions to be taken into consideration arise:

1. What is the time-complexity of searching the different neighborhoods?

2. What is the best order in applying them?

3. Are the neighborhoods considered sufficient to ensure a thorough exploration
of the search space containing x?

17

Chapter 2. Metaheuristics

Algorithm 3: VND(x)

Input: x denotes the initial solution
Given neighborhoods Nk, for k = 1, . . . , kmax

k ← 1
repeat

find x′ ∈ Nk with f(x′) < f(y), ∀y ∈ Nk(x)
if f(x′) < f(x) then

x← x′

k ← 1
else

k ← k + 1

until k = kmax

return x

Usually neighborhoods are sorted according to increasing complexity of searching
for the best moves, which often, but not always, corresponds to the size of neigh-
borhoods. In Chapter 6 we will present a new dynamic approach, in which the
neighborhoods are ordered according to an estimated improvement potential.

The third question points to the fact that larger neighborhoods or some escape
mechanisms have to be available in order to obtain good results for difficult problems.
This question leads us to the VNS metaheuristic.

2.3.2. Variable Neighborhood Search

Variable Neighborhood Search (VNS) can extend the previously described VND al-
gorithm and is able to escape local optima. Furthermore it is a very simple but gen-
eral algorithmic framework permitting to incorporate any local search algorithm.

A set of different potentially nested neighborhoods N1, . . . ,Nlmax
of increasing size

is considered here. Based on the observation that local optima often lie near to both
each other and the global optima, random steps are performed in those neighbor-
hoods in order to escape valleys or hills in the optimization landscape. These random
moves called shaking are performed in systematically changing neighborhoods. At
the beginning shaking creates solutions near to the current local optimum. Later,
when larger neighborhoods are considered as the search goes on, more varied so-
lutions are devised. A more formal description is given in Algorithm 4, where we
present the Basic Variable Neighborhood Search. In General Variable Neighborhood
Search, VND is used instead of the basic local search, in order to improve solutions
after shaking.

18

2.3. Variable Neighborhood Search

Algorithm 4: Basic VNS(x)

Input: x denotes the initial solution
Given neighborhoods Nl, for l = 1, . . . , lmax

repeat
l ← 1
repeat

x′ ← Shake(l, x), i.e. choose random solutions from Nl(x)
x′ ← basicLocalSearch(x′)
if f(x′) < f(x) then

x← x′

l← 1
else

l← l + 1

until l = lmax

until stopping conditions are met
return x

19

20

Chapter 3

Exact Algorithms –

Integer Programming

In this chapter we will give a short introduction to integer linear programming and
the algorithms emerging from this field of optimization. It is intended to provide
an overview, with references to more in-depth material for the interested reader,
and a notational and conceptional basis for the remainder of this thesis. This chap-
ter is based on the books on linear optimization by Bertsimas and Tsitsiklis [10],
and on combinatorial and integer optimization of Nemhauser and Wolsey [92] and
Wolsey [132].

First linear and integer programming will be introduced, then algorithmic concepts
for solving integer programs will be presented.

3.1. Linear and Integer Programming

Many optimization problems, especially combinatorial optimization problems, can
be formulated as an Integer (Linear) Program (IP / ILP). The ideas and theory
of integer programming are based on the concepts of general linear programming,
where the decision variables do not have to be integral. Modern linear programming
emerged from a research project undertaken by the US Air Force to coordinate
troop supplies more effectively. In 1947 George Dantzig, a member of the project,
proposed the simplex method for efficiently solving linear programs (LP) [21].

21

Chapter 3. Exact Algorithms – Integer Programming

3.1.1. Linear Programs

The linear programming problem can be stated as:

zLP = min{cx | Ax ≥ b, x ∈ R
n
+} (3.1)

where the data are rational and are given by the n-dimensional row vector c, defining
the objective function cx, the m×n matrix A, and the m-dimensional column vector
b defining the constraints.

It should be noted that equality constraints can be given by two inequalities, and
that a minimization problem can be transformed into a maximization by simply
multiplying the objective by −1. In the remainder of this chapter, for the sake of
simplicity, we consider minimization problems only.

The LP
zLP = min{cx | Ax = b, x ∈ R

n
+} (3.2)

is said to be in standard form.

Duality

One of the main theoretical concepts of linear programming is duality, which deals
with pairs of linear programs and the relationship between their solutions. This
concept is also very important for more advanced topics such as primal/dual or
column generation algorithms.

The primal problem is stated as in (3.1). Its dual is then defined as the LP:

wLP = max{ub | uA ≤ c, u ∈ R
m
+} (3.3)

In the following we provide some major LP-duality results.

Proposition 1 The dual of the dual problem is the primal problem.

Proposition 2 (Weak Duality) If x is primal feasible and u is dual feasible, then

cx ≤ ub.

The following theorem is a fundamental result of LP duality. It states that if the
primal and the dual are both feasible, their optimal values are equal.

22

3.1. Linear and Integer Programming

Theorem 1 (Strong Duality) If zLP or wLP is finite, then both (3.1) and (3.3)
have the same finite optimal value

zLP = wLP .

Another important relation between the primal and the dual optimal solutions is
given by the so called complementary slackness conditions.

Proposition 3 (Complementary slackness) If x∗ and u∗ are feasible solutions for
the primal (3.1) and the dual (3.3) problem respectively, then x∗ and u∗ are optimal
solutions if and only if

ui(b−Ax)i = 0, ∀i,
xj(uA− c)j = 0, ∀j.

3.1.2. Integer Programs

If we add the restriction that all variables have to be integral to the Linear Program
3.1, we get an Integer (Linear) Program (IP),

zIP = min{cx | x ∈ X} (3.4)

with X = P ∩ Z
n and P = {x | Ax ≥ b, x ∈ R

n}, which can also be written as

min cx

subject to Ax ≥ b (3.5)

x integer

and if all variables are restricted to 0/1 values, we have a 0/1 or Binary Integer
Program.

23

Chapter 3. Exact Algorithms – Integer Programming

3.1.3. Geometric interpretation and the simplex algorithm

In this section some important geometrical aspects of linear and integer program-
ming are described. Firstly we will give some important definitions, secondly we
will present the simplex algorithm and finally we will give some results of great
importance for solving IPs.

Definition 5 A polyhedron is a set that can be described in the form

P = {x ∈ R
n | Ax ≥ b} (3.6)

where A ∈ R
m×n and b ∈ R

n.

The feasible set of any linear programming problem is therefore a polyhedron. In
our case, P corresponds to the feasible set of (3.1).

Definition 6 A polyhedron P ⊂ R
n is bounded if there exists a constant k such

that |xi| < k∀x ∈ P, i = 1, . . . , n. Such a polyhedron is called a polytope.

Definition 7 A set S ⊂ R
n is convex if we have λx + (1− λ)y ∈ S, ∀x, y ∈ S, λ ∈

[0, 1].

Definition 8 Given X = {x1, . . . , xk}, with xi ∈ R
n, λi ≥ 0, i = 1, . . . , k and

∑k
i=1 λi = 1. Then

(i) the vector
∑k

i=1 λix
i is called a convex combination of X;

(ii) the convex hull of X (conv(X)) is the set of all convex combinations of X.

Note that all polyhedra are convex.

Definition 9 Consider a polyhedron P defined by linear equality and inequality con-
straints, and let x∗ ∈ R

n.

(a) The vector x∗ is a basic solution if:

(i) All equality constraints are satisfied;

(ii) There are n linearly independent constraints that are active (i.e. that hold
with equality) at x∗.

24

3.1. Linear and Integer Programming

(b) If x∗ is a basic solution that satisfies all of the constraints, it is called a basic
feasible solution.

One of the most important properties of LP is that basic feasible solutions correspond
to the vertices of the LP’s polyhedron.

Theorem 2 Let P be a nonempty polyhedron and let x ∈ P .
Then the following are equivalent:

(a) x is a vertex;

(b) x is a basic feasible solution.

A fundamental theorem of LP establishes the existence of basic feasible solutions.
This theorem, together with the previous one are the basis for the simplex algorithm,
sketched in the next Section.

Theorem 3 Given the linear programming problem (3.1) the following is true:

(1) If the polyhedron P in (3.6) is nonempty, there exists a basic feasible solution.

(2) If (3.1) has an optimal solution, then there is an optimal basic feasible solution.

The simplex algorithm

The simplex algorithm is the best known and a very efficient LP algorithm. Its main
idea consists of moving from one vertex of the polyhedron (basic feasible solution) to
an adjacent one, improving the solution at each step. The simplex method consists
of two phases. In the first phase an initial basic feasible solution is computed, and in
the second phase the solution is iteratively improved following adjacent edges. The
method terminates if none of the adjacent edges improves the objective function, or
if an unbounded adjacent edge is found.

Given a LP in standard form, a basis of it is defined by any set of m linear inde-
pendent column vectors of the constraint matrix A. The equation system Ax = b
can then be solved (with e.g. the Gaussian elimination method), yielding a feasible
solution. Let x be a basic feasible solution to the standard form, B(1), . . . , B(m)
be the indices of the basic variables and B = [AB(1) . . . AB(m)] be the corresponding
basic matrix.

The move from one basic feasible solution to the next one is also called pivoting,
since a new column (and therefore a new variable) enters the basis and another one
has to leave the basis.

25

Chapter 3. Exact Algorithms – Integer Programming

Definition 10 Let x be a basic solution, B be an associated basis matrix, and cB

be the vector of costs of the basic variables. For each j, we define the reduced cost
cj of the variable xj according to

cj = cj − cBB−1Aj . (3.7)

Since the reduced cost cj corresponds to the per unit cost change for variable xj ,
by only bringing variables with negative reduced costs (in case of a minimization
problem) into the basis, basic feasible solutions will be improved. If no such variables
exist anymore, the solution at hand is optimal.

A thorough description of the simplex method can be found, for example, in [10].
One problem of the simplex algorithm is that it has an exponential worst-case run-
time, although in practice it is a very competitive algorithm.

Nevertheless the LP problem is solvable in polynomial-time, which was first shown by
Khachiyan [67] in 1979 using the so-called ellipsoid-method. Other polynomial-time
algorithms of more practical interest are the interior-point methods, introduced by
Karmakar [65] in 1984. A great number of different highly-competitive algorithms
emerged from this starting point. Most of the modern commercial LP-solvers incor-
porate interior-points method such as barrier or primal-dual algorithms.

Minimal Description of Polyhedra

Of great importance for solving an IP is having a minimal description of its under-
lying polyhedron. We begin by giving some basic results.

Proposition 4 Let X ⊆ R
n, then

(i) conv(X) is a polyhedron and

(ii) the extreme points of conv(X) all lie in X.

With these two results, the IP min{cx | x ∈ X} can be represented by the equivalent
LP min{cx | x ∈ conv(X)}. Using this reduction we could apply an LP algorithm to
solve this IP. However, in most cases, the number of inequalities needed to describe
conv(X) is exponential.

In order to search for minimal descriptions of polyhedra, we need the following
theoretical basis.

26

3.2. LP-based Branch-and-Bound

Definition 11 A polyhedron P ∈ R
n is of dimension k (dim(P) = k) if the max-

imum number of affinely independent points in P is k + 1. P is said to be full-
dimensional if dim(P) = n.

Definition 12 Let P be a polyhedron where (A=, b=) designates the rows {ai ∈ A |
aix = bi ∀x ∈ P} and (A≤, b≤) the other rows.

We now come to a basic concept in describing polyhedra which is of great importance
for the development of algorithms for solving IPs.

Definition 13 An inequality πx ≤ π0 is a valid inequality for P ⊆ R
n if

πx ≤ π0 ∀x ∈ P .

Definition 14 If πx ≤ π0 is a valid inequality for P , F = {x ∈ P | πx = π0} is
called a face of P . A face F is said to be a facet of P if dim(F) = dim(P) − 1.

Theorem 4

(i) If P is a full-dimensional polyhedron, it has a unique (up to scalar multiplica-
tion) minimal description P = {x ∈ R

n | aix ≤ bi for i = 1, . . . ,m}, consisting
of one inequality representing each facet of P .

(ii) If dim(P) = n−k with k > 0, then P is described by a maximal set of linearly
independent rows of (A=, b=) and one inequality representing each facet of P .

The “best”, or “strongest” valid inequalities are therefore the facet defining inequal-
ities. Hence, algorithms trying to strengthen IP formulations will be based on the
generation of such inequalities.

3.2. LP-based Branch-and-Bound

Solving NP-hard problems is, in general, a difficult task. One possible way for
solving such problems consists in applying the divide and conquer approach. In
Branch-and-Bound (B&B) methods, bounds are calculated for the problem, which
is divided into two or more distinct subproblems. New bounds are generated for
the subproblems and only those potentially holding an optimal solution are kept for
further processing, whereas the other ones can be pruned from the B&B tree.

The main idea in LP-based B&B is to use an LP-relaxation of the IP being solved
in order to derive a lower bound of the objective function.

27

Chapter 3. Exact Algorithms – Integer Programming

Definition 15 The linear programming relaxation for the IP zIP = min{cx | x ∈
P ∩ Z

n} is the LP zLP = min{cx | x ∈ P}.

Proposition 5 If a LP is the relaxation of an IP, then zLP ≤ zIP .

Furthermore every feasible solution of (3.4) provides an upper bound of the objective
function zIP .

Algorithm 5: LP-based Branch-and-Bound

Input: Initial problem S with formulation P
Initialization: List L with problem P ; Upper bound z = Infinity
while List L not empty do

Choose and remove problem Si with formulation P i from list L
Solve LP-relaxation over P i yielding solution xi

LP , with objective value zi

if P i is empty then
Prune by infeasibility

else if zi ≥ z then
Prune by bound

else if xi
LP integer then

z = zi

Incumbent x∗ = xi
LP

Prune by optimality

else
Branch: put subproblems Si

1 and Si
2

With formulations P i
1 and P i

2 into list L

Incumbent x∗ is optimal solution to S.

Using the bounding information, subtrees of the branch and bound tree can be
pruned if they are solved to optimality, if their local lower bound is greater than or
equal to the global upper bound, or if they are infeasible. In Algorithm 5 we give a
pseudocode of LP-based B&B, which leaves two open issues.

Branching, i.e. generating the subproblems

Branching is usually performed by partitioning the search space into two parts by
choosing an integer variable that has a fractional value (xf

i) in the LP solution. The

two resulting branches are then defined by: xi ≤ bxf
i c and xi ≥ dxf

i e. A common
choice is to branch on the most fractional variable, i.e. the variable with fractional

28

3.3. Branch-and-Cut

part closest to 0.5. In many commercial systems there are other rules based on
estimating the cost of forcing variable xi to be integer. Another, more sophisticated
and costly, rule for choosing branching variables is strong branching [132]. A set
of integer variables that are fractional in the LP solution is chosen. For a specified
number of simplex iterations, all branches (up and down on each of these variables)
are reoptimized resulting in bounds for each of those branches. The variable having
the largest effect (largest decrease of the local upper bound) is then chosen, and the
real branching is performed on this variable.

Choosing next problem Si

Significant pruning of the B&B tree is only possible if a feasible solution giving a
strong upper bound is available. A Depth-First Search strategy, where the next
processed node is an immediate descendant of the current one, often quickly results
in such feasible solutions. Furthermore it is easy to resolve the LP when a single
constraint is added and an optimal basis is available. On the other hand, it would
is advantageous to minimize the total number of evaluated nodes, which can be
achieved by choosing the active node with the largest lower bound. This leads to
so called Best-First Search strategy. In commercial ILP-solvers more sophisticated
combinations of the presented strategies are used.

3.3. Branch-and-Cut

The bounds obtained from the LP-relaxations are often weak, which may causes
standard B&B algorithms to fail in practice. It is therefore of crucial importance to
tighten the formulation of the problem to be solved. The idea of dynamically adding
so called cutting planes to the problem is one way of obtaining stronger bounds.
Combining the cutting plane algorithm with B&B results in the very powerful class
of Branch-and-Cut (B&C) algorithms.

3.3.1. Cutting Plane Algorithm

In order to understand the strength of B&C algorithms, we will first present the
main concepts of cutting plane algorithms.

From Section 3.1.3 we already know that an IP can be reformulated as a LP. How-
ever, in the case of NP-hard problems, it is, in practice, nearly impossible to find
such a formulation, or if such a formulation can be found it would usually need an

29

Chapter 3. Exact Algorithms – Integer Programming

exponential number of constraints. With this in mind, one can try to generate only
those additional constraints that are violated by a LP-relaxation and strengthen the
original formulation. Such constraints are valid inequalities, which are also called
cutting planes in this context.

Definition 16 The separation problem associated with IP (3.4) is the problem:
Given x̂ ∈ R

n, is x̂ ∈ conv(X)? If not find a valid inequality πx ≤ π0 violated by x̂.

We can now describe a basic cutting plane algorithm for solving the IP (3.4) in
Algorithm 6, leaving open how to solve the separation problem. Different systematic
ways of generating valid inequalities and strong valid inequalities such as Gomory
mixed integer cuts or knapsack cover cuts can be found in [92].

Algorithm 6: Cutting plane algorithm

Initialization: t = 0 and P 0 = P
loop

Solve the LP zt = min{cx : x ∈ P t}. yielding solution xt

if xt ∈ Z
n then

Stop, xt is an optimal solution for the IP.
else

Solve the separation problem for xt.
if a valid inequality πtx ≤ πt

0 cutting off xt is found then
P t+1 = P t ∩ {x : πtx ≤ πt

0}
else

Stop, no integer solution found

t = t + 1

If, due to run-time reasons for example, not all the necessary cutting planes are
generated, the cutting plane algorithm can terminate without finding an integral
solution for the IP. Nevertheless, the improved formulation it has produced leads
to a tighter bound and can be used as a better starting point of a classical B&B
algorithm.

3.3.2. Branch-and-Cut

In order to find integral solutions to an IP, the cutting plane algorithm can be
hybridized with B&B, resulting in the Branch-and-Cut (B&C) algorithm. The idea
is to generate cutting planes throughout the B&B tree of a standard B&B algorithm,
in order to get tight bounds at each node.

30

3.4. Branch-and-Price

In practice, many issues such as cut pool management, different cut generation
strategies, B&B strategies and many more have to be considered. Commercial IP-
solvers such as CPLEX are based on the basic scheme explained here. However, they
have implemented additionally a multitude of sophisticated strategies and methods
which address the issues mentioned above.

3.4. Branch-and-Price

In Branch-and-Price, the concept of column generation is combined with a Branch-
and-Bound algorithm.

3.4.1. Column Generation

The simplex algorithm is at the origin of the column generation concept, where only
variables with negative reduced costs are allowed to enter the basis in each iteration.
Given a LP model with a huge number of variables, possibly depending exponentially
on the instance size, it would be efficient to consider only the variables potentially
improving the objective function. The main idea is to efficiently determine a variable
with negative reduced costs to enter the basis, add it to the problem, resolve it and
iteratively repeat this process until no variable with negative reduced costs exists
anymore.

In general, the method of Dantzig-Wolfe decomposition is often used for obtaining
LP/ILP models with an exponential number of variables, which provide tighter
bounds than the original compact LP/ILP pair. See [92, 132] for a description of
Dantzig-Wolfe decomposition.

We will explain the principles of column generation using a small example. Consider
the one-dimensional cutting stock problem. We are given stock-pieces of a given
length L, which have to be cut into smaller pieces i = 1, . . . ,m having lengths
li with minimal waste, that is to say, using the minimal number of stock-pieces.
For each piece i a demand di is given. Gilmore and Gomory [45, 46] gave an ILP
formulation of this problem with an exponential number of variables: A variable xj

is introduced for each possible cutting layout of one stock piece. Since there is an
exponential number of cutting patterns, the number of variables is also exponential
in the size of the input. Matrix A ∈ N

m×n contains the information about the n
different patterns. Each column of matrix A represents a cutting pattern, each row

31

Chapter 3. Exact Algorithms – Integer Programming

represents a piece which has to be cut out, and each entry Aij represents how many
instances of piece i are considered in pattern j.

min{x | Ax ≥ d, x ∈ Z
+ } (3.8)

The original approach of Gilmore and Gomory was to solve the LP-relaxation of
(3.8) only. Rounding up the LP solution yields an integer feasible solution with
objective value within m− 1 of the optimum. In order to tackle the huge number of
variables they used delayed column generation, whereby variables/patterns are only
generated when they are needed in order to find the optimal solution.

Starting from a basic feasible solution the simplex algorithm needs, at each iteration,
only a single additional variable with negative reduced costs (see Section 3.1.3). This
property is used in the following. We define the so called Restricted Master Problem
(RMP), a restricted LP-relaxation of the original problem (3.8):

min{x | A′x ≥ d, x ∈ R
+ } (3.9)

where A′ is a m × n′-matrix containing only a reduced set of variables/patterns.
This set can be trivially initialized e.g. by introducing a variable for each item. The
reduced costs of a variable for (3.9) with cutting pattern a are given by 1−ua where
u ∈ R

m
+ are the optimal dual variable values of (3.9) . The optimal solution of the

pricing problem:

max{ua | al ≤ L, a ∈ Z
n
+} (3.10)

is iteratively added to the RMP if its objective value exceeds one and therefore has
negative reduced costs. If no such variables exist anymore, the LP-relaxation of
(3.8), the so called Master Problem, is optimally solved.

A more formal overview of the column generation method is presented in Algo-
rithm 7.

Algorithm 7: Column generation

Start with a subset of the variables: RMP
Solve RMP
while variable with negative reduced costs cj exists do

Determine such a variable
Add it to the RMP
Resolve RMP

32

3.4. Branch-and-Price

In order to solve the original problem to integer optimality, column generation has
to be hybridized with branch-and-bound as described in the next section.

3.4.2. Branch-and-Price

Since column generation is an algorithm for solving LPs, it has to be combined
with another method in order to solve IPs to optimality. The so called branch-
and-price (B&P) algorithm [7] is the result of combining column generation with
B&B. In each node of the B&B tree, column generation is performed to solve the
LP-relaxation. Branching is usually performed on original variables or by other
strategies to partition the remaining search space in a balanced way.

An important point is that the column generation algorithm used has to be aware
of branching decisions and may only generate solutions respecting them. Another
interesting question is whether the column generation algorithm should search for
optimal solutions of the pricing problem or not. For a detailed review of column
generation and B&P methods we refer to the recent book [26].

From a theoretical point of view, B&C and B&P are closely related, since column
generation in the primal problem corresponds to cut generation in the dual and vice-
versa. Furthermore, B&C and B&P can be combined to so called branch-and-cut-
and-price algorithms, where both cuts and variables are dynamically generated.

33

34

Chapter 4

Combining Metaheuristics

and Exact Algorithms:

A Survey and Classification

4.1. Introduction

Hard combinatorial optimization problems (COPs) appear in a multitude of real-
world applications, such as routing, assignment, scheduling, cutting and packing,
network design, protein alignment, and many other fields of utmost economic, in-
dustrial and scientific importance. The available techniques for COPs can roughly
be classified into two main categories: exact and heuristic methods. Exact algo-
rithms are guaranteed to find an optimal solution and to prove its optimality for
every instance of a COP. The run-time, however, often increases dramatically with
the instance size, and in practice often only small or moderately-sized instances can
be solved to provable optimality. In this case, the only possibility for larger instances
is to trade optimality for run-time, yielding heuristic algorithms. In other words,
the guarantee of finding an optimal solution is sacrificed for the sake of getting a
good solutions in a limited time.

An earlier version of this chapter appeared in [101].

35

Chapter 4. Combining Metaheuristics and Exact Algorithms

Collaborative Combinations

Sequential Execution

Integrative Combinations

Incorporating Metaheuristics in Exact Algorithms

Incorporating Exact Algorithms in Metaheuristics

Parallel or Intertwined Execution

Combinations of Exact Algorithms and Metaheuristics

Figure 4.1.: Major classification of exact/metaheuristic combinations.

Two independent heterogeneous streams, coming from very different scientific com-
munities, had significant success in solving COPs:

• Integer Programming (IP) as an exact approach, based on the concepts of
linear programming [21].

• Local search with various extensions and independently developed variants, in
the following called metaheuristics, as a heuristic approach.

Recently there have been very different attempts to combine ideas and methods
from these two scientific streams. Dumitrescu and Stützle [30] describe existing
combinations which focus on local search approaches that are strengthened by the
use of exact algorithms. In their survey they concentrate on integration and exclude
obvious combinations such as preprocessing.

Here, we present a more general classification of existing approaches combining
exact and metaheuristic algorithms for combinatorial optimization. We distinguish
the following two main categories:

• Collaborative Combinations: By collaboration we mean that the algorithms
exchange information, but are not part of each other. Exact and heuristic
algorithms may be executed sequentially, intertwined or in parallel.

• Integrative Combinations: By integration we mean that one technique is a
subordinate embedded component of another technique. Thus, there is a dis-
tinguished master algorithm, which can be either an exact or a metaheuristic
algorithm, and at least one integrated slave.

36

4.2. Collaborative Combinations

In the following sections this classification is further refined and examples are pre-
sented from the literature, which reflect developments at the forefront of current
research. Figure 4.1 gives an overview of this classification.

4.2. Collaborative Combinations

The different algorithms and approaches described in this section have in common
that they are top-level combinations of metaheuristics and exact techniques; no al-
gorithm is contained within another. We further distinguish whether the algorithms
are executed sequentially or in an intertwined or even parallel way.

4.2.1. Sequential Execution

Either the exact method is executed as a kind of preprocessing before the meta-
heuristic, or vice-versa. Sometimes it is difficult to say whether the first technique
is used as an initialization of the second, or whether the second is a postprocessing
of the solution(s) generated by the first.

Clements et al. [16] propose a column generation approach in order to solve a
production-line scheduling problem. Each feasible solution of the problem consists
of a line-schedule for each production line. First, the squeaky wheel optimization
(SWO) heuristic is used to generate feasible solutions to the problem. SWO is a
heuristic using a greedy algorithm to construct a solution, which is then analyzed
in order to find the problematic elements. Higher priorities, which mean that these
elements are considered earlier by the greedy algorithm, are assigned to them and
the process restarts until a termination condition is reached. SWO is called several
times in a randomized way in order to generate a set of diverse solutions. In the
second phase, the line-schedules contained in these solutions are used as columns of a
set-partitioning formulation for the problem, which is solved using the mixed-integer
programming solver MINTO2. This process always provides a solution which is at
least as good as, but usually better than the best solution devised by SWO. Reported
results indicate that SWO performs better than a tabu-search algorithm.

Applegate et al. [3] propose an approach for finding near-optimal solutions to the
traveling salesman problem. They derive a set of diverse solutions by multiple runs
of an iterated local search algorithm. The edge-sets of these solutions are merged
and the traveling salesman problem is finally solved to optimality on this strongly

2http://www.isye.gatech.edu/faculty/Martin Savelsbergh/software

37

Chapter 4. Combining Metaheuristics and Exact Algorithms

restricted graph. In this way a solution is achieved that is typically superior to the
best solution of the iterated local search.

Klau et al. [69] follow a similar idea and combine a memetic algorithm with in-
teger programming to heuristically solve the prize-collecting Steiner tree problem.
The proposed algorithmic framework consists of three parts: extensive preprocess-
ing, a memetic algorithm, and an exact branch-and-cut algorithm applied as post-
optimization procedure to the merged final solutions of the memetic algorithm.

Plateau et al. [99] combine interior point methods and metaheuristics for solving the
multiconstrained knapsack problem. The first part is an interior point method with
early termination. By rounding and applying several different ascent heuristics, a
population of different feasible candidate solutions is generated. This set of solutions
is then used as the initial population for a path-relinking (scatter search) algorithm.
Extensive computational experiments are performed on standard multiconstrained
knapsack benchmark instances. Obtained results show that the presented combina-
tion is a promising research direction.

Sometimes, a relaxation of the original problem is solved to optimality and the ob-
tained solution is repaired to act as a promising starting point for a subsequent
metaheuristic. Often, the linear programming (LP) relaxation is used for this pur-
pose, and only a simple rounding scheme is needed. For example, Raidl and Feltl
[108] solve the generalized assignment problem using a hybrid genetic algorithm
(GA). The LP-relaxation of the problem is solved using CPLEX3 and its solution is
used by a randomized rounding procedure to create a population of promising inte-
gral solutions. These solutions are, however, often infeasible; therefore, randomized
repair and improvement operators are additionally applied, yielding an even more
meaningful initial population for the GA. Reported computational experiments sug-
gest that this type of LP-based initialization is effective.

Vasquez and Hao [127] heuristically solve the multiconstrained knapsack problem
by reducing and partitioning the search space via additional constraints that fix the
total number of items to be packed. The bounds for these constraints are calculated
by solving a modified LP-relaxation of the multiconstrained knapsack problem. For
each remaining part of the search space, parallel tabu-search is finally performed
starting with a solution derived from the LP-relaxation of the partial problem. This
hybrid algorithm yields excellent results, even for large benchmark instances with
up to 2 500 items and 100 constraints.

Lin et al. [72] describe an exact algorithm for generating the minimal set of affine
functions that describes the value function of the finite horizon partially observed
Markov decision process. In the first step a GA is used to generate a set Γ of

3http://www.ilog.com

38

4.2. Collaborative Combinations

witness points, which is as large as possible. In the second step a component-wise
domination procedure is performed in order to eliminate redundant points in Γ. The
set generated so far does not, in general, fully describe the value function. Therefore,
a Mixed Integer Program (MIP) is solved to generate the missing points in the final
third step of the algorithm. Reported results indicate that this approach requires
less time than some other numerical procedures.

Another kind of sequential combination of B&B and a GA is described by Nagar et
al. [91] for a two-machine flowshop scheduling problem in which solution candidates
are represented as permutations of jobs. Prior to running the GA B&B is executed
down to a predetermined depth k and suitable bounds are calculated and recorded
at each node of the explicitly stored B&B tree. During the execution of the GA
the partial solutions up to position k are mapped onto the correct tree node. If the
bounds indicate that no path below this node can lead to an optimal solution, the
permutation is subjected to a mutation operator that has been specifically designed
to change the early part of the permutation in a favorable way.

Tamura et al. [120] tackle a job-shop scheduling problem and start from its IP
formulation. For each variable, they take the range of possible values and partition
it into a set of subranges, which are then indexed. The chromosomes of the GA
are defined so that each position represents a variable, and its value corresponds to
the index of one of the subranges. The fitness of a chromosome is calculated using
Lagrangian relaxation to obtain a bound on the optimal solution subject to the
constraints that the values of the variables fall within the correct ranges. When the
GA terminates, an exhaustive search of the region identified as the most promising
is carried out to produce the final solution.

4.2.2. Parallel or Intertwined Execution

Instead of a strictly sequential batch approach, exact and heuristic algorithms may
also be executed in a parallel or intertwined way. Such peer-to-peer combinations
of exact/heuristic techniques are less frequent. An interesting framework for this
purpose was proposed by Talukdar et al. [118, 119] with the so-called asynchronous
teams (A-Teams). An A-Team is a problem solving architecture consisting of a col-
lection of agents and memories connected into a strongly cyclic directed network.
Each of these agents is an optimization algorithm and can work on the target prob-
lem, on a relaxation—i.e., a superclass—of it, or on a subclass of the problem. The
basic idea of A-Teams is that these agents work asynchronously and autonomously
on a set of shared memories. These shared memories consist of trial solutions for
some problem (the target problem, a superclass, or a subclass as mentioned before),
and the action of an agent consists of modifying the memory by adding a solution,

39

Chapter 4. Combining Metaheuristics and Exact Algorithms

deleting a solution, or altering a solution. A-Teams have been successfully utilized
in a variety of combinatorial optimization problems, see e.g. [13, 119].

Denzinger and Offerman [25] present a similar multi-agent based approach for
achieving cooperation between search-systems with different search paradigms. The
TECHS (TEams for Cooperative Heterogenous Search) approach consists of teams
of one or more agents using the same search paradigm. The communication be-
tween the agents is controlled by so-called send- and receive-referees, in order to
filter the exchanged data. Each agent is in a cycle between searching and processing
received information. In order to demonstrate the usefulness of TECHS, a GA and
a B&B based system for job-shop scheduling is described. The GA and B&B agents
exchange only positive information (solutions), whereas the B&B agents can also
exchange negative information (closed subtrees). Computational experiments show
that the cooperation results in finding better solutions given a fixed time-limit and
in finding solutions comparable to the ones of the best individual system alone in
less time.

Gallardo, Cotta and Fernández [41] present a hybridization of an evolutionary algo-
rithm and a branch-and-bound approach, evaluated on the multidimensional knap-
sack problem. The algorithms are executed in an intertwined way and are coop-
erating by exchanging information. The EA provides bounds for the B&B, while
B&B provides best and partial solutions to the EA. First the EA is executed until
a certain convergence criterion is reached, providing an initial bound for the exact
algorithm. Then the B&B is executed until it finds an improved solution, and gives
control back to the EA, which incorporates the new better solution into its pop-
ulation as well as some promising partial solution from the ongoing B&B search.
Control is switched between the algorithms until a run-time limit is reached. The
experimental results presented in this article, show that the collaborative approach
yields better results than the individual techniques executed on their own.

4.3. Integrative Combinations

In this section we discuss approaches of combining exact algorithms and metaheuris-
tics in an integrative way such that one technique is a subordinate embedded com-
ponent of another technique.

4.3.1. Incorporating Exact Algorithms in Metaheuristics

We start by considering techniques where exact algorithms are incorporated into
metaheuristics.

40

4.3. Integrative Combinations

Exactly Solving Relaxed Problems

The usefulness of solutions to relaxations of an original problem has already been
mentioned in Section 4.2.1. Besides exploiting them to derive promising initial
solutions for a subsequent algorithm, they can be of great benefit for heuristically
guiding neighborhood search, recombination, mutation, repair and/or local improve-
ment. Examples where the solution of the LP-relaxation and its dual were exploited
in such ways are the hybrid genetic algorithms for the multiconstrained knapsack
problem from Chu and Beasley [14] and Raidl [107].

Exactly Searching Large Neighborhoods

A common approach is to search neighborhoods in local search based metaheuristics
by means of exact algorithms. If the neighborhoods are chosen appropriately, they
can be relatively large and nevertheless an efficient search for the best neighbor
is still reasonable. Such techniques are known as Very Large-Scale Neighborhood
(VLSN) search [2].

Burke et al. [12] present an effective local and variable neighborhood search heuris-
tic for the asymmetric traveling salesman problem in which they have embedded
an exact algorithm in the local search part, called HyperOpt, in order to search
relatively large promising regions of the solution space exhaustively. Moreover, they
propose a hybrid of HyperOpt and 3-opt which benefits from the advantages of
both approaches and gains better tours overall. Using this hybrid within the vari-
able neighborhood search metaheuristic framework also allows local optima to be
overcomed and tours of high quality to be created.

Dynasearch [17, 18] is another example where exponentially large neighborhoods are
explored. The neighborhood where the search is performed consists of all possible
combinations of mutually independent simple search steps, and one Dynasearch
move consists of a set of independent moves that are executed in parallel in a single
local search iteration. Independence in the context of Dynasearch means that the
individual moves do not interfere with each other; in this case, dynamic programming
can be used to find the best combination of independent moves. Dynasearch is
restricted to problems where the single search steps are independent, and it has so far
only been applied to problems where solutions are represented by permutations.

For the class of partitioning problems, Thompson et al. [121, 122] defined the concept
of a cyclic exchange neighborhood, which is the transfer of single elements between
several subsets in a cyclic manner; for example, a 2–exchange move can be seen as a
cyclic exchange of length two. Thompson et al. showed that for any current solution

41

Chapter 4. Combining Metaheuristics and Exact Algorithms

to a partitioning problem a new, edge-weighted graph can be constructed, where
the set of nodes is split into subsets according to a partition induced by the current
solution of the partitioning problem. A cyclic exchange for the original problem
corresponds to a cycle in this new graph that uses at most one node of each subset.
Exact and heuristic methods that solve the problem of finding the most negative-
cost subset-disjoint cycle (which corresponds to the best improving neighbor of the
current solution) have been developed.

Puchinger et al. [105] describe a combined GA/B&B approach for solving a real-
world glass cutting problem. The GA uses an order-based representation, which
is decoded using a greedy heuristic. The B&B algorithm is applied with a certain
probability enhancing the decoding phase by generating locally optimal subpatterns.
Reported results indicate that the approach of occasionally solving subpatterns to
optimality may increase the overall solution quality.

The work of Klau et al. [69] has already been mentioned in Section 4.2.1 in the
context of collaborative sequential combinations. When looking at the memetic
algorithm we encounter another kind of exact/heuristic algorithm combination. An
exact subroutine for the prize-collecting Steiner tree problem on trees is used to
improve candidate solutions locally.

Merging Solutions

Subspaces defined by the merged attributes of two or more solutions can, like the
neighborhoods of single solutions, also be searched by exact techniques. The algo-
rithms by Clements et al. [16], Applegate et al. [3], and Klau et al. [69], which were
already discussed in Section 4.2.1, also follow this idea, but are of sequential collab-
orative nature. Here, we consider approaches where merging is iteratively applied
within a metaheuristic.

Cotta and Troya [19] present a framework for hybridizing B&B with evolutionary
algorithms. B&B is used as an operator embedded in the evolutionary algorithm.
The authors recall the necessary theoretical concepts on forma analysis (formae are
generalized schemata), such as the dynastic potential of two chromosomes x and
y, which is the set of individuals that only carry information contained in x and y.
Based on these concepts the idea of dynastically optimal recombination is developed.
This results in an operator exploring the potential of the recombined solutions using
B&B, providing the best possible combination of the ancestors’ features that can
be attained without introducing implicit mutation. Extensive computational exper-
iments on different benchmark sets comparing different crossover operators with the
new hybrid one show the usefulness of the presented approach.

42

4.3. Integrative Combinations

Marino et al. [82] present an approach where a GA is combined with an exact method
for the Linear Assignment Problem (LAP) to solve the graph coloring problem. The
LAP algorithm is incorporated into the crossover operator and generates the optimal
permutation of colors within a cluster of nodes, thereby preventing the offspring from
being less fit than its parents. The algorithm does not outperform other approaches,
but provides comparable results. The main conclusion is that solving the LAP in
the crossover operator strongly improves the performance of the GA compared to
the GA using crossover without LAP.

Exact Algorithms as Decoders

In evolutionary algorithms, candidate solutions are sometimes only incompletely
represented in the chromosome, and an exact algorithm is used as decoder for de-
termining the missing parts in an optimal way.

Staggemeier et al. [116], for example, present a hybrid genetic algorithm to solve a
lot-sizing and scheduling problem minimizing inventory and backlog costs of multiple
products on parallel machines. Solutions are represented as product subsets for each
machine at each period. Corresponding optimal lot sizes are determined when the
solution is decoded by solving a linear program. The approach outperforms a MIP
formulation of the problem solved using CPLEX.

4.3.2. Incorporating Metaheuristics in Exact Algorithms

We now turn to techniques where metaheuristics are embedded within exact algo-
rithms.

Metaheuristics for Obtaining Incumbent Solutions and Bounds

In general, heuristics and metaheuristics are often used to determine bounds and
incumbent solutions in B&B approaches. For example, Woodruff [133] describes a
chunking-based selection strategy to decide at each node of the B&B tree whether
or not reactive tabu search is called in order to eventually find a better incumbent
solution. The chunking-based strategy measures a distance between the current
node and nodes already explored by the metaheuristic in order to bias the selection
toward distant points. Reported computational results indicate that adding the
metaheuristic improves the B&B performance.

43

Chapter 4. Combining Metaheuristics and Exact Algorithms

Metaheuristics for Column and Cut Generation

In branch-and-cut and branch-and-price algorithms, the dynamic separation of
cutting-planes and the pricing of columns respectively is sometimes done by means
of heuristics including metaheuristics, in order to speed up the whole optimization
process.

Filho and Lorena [34] apply a heuristic column generation approach to graph col-
oring. They describe the principles of their constructive genetic algorithm and give
a column generation formulation of the problem. The GA is used to generate the
initial columns and to solve the slave problem (the weighted maximum independent
set problem) at every iteration. Column generation is performed as long as the
GA finds columns with negative reduced costs. The master problem is solved using
CPLEX. Some encouraging results are shown.

Puchinger and Raidl [100, 102] (see also chapter 5) propose new integer linear pro-
gramming formulations for the three-stage two-dimensional bin packing problem.
Based on these formulations, a branch-and-price algorithm was developed in which
fast column generation is performed by applying a hierarchy of four methods: (a) a
greedy heuristic, (b) an evolutionary algorithm, (c) solving a restricted form of the
pricing problem using CPLEX, and finally (d) solving the complete pricing prob-
lem using CPLEX. Computational experiments on standard benchmark instances
document the benefits of the new approach. The combination of all four pricing algo-
rithms in the proposed branch-and-price framework yields the best results in terms
of the average objective value, the average run-time, and the number of instances
solved to proven optimality.

Metaheuristics for Strategic Guidance of Exact Search

French et al. [37] present a GA/B&B hybrid to solve feasibility and optimization
IP problems. Their hybrid algorithm combines the generic B&B of the MIP-solver
XPRESS-MP4 with a steady-state GA. It starts by traversing the B&B tree. During
this phase, information from nodes is collected in order to suggest chromosomes
to be added to the originally randomly initialized GA-population. When a certain
criterion is fulfilled, the GA is started using the augmented initial population. When
the GA terminates, its fittest solution is passed back and grafted onto the B&B tree.
Full control is given back to the B&B-engine, after the newly added nodes had been
examined to a certain degree. Reported results on MAX-SAT instances show that
this hybrid approach yields better solutions than B&B or the GA alone.

4http://www.dashoptimization.com/

44

4.3. Integrative Combinations

Kotsikas and Fragakis [70] determine improved node selection strategies within B&B
for solving MIPs by using genetic programming (GP). After running B&B for a
certain amount of time, information is collected from the B&B tree and used as
a training set for GP, which is performed to find a node selection strategy more
appropriate for the specific problem at hand. The following second B&B phase then
uses this new node selection strategy. Reported results show that this approach has
potential, but needs to be enhanced in order to be able to compete with today’s
state-of-the-art node selection strategies.

Applying the Spirit of Metaheuristics

Last but not least, there are a few approaches where the spirit of local search based
techniques is incorporated into B&B. The main idea is to first search some neigh-
borhood of incumbent solutions more intensively before turning to a classical node
selection strategy. However, there is no explicit metaheuristic, and B&B itself is
used for performing the local search. The metaheuristic may be seen to be executed
in a “virtual” way.

Fischetti and Lodi [35] introduced local branching, an exact approach combining
the spirit of local search metaheuristics with a generic MIP-solver (CPLEX). They
consider general MIPs with 0-1 variables. The idea is to iteratively solve a local
subproblem corresponding to a classical k-OPT neighborhood using the MIP-solver.
This is achieved by introducing a local branching constraint based on an incumbent
solution x, which partitions the search space into the k-OPT neighborhood and the
rest: ∆(x, x) ≤ k and ∆(x, x) ≥ k + 1, respectively, with ∆ being the Hamming
distance of the 0-1 variables. The first subproblem is solved, and if an improved
solution could be found, a new subproblem is devised and solved; this is repeated as
long as an improved solution is found. If the process stops, the rest of the problem
is solved in a standard way. This basic mechanism is extended by introducing time
limits, automatically modifying the neighborhood size k and adding diversification
strategies in order to improve the performance. Reported results are promising.

Danna et al. [20] present an approach called Relaxation Induced Neighborhood
Search (RINS) in order to explore the neighborhoods of promising MIP solutions
more intensively. The main idea is to occasionally devise a sub-MIP at a node of
the B&B tree that corresponds to a certain neighborhood of an incumbent solution:
First, variables having the same values in the incumbent and in the current solution
of the LP-relaxation are fixed. Second, an objective cutoff based on the objective
value of the incumbent is set. Third, a sub-MIP is solved on the remaining variables.
The time for solving this sub-MIP is limited. If a better incumbent could be found
during this process, it is passed to the global MIP-search which is resumed after

45

Chapter 4. Combining Metaheuristics and Exact Algorithms

the sub-MIP termination. CPLEX is used as MIP-solver. The authors experimen-
tally compare RINS to standard CPLEX, local branching, combinations of RINS
and local branching, and guided dives. Results indicate that RINS often performs
best.

4.4. Conclusions

We gave a survey on very different existing approaches for combining exact algo-
rithms and metaheuristics. The two main categories in which we divided these
techniques were collaborative and integrative combinations. Some of the combina-
tions are dedicated to very specific combinatorial optimization problems, whereas
others were designed to be more generally useful. Altogether, the existing work doc-
uments that both, exact optimization techniques and metaheuristics have specific
advantages which complement each other. Suitable combinations of exact algorithms
and metaheuristics can benefit greatly from synergy and often exhibit significantly
higher performance with respect to solution quality and time. Some of the presented
techniques are well developed, whereas others are still in their infancy and need sub-
stantial further research in order to develop them fully. Future work on such hybrid
systems is highly promising.

46

Chapter 5

Models and Algorithms for

Three-Stage Two-Dimensional

Bin Packing

5.1. Introduction

The two-dimensional bin packing (2BP) problem occurs in different variants of im-
portant real-world applications such as glass, paper, and steel cutting. In almost
every variant of the 2BP problem, we are given a set of n rectangular items having
individual heights hi and widths wi, i = 1, ..., n. The objective is to pack them
into a minimum number of rectangular bins or cut them out of a minimum number
of sheets of some raw-material, each having height H and width W . Items may
not overlap and we do not allow rotation. We assume 0 < wi ≤ W, 0 < hi ≤ H.
Recent surveys on 2D packing problems are given in Lodi et al. [75] and Lodi et al.
[73], an annotated bibliography on cutting and packing is presented by Dyckhoff et
al. [31].

In practice, there are often special requirements on the cutting/packing patterns.
Here, we consider in particular orthogonal guillotine cuts; i.e., pieces are always

An earlier version of this chapter appeared in [102].

47

Chapter 5. Three-Stage Two-Dimensional Bin Packing

rectangular and may only be cut horizontally or vertically from one border of a
given or produced rectangle to the opposite one. Furthermore, real-world cutting
machines are often constructed such that the sheets are processed in a certain number
of stages. In each stage either horizontal or vertical cuts can be performed, but never
both. Pieces having passed a stage may not be put back to a previous stage. These
conditions limit the nesting of horizontal and vertical cuts and thus the maximum
height of the slicing-tree of each bin. In this article we focus on three-stage problems,
where the first stage is only able to perform horizontal cuts, the second only vertical
cuts, and the third again only horizontal cuts; see Figure 5.1 (on page 53) for an
example of a feasible cutting pattern. The three-stage restriction is, for example,
typical for glass manufacturing [40, 105].

The next section gives a short overview on previous work related to the consid-
ered problem. The combination of exact and heuristic methods for solving difficult
problems is a central concern of the work presented here. Section 5.3 defines the
three-stage two-dimensional bin packing (3-stage 2BP) problem in a more formal
way. We then develop an integer linear programming (ILP) model for a restricted
version of 3-stage 2BP and extend it to a model for the unrestricted case in section
5.4. These models involve only O(n2) and O(n3) variables, the number of constraints
is bounded by O(n) and O(n3) respectively, and symmetries are effectively avoided.
To our knowledge, this is the first polynomially-sized ILP for 3-stage 2BP.

In section 5.5, we describe an alternative approach based on a Dantzig-Wolfe decom-
position [126]: the 3-stage 2BP problem is reformulated as a set covering problem
and fast column generation is performed. We also introduce dual subset inequali-
ties in order to derive dual constraints to stabilize the column generation process.
Section 5.6 describes how branching is performed in order to obtain optimal in-
teger solutions. Furthermore, the column generation process is described in detail:
Columns are generated by using a hierarchy of four methods, namely a greedy heuris-
tic, an evolutionary algorithm, and a restricted as well as an unrestricted ILP for
the pricing problem. In section 5.7, computational experiments are described and
analyzed. Finally we summarize our work and draw conclusions in section 5.8.

5.2. Previous Work

In this section we will present the previous work we consider relevant for this chapter,
for more detailed information we refer to the surveys by Lodi et al. [75] and Lodi et
al. [73] and the annotated bibliography by Dyckhoff et al. [31].

48

5.2. Previous Work

Approximation Algorithms

Most of the simple algorithms for 2BP are of greedy nature. Items are placed one
by one and never reconsidered again. One- and two-phase algorithms are presented
in the literature [75]. In one-phase algorithms, the items are directly placed into the
bins, whereas the two-phase algorithms first partition the items into levels whose
widths do not exceed W and which aim to minimize the total height. In the second
phase, levels are then assigned to bins by solving a one-dimensional bin packing
problem.

An example of a two-phase algorithm is Hybrid First-Fit (HFF) described by Chung
et al. [15]. In the first phase, the first fit decreasing height algorithm for strip packing
is applied. The items are sorted by decreasing heights, and are then placed, one
after the other, onto the first level they fit. If there is no such level, a new level
as high as the item requiring it is created. The levels are then assigned to bins by
applying the one-dimensional first fit decreasing algorithm, which firstly sorts the
levels according to decreasing height, and secondly places the levels, one after the
other, into the first bin they fit. If no such bin exists, a new empty bin is created
were the level can be packed. In [15] it is shown that if the heights are normalized
to one HFF(I) ≤ 17

8 OPT(I) + 5.

Berkey and Wang [9] described a variant of HFF, the finite first fit heuristic, which is
a greedy one-phase algorithm. Items are sorted by decreasing heights. The first item
initializes the first level in the first bin and defines the level’s height. Each following
item is added to the first level into which it fits, respecting the bin’s width. If there
is no such level, a new level is initialized in the first bin into which it fits. And,
if there is no such bin, a new bin is initialized with the new level. Within a level,
items are never stacked.

Set Covering Based Approaches

The approach of formulating a packing or cutting problem as a set covering problem,
which we will pursue in section 5.5, originates in the work of Gilmore and Gomory
[45]. They propose this technique for the one dimensional cutting stock problem.
This formulation introduces a variable for each possible cutting pattern of a single
bin. Since, in general, the number of these variables increases exponentially with
respect to the problem size, not all variables are explicitly considered and column
generation is performed.

In [47], Gilmore and Gomory applied the same basic technique to two-dimensional
stock cutting. The major difference lies in the method for solving the pricing prob-

49

Chapter 5. Three-Stage Two-Dimensional Bin Packing

lem, i.e., in the way of determining promising patterns/variables that may improve
a current solution. With respect to stage-constraints, only two-stage guillotineable
patterns are considered. Unfortunately, this approach cannot directly be extended
to three or more stages in an efficient way.

A faster variant of the Gilmore and Gomory approach is proposed by Oliveira and
Ferreira [93], where three-stage and general multi-stage cutting stock problems are
considered. For solving the pricing problem, a greedy heuristic is first applied in the
hope that it will quickly find a suitable variable. Only if this heuristic fails, a slower
exact algorithm is used.

Monaci and Toth [88] present a set covering based heuristic approach for bin-packing
problems. In a first phase, columns (i.e. patterns) are generated using greedy and
fast constructive heuristics, in a second phase the associated set-covering instance
is solved by means of a Lagrangian-based heuristic algorithm.

A Compact ILP for Level Bin Packing

Recently the two-dimensional level bin packing problem (corresponding to 2-stage
2BP) was considered in Lodi et al. [76]. They introduced the first compact ILP
model involving only a polynomial number of variables and constraints. This work
is the basis for the ILPs we introduce in section 5.4 for 3-stage 2BP.

In level packing the bins are first partitioned in levels of a fixed height, and the items
are then packed into these levels one beside the other. Some simple observations
regarding the nature of optimal level packing patters are presented by Lodi et al.:
For any optimal level there exists an equivalent solution in which

• the first item packed in each level is the tallest item in the level;

• the first level packed in each bin is the tallest level in the bin.

They further assume that the items are sorted according to nonincreasing heights.
Four set of variables are used: the first two sets refer to the packing of items into
levels, the remaining two to the packing of levels into bins. Levels and bins are
respectively initialized by items and levels. The heights of the levels are determined
by their initializing item. The variables are:

• yi ∈ {0, 1}, i = 1, · · · , n, set to one if and only if (iff) item i initializes level i.

• xij ∈ {0, 1}, i = 1, · · · , n− 1; j > i, set to one iff item j is packed into level i.

• qk ∈ {0, 1}, k = 1, · · · , n, set to one iff level k initializes bin k .

• zki ∈ {0, 1}, k = 1, · · · , n− 1; i > k, set to one iff level i is allocated to bin k.

50

5.2. Previous Work

Using these variables the ILP model given in [76] is:

minimize

n
∑

k=1

qk (5.1)

subject to

j−1
∑

i=1

xij + yj = 1, ∀j = 1, . . . , n (5.2)

n
∑

j=i+1

wjxij ≤ (W −wi)yi, ∀i = 1, . . . , n− 1 (5.3)

i−1
∑

k=1

zki + qi = yi, ∀i = 1, . . . , n (5.4)

n
∑

i=k+1

hizki ≤ (H − hk)qk, ∀k = 1, . . . , n− 1 (5.5)

yi ∈ {0, 1}, i = 1, . . . , n (5.6)

xij ∈ {0, 1}, i = 1, . . . , n− 1; j > i (5.7)

qk ∈ {0, 1}, k = 1, . . . , n (5.8)

zki ∈ {0, 1}, k = 1, . . . , n− 1; i > k (5.9)

The number of bins is minimized in the objective function (5.1). Equations (5.2)
ensure that each item i has to be packed once. If item i initializes level i, yi is
set to one, and the item cannot be packed in any other level, therefore

∑j−1
i=1 xij

has to be zero. Analogously if
∑j−1

i=1 xij = 1, yi has to be zero. Constraints (5.3)
guarantee that the bins’ width W is not exceeded by any level. The total width
of a level i corresponds to

∑n
j=i+1 wjxij + wi if it is initialized. If the level is not

initialized at all, yi remains zero, and no item can be packed into the level due to
these inequalities. Equations (5.4) force each used level to be packed into exactly
one bin. If a level i is initialized (yi = 1), it has to initialize bin i (qi = 1) or it has
to be packed into another bin (

∑i−1
k=1 zki = 1). Finally, constraints (5.5) guarantee

that each bin’s height H is not exceeded by the total height of the packed levels.
Analogously to (5.3), it is furthermore assured that levels can only be packed into
initialized bins (any zki can only be greater than zero if qk > 0).

Evolutionary Algorithms for 2BP

A more general overview of evolutionary algorithms for cutting and packing problems
is given by Hopper [63]. Most of the EAs used to solve guillotineable 2BP, such as the

51

Chapter 5. Three-Stage Two-Dimensional Bin Packing

genetic algorithm described by Kröger [71], are based on a slicing-tree representation
and specialized variation operators. A cutting-pattern is represented as a tree, the
root node corresponds to the whole sheet, the children are the slices generated by the
first cutting-stage. The following children are generated by further cutting stages,
and the leaves of the tree correspond to the items cut out of the sheet.

Alternatively, an order-based encoding can be used indicating the order in which the
items are placed by some FFF-like decoding heuristic. Hwang et al. [64] describe
such an approach and compare it to a slicing-tree representation. They conclude
that the order-based method yields better results in several cases. Bisotto et al. [11]
apply the order-based encoding successfully to an industrial cutting problem with
specific real-time and pattern constraints. Another effective order-based approach
is presented by Monaci [87] for two-dimensional strip packing.

General 2BP

The following two algorithms solve the more general 2BP problem exactly where
non-guillotineable patterns of rectangular items are also allowed. Martello and Vigo
[84] describe a two-level branch-and-bound algorithm. Items are assigned to bins by
an outer decision tree. Possible packing patterns for the bins are generated by trying
a heuristic first; if it fails to place all necessary items, it tries to find a pattern through
an inner enumeration scheme. A hybrid branch-and-price / constraint programming
algorithm has been proposed by Pisinger and Sigurd [98, 115]. They use the column
generation principle of Gilmore and Gomory and solve the specific pricing problem
by means of constraint programming.

Lodi et al. [74] describe a general heuristic framework applicable to several variants
of 2BP. Tabu search is used to assign the items to bins, and cutting patterns for
individual bins are obtained through different inner heuristics.

Three-Stage 2BP

Particular real-world three-stage cutting problems with specific additional proper-
ties were treated in Vanderbeck [125] and Puchinger et al. [105]. Vanderbeck solves
a three-stage two-dimensional cutting stock problem, where the main objective is to
minimize waste but other issues such as aging stock pieces, urgent or optimal orders,
and fixed setup costs are also considered. His solution approach uses nested decom-
position of the problem and a recursive use of column generation. Puchinger et al.
consider a 3-stage 2BP problem appearing in glass cutting, where specific additional

52

5.3. Three-Stage Two-Dimensional Bin Packing

constraints with respect to the order of items are imposed. The problem is heuristi-
cally solved using an evolutionary algorithm (EA) based on an order representation,
specific recombination and mutation operators, and a greedy decoding heuristic. In
one variant, branch-and-bound is occasionally applied to locally optimize parts of a
solution during decoding.

5.3. Three-Stage Two-Dimensional Bin Packing

A feasible solution for 3-stage 2BP consists of a set of bins, where each bin is
partitioned into a set of stripes, each stripe consists of a set of stacks, and each
stack consists of a set of items having equal width. The packing patterns of such a
solution can always be transformed into the so-called normal form by moving each
item to its uppermost and leftmost position, so that void space may only appear at
the bottom of stacks, to the right of the last stack in each stripe and below the last
stripe; see Figure 5.1 for an example. In the sequel we consider patterns in normal
form only.

...void space

6

7

8

15

16

17

W

H

Stacks of items:
(1), (3,4),..., (12,13,14)

stripe 1

stripe 6

4
10

9

11

3

1

2

13

12

14
5

2

13

12

14
5

Figure 5.1.: A three-stage cutting pattern for one bin in normal form.

We assume the items to be sorted so that h1 ≥ h2 ≥ . . . ≥ hn. The order of the
items within each stack does not affect the feasibility and the objective value of a
solution, so the items can always be sorted according to their indices. A solution
may contain a maximum of n stacks. We label each stack with the index of the
highest item it contains, i.e., with its smallest item index. Similarly, a solution has
at most n stripes, and a stripe’s label corresponds to the label of its highest stack.

53

Chapter 5. Three-Stage Two-Dimensional Bin Packing

Finally, a maximum of n bins is needed, and we label each of the bins with the
smallest index of the stripes it contains. In the example shown in Figure 5.1, the
stack labels are 1, 3, 9, 6, 15, 2, and 12, the stripes are labeled 1 and 6, and the
bin’s label is 1.

5.4. Integer Linear Programming Models

In this section, new ILP models for different versions of 3-stage 2BP are presented.
These formulations are based on concepts for 2-stage 2BP from Lodi et al. [76].

5.4.1. Restricted Three-Stage Two-Dimensional Bin Packing

We first describe a model for restricted 3-stage 2BP where the highest stack of each
stripe, which determines the label of the stripe, always consists of a single item.
Therefore, the highest item (i.e., the one with the smallest index) of a stripe defines
its height. This restriction helps to avoid some difficulties when calculating the
total height of all stripes contained in a bin. An overview of other primal restriction
strategies can be found in [27].

The model uses the following variables.

• αj,i ∈ {0, 1}, j = 1, . . . , n, i = j, . . . , n:
set to one if and only if (iff) item i is contained in stack j

• βk,j ∈ {0, 1}, k = 1, . . . , n, j = k, . . . , n:
set to one iff stack j is contained in stripe k

• γl,k ∈ {0, 1}, l = 1, . . . , n, k = l, . . . , n:
set to one iff stripe k is contained in bin l

54

5.4. Integer Linear Programming Models

The restricted 3-stage 2BP problem can now be stated as the following ILP.

minimize

n
∑

l=1

γl,l (5.10)

subject to

i
∑

j=1

αj,i = 1, ∀i = 1, . . . , n (5.11)

αj,i = 0, ∀j = 1, . . . , n− 1,∀i > j | wi 6= wj (5.12)

j
∑

k=1

βk,j = αj,j, ∀j = 1, . . . , n (5.13)

n
∑

i=j

hiαj,i ≤
j
∑

k=1

hkβk,j, ∀j = 1, . . . , n− 1 (5.14)

n
∑

j=k

wjβk,j ≤ Wβk,k, ∀k = 1, . . . , n− 1 (5.15)

k
∑

l=1

γl,k = βk,k, ∀k = 1, . . . , n (5.16)

n
∑

k=l

hkγl,k ≤ Hγl,l, ∀l = 1, . . . , n− 1 (5.17)

αj,i ∈ {0, 1}, j = 1, . . . , n, i = j, . . . , n (5.18)

βk,j ∈ {0, 1}, k = 1, . . . , n, j = k, . . . , n (5.19)

γl,k ∈ {0, 1}, l = 1, . . . , n, k = l, . . . , n (5.20)

The objective function (5.10) minimizes the number of used bins. Note that bin l
is used iff γl,l = 1. Equations (5.11) ensure that each item i has to be packed once.
The fact that the items packed into the same stack must have identical width and
that the total height of any pair of stacked items must not exceed H is guaranteed
by (5.12). In an actual implementation it is only necessary to consider the variables
αj,i for which wi = wj and hi + hj ≤ H. Here, however, we keep all variables in our
model for the sake of clarity. Each used stack j—i.e., stack j contains item j and
thus αj,j = 1—is packed exactly once into a stripe k according to equations (5.13).
Constraints (5.14) ensure that the height of each stack j—i.e., the total height of all
items contained in stack j—never exceeds the height of the associated stripe k, which
is identical to item k’s height due to our special problem restriction. The constraints
(5.13) and (5.14) together further imply that no items may be packed into an unused
stack. Constraints (5.15) guarantee that the bins’ width W is not exceeded by any

55

Chapter 5. Three-Stage Two-Dimensional Bin Packing

stripe k and that no stacks are packed into unused stripes (βk,k = 0). Equations
(5.16) force each used stripe k to be packed into exactly one bin. Finally, constraints
(5.17) guarantee that each bin’s height H is not exceeded by the total height of the
packed stripes and that no stripes are packed into unused bins (γl,l = 0). In total,
the ILP uses O(n2) variables and O(n) constraints, if taking into consideration that
the fixing of variables αj,i according to (5.12) can be done during preprocessing.

5.4.2. The Unrestricted Case

When modeling the unrestricted case we must take into account that neither the
height of each stack is necessarily given by its highest item, nor that the highest stack
of a stripe necessarily contains the stripe’s highest item. Therefore, we additionally
need variables βk,j for j < k, thus

• βk,j ∈ {0, 1}, k = 1, . . . , n, j = 1, . . . , n:
set to one iff stack j is contained in stripe k.

To extend the ILP (5.10) to (5.17), we must replace the height constraints for sheets
(5.17) in particular. A straightforward way to achieve this, is to write

n
∑

k=l

H(k)γl,k ≤ Hγl,l, ∀l = 1, . . . , n− 1 (5.21)

with H(k) being the height of stack k

H(k) =

n
∑

i=1

hiαk,i. (5.22)

The left hand sides of inequalities (5.21) are, however, nonlinear. In order to obtain
an ILP, we need to introduce additional variables

• δl,i,j ∈ {0, 1}, l = 1, . . . , n− 1, i = l + 1, . . . , n, and j = l, . . . , i− 1:
set to one iff item i contributes to the total height of all stripes in bin l and
is contained in stack j; i.e., item i is contained in stack j, stack j is contained
in stripe j (and therefore defines its height), and stripe j is contained in bin l
or simply

δl,i,j = 1 ↔ αj,i = 1 ∧ γl,j = 1. (5.23)

Now, we can calculate the used height of a bin l in a linear way by

n
∑

i=l

hiγl,i +
n
∑

i=l+1

hi

i−1
∑

j=l

δl,i,j. (5.24)

56

5.4. Integer Linear Programming Models

The complete ILP for the (unrestricted) 3-stage 2BP looks as follows.

minimize

n
∑

l=1

γl,l (5.25)

subject to
i
∑

j=1

αj,i = 1, ∀i = 1, . . . , n (5.26)

n
∑

i=j+1

αj,i ≤ (n− j)αj,j , ∀j = 1, . . . , n− 1 (5.27)

αj,i = 0, ∀j = 1, . . . , n− 1 ∀i > j | wi 6= wj ∨ hi + hj > H (5.28)
n
∑

k=1

βk,j = αj,j, ∀j = 1, . . . , n (5.29)

n
∑

i=j

hiαj,i <
n
∑

i=k

hiαk,i + (H + 1)(1 − βk,j),

∀k = 2, . . . , n, ∀j = 1, . . . , k − 1 (5.30)
n
∑

i=j

hiαj,i ≤
n
∑

i=k

hiαk,i + H(1− βk,j),

∀k = 1, . . . , n− 1, ∀j = k + 1, . . . , n (5.31)
n
∑

j=1

wjβk,j ≤ Wβk,k, ∀k = 1, . . . , n (5.32)

k
∑

l=1

γl,k = βk,k, ∀k = 1, . . . , n (5.33)

n
∑

i=l

hiγl,i +
n
∑

i=l+1

hi

i−1
∑

j=l

δl,i,j ≤ Hγl,l, ∀l = 1, . . . , n− 1 (5.34)

αj,i + γl,j − 1 ≤ δl,i,j ≤ (αj,i + γl,j)/2,

∀l = 1, . . . , n− 1, ∀i = l + 1, . . . , n, ∀j = l, . . . , i− 1 (5.35)
n
∑

k=l+1

γl,k ≤ (n− l)γl,l, ∀l = 1, . . . , n− 1 (5.36)

αj,i ∈ {0, 1}, j = 1, . . . , n, i = j, . . . , n (5.37)

βk,j ∈ {0, 1}, k = 1, . . . , n, j = 1, . . . , n (5.38)

γl,k ∈ {0, 1}, l = 1, . . . , n, k = l, . . . , n (5.39)

δl,i,j ∈ {0, 1}, l = 1, . . . , n− 1, i = l + 1, . . . , n, j = l, . . . , i− 1 (5.40)

57

Chapter 5. Three-Stage Two-Dimensional Bin Packing

The objective function (5.25) and constraints (5.26), (5.28), and (5.33) remain un-
changed from the restricted model. Constraints (5.29) and (5.32) are also adopted,
but some limits had to be modified in order to consider the additional βk,j vari-
ables. The other constraints are either new or have been substantially changed.
Constraints (5.13) and (5.14) are replaced by (5.29), (5.30), and (5.31). Since it is
no longer guaranteed that items are only assigned to a used stack j, inequalities
(5.27) are introduced. Constraints (5.30) and (5.31) ensure that the height of each
stack j never exceeds the height of the stripe k it is contained in (equal to stack k’s
height). We split these constraints into “strictly less” and “less than or equal to”
constraints in order to avoid ambiguities when stacks have identical heights: The
highest stack with the smallest index always determines the index k of the stripe.
Inequalities (5.34) replace the height constraints for bins (5.17) and use expression
(5.24) with the new variables δl,i,j for calculating a bin’s used height. Constraints
(5.35) force variables δl,i,j to be set to their intended values according to the defini-
tion in (5.23). Finally, inequalities (5.36) ensure that no stripes are packed into an
unused bin. In total the ILP uses O(n3) variables and constraints, and is, according
to our knowledge, the first polynomial-sized ILP for 3-stage 2BP.

5.5. A Column Generation Approach

As an alternative approach for 3-stage 2BP we propose a set covering formulation
with column generation. The formulation is based on a Dantzig-Wolfe decomposition
[126] of the ILP from the previous section and ideas from Gilmore and Gomory
[45, 46] and Pisinger and Sigurd [98, 115]. For a recent survey about selected topics
in column generation see Lübbecke and Desrosiers [80].

Dantzig-Wolfe decomposition is an effective technique for obtaining stronger models
and reducing the symmetry of some LP models. It splits a suitable ILP model into
a linear master problem and smaller subproblems. In our case, all the constraints
restricting the assignment of items to stacks and the assignment of stripes to a bin
form the detached subsystem. The constraints requiring that each item is packed
once remain in the master problem, which is further reformulated into a set covering
model.

5.5.1. The Set Covering Model for 3-Stage 2BP

The following set covering model can, in principle, be applied to any bin packing
problem because specific geometric constraints concerning feasible layouts are en-
capsulated in the pricing (or column generation) sub-problem.

58

5.5. A Column Generation Approach

Let P be the set of all feasible packings of a single bin. The variable xp ∈ {0, 1}
indicates whether a packing p ∈ P appears in the solution (xp = 1) or not (xp = 0).
For every item i = 1, . . . , n and every packing p ∈ P, let the constant Ap

i = 1 iff
packing p contains item i; otherwise Ap

i = 0. The set covering model for bin packing
can now be stated as

minimize
∑

p∈P

xp (5.41)

subject to
∑

p∈P

xpA
p
i ≥ 1, ∀i = 1, . . . , n (5.42)

xp ∈ {0, 1}, ∀p ∈ P (5.43)

Due to inequalities (5.42), solutions with items appearing more than once are feasi-
ble. If items must appear exactly once as in the case of our 3-stage 2BP, duplicates
can simply be removed from the solution without destroying its feasibility or opti-
mality.

In general, P is too huge to be able to consider all variables xp, p ∈ P explicitly.
We therefore use delayed column generation to solve the linear programming (LP)
relaxation of the set covering model, called the master Problem (MP). In this way,
we do not explicitly consider the majority of the variables xp. We start with a
small set of initial patterns P ′ ⊂ P taken from an initial feasible solution and solve
the LP-relaxation of the problem restricted to P ′, the so-called restricted master
problem (RMP). Based on the obtained solution, we search for a new pattern and
its corresponding variable, whose inclusion in P ′ might allow for a better solution
of the RMP. This extended LP is resolved and the whole process repeated until no
further improvements are possible, and, therefore, an exact solution of the MP is
obtained.

The reduced costs of a packing p ∈ P are

cu
p = 1−

n
∑

i=1

Ap
i ui, (5.44)

where ui are the dual variables from the solution of the RMP. Only variables with
negative reduced costs can improve the current solution of the RMP, leading us to
the challenge of finding such a variable/pattern.

Branching (described in section 5.6.2) becomes necessary if no further variables with
negative reduced costs can be determined (i.e., the MP is solved to optimality) and
the difference between the solution value of the MP and the value of the best integer
solution so-far is greater than or equal to one, i.e., the optimality gap is greater than
the granularity of the objective function.

59

Chapter 5. Three-Stage Two-Dimensional Bin Packing

5.5.2. The Pricing Problem

The pricing problem consists of finding a packing p with negative reduced costs cu
p .

The specific characteristics and constraints of the bin packing problem substantially
determine this problem. Here, we consider the pricing problem for 3-stage 2BP,
which is a three-stage two-dimensional knapsack packing (2DKP) problem with re-
spect to profits ui corresponding to the dual variable values of the current RMP
solution. Based on the ILP for 3-stage 2BP presented in section 5.4.2, the pricing
problem can be formulated as follows.

maximize

n
∑

i=1

ui

i
∑

j=1

αj,i (5.45)

subject to

i
∑

j=1

αj,i ≤ 1, ∀i = 1, . . . , n (5.46)

n
∑

i=1

hi

i
∑

j=1

δi,j ≤ H (5.47)

αj,i + βj,j − 1 ≤ δi,j ≤ (αj,i + βj,j)/2,

∀i = 1, . . . , n, ∀j = 1, . . . , i (5.48)

and the constraints

(5.27), (5.28), (5.29), (5.30), (5.31), and (5.32).

Variables αj,i and βk,j have the same meaning as in the ILP of section 5.4.2; variables
γl,k are not needed anymore. The variables δi,j ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , i,
replace δl,i,j and are set to one iff item i contributes to the total height of all used
stripes, i.e., iff item i appears in stack j and stack j appears in stripe j. The correct
values for δi,j are enforced by constraints (5.48). Constraints (5.46) ensure that no
item is packed more than once. Constraints (5.47) limit the total height of all stripes
to H.

5.5.3. Stabilizing Column Generation

In column generation a near-optimal solution is usually reached relatively quickly,
but the closer to the optimum one gets, the smaller the progress per iteration be-
comes. The observation that dual variable values do not smoothly converge to their
respective optima, but rather oscillate strongly is regarded as a major efficiency issue
[80]. In order to reduce this effect, we try to stabilize the column generation process.
We apply a stabilization approach using dual-optimal inequalities as suggested by

60

5.5. A Column Generation Approach

Ben Amor et al. [8] and adapt the dual subset inequalities (which are indeed dual
optimal inequalities), introduced by Valério de Carvalho [124], to our needs.

To begin with we recall the main aspects of the subset inequalities for the cutting
stock problem (CS) [124]. The CS consists of minimizing the number of stock
elements needed of length L, such that all item demands bi for each item i of length
li are satisfied.

The master problem of CS is very similar to the one of 2BP. Here, P corresponds to
the set of feasible cutting patterns for CS. The master problem (PCS) and its dual
(DCS) are:

PCS : min
∑

p∈P

xp

∑

p∈P

xpA
p
i ≥ bi ∀i = 1, . . . , n,

xp ≥ 0 ∀p ∈ P.

DCS : max

n
∑

i=1

biui

n
∑

i=1

uiA
p
i ≤ 1 ∀p ∈ P

ui ≥ 0 ∀i = 1, . . . , n.

The main difference to 2BP lies in the pricing sub-problem which corresponds to a
one-dimensional knapsack problem:

max

n
∑

i=1

uiyi

n
∑

i=1

liyi ≤ L

yi ∈ N,∀i = 1, . . . , n.

Proposition 6 (Dual Subset Inequalities [8]) For item i ∈ I and subset S ⊂ I,
any optimal solution (u∗

i ∀i = 1, . . . , n) for DCS satisfies

li ≥
∑

j∈S

lj → u∗
i ≥

∑

j∈S

u∗
j .

Since adding constraints (rows) to the dual problem corresponds to adding variables
(columns) to the primal problem, the subset inequalities induce columns for the core
master problem. For each inequality, a zero-cost variable yi,S with coefficients -1 in
row i, +1 in rows j ∈ S, and 0 otherwise is introduced. This can be interpreted as
replacing i with the items of S in any feasible pattern containing i. When a pattern
contains item i and the corresponding column yi,S, the pattern where i is replaced
by S is implicitly considered and it is therefore not needed to generate this pattern.

61

Chapter 5. Three-Stage Two-Dimensional Bin Packing

Valério de Carvalho [124] keeps the number of variables used in O(n), by using only
those with |S| = 1 and some with |S| = 2. Reconstructing a primal optimal solution
from the solution generated with the additional columns is straightforward: For any
overcovering item i (i.e., i is used more than bi-times), the overcovering patterns
must be modified, replacing item i with the items of set S for which yi,S > 0.

Dual Subset Inequalities for General 2BP

We adapt the idea of subset inequalities for the cutting stock problem, as described
by Ben Amor et al. [8], to the general 2BP. The master problem for 2BP (P2BP)
and its dual (D2BP) are:

P2BP: min
∑

p∈P

xp

∑

p∈P

xpA
p
i ≥ 1, ∀i = 1, . . . , n,

xp ≥ 0, ∀p ∈ P.

D2BP: max

n
∑

i=1

ui

n
∑

i=1

uiA
p
i ≤ 1, ∀p ∈ P

ui ≥ 0, ∀i = 1, . . . , n.

where P corresponds to the set of feasible patterns for a specific type of 2BP. Using
this notation, we can now state the proposition defining the dual subset inequalities
for 2BP.

Proposition 7 For any item i ∈ {1, . . . , n} and subset S ⊂ {1, . . . , n}, any optimal
solution u∗ to D2BP satisfies

u∗
i ≥

∑

j∈S

u∗
j

if the items from S can be packed into a bin of size hi × wi and any pattern con-
taining item i remains feasible when item i is replaced by an appropriate sub-pattern
containing all items from S.

Proof: We adapt the proof by contradiction for the cutting stock problem given in
[8]: Let (x∗, u∗) be a pair of primal-dual optimal solutions and assume u∗

i <
∑

j∈S u∗
j

for item i and subset S, but the items from S can be packed into a bin of size hi×wi.
We further assume that for any feasible pattern containing items {i} ∪ R, there is
a feasible pattern obtained by replacing i by S. These patterns define two dual
constraints:

u∗
i +

∑

j∈R

u∗
j ≤ 1 and

∑

j∈S

u∗
j +

∑

j∈R

u∗
j ≤ 1. (5.49)

62

5.5. A Column Generation Approach

The assumption made above implies that

u∗
i +

∑

j∈R

u∗
j <

∑

j∈S

u∗
j +

∑

j∈R

u∗
j ≤ 1 (5.50)

and that the left constraint of (5.49) cannot be active at optimality. The comple-
mentary slackness condition

x∗
p(1−

n
∑

i=1

u∗
i A

p
i) = 0 ∀p ∈ P (5.51)

becomes
x∗

p(1− (u∗
i +

∑

j∈R

u∗
j) = 0 (5.52)

for patterns containing item i. From inequalities (5.50) it follows that 1 − (u∗
i +

∑

j∈R u∗
j) is always greater than zero. Together with equation (5.52) this means

that all primal variables corresponding to patterns containing item i must be equal
to 0, which is a contradiction to the feasibility and optimality of x∗. �

This general form of subset inequalities can be used for nearly arbitrary variants of
2BP, since they only have different definitions of feasible packing patterns. In order
to get dual constraints for these problems, fast preprocessing heuristics can be used
to generate effective feasible subset inequalities.

Dual Constraints for 3-stage 2BP

In the previous section we devised a general form of subset inequalities which we
now put in concrete form for the 3-stage 2BP problem. Every item i of a specific
pattern can be replaced by a stack s of items having the same width as i and a height
not exceeding that of i without breaking the feasibility of the 3-stage pattern. For
an example see Figure 5.2.

i

Figure 5.2.: Replacing an item i (on the left) by a stack (on the right).

63

Chapter 5. Three-Stage Two-Dimensional Bin Packing

We can therefore introduce the following dual constraints:

(∀j ∈ S : wi = wj) ∧ (hi ≥
∑

j∈S

hj) → u∗
i ≥

∑

j∈S

u∗
j , ∀i = 1, . . . , n (5.53)

Using (5.53), we can devise the following type-1 constraints for |S| = 1:

wi = wj → u∗
i ≥ u∗

j , ∀i = 1, . . . , n− 1, ∀j = i + 1, . . . , n, (5.54)

based on the ordering of the items by nonincreasing heights.

Type-2 constraints for |S| = 2 are devised in a similar way:

wi = wj = wk ∧ hi ≥ hj + hk → u∗
i ≥ u∗

j + u∗
k (5.55)

∀i = 1, . . . , n− 2, ∀j = i + 1, . . . , n− 1, ∀k = j + 1, . . . , n

As previously described, adding constraints (rows) to the dual problem corresponds
to adding variables (columns) to the primal problem, the dual constraints induce
columns for the master problem. The variables induced by the dual constraints
are devised analogously to the cutting stock problem: For each constraint, a zero-
cost variable yi,S with coefficients −1 in row i, +1 in rows j ∈ S, and 0 otherwise
is introduced. This variable can be interpreted as an indicator for a substitution
of item i with the items of S in any feasible pattern containing i. When a pattern
contains item i and the corresponding column yi,S, the pattern in which i is replaced
by S is implicitly considered and therefore does not have to be created by column
generation. Reconstructing a primal optimal solution from a solution and additional
variables yi,S is straightforward [8]: for any overcovering item i (i.e., i appears more
than once), the overcovering patterns must be modified by replacing item i with the
items of set S for which yi,S > 0.

5.6. The Branch-and-Price Framework

In order to obtain optimal integer solutions, we use a branch-and-price (B&P) frame-
work. A general introduction to branch-and-price is given in Chapter 3 and a discus-
sion of branching schemes is given in Barnhart et al. [7]. In the following, we present
how to generate an initial feasible solution. Then we explain branching, which is,
in general, necessary for solving the problem to integrality. Finally, we describe our
hierarchical approach for solving the pricing problem.

64

5.6. The Branch-and-Price Framework

Algorithm 8: Finite first fit (FFF) for 3-stage 2BP.

Input: Ordered list of items: list
while list not empty do

b = new empty bin
repeat

s = new empty stripe in bin b
forall items i in list do

if s == ∅ ∧ i.h ≤ b.uh then
initialize s with i
remove i from list

else if s 6= ∅ ∧ i.w ≤ s.uw ∧ i.h ≤ s.h then
add i to s
remove i from list
uh = s.h − i.h
forall items j with j > i do

if j.w == i.w ∧ i.h ≤ uh then
stack item j on i
remove j from list
uh = uh − j.h

//no more item fitted into the bin
until s = ∅
discard empty stripe s
add b to solution

Abbreviations: (used here and in the remainder of this chapter)
*.h: height of *
*.w: width of *
*.uh: unused height of *
*.uw: unused width of *

5.6.1. Generating an Initial Feasible Solution

In order to initialize the column generation algorithm, a feasible solution is needed.
The packing patterns of its bins are used as initial P ′. A promising feasible solution
can often be derived by considering the restricted 3-stage 2BP model from section
5.4.1 and trying to solve it using an ILP-solver with a given time limit. Another way
of generating a feasible solution for 3-stage 2BP is the following order-based finite
first fit heuristic (FFF). The heuristic gets an ordered list of all items as input. Its
pseudocode is given in Algorithm 8.

65

Chapter 5. Three-Stage Two-Dimensional Bin Packing

As long as the ordered list of items is not empty, the algorithm fills one bin after
the other. Variable b represents the current bin and variable s the current stripe.
Stacks of items are added to the current stripe as long as it is possible. If no
further item can be placed in the current stripe, a new empty stripe is added to
the current bin. If no items fit into this stripe, it is discarded, bin b is closed, and
a new bin is initialized. The described algorithm initializes the stripes with stacks
containing a single item and therefore generates restricted 3-stage 2BP solutions
only. The solutions obtained by FFF strongly depend on the input order of the
items. Therefore, multiple runs using different orders are often meaningful.

The outer two loops run together in time O(n), since either an item is placed in
the inner loop, which reduces the size of the item list, or a new bin is created. The
two inner loops have together a worst-case run-time of O(n2). The total worst-case
effort of FFF for 3-stage 2BP is therefore O(n3).

5.6.2. Branching

If no further variables with negative reduced costs can be found by completely solving
the pricing problem and the difference between the solution value of the RMP and the
value of the best integer solution so-far exceeds one, branching becomes necessary.
We use a branching rule similar to the one described in [98, 115]. The solution
space is divided into two parts, where two different items i1 and i2 have to be in
different bins or in the same bin respectively. We always choose the two highest
items appearing in a pattern p whose corresponding variable xp has an LP solution
value closest to 0.5. Preliminary tests showed that other combinations of items were
usually not better; even the use of strong branching [85] in order to choose between
different branching candidates generated by diverse strategies did not improve the
results obtained.

The first branch corresponds to adding the constraint

∑

p∈P

xpA
p
i1

Ap
i2

= 0, (5.56)

the second branch corresponds to adding the two constraints

∑

p∈P

xpA
p
i1

(1−Ap
i2

) = 0 and
∑

p∈P

xp(1−Ap
i1

)Ap
i2

= 0. (5.57)

In an actual implementation it is not necessary to explicitly add constraints (5.56)
and (5.57) to the RMP; instead, the variables violating the constraints are simply
fixed to zero.

66

5.6. The Branch-and-Price Framework

Furthermore, the following constraints have to be added to the subsequent pricing
problems in order to guarantee that patterns violating the branching constraints are
not generated anymore. In the first branch

i1
∑

j=1

αj,i1 +

i2
∑

j=1

αj,i2 ≤ 1, (5.58)

and in the second branch
i1
∑

j=1

αj,i1 =

i2
∑

j=1

αj,i2 . (5.59)

In the sequel, we call i1 and i2 conflicting if constraint (5.58) is active, and say that
i1 induces i2 and vice-versa if equation (5.59) is active.

5.6.3. Generating Columns using a Greedy Heuristic

Oliveira and Ferreira [93] suggested performing a fast column generation by first
applying a heuristic to quickly obtain a promising pattern with negative, but not
necessarily minimal, reduced costs. Only if this heuristic fails, the pricing problem
is solved with an exact method. Such an approach can lead to faster overall column
generation, since in general significantly fewer calls of the usually much slower exact
algorithm are needed.

For the 3-stage 2BP we suggest the use of a four level hierarchy of pricing algorithms.
Each of these algorithms searches for a variable with negative reduced costs, and if
it fails, the next algorithm from the hierarchy is applied to the pricing problem. In
each of these pricing iterations, a single variable is generated. The first level of the
hierarchy is the greedy first fit heuristic respecting branching constraints (FFBC)
shown in Algorithm 9.

FFBC considers the items in the order given by the parameter list. One item i
after the other is packed into the first stack it fits. If the item does not fit into
any existing stack, a new stack is created in the first stripe it fits. If no such stripe
exists and there is enough space left in the bin, a new stack is created and packed
into a new stripe. Otherwise the algorithm proceeds with the next item. If the
addition of an item to a stack would increase the corresponding stripe’s height, we
check whether enough vertical space is left in the bin and actually add the item
with a probability of 50%. The constraints resulting from branching are handled
as follows. At the beginning, we recursively look for items induced by the current
item i. If i and any of the induced items stay in conflict with any other induced
or already packed item (checkAndFindInduced(i, ind) returns false), none of these

67

Chapter 5. Three-Stage Two-Dimensional Bin Packing

items is packed. Otherwise we immediately try to pack i and all the induced items
returned by checkAndFindInduced(i, ind) in parameter ind . If this turns out to be
impossible, we skip the whole chain of items.

Algorithm 9: First fit heuristic respecting branching constraints (FFBC)

Input: Ordered list of items: list , Bin: bin
forall i in list with ui > 0 do

if checkAndFindInduced(i, ind) then
topack = {i} ∪ ind
bin ′ = bin
list = list − topack
repeat

choose j ∈ topack at random
topack = topack − {j}
if not pack(bin, j) then

bin = bin ′

topack = ∅
until topack = ∅

return bin

The outer loop of FFBC is performed O(n) times. Procedure checkAndFindIn-
duced() can be implemented in time O(c), where c denotes the number of existing
branching constraints. If there are induced items and not all of them could be
packed together with i, it never tries to pack those items again. Therefore, the pack
procedure is called only O(n) times, at most once for each item in the list. The pack
procedure runs in time O(n), since there are at most O(n) positions where an item
can be placed. The worst-case total run-time of FFBC is therefore O(n2 + nc).

5.6.4. Generating Columns using an Evolutionary Algorithm

When the greedy FFBC heuristic fails to find a pattern with negative reduced costs,
we apply a more sophisticated metaheuristic as a second-level pricing strategy. We
decided to use an Evolutionary Algorithm (EA) operating directly on stripes, stacks,
and items. Filho and Lorena [34] already successfully used an EA to generate
columns for approximately solving graph-coloring problems.

68

5.6. The Branch-and-Price Framework

Function pack(b, i)

forall stripes s in b do
forall stacks a in s do

if wi == a.w then
if hi + a.h ≤ s.h then

pack i into a
return true

else if a.h + hi − s.h ≤ b.uh then
with a probability of 50% do

pack i into a
return true

forall stripes s in b do
if wi ≤ s.uw ∧ hi ≤ s.h then

create stack a containing i
pack a into s
return true

else if wi ≤ s.uw ∧ hi − s.h ≤ b.uh then
with a probability of 50% do

create stack a containing i
pack a into s
return true

if hi ≤ b.uh then
create stack a containing i
pack a into new stripe s
pack s into b
return true

return false

69

Chapter 5. Three-Stage Two-Dimensional Bin Packing

Structure of the Evolutionary Algorithm

We use a standard steady-state algorithm applying binary tournament selection with
replacement and duplicate elimination, see e.g. [4, 86]. In each iteration, one new
candidate solution is created by recombination of selected parents, and mutation is
applied with a certain probability. The new candidate solution always replaces the
worst solution in the population if it is not identical to an already existing solution.

Representation and Initialization

The chosen representation is direct: each candidate solution represents a bin as a set
of stripes, each stripe as a set of stacks, and each stack as a set of item references,
see Figure 5.3. Using such a hierarchy of sets makes it easy to ignore the order of
items, stacks and stripes, and therefore to avoid symmetries.

Item

Item

Item

Stack

ItemStack

Item Item

Stack Item

Item

Item

Stack

Item

Item

Item

Stack

Item

Item

Item

Stack

Item Item

Stack

Bin

Stripe Stripe

Figure 5.3.: Set-Representation of a solution (corresponds to pattern in Figure 5.1).

Initial solutions are created via the FFBC heuristic using randomly generated item
orders as input. These orders are, however, created in a biased way by assigning
each item i a random value ri ∈ [0, 1) and sorting the items according to decreasing
riui. Only items with ui > 0 are considered.

Recombination

The recombination operator, shown in Algorithm 10, first calculates the sum ps of
all contained items’ values ui and a random value rs ∈ (0, 1] for each stripe. Then
the stripes are sorted according to decreasing rsps. Thus, we obtain a random order

70

5.6. The Branch-and-Price Framework

which is biased in a way so that stripes having higher total values are more likely to
appear at the beginning. The stripes are then considered in this order and packed
into the offspring’s bin if they fit into it. Identical stripes of both parents appear
twice in the ordered list but are considered only at their first appearance.

When all stripes have been processed, repairing is usually necessary in order to
guarantee feasibility. First, the bin is traversed in order to delete item duplicates.
Then, the branching constraints are considered: items staying in conflict with others
(check(i) returns true) are removed. After this, we try to pack all induced items
(returned by findInduced(i)); if this is not possible, the corresponding original items
are also removed from the bin. Finally, FFBC is applied as local improvement
operator to a list of items not yet present in the bin and having positive ui. These
items are sorted by assigning each item i a random value ri ∈ [0, 1) and sorting them
according to decreasing riui.

The forall -loops are all traversed O(n) times. Procedures check() and findInduced()
run in O(c) time, where c denotes the number of existing branching constraints.
Procedure pack() is again called for each item at most once. The total run-time of
stripe crossover is therefore bounded above by O(n2 + nc).

Mutation

The mutation operator removes a randomly chosen item i from the bin. If the
branching constraints induce other items for i, they are also deleted. Finally, FFBC
is used as local improvement operator, applied to a list of remaining items con-
structed in the same way as described for stripe crossover.

The mutation operator has a worst-case run-time of O(n2 + nc), since FFBC domi-
nates the effort.

5.6.5. Pricing by Solving the Restricted 3-Stage 2DKP

Analogously to the restricted 3-stage 2BP, we can define a restricted version of our
pricing problem, which we call restricted 3-stage 2DKP : The highest stack of each
stripe may consist of a single item only. Formulating this restricted pricing problem
as an ILP and trying to solve it using an ILP-solver is another heuristic approach
for solving the general pricing problem. We apply this as third-level heuristic with
a given time limit when the previous heuristics have failed. The ILP for restricted
3-stage 2DKP can be devised from the model (5.10) to (5.17), similar to the unre-
stricted case (see section 5.5.2):

71

Chapter 5. Three-Stage Two-Dimensional Bin Packing

Algorithm 10: StripeCrossover(A, B)

// crossover
forall stripes s in A and B do

ps =
∑

i∈s ui

rs = random value ∈ [0, 1)

list = sort stripes by decreasing rsps

b = new bin
forall stripes s in list do

if s.h ≤ b.uh then
copy s into b

// repairing
forall items i in b do

if i appears in b twice then
remove first i from b

forall items i in b do
if check(i) then

remove i from b

forall items i in b do
ind =findInduced(i)
if ind 6= ∅ then

b′ = b
topack = ind − b
while topack 6= ∅ do

choose j ∈ topack at random
topack = topack − {j}
if not pack(b, j) then

b = b′

remove i and items in ind from b

//local improvement
ilist = {i = 1, . . . , n | i 6∈ b ∧ ui > 0}
sort ilist by decreasing riui with ri = random value ∈ [0, 1)
FFBC(ilist, b)
return b

72

5.7. Computational Experiments

maximize

n
∑

i=1

ui

i
∑

j=1

αj,i (5.60)

subject to

i
∑

j=1

αj,i ≤ 1, ∀i = 1, . . . , n (5.61)

n
∑

k=1

hkβk,k ≤ H (5.62)

and the constraints:

(5.12), (5.13), (5.14), and (5.15).

5.6.6. Exact Pricing Algorithm

If all pricing heuristics failed to find a pattern with negative reduced costs, we use
an ILP-solver in order to solve the ILP for the unrestricted 3-stage 2DKP from
section 5.5.2. The optimization process is terminated—like the previous pricing
heuristics—as soon as a pattern with negative reduced costs is found. Otherwise,
the ILP-solver performs until it is proven that no such pattern exists. In this case,
the solution of the RMP is also optimal for the MP and represents a valid lower
bound for 3-stage 2BP.

5.7. Computational Experiments

The algorithms presented were implemented using GNU C++ 3.3.1 and the open-
source library COIN [78], in particular the COIN/Bcp framework for branch-and-
cut-and-price algorithms and COIN/Clp as LP-solver. Furthermore, CPLEX 8.1
was used with default parameters as a general purpose ILP-solver. All experiments
were performed on a 2.8GHz Pentium 4 machine.

5.7.1. Settings and Parameters

A global time limit of 1 000s was given to each run for all the approaches we tested.

Initial feasible solutions are generated with the FFF heuristic described in sec-
tion 5.6.1. FFF is called for 20n different item orders and the best obtained solution
is used as the initial one. The first five item orders are determined by sorting the

73

Chapter 5. Three-Stage Two-Dimensional Bin Packing

items according to decreasing height, width, area, 2hi + wi, and hi + 2wi, respec-
tively; all further orders are random permutations. For some algorithm variants,
CPLEX was additionally used to try to solve the restricted 3-stage 2BP model, with
a time limit of 200s. The overall best solution is used as initial feasible solution.

For solving the pricing problem, FFBC (see Section 5.6.3) is applied up to 100 times
using different item orders. The first five item orders are determined by sorting the
items according to decreasing ui,

ui

hi·wi
, ui

hi+wi
, ui

hi
, and ui

wi
, respectively; all further

orders are random permutations.

The following EA settings were determined by preliminary experiments and turned
out to be robust for many different problem instances: a population size of 100,
binary tournament selection, a mutation probability of 0.75, and termination after
1 000 iterations without improvement of the so-far best solution or a total of 100 000
iterations.

If FFBC or the EA did not find a solution, CPLEX is applied to the restricted 3-
stage 2DKP ILP model with a time limit of 100s. We denote this pricing method by
CPLEX(restricted 3-stage 2DKP). Finally, if still no variable with negative reduced
costs could be devised, CPLEX is used to solve the unrestricted 3-stage 2DKP model,
denoted by CPLEX(3-stage 2DKP), respecting the global time limit.

In addition, the RMP is solved to integrality every M -th iteration by using CPLEX,
possibly providing a new incumbent solution. M = 100 turned out to be a rea-
sonable choice. The RMP is further solved to optimality before branching, because
preliminary experiments showed that further branching can sometimes be avoided
when a better upper bound is available.

5.7.2. Computational Results

In order to evaluate the effectiveness of the different models and algorithms de-
scribed, we compare the following approaches:

2LBP:

CPLEX applied to the ILP for 2-stage 2BP from [76]

R2BP:

CPLEX applied to the ILP for restricted 3-stage 2BP

2BP:

CPLEX applied to the ILP for 3-stage 2BP
initialization: FFF and R2BP

74

5.7. Computational Experiments

EA:

The evolutionary algorithm from [105] applied to 3-stage 2BP; the specific variant
used was EAe OX3,RX according to the notation in this article.

GuillSig:

B&P with constraint programming applied to guillotineable 2BP
Results adopted from [115] (run-time limited to 3 600s)

BPNoR:

B&P applied to 3-stage 2BP
initialization: FFF
pricing: FFBC, CPLEX(3-stage 2DKP)

BP:

B&P applied to 3-stage 2BP
initialization: FFF and R2BP
pricing: FFBC, CPLEX(restricted 3-stage 2DKP), CPLEX(3-stage 2DKP)

BPStab:

B&P applied to 3-stage 2BP
initialization: FFF and R2BP
pricing: FFBC, CPLEX(restricted 3-stage 2DKP), CPLEX(3-stage 2DKP)
stabilization: type 1 and type 2 constraints

BPStabEA:

B&P applied to 3-stage 2BP
initialization: FFF and R2BP
pricing: FFBC, EA, CPLEX(restricted 3-stage 2DKP), CPLEX(3-stage 2DKP)
stabilization: type 1 and type 2 constraints

The instances used for the experiments 2 are adopted from Lodi et al. [76] and
Pisinger and Sigurd [98, 115]. We use the class numbering from [98, 115]. The first
six instance classes have the following characteristics:

Class 1: hi and wi uniformly random in [1, 10], W = H = 10.
Class 2: hi and wi uniformly random in [1, 10], W = H = 30.
Class 3: hi and wi uniformly random in [1, 35], W = H = 40.
Class 4: hi and wi uniformly random in [1, 35], W = H = 100.
Class 5: hi and wi uniformly random in [1, 100], W = H = 100.
Class 6: hi and wi uniformly random in [1, 100], W = H = 300.

In the last four classes, W = H = 100 and four types of items are used:

2http://www.or.deis.unibo.it/research pages/ORinstances/ORinstances.htm

75

Chapter 5. Three-Stage Two-Dimensional Bin Packing

Type 1: wi uniformly random in [23W,W], hi uniformly random in [1, 1
2H]

Type 2: wi uniformly random in [1, 1
2W], hi uniformly random in [23H,H]

Type 3: wi uniformly random in [12W,W], hi uniformly random in
[12H,H]
Type 4: wi uniformly random in [1, 1

2W], hi uniformly random in [1, 1
2H]

The instances classes are:

Class 7: type 1 with prob. 0.7, types 2, 3, and 4 with prob. 0.1 each.
Class 8: type 2 with prob. 0.7, types 1, 3, and 4 with prob. 0.1 each.
Class 9: type 3 with prob. 0.7, types 1, 2, and 4 with prob. 0.1 each.
Class 10: type 4 with prob. 0.7, types 1, 2, and 3 with prob. 0.1 each.

Each class has five sub-classes having n = 20, 40, 60, 80, and 100 items, and 10
instances exist in each sub-class. We therefore have a set of 500 instances in total.

Table 5.1 shows average lower bounds obtained from the LP-relaxations of the ILP
models. Lower bound L0 is the continuous lower bound as defined in [76]:

L0 =

⌈∑n
i=1 wihi

WH

⌉

(5.63)

For a few instances, some column generation approaches did not terminate within
the time limit of 1 000s and, therefore, no valid lower bounds could be found. In
these cases, the values from L0 are adopted.

The 2LBP and the R2BP bounds dominate L0. While the ILP for restricted 3-stage
2BP gives relatively good lower bounds compared to the other methods presented,
the lower bound derived from the unrestricted 3-stage 2BP model is generally poor.
This comes mainly from the O(n3) δl,i,j variables and the relatively weak constraints
(5.27) and (5.36). The lower bounds of the column generation models dominate the
others. One can observe that adding CPLEX(restricted 3-stage 2DKP) as additional
pricing heuristic slightly improves the lower bounds, since column generation was
able to terminate within the 1 000s time limit more often.

Results of the all computational experiments are presented in Table 5.2 and Ta-
ble 5.3. For each sub-class, the average objective value of the final best feasible
solution (z), the number of times the algorithm could prove optimality of a solution
(Opt), and the average computation time (t[s]) are presented (the Opt column is
omitted for the EA, since it is a heuristic method). The total averages are also given
for every algorithm.

In general, differences in the objective values of final solutions obtained by the
different optimization approaches are relatively small. One reason is the granularity

76

5.7. Computational Experiments

Table 5.1.: Lower bounds.

Class n L0 2LBP R2BP 2BP BPNoR BP BPStab BPStabEA

20 6.4 6.4 6.4 3.7 7.0 7.0 7.0 7.0
40 12.0 12.1 12.0 6.3 13.4 13.4 13.4 13.4

1 60 18.5 18.5 18.5 9.8 20.0 20.0 20.0 20.0
80 25.3 25.3 25.3 13.1 27.5 27.5 27.5 27.5
100 30.5 30.5 30.5 14.7 31.5 31.5 31.5 31.5

20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
40 1.9 2.0 1.9 1.0 1.9 1.9 1.9 1.9

2 60 2.5 2.5 2.5 1.0 2.5 2.5 2.5 2.5
80 3.1 3.1 3.1 1.0 3.1 3.1 3.1 3.1
100 3.9 3.9 3.9 1.0 3.9 3.9 3.9 3.9

20 4.4 4.4 4.4 2.4 5.4 5.4 5.4 5.4
40 8.2 8.4 8.2 3.7 9.7 9.7 9.7 9.7

3 60 12.5 12.7 12.5 5.4 13.9 14.0 14.0 14.0
80 17.3 17.3 17.3 7.1 18.9 19.2 19.0 19.2
100 20.5 20.7 20.5 7.9 21.6 21.8 22.0 21.8

20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
40 1.9 1.9 1.9 1.0 1.9 1.9 1.9 1.9

4 60 2.3 2.5 2.3 1.0 2.3 2.3 2.3 2.3
80 3.0 3.1 3.0 1.0 3.0 3.0 3.0 3.0
100 3.7 3.7 3.7 1.0 3.7 3.7 3.7 3.7

20 5.4 5.5 5.4 2.9 6.6 6.6 6.6 6.6
40 10.1 10.4 10.4 5.2 12.3 12.3 12.3 12.3

5 60 15.7 15.8 15.7 8.1 18.3 18.3 18.3 18.3
80 21.5 21.6 21.5 10.8 24.7 24.7 24.7 24.7
100 25.9 26.1 26.0 12.7 27.7 28.5 28.5 28.5

20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
40 1.5 1.8 1.7 1.0 1.5 1.5 1.5 1.5

6 60 2.1 2.1 2.1 1.0 2.1 2.1 2.1 2.1
80 3.0 3.0 3.0 1.0 3.0 3.0 3.0 3.0
100 3.2 3.2 3.2 1.0 3.2 3.2 3.2 3.2

20 4.7 4.9 4.7 3.3 5.7 5.7 5.7 5.7
40 9.7 9.9 9.7 5.9 11.5 11.5 11.5 11.5

7 60 14.0 14.1 14.0 7.8 16.1 16.1 16.1 16.1
80 19.7 20.0 19.7 10.5 23.2 23.2 23.2 23.2
100 23.8 23.8 23.8 11.8 27.1 27.1 26.4 27.1

20 4.8 5.0 5.0 3.5 6.1 6.1 6.1 6.1
40 9.6 9.8 9.8 7.0 11.4 11.4 11.4 11.4

8 60 14.1 14.3 14.3 10.3 16.4 16.4 16.4 16.4
80 19.5 19.7 19.6 13.7 22.6 22.6 22.6 22.6
100 24.1 24.1 24.1 16.8 28.0 28.0 28.0 28.0

20 9.4 9.4 9.4 7.6 14.3 14.3 14.3 14.3
40 18.0 18.2 18.1 14.7 27.8 27.8 27.8 27.8

9 60 27.6 27.9 27.9 22.9 43.7 43.7 43.7 43.7
80 37.1 37.3 37.2 29.4 57.7 57.7 57.7 57.7
100 45.0 45.1 45.1 35.9 69.4 69.4 69.4 69.4

20 3.8 4.1 4.1 1.4 4.5 4.5 4.5 4.5
40 6.9 7.1 7.1 2.3 7.6 7.6 7.6 7.6

10 60 9.4 9.9 9.7 2.9 9.8 10.2 10.1 10.2
80 12.2 12.3 12.2 3.4 12.2 12.2 12.2 12.3
100 15.3 15.5 15.3 3.6 15.3 15.3 15.3 15.3

Average 11.96 12.08 12.01 6.87 14.48 14.52 14.50 14.52

77

Chapter 5. Three-Stage Two-Dimensional Bin Packing

of the objective function values (objective values are always integer). Another reason
is that we only compared rather sophisticated approaches, which usually either find
optimal solutions or solutions needing only one more bin than the optimum.

Table 5.2 shows the results of the first four algorithms. In the case of 2-stage 2BP,
CPLEX was able to solve 95.2% of the instances to provable optimality, requiring
14.75 bins and 62.58s on average. The results computed for restricted 3-stage 2BP
are slightly better in terms of the number of bins needed (14.68), but slightly worse
considering the percentage of proven optimality (94.8%) and the average run-time
(68.46s). The restricted 3-stage model yields a lower average number of bins needed
for every class, except for class 9 where the same number of bins is needed for 2-
stage, 3-stage, and general guillotineable 2BP (see column GuillSig). When CPLEX
is directly applied on the unrestricted 3-stage 2BP model without initialization, no
solutions were found for some instances. We therefore used the same initialization
as for the B&P algorithms, namely FFF in combination with CPLEX applied to
the restricted 3-stage 2BP model. The average number of bins needed has slightly
increased (14.69); furthermore, an increase of the average run-time (282.62s) and a
decrease in the number of proven optimal solutions (71.6%) can be observed. The
EA described in [105] needs 14.84 bins on average, and solves the instances within an
average run-time of 28.86 seconds. This is the fastest of the considered algorithms,
but its solution quality is the worst. The B&P algorithm of Pisinger and Sigurd
applied to general guillotineable 2BP [98, 115] yields a lower average number of
bins needed (14.53), but the number of proven optimal solutions is relatively small
(75.4%); furthermore the algorithm was given a global time limit of 3 600s.

Table 5.3 shows the results of the four B&P algorithms. The columns BPNoR and
BP document the importance and the effectiveness of using the restricted 3-stage
model inside the B&P algorithm: the average number of bins needed decreased from
14.74 to 14.67, and the percentage of optimally solved instances increased from 83.2%
to 87.4%. Adding the dual subset inequalities further improves the results regarding
the total number of bins needed and the run-time. Finally, using the EA and the
stabilization yields the best results, the average number of bins needed is 14.65 and
87.8% of the instances have been solved to proven optimality. The run-time is, on
average 160.68s, which is the fastest of our four B&P variants.

In Table 5.4, the total number of pricing problems solved in each class as well as
their sums, is given for the B&P approaches. Furthermore, the bar charts shown in
Figure 5.4 visualize how often— in relation to the total number of pricing problems
solved—the different pricing algorithms were successful for each class. The origin of
the charts was shifted to 0.5 because for almost all the variants, the greedy FFBC
algorithm solved more than half of the pricing problems.

78

5.7. Computational Experiments

Table 5.2.: Experimental results 1.

2LBP R2BP 2BP EA GuillSig

Class n z Opt t [s] z Opt t [s] z Opt t [s] z t [s] z Opt t [s]

20 7.3 10 0.0 7.2 10 0.0 7.2 10 0.0 7.3 6.009 7.1 10 2.5
40 13.8 10 0.2 13.7 10 0.1 13.6 7 356.6 13.8 11.074 13.4 10 7.9

1 60 20.3 10 0.3 20.1 10 0.4 20.1 3 701.2 20.4 16.598 20.0 10 422.2
80 27.7 10 0.6 27.5 10 0.3 27.5 0 999.5 27.9 22.744 27.6 9 394.0
100 32.4 10 0.9 31.8 10 23.1 31.8 3 693.1 32.6 40.732 31.9 8 936.5

20 1.0 10 0.0 1.0 10 0.0 1.0 10 0.0 1 7.043 1.0 10 0.8
40 2.0 10 0.2 2.0 10 0.2 2.0 9 100.1 2 11.999 2.0 10 291.8

2 60 2.8 9 100.9 2.6 9 191.5 2.7 8 160.6 2.8 16.862 2.6 6 1460.2
80 3.3 10 97.6 3.3 8 212.8 3.3 8 162.3 3.4 27.44 3.3 1 3241.8
100 4.1 9 134.8 4.0 9 173.9 4.1 8 166.5 4.1 39.825 4.0 3 2529.3

20 5.4 10 0.0 5.4 10 0.0 5.4 10 0.1 5.4 6.066 5.1 10 4.2
40 9.8 10 0.1 9.8 10 0.2 9.7 10 14.3 9.8 11.359 9.4 9 383.6

3 60 14.0 10 2.4 14.0 10 2.7 14.0 7 454.6 14.5 21.586 13.9 9 699.2
80 19.7 10 3.8 19.4 10 4.6 19.4 0 995.2 19.8 38.679 19.0 9 584.9
100 22.8 9 134.4 22.8 9 135.7 22.9 0 952.0 23.4 57.031 22.4 7 1173.0

20 1.0 10 0.0 1.0 10 0.0 1.0 10 0.0 1 8.522 1.0 10 0.0
40 2.0 10 0.2 2.0 10 1.3 2.0 9 99.0 2 15.95 1.9 10 55.4

4 60 2.7 8 222.2 2.5 10 36.1 2.6 7 279.9 2.9 24.74 2.5 4 2198.8
80 3.4 9 103.7 3.4 7 304.3 3.4 6 340.2 3.4 36.744 3.3 0 3600.0
100 4.2 6 403.0 4.2 5 508.3 4.2 5 401.1 4.2 56.44 3.8 3 2557.4

20 6.7 10 0.0 6.7 10 0.0 6.6 10 0.0 6.7 7.73 6.5 10 1.3
40 12.3 10 0.2 12.3 10 0.2 12.3 10 2.1 12.3 11.936 11.9 10 14.4

5 60 18.3 10 0.4 18.3 10 0.4 18.3 10 12.4 18.4 21.688 18.0 10 343.7
80 25.0 10 3.4 24.9 10 3.2 24.8 8 309.5 25.1 41.331 24.7 9 745.3
100 28.8 10 66.0 28.7 10 155.4 28.8 1 836.9 29.4 65.481 28.2 7 1295.5

20 1.0 10 0.0 1.0 10 0.0 1.0 10 0.0 1 9.771 1.0 10 0.1
40 1.9 10 0.3 1.9 10 0.4 1.9 10 17.6 1.9 18.406 1.9 8 1271.8

6 60 2.3 9 100.6 2.2 10 14.3 2.2 9 99.9 2.3 29.071 2.2 6 1813.7
80 3.0 10 1.8 3.0 10 3.5 3.0 10 0.4 3 44.845 3.0 6 1499.0
100 3.7 7 304.2 3.7 7 315.8 3.7 5 430.6 3.6 64.404 3.4 0 3600.0

20 5.7 10 0.0 5.7 10 0.0 5.7 10 0.0 5.7 5.647 5.5 10 0.8
40 11.5 10 0.2 11.5 10 0.1 11.5 9 160.0 11.5 19.644 11.1 8 1080.8

7 60 16.2 10 3.7 16.1 10 1.8 16.1 1 997.5 16.3 29.827 15.8 7 1083.0
80 23.3 10 5.3 23.2 10 2.8 23.2 0 996.8 23.3 49.448 23.2 2 2881.3
100 27.6 9 117.5 27.4 8 276.2 27.5 0 923.2 27.6 93.332 27.2 7 1102.3

20 6.1 10 0.0 6.1 10 0.0 6.1 10 0.0 6.1 5.918 5.8 10 13.9
40 11.5 10 1.1 11.4 10 1.6 11.4 10 0.0 11.8 8.24 11.3 9 721.8

8 60 16.4 10 2.0 16.4 10 7.0 16.4 10 0.1 16.5 13.927 16.1 8 1443.6
80 22.7 9 139.8 22.6 10 40.1 22.6 10 4.5 23.1 20.227 22.4 9 369.7
100 28.2 9 140.7 28.2 9 142.7 28.2 9 128.1 28.5 30.917 27.9 5 1819.0

20 14.3 10 0.0 14.3 10 0.0 14.3 10 0.0 14.3 11.982 14.3 10 0.1
40 27.8 10 0.0 27.8 10 0.0 27.8 10 0.0 27.8 16.976 27.8 10 0.6

9 60 43.7 10 0.0 43.7 10 0.0 43.7 10 0.1 43.7 22.408 43.7 10 2.2
80 57.7 10 0.0 57.7 10 0.1 57.7 10 0.2 57.7 26.919 57.7 10 5.3
100 69.5 10 0.1 69.5 10 0.1 69.5 10 0.3 69.5 43.266 69.5 10 16.0

20 4.5 10 0.0 4.5 10 0.0 4.5 10 0.0 4.5 6.243 4.2 10 8.5
40 7.7 10 1.8 7.7 10 1.8 7.7 9 123.8 7.7 16.222 7.4 9 383.0

10 60 10.5 9 117.7 10.4 9 101.3 10.4 6 512.1 10.5 27.519 10.1 7 1139.1
80 13.5 7 327.5 13.2 8 229.3 13.2 1 832.6 13.7 41.058 13.1 2 2921.7
100 16.4 7 589.5 16.4 6 529.3 16.5 0 866.0 16.8 61.214 16.5 0 3600.0

Average 14.75 9.52 62.58 14.68 9.48 68.46 14.69 7.16 282.62 14.84 26.86 14.53 7.54 994.42

79

Chapter 5. Three-Stage Two-Dimensional Bin Packing

Table 5.3.: Experimental results 2.

BPNoR BP BPStab BPStabEA

Class n z Opt t [s] z Opt t [s] z Opt t [s] z Opt t [s]

20 7.2 10 0.3 7.2 10 0.3 7.2 10 0.6 7.2 10 4.2
40 13.6 8 202.8 13.6 8 202.8 13.6 8 201.1 13.6 8 201.5

1 60 20.1 9 201.5 20.1 9 119.7 20.1 9 113.4 20.1 9 112.6
80 27.5 10 50.7 27.5 10 43.4 27.5 10 53.4 27.5 10 68.6
100 32.2 5 623.6 31.7 8 244.9 31.7 8 244.2 31.7 8 236.9

20 1.0 10 0.1 1.0 10 0.0 1.0 10 0.1 1.0 10 0.1
40 2.0 9 100.4 2.0 9 100.4 2.0 9 100.4 2.0 9 100.5

2 60 2.8 7 301.4 2.7 8 207.3 2.7 8 207.1 2.7 8 207.1
80 3.4 7 303.8 3.3 8 228.1 3.3 8 228.6 3.3 8 228.1
100 4.1 8 210.1 4.1 8 239.5 4.1 8 240.0 4.1 8 239.7

20 5.4 10 0.2 5.4 10 0.2 5.4 10 0.2 5.4 10 0.3
40 9.7 10 34.8 9.7 10 12.8 9.7 10 11.4 9.7 10 6.1

3 60 14.0 9 237.7 14.0 10 63.7 14.0 10 51.8 14.0 10 45.2
80 19.3 8 397.4 19.2 10 174.2 19.3 9 197.2 19.2 10 166.8
100 23.2 3 781.7 22.8 4 669.4 22.5 5 661.1 22.5 4 651.4

20 1.0 10 0.1 1.0 10 0.1 1.0 10 0.1 1.0 10 0.1
40 2.0 9 100.4 2.0 9 100.4 2.0 9 100.4 2.0 9 100.5

4 60 2.7 6 401.0 2.6 7 339.4 2.6 7 338.8 2.6 7 339.2
80 3.3 7 302.8 3.3 7 321.4 3.3 7 321.3 3.3 7 321.5
100 4.0 7 306.7 4.0 7 353.1 4.0 7 352.6 4.0 7 352.8

20 6.6 10 0.2 6.6 10 0.2 6.6 10 0.2 6.6 10 0.5
40 12.3 10 3.3 12.3 10 3.3 12.3 10 2.5 12.3 10 3.0

5 60 18.3 10 17.7 18.3 10 10.6 18.3 10 9.7 18.3 10 10.2
80 24.8 9 138.9 24.8 9 128.1 24.8 9 127.9 24.8 9 129.7
100 28.8 5 587.4 28.7 9 364.0 28.7 9 335.8 28.7 9 326.8

20 1.0 10 0.1 1.0 10 0.0 1.0 10 0.0 1.0 10 0.0
40 1.9 6 400.5 1.9 6 400.5 1.9 6 400.5 1.9 6 400.9

6 60 2.3 8 201.0 2.2 9 118.3 2.2 9 118.4 2.2 9 118.2
80 3.0 10 3.1 3.0 10 13.9 3.0 10 13.9 3.0 10 14.0
100 3.6 6 405.2 3.6 6 431.6 3.6 6 431.5 3.6 6 431.6

20 5.7 10 0.4 5.7 10 0.3 5.7 10 0.3 5.7 10 0.6
40 11.5 10 4.5 11.5 10 4.1 11.5 10 3.9 11.5 10 4.8

7 60 16.1 10 28.0 16.1 10 25.5 16.1 10 20.6 16.1 10 22.9
80 23.2 10 57.3 23.2 10 80.6 23.2 10 79.3 23.2 10 77.8
100 27.1 10 302.7 27.1 10 349.9 27.1 8 448.0 27.1 10 305.5

20 6.1 10 0.8 6.1 10 0.9 6.1 10 0.9 6.1 10 1.0
40 11.4 10 9.7 11.4 10 6.9 11.4 10 6.1 11.4 10 6.7

8 60 16.4 10 17.6 16.4 10 39.3 16.4 10 30.9 16.4 10 30.0
80 22.6 10 94.8 22.6 10 106.1 22.6 10 79.7 22.6 10 79.5
100 28.1 9 334.1 28.2 8 332.6 28.1 9 215.2 28.1 9 215.5

20 14.3 10 0.1 14.3 10 0.0 14.3 10 0.0 14.3 10 0.1
40 27.8 10 0.4 27.8 10 0.2 27.8 10 0.2 27.8 10 0.3

9 60 43.7 10 1.4 43.7 10 0.8 43.7 10 0.7 43.7 10 0.9
80 57.7 10 3.6 57.7 10 2.4 57.7 10 2.3 57.7 10 2.6
100 69.5 10 8.0 69.5 10 6.4 69.5 10 6.5 69.5 10 7.1

20 4.5 10 0.9 4.5 10 0.5 4.5 10 0.6 4.5 10 0.4
40 7.7 9 152.5 7.7 9 111.0 7.7 9 111.2 7.7 9 109.6

10 60 10.8 2 846.3 10.4 8 488.4 10.4 7 462.0 10.4 8 461.6
80 13.9 0 1 000.0 13.2 1 902.5 13.2 1 902.5 13.2 2 889.1
100 16.9 0 1 000.0 16.6 0 1 000.0 16.4 0 1 000.0 16.4 0 1 000.0

Average 14.72 8.32 203.56 14.67 8.74 167.00 14.66 8.70 164.71 14.65 8.78 160.68

80

5.7. Computational Experiments

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
�

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

		
		
		
		
		
		
		
		
		
		
		
		
		
	

������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������

��
��
��
��
��
��
��
��
��
��
��
��
��
�

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
�

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 3 4 5 6 7 8 9 10

BPNoR

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

������
������
������
������
������
������
������
������
������
������
������
������
������
������

��
��
��
��
��
��
��
��
��
��
��
��
��
��

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

��
��
��
��
��
��
��
��
��
��
��
��
��
��

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

 � �
 � �
 � �
 � �
 � �
 � �
 � �
 � �
 � �
 � �
 � �
 � �
 � �
 � �

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!

""
""
""
""
""
""
""
""
""
""
""
""
""
""

#�##�#
#�##�#
#�##�#
#�##�#
#�##�#
#�##�#
#�##�#
#�##�#
#�##�#
#�##�#
#�##�#
#�##�#
#�##�#
#�##�#

$�$$�$
$�$$�$
$�$$�$
$�$$�$
$�$$�$
$�$$�$
$�$$�$
$�$$�$
$�$$�$
$�$$�$
$�$$�$
$�$$�$
$�$$�$
$�$$�$

%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%

&&
&&
&&
&&
&&
&&
&&
&&
&&
&&
&&
&&
&&
&&

''
''
''
''
''
''
''
''
'

((
((
((
((
((
((
((
((
(

)�))�)
)�))�)
)�))�)
)�))�)
)�))�)
)�))�)
)�))�)
)�))�)
)�))�)
)�)

**
**
**
**
**
**
**
**
**
*

++
++
++
++
++
++
++
++
++
++
++

,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,

-�--�-
-�--�-
-�--�-
-�--�-
-�--�-
-�--�-
-�--�-
-�--�-
-�-

.�..�.
.�..�.
.�..�.
.�..�.
.�..�.
.�..�.
.�..�.
.�..�.
.�.

/�//�/
/�//�/
/�//�/
/�//�/
/�//�/
/�//�/
/�//�/
/�//�/
/�//�/
/�//�/
/�//�/

00
00
00
00
00
00
00
00
00
00
00

1�11�1
1�11�1
1�11�1
1�11�1
1�11�1
1�11�1
1�11�1
1�11�1
1�11�1

2�22�2
2�22�2
2�22�2
2�22�2
2�22�2
2�22�2
2�22�2
2�22�2
2�22�2

3�33�3
3�33�3
3�33�3
3�33�3
3�33�3
3�33�3
3�33�3
3�33�3
3�33�3
3�33�3
3�33�3
3�33�3
3�3

4�44�4
4�44�4
4�44�4
4�44�4
4�44�4
4�44�4
4�44�4
4�44�4
4�44�4
4�44�4
4�44�4
4�44�4
4�4

55
55
55
55
55
55
55
55
55
55
55
55
55

66
66
66
66
66
66
66
66
66
66
66
66
66

7�77�7
7�77�7
7�77�7
7�77�7
7�77�7
7�77�7
7�77�7
7�77�7
7�77�7
7�77�7
7�77�7

8�88�8
8�88�8
8�88�8
8�88�8
8�88�8
8�88�8
8�88�8
8�88�8
8�88�8
8�88�8
8�88�8

99
99
99
99
99
99
99

::
::
::
::
::
::
::

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 3 4 5 6 7 8 9 10

BP

;;
;;
;;
;;
;;
;;

<<
<<
<<
<<
<<
<<

=�==�=>�>>�> ??
??
??
??
??
??
??
??
??
??

@@
@@
@@
@@
@@
@@
@@
@@
@@
@@

A�AA�A
A�AA�A
A�AA�A
A�AA�A
A�AA�A
A�A

B�BB�B
B�BB�B
B�BB�B
B�BB�B
B�BB�B
B�B

CC
CC
CC
CC
CC
CC
CC
CC
CC
CC

DD
DD
DD
DD
DD
DD
DD
DD
DD
DD

E�EE�E
E�EE�E
E�EE�E
E�EE�E
E�EE�E
E�EE�E
E�EE�E
E�EE�E
E�EE�E

F�FF�F
F�FF�F
F�FF�F
F�FF�F
F�FF�F
F�FF�F
F�FF�F
F�FF�F
F�FF�F

G�GG�G
G�GG�G
G�GG�G
G�GG�G
G�GG�G
G�GG�G
G�GG�G
G�GG�G
G�GG�G
G�GG�G
G�GG�G
G�GG�G
G�G

H�HH�H
H�HH�H
H�HH�H
H�HH�H
H�HH�H
H�HH�H
H�HH�H
H�HH�H
H�HH�H
H�HH�H
H�HH�H
H�HH�H
H�H

II
II
II
II
II
II
II
II
II
II
II
II
I

JJ
JJ
JJ
JJ
JJ
JJ
JJ
JJ
JJ
JJ
JJ
JJ
J

K�KK�K
K�KK�K
K�KK�K
K�KK�K
K�KK�K
K�KK�K
K�KK�K
K�KK�K
K�KK�K
K�KK�K
K�K

L�LL�L
L�LL�L
L�LL�L
L�LL�L
L�LL�L
L�LL�L
L�LL�L
L�LL�L
L�LL�L
L�LL�L
L�L

MM
MM
MM
MM
MM
MM
M

NN
NN
NN
NN
NN
NN
N

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 3 4 5 6 7 8 9 10

BPStab

OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO

PP
PP
PP
PP
PP
PP
PP
PP
PP
PP
PP
PP
PP
PP

Q�QQ�Q
Q�QQ�Q
Q�QQ�Q
Q�QQ�Q
Q�QQ�Q
Q�QQ�Q
Q�QQ�Q
Q�QQ�Q
Q�QQ�Q
Q�QQ�Q
Q�QQ�Q
Q�QQ�Q
Q�QQ�Q
Q�QQ�Q

RR
RR
RR
RR
RR
RR
RR
RR
RR
RR
RR
RR
RR
RR

SS
SS
SS
SS
SS
SS
SS
SS
SS
SS
SS
SS
SS
SS

TT
TT
TT
TT
TT
TT
TT
TT
TT
TT
TT
TT
TT
TT

U�UU�U
U�UU�U
U�UU�U
U�UU�U
U�UU�U
U�UU�U
U�UU�U
U�UU�U
U�UU�U
U�UU�U
U�UU�U
U�UU�U
U�UU�U
U�UU�U

V�VV�V
V�VV�V
V�VV�V
V�VV�V
V�VV�V
V�VV�V
V�VV�V
V�VV�V
V�VV�V
V�VV�V
V�VV�V
V�VV�V
V�VV�V
V�VV�V

W�WW�W
W�WW�W
W�WW�W
W�WW�W
W�WW�W
W�WW�W
W�WW�W
W�WW�W
W�WW�W
W�WW�W
W�WW�W
W�WW�W
W�WW�W
W�WW�W

XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX

Y�YY�Y
Y�YY�Y
Y�YY�Y
Y�YY�Y
Y�YY�Y
Y�YY�Y
Y�YY�Y
Y�YY�Y
Y�YY�Y
Y�YY�Y
Y�YY�Y
Y�YY�Y
Y�YY�Y
Y�YY�Y

Z�ZZ�Z
Z�ZZ�Z
Z�ZZ�Z
Z�ZZ�Z
Z�ZZ�Z
Z�ZZ�Z
Z�ZZ�Z
Z�ZZ�Z
Z�ZZ�Z
Z�ZZ�Z
Z�ZZ�Z
Z�ZZ�Z
Z�ZZ�Z
Z�ZZ�Z

[�[[�[
[�[[�[
[�[[�[
[�[[�[
[�[[�[
[�[[�[
[�[[�[
[�[[�[
[�[[�[
[�[[�[
[�[[�[
[�[[�[
[�[[�[
[�[[�[

\�\\�\
\�\\�\
\�\\�\
\�\\�\
\�\\�\
\�\\�\
\�\\�\
\�\\�\
\�\\�\
\�\\�\
\�\\�\
\�\\�\
\�\\�\
\�\\�\

]]
]]
]]
]]
]]
]]
]]
]]
]]
]]
]]
]]
]]
]]

^^
^^
^^
^^
^^
^^
^^
^^
^^
^^
^^
^^
^^
^^

_�__�_
_�__�_
_�__�_
_�__�_
_�__�_
_�__�_
_�__�_
_�__�_
_�__�_
_�__�_
_�__�_
_�__�_
_�__�_
_�__�_

`�``�`
`�``�`
`�``�`
`�``�`
`�``�`
`�``�`
`�``�`
`�``�`
`�``�`
`�``�`
`�``�`
`�``�`
`�``�`
`�``�`

aa
aa
aa
aa
aa
aa
aa
aa
aa
aa
aa
aa
aa
aa

bb
bb
bb
bb
bb
bb
bb
bb
bb
bb
bb
bb
bb
bb

cc
cc
cc
cc
cc

dd
dd
dd
dd
dd

ee
ee
ee
ee
ee
ee
ee
ee
ee
ee

ff
ff
ff
ff
ff
ff
ff
ff
ff
ff

g�gg�g
g�gg�g
g�gg�g

h�hh�h
h�hh�h
h�hh�h

i�ii�i
i�ii�i
i�ii�i
i�ii�i
i�ii�i
i�ii�i
i�ii�i
i�ii�i
i�ii�i
i�ii�i
i�i

jj
jj
jj
jj
jj
jj
jj
jj
jj
jj
j

k�kk�k
k�kk�k
k�kk�k
k�kk�k
k�kk�k
k�kk�k

l�ll�l
l�ll�l
l�ll�l
l�ll�l
l�ll�l
l�ll�l

m�mm�m
m�mm�m
m�mm�m
m�mm�m
m�mm�m
m�mm�m
m�mm�m
m�mm�m
m�mm�m
m�mm�m
m�mm�m
m�mm�m
m�mm�m

n�nn�n
n�nn�n
n�nn�n
n�nn�n
n�nn�n
n�nn�n
n�nn�n
n�nn�n
n�nn�n
n�nn�n
n�nn�n
n�nn�n
n�nn�n

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
o

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p

q�qq�q
q�qq�q
q�qq�q
q�qq�q
q�qq�q
q�qq�q
q�qq�q
q�qq�q
q�qq�q
q�qq�q
q�q

r�rr�r
r�rr�r
r�rr�r
r�rr�r
r�rr�r
r�rr�r
r�rr�r
r�rr�r
r�rr�r
r�rr�r
r�r

ss
ss
ss
ss
ss
s

tt
tt
tt
tt
tt
t

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 3 4 5 6 7 8 9 10

BPStabEA

CPLEX for 3−stage 2DKPuvu
uvu
uvu

wvw
wvw
wvw

FFBC EA CPLEX for restricted 3−stage 2DKP

Figure 5.4.: Relative success rates of the four pricing algorithms.

81

Chapter 5. Three-Stage Two-Dimensional Bin Packing

Table 5.4.: Number of solved pricing problems.

BPNoR BP BPStab BPStabEA

Class 1 12 049 12 130 7 536 7 706
Class 2 7 366 9 465 2 980 3 381
Class 3 16 988 16 552 13 531 13 257
Class 4 12 785 17 451 13 821 14 342
Class 5 15 455 15 612 14 188 13 503
Class 6 15 175 15 397 14 429 14 586
Class 7 17 334 16 962 16 228 16 429
Class 8 15 081 14 815 11 067 10 742
Class 9 658 567 490 491
Class 10 26 863 35 047 31 752 32 194

Total 139 754 153 998 126 022 126 631

In Table 5.4, we can observe that when using FFBC together with CPLEX(3-stage
2DKP) only (BPNoR), the number of pricing problems solved is lower than the
one of BP where CPLEX(restricted 3-stage 2DKP) is additionally used. Pricing
using a more sophisticated heuristic, in this case exactly solving restricted 3-stage
2DKP, can therefore improve the overall results, see also Table 5.3. Furthermore,
the stabilizing inequalities reduce the number of pricing problems to be solved and,
therefore, achieve the goal of stabilizing the column generation process. Adding the
EA for column generation does not significantly change the total number of pricing
problems solved.

The bar charts from Figure 5.4 can be used to draw some conclusions about the char-
acteristics of the pricing problems and the algorithms used to solve them. In general,
we can observe that in every approach each implemented pricing algorithm solves a
significant number of pricing problems; thus, no pricing algorithm is obviously ob-
solete. FFBC definitely solves the majority of pricing problems in all cases. These
pricing problems can be denoted as “easy”. Looking at absolute numbers shows that
CPLEX(restricted 3-stage 2DKP) successfully solved 21 500 pricing problems, which
approximately corresponds to the increase of solved pricing problems when BPNoR
is compared to BP in Table 5.4. The bar charts showing the relative success rates
of the pricing algorithms indicate that the absolute number of “easy” pricing prob-
lems roughly remained the same. When stabilization is applied (BPStab), the total
number of pricing problems solved is reduced; the absolute number of “easy” pric-
ing problems decreased, whereas the absolute number of “harder” pricing problems
remained approximately the same: CPLEX(restricted 3-stage 2DKP) successfully

82

5.8. Conclusions

solved 22 751 pricing problems. Adding the EA (BPStabEA) does not significantly
change the ratio of “easy” to “harder” pricing problems. A substantial number of
those “harder” problems are solved by the EA (21 501), whereas CPLEX(restricted
3-stage 2DKP) is successful 4 915 times. Note that the total number of problems
solved using CPLEX(3-stage 2DKP) is approximately the same for BP, BPStab, and
BPStabEA: 1 602, 1 733, and 1 665 respectively.

5.8. Conclusions

We developed two polynomial-sized ILP models for 3-stage 2BP; a restricted model
and an unrestricted one. The restricted model is particularly useful for obtaining
near-optimal solutions to 3-stage 2BP quickly. Solving the unrestricted model is
computationally more expensive.

Further, a branch-and-price algorithm based on a set covering formulation for 2BP
was proposed. This B&P algorithm was enhanced by dual subset inequalities stabi-
lizing the column generation process. Column generation is performed by applying
a hierarchy of up to four pricing methods having specific advantages and disad-
vantages: FFBC is the fastest, but can only solve “easy” pricing problems; the
EA is slower, but is able to solve “harder” pricing problems in an efficient way.
CPLEX(restricted 3-stage 2DKP) solves a restricted form of the pricing problem
to proven optimality; finally, CPLEX(3-stage 2DKP) solves the unrestricted pricing
problem to optimality, but is most time-consuming.

The ILPs for restricted and unrestricted 3-stage 2DKP were derived from the cor-
responding 3-stage 2BP models and proved to be efficient and very useful in the
context of column generation.

We performed extensive computational experiments on standard benchmark in-
stances in order to analyze the performance of the models and algorithms developed
here. The lower bounds obtained by column generation are strong. The best average
results were achieved by B&P with all the proposed enhancements, in particular the
four-level pricing strategy. These are, to our knowledge, the best known results for
the 3-stage two-dimensional bin packing problem.

More generally, column generation performed by using a hierarchy of smart heuris-
tics, also including metaheuristics such as evolutionary algorithms and exact al-
gorithms, can significantly improve the optimization speed and the capabilities of
branch-and-price in finding optimal or near-optimal solutions.

83

84

Chapter 6

The Multidimensional

Knapsack Problem

In this chapter, we will study the multidimensional knapsack problem, present some
theoretical and empirical results about its structure, and evaluate different ILP-
based, metaheuristic, and collaborative approaches for it.

We will first give a short introduction to the multidimensional knapsack problem,
followed by an empirical analysis of widely used benchmark instances. Firstly the
distances between optimal solutions to the LP-relaxation and the original problem
are studied. Secondly we introduce the new core concept for the MKP, which we
study extensively. The empirical analysis is then used to develop new concepts for
solving the MKP using ILP-based and memetic algorithms. We then describe the
newly developed Relaxation Guided Variable Neighborhood Search in general, and
its implementation for the MKP in particular. Different collaborative combinations
of the presented algorithms are discussed and evaluated. Further computational ex-
periments with longer run-times are also performed in order to compare the solutions
of our approaches to the best known solutions for the MKP. Finally, we conclude
with a summary of the developed approaches and an outlook for future work.

Parts of this chapter have been published in [103, 104, 106].

85

Chapter 6. The Multidimensional Knapsack Problem

6.1. Introduction

The Multidimensional Knapsack Problem (MKP) is a well-studied, strongly NP-
hard combinatorial optimization problem occurring in many different applications.
It can be defined by the following ILP:

(MKP) maximize z =

n
∑

j=1

pjxj (6.1)

subject to
n
∑

j=1

wijxj ≤ ci, i = 1, . . . ,m (6.2)

xj ∈ {0, 1}, j = 1, . . . , n. (6.3)

n items with profits pj > 0 and m resources with capacities ci > 0 are given. Each
item j consumes an amount wij ≥ 0 from each resource i. The goal is to select a
subset of items with maximum total profit, see (6.1); chosen items must, however,
not exceed resource capacities, see (6.2). The 0–1 decision variables xj indicate
which items are selected.

The MKP first appeared in the context of capital budgeting [77, 81]. A compre-
hensive overview of practical and theoretical results for the MKP can be found in
the monograph on knapsack problems by Kellerer et al. [66]. A recent review of
the MKP was given by Fréville [38]. Besides exact techniques for solving small to
moderately sized instances, based on dynamic programming [44, 130] and branch-
and-bound [114, 43] many kinds of metaheuristics have already been applied to the
MKP.

To our knowledge, the method currently yielding the best results, at least for com-
monly used benchmark instances, was described by Vasquez and Hao [127] and has
recently been refined by Vasquez and Vimont [128]. It is a hybrid approach based on
tabu search. The search space is reduced and partitioned via additional constraints,
thereby fixing the total number of items to be packed. Bounds for these constraints
are calculated by solving a modified LP-relaxation. For each remaining part of the
search space, tabu-search is independently applied, starting with a solution derived
from the LP-relaxation of the partial problem. The improvement described in [128]
lies mainly in an additional variable fixing heuristic.

Various other metaheuristics have been described for the MKP [48, 14], including
several variants of hybrid evolutionary algorithms (EAs); see [109] for a recent survey
and comparison of EAs for the MKP.

86

6.1. Introduction

Characterization of the LP-relaxation

There is one very important property characterizing the structure of the optimal
solution xLP to the linear programming (LP) relaxation of the MKP [66].

Proposition 8 There exists an optimal solution xLP with at most min{m,n} frac-
tional values.

Efficiency Measures

The one-dimensional 0/1-knapsack problem (KP) consists of items j = 1, . . . , n
associated profits pj and weights wj . A subset of these items has to be selected and
packed into a knapsack having a capacity c. The total profit of the items in the
knapsack has to be maximized, while the total weight is not allowed to exceed c.
Obviously, KP is a special case of MKP with m = 1. The classical greedy heuristic
for KP is based on sorting the items according to decreasing efficiencies:

ej =
pj

wj
(6.4)

The items are then put into the knapsack in a greedy way, i.e. the next item on the
list is put into the knapsack if the knapsack constraint is not violated.

An analogous strategy could be used for the MKP, but in contrast to KP there
is no obvious definition of efficiency anymore. Consider the most obvious form of
efficiency for the MKP, which is a direct generalization of the one-dimensional case
[28]:

ej(simple) =
pj

∑m
i=1 wij

. (6.5)

Different orders of magnitude of the constraints are not considered and a single con-
straint may dominate the others. This drawback can easily be avoided by scaling:

ej(scaled) =
pj

∑m
i=1

wij

ci

. (6.6)

Taking into account the relative contribution of the constraints, Senju and Toyoda
[113] get:

87

Chapter 6. The Multidimensional Knapsack Problem

ej(st) =
pj

∑m
i=1 wij(

∑n
j=1 wij − ci)

. (6.7)

For more details on efficiency values we refer to Kellerer et al. [66] where a general
form of efficiency is defined by introducing relevance values ri for every constraint:

ej(general) =
pj

∑m
i=1 riwij

. (6.8)

The relevance values ri can also be seen as kind of surrogate multipliers. Pirkul
calculates good multipliers heuristically [94]. Fréville and Plateau [39] suggested
setting

ri =

∑n
j=1 wij − ci
∑n

j=1 wij
, (6.9)

giving the efficiency value ej(fp). Setting the relevance values ri to the values of an
optimal solution to the dual problem of the MKP’s LP-relaxation was a successful
choice [14], yielding the efficiency value ej(duals).

Benchmark Instances

Chu and Beasley’s [14] benchmark library2 is a widely used benchmark in the lit-
erature. They generated the instances as suggested by Fréville and Plateau [39].
The instance classes consist of ten instances each with n ∈ {100, 250, 500} items,
m ∈ {5, 10, 30} constraints, and tightness ratios

α = ci/
n
∑

j=1

wij ∈ {0.25, 0.5, 0.75}.

The wij are integers randomly chosen from (0, 1000). The profits are correlated to
the weights and generated as:

pj =

m
∑

i=1

wij/m + b500rjc,

where rj is a randomly chosen real number from (0, 1).

2http://people.brunel.ac.uk/∼mastjjb/jeb/info.html

88

6.2. The MKP and its LP-relaxation

6.2. The MKP and its LP-relaxation

For the classical 0/1-knapsack problem Goldberg and Marchetti-Spaccamela [53]
showed that the number of items which have to be changed when moving from the
solution of the KP’s LP-relaxation to the optimal solution of KP grows logarithmi-
cally in expectation with increasing problem size. For the MKP, Dyer and Frieze
[32] showed that the distance of the LP-relaxation and the optimal solution grows
at least logarithmically in expectation with increasing problem size.

6.2.1. Empirical Analysis

Since there is only this negative result by Dyer and Frieze [32] on the distance of
the relaxation and the optimum of the MKP, we performed an empirical in-depth
examination on smaller instances of Chu and Beasley’s benchmark library for which
we were able to compute optimal solutions x∗ (with n = 100 items, m ∈ {5, 10}
constraints, and n = 250 items, m = 5 constraints).

In Table 6.1 we display the average distances between optimal solutions of the MKP
x∗ and the solutions to the LP-relaxation xLP

∆LP =

n
∑

j=1

|x∗
j − xLP

j |, (6.10)

the integral part of xLP

∆LP int =
∑

j∈Jint

|x∗
j − xLP

j |, with Jint = {j = 1, . . . , n : xLP
j is integral}, (6.11)

and the fractional part of xLP

∆LP frac =
∑

j∈Jfrac

|x∗
j−xLP

j |, with Jfrac = {j = 1, . . . , n : xLP
j is fractional}. (6.12)

We further display the Hamming distance between x∗ and the (possibly infeasible)
arithmetically rounded LP solution xRLP

∆LProunded =
n
∑

j=1

|x∗
j − xRLP

j | with xRLP
j = dxLP

j − 0.5e, j = 1, . . . , n, (6.13)

89

Chapter 6. The Multidimensional Knapsack Problem

and the Hamming distance between x∗ and a feasible solution x′ created by sorting
the items according to decreasing LP-relaxation solution values applying a greedy-fill
procedure

∆LP feasible =
n
∑

j=1

|x∗
j − x′

j |. (6.14)

The distances are displayed as percentages of the number of items (%n), except
∆LP frac which is displayed as a percentage of the number of constraints (%m).

Table 6.1.: Distances between LP and optimal solutions (average over 10 instances
and average over all problem classes)

∆LP ∆LP int ∆LP frac ∆LP rounded ∆LP feasible

n m α %n %n %m %n %n

100 5 0.25 5.88 3.60 45.68 5.60 7.70
0.5 6.72 4.40 46.32 6.60 9.30
0.75 6.56 4.30 45.17 6.50 11.60

250 5 0.25 3.12 2.20 46.25 3.12 3.80
0.5 3.42 2.56 42.81 3.36 5.52
0.75 3.15 2.28 43.25 3.20 7.04

100 10 0.25 9.01 4.50 45.12 8.40 11.50
0.5 6.88 3.40 34.75 5.70 14.60
0.75 6.75 2.60 41.51 6.50 17.40

Average 5.72 3.32 43.43 5.44 9.83

We observed that (∆LP rounded) is almost always smaller than 10% of the total num-
ber of variables (see also Tables A.1 to A.3 in Appendix A.1, containing the absolute
values) and was 5.44% on average. It therefore makes sense, for these instances, to
reduce the search space for good or optimal solutions to the neighborhood of the
solution to the LP-relaxation. Or to explore this more promising part of the search
space first, if the available computation time is restricted. The most successful
algorithms for the MKP exploit this fact [109, 127, 128].

One can further observe that the distance between the integer part of the solution
to the LP-relaxation and an optimal solution to the MKP seems to depend on
the number of variables, and that the distance between the fractional part and
an optimal MKP solution seems to depend on the number of constraints (about
45% of the number of constraints). This can partly be explained with the result
from Proposition 8. If we assume that our LP solution is the one with, at most,
min{m,n} fractional values, the distance to the optimum of the fractional values
cannot be greater than min{m,n}.

90

6.2. The MKP and its LP-relaxation

6.2.2. Local Branching Based Approaches

In this section we present two approaches based on ideas developed by Fischetti
and Lodi [35], known as local branching. In our empirical study in Section 6.2.1 we
observed that the optimal solutions to the MKP are always close to the arithmeti-
cally rounded (potentially infeasible) LP-solutions. Focusing the optimization to
such a neighborhood seems therefore to be highly promising. We further remarked
that the integral distance (∆LP int) and the distance between the fractional vari-
ables (∆LP frac) evolve differently. The distance in the fractional variables seems to
correlate with the number of constraints, whereas the distance in integers does not.
In order to explore this fact, we propose to combine the local branching idea with
an LP-relaxation based variable fixing approach.

Simple Locally Constrained Approach

In the simple Locally Constrained approach (LC), we first focus the optimization
to the neighborhood of the arithmetically rounded LP solutions. This can be done
by adding a single constraint to the MKP similar to the local branching constraints
presented by Fischetti and Lodi [35]. The following inequality restricts the search
space to a neighborhood of Hamming distance k around the rounded LP solution
xRLP:

∆(x, xRLP) =
∑

j∈SRLP

(1− xj) +
∑

j /∈SRLP

xj ≤ k, (6.15)

where SRLP = {j = 1, . . . , n | xRLP
j = 1} is the binary support of xRLP.

In our implementation we use CPLEX as B&C system and initially partition the
search space by constraint (6.15) into the more promising part and by the inverse
constraint ∆(x, xRLP) ≥ k + 1 into a second, remaining part. CPLEX is forced to
first completely solve the neighborhood of xRLP before considering the remaining
search space.

Fractional Variables Free Locally Constrained Approach

In the Fractional Variables Free Locally Constrained approach (FFLC) we explore
the previously noted fact that the integral distance (∆LP int) and the distance be-
tween the fractional variables (∆LP frac) evolve differently.

91

Chapter 6. The Multidimensional Knapsack Problem

We leave the variables having fractional values in the LP-relaxation free, and “weakly
fix” the other variables to the integer values given by the solution to the LP-
relaxation. This fixing is performed by a local branching constraint, imposing that
at most k-variables diverge from the fractional solution.

Let SLP be the binary support of the variables with integer values in the solution

of the LP-relaxation, i.e. SLP = {j = 1, . . . , n | xLP
j = 1}, we further define S

LP
=

{j = 1, . . . , n | xLP
j = 0}, the index-set of the variables set to zero in the solution

of the LP-relaxation. The variables with index not in SLP ∪ S
LP

have fractional
values.

Weak variable fixing is then performed by introducing the following constraint to
the MKP’s ILP formulation (6.1)–(6.3):

∑

j∈SLP

(1− xj) +
∑

j∈S
LP

xj ≤ k (6.16)

Computational Experiments

In Table 6.2 we present the results of LC and CPLEX without additional constraints,
with a fixed run-time of 500 seconds using different values for k. Listed are the
average percentage gaps to the optimal objective value of the LP-relaxation (%LP =
100 · (zLP − z)/zLP), the number of times this neighborhood size yields the best
solution of this experiment (#), and the average number of explored nodes of the
branch and bound tree.

We used the hardest instances of Chu and Beasley’s benchmark library (with n = 500
items and m ∈ {5, 10, 30} constraints). CPLEX 9.0 was used and we performed the
experiments on a 2.4 GHz Intel Pentium 4 computer.

The results obtained by forcing CPLEX to first explore a more promising part of the
search space can be better than if CPLEX is applied to the MKP without additional
constraints. Especially for k = 25, which corresponds to 5% of the total number of
variables, we obtain better results than with the standard approach. For k = 10
results were worse than those of CPLEX without additional constraints, for k = 50
results are not improved on average, whereas the mean number of best solutions
reached is higher.

Table 6.3 shows the average results of FFLC for different values of k and CPLEX
without additional constraints. Listed are the percentage gaps to the optimal objec-
tive value of the LP-relaxation (%LP), the number of times this neighborhood size

92

6.2. The MKP and its LP-relaxation

Table 6.2.: Results of different locally constrained MKP problems (average over 10
instances and average over all problem classes, n = 500).

m α no constraint k = 10 k = 25 k = 50

%LP # Nnodes %LP # Nnodes %LP # Nnodes %LP # Nnodes

5 0.25 0.080 8 5.50E5 0.079 9 5.58E5 0.080 8 5.38E5 0.079 8 5.38E5
0.5 0.040 7 5.06E5 0.040 7 5.09E5 0.039 10 4.88E5 0.039 10 4.92E5
0.75 0.025 8 5.36E5 0.025 9 5.49E5 0.025 7 5.24E5 0.025 7 5.28E5

10 0.25 0.206 9 3.15E5 0.221 4 3.00E5 0.206 9 3.03E5 0.206 9 3.06E5
0.5 0.094 8 3.01E5 0.102 5 2.87E5 0.095 7 2.91E5 0.094 8 2.93E5
0.75 0.066 8 3.05E5 0.068 5 2.98E5 0.066 8 2.95E5 0.066 9 2.98E5

30 0.25 0.598 5 1.11E5 0.601 1 1.02E5 0.555 9 1.08E5 0.605 4 1.09E5
0.5 0.258 2 1.15E5 0.258 5 1.07E5 0.257 4 1.12E5 0.257 4 1.12E5
0.75 0.158 5 1.12E5 0.162 4 1.07E5 0.155 8 1.07E5 0.159 4 1.07E5

Average 0.169 6.7 3.17E5 0.173 5.4 3.13E5 0.164 7.8 3.07E5 0.170 7.0 3.09E5

yielded the best solution of this experiment (#), and the number of explored nodes
of the branch and bound tree.

Table 6.3.: Results of different FFLC MKP problems (average over 10 instances and
average over all problem classes, n = 500).

m α no constraint k = 10 k = 20 k = 30

%LP # Nnodes %LP # Nnodes %LP # Nnodes %LP # Nnodes

5 0.25 0.080 8 5.50E5 0.079 8 5.46E5 0.081 8 5.21E5 0.080 8 5.42E5
0.5 0.040 7 5.06E5 0.040 9 5.08E5 0.039 10 4.75E5 0.039 10 4.99E5
0.75 0.025 9 5.36E5 0.025 9 5.31E5 0.026 6 5.04E5 0.026 7 5.37E5

10 0.25 0.206 7 3.15E5 0.199 10 3.10E5 0.206 7 2.96E5 0.206 7 3.07E5
0.5 0.094 7 3.01E5 0.095 8 2.84E5 0.095 6 2.89E5 0.094 7 2.96E5
0.75 0.066 7 3.05E5 0.066 7 2.88E5 0.066 7 2.95E5 0.066 6 3.00E5

30 0.25 0.598 6 1.11E5 0.603 7 1.03E5 0.607 4 1.08E5 0.605 5 1.09E5
0.5 0.258 5 1.15E5 0.253 4 1.08E5 0.256 6 1.12E5 0.257 5 1.12E5
0.75 0.158 8 1.12E5 0.159 7 1.03E5 0.159 7 1.09E5 0.159 7 1.08E5

Average 0.169 7.1 3.17E5 0.169 7.7 3.09E5 0.171 6.8 3.01E5 0.170 6.9 3.12E5

From looking at the results shown here, there is no obvious advantage in using one of
the displayed methods, in total the FFLC approach is, on average, not better than
the version without constraints. This is probably due to the fact that the search
space is not as strongly reduced as it is the case with LC.

93

Chapter 6. The Multidimensional Knapsack Problem

6.3. The Core Concept

The core concept was first presented for the classical 0/1-knapsack problem [6],
which led to the very successful KP algorithms [83, 95, 96]. The main idea is to
reduce the original problem to a core of items for which it is hard to decide if they
will occur in an optimal solution or not, whereas all items outside the core can be
immediately fixed to their optimal value.

6.3.1. The Core Concept for KP

If the items of one-dimensional 0/1-knapsack problem are sorted according to de-
creasing efficiencies (6.4), it is well known that the solution of the LP-relaxation
consists of three parts: The first part contains the variables set to 1, the second part
consists only of the so called split item s, which corresponds to the single variable
set to a fractional value, and finally the remaining variables, which are set to zero,
build the third part.

For most instances of KP (except those with a very special structure of profits and
weights) the integer optimal solution coincides with this partitioning, in that it
contains most of the items of the first part with high efficiency, some of the items
with medium efficiencies near the split item, and almost no items with low efficiencies
from the third part. Items of medium efficiency constitute the so called core.

Core Definition

Balas and Zemel [6] gave the following precise definition of the core of a one-
dimensional 0/1-knapsack problem, based on the knowledge of an optimal integer
solution x∗. Assume that the items are sorted according to decreasing efficiencies
and define

a := min{j|x∗
j = 0}, b := max{j|x∗

j = 1}. (6.17)

The core is given by the items in the interval C = {a, . . . , b}. It is obvious that the
split item is always part of the core.

94

6.3. The Core Concept

The KP Core (KPC) problem is defined as

(KPC) maximize z =
∑

j∈C

pjxj + p̃ (6.18)

subject to
∑

j∈C

wjxj ≤ c− w̃, (6.19)

xj ∈ {0, 1}, j ∈ C, (6.20)

with p̃ =
∑a−1

j=1 pj and w̃ =
∑a−1

j=1 wj . Obviously, the solution of KPC would suffice
to compute the optimal solution of KP, which, however, has to be already partially
known to determine C.

Pisinger [96] reported experimental investigations of the exact core size. He also
studied the hardness of core problems, also giving a model for their expected hard-
ness in [97].

Fixed Core Algorithms

The first class of core algorithms is based on solving a core problem with an approx-
imate core of fixed size c = {s− δ, . . . , s + δ} with various choices of δ, e.g. δ = 100
or δ =

√
n. An example is the MT2 algorithm by Martello and Toth [83]. First the

core is solved, then an upper bound is derived in order to possibly prove optimality.
If this is not possible, a variable reduction is performed, which tries to fix as many
variables as possible to their optimal values. Finally the remaining problem is solved
to optimality.

Expanding Core Algorithms

Since it is impossible to estimate the core size in advance, Pisinger proposed two
expanding core algorithms. Expknap [95] uses branch and bound for enumeration,
whereas Minknap [96] (which enumerates at most the smallest symmetrical core)
uses dynamic programming. For more details we refer to Kellerer et al. [66].

6.3.2. The Core Concept for MKP

This concept can be expanded to MKP without major difficulties. The main prob-
lem, however, lies in the fact that there is no obvious efficiency measure. The core
and the core problem have to be defined depending on a specific efficiency measure

95

Chapter 6. The Multidimensional Knapsack Problem

e. Let x∗ be an optimal solution and assume that the items are sorted according to
decreasing efficiency e, then define

ae := min{j|x∗
j = 0}, be := max{j|x∗

j = 1}. (6.21)

The core is given by the items in the interval Ce := {ae, . . . , be}, and the core problem
is defined as

(MKPCe) maximize z =
∑

j∈C

pjxj + p̃ (6.22)

subject to
∑

j∈C

wijxj ≤ ci − w̃i, i = 1, . . . ,m (6.23)

xj ∈ {0, 1}, j ∈ C, (6.24)

with p̃ =
∑a−1

j=1 pj and w̃i =
∑a−1

j=1 wij, i = 1, . . . ,m.

In contrast to KP, the solution of the LP-relaxation of MKP does not consist of
a single fractional split item, but its at the most m fractional values give rise to a
whole split interval Se := {se, . . . , te}, where se and te are the first and the last index
of variables with fractional values after sorting by efficiency e. Note that depending
on the choice of the efficiency measure, the split interval can also contain variables
with integer values. Moreover, the sets Se and Ce can have almost any relation to
each other, from inclusion to disjointedness. For a ”reasonable” choice of e they can
be expected to overlap to a large extent.

If the dual solution values of the LP-relaxation are taken as relevance values, the
split interval Se resulting from the corresponding efficiency values ej(duals) can be
precisely characterized. Let xLP be the optimal solution of the LP-relaxation of
MKP.

Theorem 5

xLP
j =

1 if ej > 1 ,

∈ [0, 1] if ej = 1 ,

0 if ej < 1 .

(6.25)

Proof: The dual LP associated with the LP-relaxation of MKP is given by

(D(MKP)) minimize

m
∑

i=1

ciui +

n
∑

j=1

vj (6.26)

subject to

m
∑

i=1

wijui + vj ≥ pj, j = 1, . . . , n (6.27)

ui, vj ≥ 0, i = 1, . . . ,m, j = 1, . . . , n, (6.28)

96

6.3. The Core Concept

where ui are the dual variables corresponding to the capacity constraints (6.2) and
vj correspond to the equations xj ≤ 1. For the optimal primal and dual solutions
the following complementary slackness conditions hold (see any textbook on linear
programming, e.g. [10]):

xj

(

m
∑

i=1

wijui + vj − pj

)

= 0 (6.29)

vj(xj − 1) = 0 (6.30)

Recall that ej(duals) =
pj

Pm
i=1

uiwij
. Hence, ej > 1 implies pj >

∑m
i=1 wijui, which

means that (6.27) can only be fulfilled by vj > 0. Now (6.30) immediately yields
xj = 1, which proves the first part of the theorem.

If ej < 1, there is pj <
∑m

i=1 wijui which together with vj ≥ 0 makes the second
factor of (6.29) strictly positive and requires xj = 0. This proves the theorem since
nothing has to be shown for ej = 1. �

It follows from Theorem 5 that Se ⊆ {j | ej = 1, j = 1, . . . , n}. Together with
Proposition 8, this means that there exists an optimal solution xLP yielding a split
interval with size at most min{m,n}.
It should be noted that the theorem gives only a structural result which does not
yield any direct algorithmic advantage in computing the primal solution xLP , since
it requires knowing the dual optimal solution.

6.3.3. Experimental Study of MKP Cores and Core Sizes

MKP Cores and Efficiency Measures

In order to analyze the core sizes in dependence of different efficiency values, we per-
formed an empirical in-depth examination on smaller instances of Chu and Beasley’s
benchmark library for which we were able to compute optimal solutions x∗ (with
n = 100 items, m ∈ {5, 10} constraints, and n = 250 items, m = 5 constraints).

In Tables 6.4 and 6.5 we examine cores generated by using the scaled efficiency
e(scaled) as defined in equation (6.6), the efficiency e(st) as defined in equation
(6.7), the efficiency e(fp) as defined in equations (6.8) and (6.9), and finally the
efficiency e(duals) setting the relevance values ri of equation (6.8) to the optimal
dual variable values of the MKP’s LP-relaxation. Listed are average values of the
sizes (as a percentage of the number of items) of the split interval (|Se|) and of
the exact core (|Ce|), the percentage of how much the split interval covers the core
(ScC) and how much the core covers the split interval (CcS), and the distance (as

97

Chapter 6. The Multidimensional Knapsack Problem

a percentage of the number of items) between the center of the split interval and
the center of the core (Cdist). The absolute values of all the results obtained are
displayed in Tables A.4 to A.6 in Appendix A.2.

Table 6.4.: Split intervals, core sizes and their mutual coverages and distances for
e(scaled) and e(st) (average percentage values taken from 10 instances
and average over all problem classes).

e(scaled) e(st)
n m α |Se| |Ce| ScC CcS Cdist |Se| |Ce| ScC CcS Cdist

100 5 0.25 23.40 30.50 72.69 94.71 4.05 27.20 30.20 78.85 88.11 4.80
0.5 29.50 37.60 71.93 88.45 5.95 27.00 35.60 69.88 89.01 5.90
0.75 24.30 27.00 72.61 83.13 5.05 22.80 25.20 77.72 84.08 4.30

250 5 0.25 17.44 22.40 77.20 97.38 1.88 17.12 22.20 76.91 94.62 2.46
0.5 22.88 29.44 71.71 94.25 3.44 23.76 30.88 74.95 94.69 4.04
0.75 11.44 17.84 56.14 88.45 4.60 11.96 16.64 63.82 85.86 3.62

100 10 0.25 42.60 38.30 92.62 84.39 4.35 43.30 38.20 88.78 79.36 5.55
0.5 39.40 45.20 80.80 91.20 5.30 44.40 46.50 85.43 88.49 5.65
0.75 37.50 34.80 94.29 86.42 2.55 38.60 36.20 93.04 87.16 2.10

Average 27.61 31.45 76.67 89.82 4.13 28.46 31.29 78.82 87.93 4.27

Table 6.5.: Split intervals, core sizes and their mutual coverages and distances for
e(fp) e(duals) (average percentage values taken from 10 instances and
average over all problem classes).

e(fp) e(duals)
n m α |Se| |Ce| ScC CcS Cdist |Se| |Ce| ScC CcS Cdist

100 5 0.25 24.70 30.10 75.50 91.94 4.20 5.00 20.20 28.12 100.00 3.30
0.5 27.10 35.80 70.36 89.74 6.35 5.00 22.10 27.49 100.00 3.45
0.75 23.20 26.10 74.47 84.22 4.55 5.00 19.60 26.95 100.00 3.20

250 5 0.25 16.92 21.72 76.87 95.63 2.24 2.00 12.68 18.16 100.00 2.46
0.5 22.96 29.68 74.79 95.02 3.56 2.00 12.20 18.45 100.00 1.38
0.75 11.40 17.12 59.00 87.27 4.06 2.00 10.40 20.18 100.00 1.56

100 10 0.25 42.10 38.20 90.41 83.74 4.75 10.00 23.20 46.57 100.00 2.90
0.5 41.90 45.60 84.52 90.85 5.15 9.80 25.70 48.17 95.00 3.15
0.75 37.90 35.30 94.55 86.96 2.40 9.70 18.80 55.74 99.00 2.75

Average 27.58 31.07 77.83 89.49 4.14 5.61 18.32 32.20 99.33 2.68

As expected from Theorem 5, the smallest split intervals, consisting of the fractional
variables only are derived with e(duals). They further yield the smallest cores. Using
any of the other efficiency measures results in significantly larger split intervals and
cores. Furthermore, the smallest distances between the centers of the split intervals

98

6.3. The Core Concept

and the cores are also produced by e(duals) for almost all the subclasses. The most
promising information for devising approximate cores is therefore available from the
split intervals generated with e(duals), on which we will concentrate our further
investigations.

A Fixed Core Approach

In order to evaluate the influence of core sizes on solution quality and run-times,
we propose a fixed core size algorithm, where we solve approximate cores using the
general purpose ILP-solver CPLEX 9.0. We performed the experiments on a 2.4
GHz Intel Pentium 4 computer.

In analogy to KP, the approximate core is generated by adding δ items on each side of
the center of the split interval. We created the cores by setting δ to 0.1n, 0.15n, 0.2n,
2m+ 0.1n, and 2m +0.2n. The e(duals) efficiency was used. The different values of
δ where chosen in accordance to the results of the previous section, where an average
core size of about 0.2n was observed. Since outliers and the distances between the
centers of the core and the split intervall have to be taken into consideration we
also used bigger approximate core sizes. We also used linear combinations of m and
n, since the core sizes do not depend on the number of items only, but also on the
number of constraints. Tables 6.6 and 6.7 list average objective values and run-times
for the original problem, percentage gaps (%opt = 100 · (z∗ − z)/z∗) to the optimal
solution, the number of times the optimum was reached (#), as well as the average
run-times (as a percentage of the run-time required for solving the original problem
%t for cores of different sizes. The absolute values of all the results obtained are
displayed in Tables A.7 to A.9 in Appendix A.2.

Observing the results of CPLEX applied to cores of different sizes, we see that
smaller cores can be solved substantially faster and the solution obtained values are
only slightly worse than the optimal ones given by the no core column. The best
results with respect to average run-times were achieved with δ = 0.1n, with which
the run-time could be reduced by factors ranging from 3 to 1000, whereas, most
importantly, the obtained objective values are very close to the respective optima
(0.1% on average). Solving the bigger cores requires more run-time, but almost all
of the optimal results could be reached with still significant time savings.

6.3.4. A Memetic Algorithm

The MA which we consider here is based on Chu and Beasley’s principles and in-
cludes some improvements suggested in [107, 56, 109]. The framework is steady-state

99

Chapter 6. The Multidimensional Knapsack Problem

Table 6.6.: Solving cores of different sizes exactly (average over 10 instances and
average over all problem classes).

n m α no core δ = 0.1n δ = 0.15n

z t[s] %opt # %t %opt # %t

100 5 0.25 24197 21 0.097 5 1 0.034 7 9
0.5 43253 27 0.053 4 1 0.018 6 6
0.75 60471 6 0.038 5 4 0.021 7 17

250 5 0.25 60414 1474 0.008 7 36 0.003 9 81
0.5 109293 1767 0.002 8 21 0.000 10 63
0.75 151560 817 0.000 10 17 0.000 10 47

100 10 0.25 22602 189 0.473 1 0 0.152 4 1
0.5 42661 97 0.234 3 0 0.084 5 1
0.75 59556 29 0.036 6 0 0.015 8 3

Average 63778 492 0.105 5.4 9 0.036 7.3 25

Table 6.7.: Solving cores of different sizes exactly (average over 10 instances and
average over all problem classes).

n m α δ = 0.2n δ = 2m + 0.1n δ = 2m + 0.2n

%opt # %t %opt # %t %opt # %t

100 5 0.25 0.015 9 32 0.015 9 32 0.000 10 62
0.5 0.002 9 24 0.002 9 24 0.002 9 64
0.75 0.001 9 39 0.001 9 39 0.000 10 61

250 5 0.25 0.000 10 82 0.003 9 69 0.000 10 91
0.5 0.000 10 67 0.000 10 59 0.000 10 73
0.75 0.000 10 72 0.000 10 40 0.000 10 61

100 10 0.25 0.002 9 10 0.000 10 46 0.000 10 66
0.5 0.030 8 13 0.022 8 60 0.000 10 75
0.75 0.011 9 22 0.000 10 54 0.000 10 70

Average 0.007 9.2 40 0.005 9.3 47 0.000 9.9 69

and the creation of initial solutions is guided by the LP-relaxation of the MKP, as
described in [56]. Each new candidate solution is derived by selecting two parents
via binary tournaments, performing uniform crossover on their characteristic vectors
x, flipping each bit with probability 1/n, performing repair if a capacity constraint
is violated, and always performing local improvement. If such a new candidate so-
lution is different from all solutions in the current population, it replaces the worst
of them.

Both repair and local improvement are based on greedy first-fit strategies and guar-
antee that any resulting candidate solution lies at the boundary of the feasible region,

100

6.3. The Core Concept

in which optimal solutions are always located. The repair procedure considers all
items in a specific order Π and removes selected items (xj = 1 → xj = 0) as
long as any capacity constraint is violated. Local improvement works vice-versa: It
considers all items in the reverse order Π and selects items not yet appearing in the
solution as long as no capacity limit is exceeded.

Crucial for these strategies to work well is the choice of the ordering Π. Items
that are likely to be selected in an optimal solution must appear near the end of
Π. Following the results of Section 6.3.3 we can determine Π by ordering the items
according to e(duals), as done in [14].

6.3.5. Weak Approximate Cores

In order to overcome the problem of the fixed core of a given size, we combine local
branching with the core concept. Analogously to the previous section the variables
in the fixed core part remain free, whereas the variables outside the core are allowed
to change by a Hamming-distance constraint, limiting the number of changes to k
but therefore allowing cores of potentially any size.

We consider the items to be sorted by non-increasing efficiencies e. Let C δ
e (xLP) be

the artificial core created by adding δ items on each side of the center of the split
interval Se(x

LP). Then let a(Cδ
e (xLP)) and b(Cδ

e (xLP)) respectively be the first and
the last item of the artificial core. We can then achieve our “weak approximate core”
(in analogy to (6.16)) by adding the following constraint to the standard formulation
of MKP (6.1) – (6.3):

a(Cδ
e (xLP))−1
∑

j=1

(1− xj) +
n
∑

j=b(Cδ
e (xLP))+1

xj ≤ k (6.31)

6.3.6. Computational Experiments

We present several computational experiments where we evaluated the influence of
differently sized cores on the performance of CPLEX and the presented MA. The
algorithms were given 500 seconds per run. Since the MA converges much earlier,
it was restarted every 1 000 000 generations, always keeping the so-far best solution
in the population. We used the hardest instances of Chu and Beasley’s benchmark
library (with n = 500 items and m ∈ {5, 10, 30} constraints). As before, CPLEX
9.0 was used and we performed the experiments on a 2.4 GHz Intel Pentium 4
computer.

101

Chapter 6. The Multidimensional Knapsack Problem

In Table 6.8 we display the results of CPLEX applied to cores of different sizes.
For comparison CPLEX was also applied to the original problem with the same
time limit. We list averages over ten instances of the percentage gaps to the optimal
objective value of the LP-relaxation (%LP), the number of times this core size yielded
the best solution of this algorithm (#), and the number of explored nodes of the
branch and bound tree.

First of all, it can be observed that CPLEX applied to approximate cores of dif-
ferent sizes always yields, on average, better results than CPLEX applied to the
original problem. Secondly, the number of explored nodes increases with decreas-
ing problem/core size. The best average results are obtained with higher core sizes
(δ = 0.2n).

Table 6.8.: Solving cores of different sizes with CPLEX (average over 10 instances
and average over all problem classes, n = 500).

m α no core δ = 0.1n δ = 0.15n δ = 0.2n

%LP # Nnodes %LP # Nnodes %LP # Nnodes %LP # Nnodes

5 0.25 0.080 5 5.50E5 0.075 9 1.00E6 0.076 9 9.85E5 0.076 8 8.34E5
0.5 0.040 6 5.06E5 0.039 7 1.05E6 0.039 9 1.00E6 0.039 9 8.38E5
0.75 0.025 6 5.36E5 0.024 10 1.05E6 0.025 8 1.02E6 0.025 8 9.04E5

10 0.25 0.206 1 3.15E5 0.198 5 1.10E6 0.195 6 6.99E5 0.198 4 5.68E5
0.5 0.094 4 3.01E5 0.088 8 1.11E6 0.090 6 6.95E5 0.092 5 5.73E5
0.75 0.066 4 3.05E5 0.065 5 1.07E6 0.064 7 6.83E5 0.065 7 5.59E5

30 0.25 0.598 2 1.11E5 0.621 0 4.22E5 0.566 4 3.06E5 0.537 6 2.28E5
0.5 0.258 2 1.15E5 0.246 3 4.50E5 0.243 4 3.28E5 0.250 2 2.38E5
0.75 0.158 2 1.12E5 0.151 6 4.48E5 0.160 1 3.14E5 0.151 5 2.36E5

Average 0.169 3.6 3.17E5 0.167 5.9 8.55E5 0.162 6.0 6.70E5 0.159 6.0 5.53E5

In Table 6.9 the results of the MA applied to approximate cores of different sizes
are shown. In order to evaluate the benefits of using a core-based approach, we
also applied the MA to the original problem. The table lists (%LP), the number of
times this core size yielded the best solution of this algorithm (#), and the average
numbers of MA iterations.

As observed with CPLEX, the use of approximate cores consistently increases the
achieved solution quality. The core size has a significant influence on the number of
iterations performed by the MA, which can be explained by the smaller size of the
problem to be solved. This also seems to be a reason for the better results, since
more candidate solutions can be examined in the given run-time. Furthermore,
the search space of the MA is restricted to a highly promising part of the original
search space. The best average results were obtained with δ = 0.15n. The smaller
approximate cores yield better results on average.

102

6.3. The Core Concept

Table 6.9.: Solving cores of different sizes with the MA (average over 10 instances
and average over all problem classes, n = 500).

m α no core δ = 0.1n δ = 0.15n δ = 0.2n

%LP # Niter %LP # Niter %LP # Niter %LP # Niter

5 0.25 0.078 6 1.40E7 0.073 10 5.08E7 0.074 9 4.07E7 0.074 9 3.33E7
0.5 0.040 6 1.35E7 0.039 9 5.07E7 0.039 9 4.07E7 0.040 7 3.33E7
0.75 0.025 7 1.46E7 0.024 9 5.07E7 0.024 10 4.08E7 0.024 9 3.34E7

10 0.25 0.208 5 1.26E7 0.202 5 4.54E7 0.202 6 3.62E7 0.208 4 2.90E7
0.5 0.099 2 1.21E7 0.093 6 4.51E7 0.091 8 3.59E7 0.093 5 2.89E7
0.75 0.066 6 1.31E7 0.065 8 4.53E7 0.067 4 3.59E7 0.068 4 2.87E7

30 0.25 0.604 1 9.10E6 0.573 5 3.08E7 0.575 5 2.39E7 0.569 6 1.92E7
0.5 0.254 3 8.10E6 0.257 1 3.08E7 0.246 7 2.37E7 0.253 3 1.90E7
0.75 0.159 4 8.12E6 0.156 5 3.14E7 0.157 3 2.35E7 0.157 5 1.96E7

Average 0.170 4.4 1.17E7 0.165 6.4 4.23E7 0.164 6.8 3.35E7 0.165 5.8 2.72E7

In Table 6.10, we list the results of CPLEX applied to weak approximate cores of
different sizes. In order to evaluate this concept, we compare it to the the results
of CPLEX applied to the original problem. Since the weakening of the approximate
cores can dramatically increase the size of the search space, we used smaller δ values
than in the two previous experiments. The table lists (%LP), the number of times
this core size yielded the best solution of this algorithm (#), and the number of
explored branch and bound nodes.

Applying CPLEX to weak approximate cores slightly improves the results obtained,
for a small approximate core size and small k. For the other parameter settings,
there is no improvement. This can be due to fact, that the weak approximate core
is not much easier to solve than the original problem and CPLEX therefore finds
very similar solutions for the different variants within the limited run-time.

Comparing our results to the best known solutions [128], we are able to reach the
best solutions for m = 5, and stay only 0.5% below these solutions for m ∈ {10, 30}.
This was achieved in 500 seconds whereas in [128] up to 33 hours were required.

In summary, we applied CPLEX and a MA to approximate cores of hard to solve
benchmark instances and observed that using approximate cores of fixed size instead
of the original problem clearly and consistently improves the solution quality when
using a fixed run-time.

103

Chapter 6. The Multidimensional Knapsack Problem

Table 6.10.: Solving weak approximate cores of different sizes with CPLEX (average
over 10 instances and average over all problem classes, n = 500).

m α no core δ = 0.05n, k = 5 δ = 0.1n, k = 5 δ = 0.05n, k = 10

%LP # Nnodes %LP # Nnodes %LP # Nnodes %LP # Nnodes

5 0.25 0.080 7 5.50E5 0.078 9 5.54E5 0.078 9 5.55E5 0.077 9 5.63E5
0.5 0.040 7 5.06E5 0.039 9 5.03E5 0.039 9 5.05E5 0.039 9 5.06E5
0.75 0.025 10 5.36E5 0.026 8 5.39E5 0.026 8 5.39E5 0.026 8 5.42E5

10 0.25 0.206 10 3.15E5 0.206 10 3.13E5 0.207 9 3.15E5 0.206 10 3.14E5
0.5 0.094 9 3.01E5 0.094 9 3.02E5 0.094 9 3.00E5 0.094 8 3.00E5
0.75 0.066 7 3.05E5 0.066 8 3.05E5 0.066 8 3.03E5 0.066 7 3.05E5

30 0.25 0.598 5 1.11E5 0.574 7 1.10E5 0.606 4 1.11E5 0.605 4 1.11E5
0.5 0.258 3 1.15E5 0.254 5 1.13E5 0.256 4 1.15E5 0.255 5 1.15E5
0.75 0.158 7 1.12E5 0.158 5 1.11E5 0.159 5 1.11E5 0.159 6 1.12E5

Average 0.169 7.2 3.17E5 0.166 7.8 3.17E5 0.170 7.2 3.17E5 0.170 7.3 3.19E5

6.4. Relaxation Guided VNS for the MKP

Using LP/IP-based concepts in metaheuristics is a promising approach (see Chap-
ter 4). Therefore we want to investigate Relaxation Guided Variable Neighborhood
Search here. It is a new variant of Variable Neighborhood Search (VNS) [58, 59],
which is based on a standard VNS scheme and a new Variable Neighborhood De-
scent (VND) algorithm. How to order the given neighborhoods is often a difficult
yet performance-significant decision. We guide VND by always sorting the neigh-
borhoods according to estimations of the improvement-potentials depending on the
current solution. For each neighborhood this potential is determined by quickly solv-
ing a relaxation. Searching the neighborhoods in this order is expected to increase
solution quality and/or to speed up VNS.

In the next section we present the general scheme of Relaxation Guided VNS. We
then describe the neighborhood structures used for the MKP, together with com-
putational experiments comparing standard VNS and relaxation guided VNS. Some
extensions of this approach using more neighborhood structures and further exper-
iments are also presented.

6.4.1. Relaxation Guided VNS

Relaxation Guided VNS (RGVNS) follows the the general VNS scheme [58, 59]
and incorporates an improved VND, which we call Relaxation Guided Variable
Neighborhood Descent (RGVND). Let us assume that the neighborhood structures

104

6.4. Relaxation Guided VNS for the MKP

N1, . . . , Nkmax
are to be used within VND. A significant question, which is often

of crucial importance for the algorithm’s performance, is the order in which the
neighborhoods are to be considered. Often, rules of thumb such as searching smaller
neighborhoods or neighborhoods which are considered to be more promising in some
sense first, are used. However, in many situations finding the ideal ordering is not
straight-forward. Furthermore, the ordering that is best suited in a particular sit-
uation might in general depend on the current solution. We are not aware of any
previous work where the ordering of the neighborhoods is determined in an auto-
matic way and, especially, is adapted during the search.

The main point of our extended variant of VND is that we control the order in which
the neighborhood structures are processed by estimating improvement-potentials.
These potentials are devised by quickly solving a relaxation of each neighborhood
structure. We expect that this scheme allows more promising neighborhoods to be
explored earlier, yielding better and faster overall results.

In the following we will consider maximization problems; minimization problems can
be treated analogously.

Assume that we are given a combinatorial optimization problem (COP) defined as

zCOP = max{f(x) | x ∈ S},

with S being a finite set of solutions and f(x) : S → R an objective function. In
analogy to the relaxation of an ILP (see Section 3.2), we introduce the following
formal definition of a relaxation of a COP.

Definition 17 A relaxation R of COP is a maximization problem defined as

zR = max{fR(x) | x ∈ SR}

with the following properties:

(i) S ⊆ SR

(ii) f(x) ≤ fR(x), ∀x ∈ S.

The following evident result [132] yields a bound for COP.

Proposition 9 If R is a relaxation of COP, zR ≥ z.

105

Chapter 6. The Multidimensional Knapsack Problem

Algorithm 11: Relaxation Guided VND (RGVND)

Input: A feasible solution x
l← 1
π = DetermineOrderOfNeighborhoods(x)
repeat

Find the best neighbor x∗ ∈ Nπ(k)(x) | f(x∗) ≥ f(x′) ∀x′ ∈ Nπ(k)(x)

if f(x∗) > f(x) then
x← x∗

k ← 1
π = DetermineOrderOfNeighborhoods(x)

else
k ← k + 1

until k = kmax

return x

Often, it is substantially faster to calculate the optimal solution of a relaxation than
of the original problem. An example is the widely used linear programming (LP)
relaxation of an integer linear programming (ILP) formulation of a COP, which can
be solved in polynomial time. It is a prerequisite for the RGVND scheme that the
used relaxations can be solved to optimality much faster than their corresponding
original neighborhood structures.

A second precondition on the used neighborhoods is that they are not fully contained
in each other since this would lead to trivial orderings and render our approach
meaningless. Therefore Nk 6⊆ Nk′ and Nk′ 6⊆ Nk must hold for any Nk, Nk′ with
k 6= k′.

Algorithm 12: DetermineOrderOfNeighborhoods(x)

for k = 1, . . . , kmax do
Solve NR

k (x) yielding solution value zR
k

Sort π = (1, . . . , kmax) according to decreasing zR
k

return π

In Algorithm 11 the pseudocode of RGVND is given. The significant differences
to the standard VND scheme, as described in [58, 59], are the calls of function
DetermineOrderOfNeighborhoods(x) in lines 10 and 10. This function determines
the order of the neighborhood structures by first solving their relaxations yielding
objective values zR

k , and then sorting the neighborhoods according to decreasing zR
k .

Ties are broken arbitrarily or according to some static heuristic rules.

106

6.4. Relaxation Guided VNS for the MKP

6.4.2. Relaxation Guided VNS for the MKP

We now focus on the problem-specific details of our RGVNS implementation for
the MKP, introducing the used neighborhoods and their relaxations, and present
results for indicating the effectiveness of the new approach in comparison to standard
VNS.

Representation and Initialization

Solutions are directly represented by binary strings, and all our neighborhoods are
defined on the space of feasible solutions only. We denote by I1(x

f) = {j | xf
j = 1}

the index-set of the items contained in the knapsack of a current solution xf and by
I0(x

f) = {j | xf
j = 0} its complement.

The initial solution for our VNS is generated using a greedy first-fit heuristic, consid-
ering the items in a certain order, which is determined by sorting the items according
to decreasing values of the solutions to the MKP’s LP-relaxation; see [109].

ILP Based Neighborhoods

We want to force a certain number of items of the current feasible solution xf to be
removed from or added to the knapsack. This is realized by adding neighborhood-
defining constraints depending on xf to the ILP formulation of the MKP.

In the first neighborhood, ILP-Remove-and-Fill IRF (xf , κ), we force precisely κ
items from I1 to be removed from the knapsack and any combination of items from
I0 is allowed to be added to the knapsack as long as the solution remains feasible.
This is accomplished by adding the following equation to (6.1)–(6.3):

∑

j∈I1(xf)

xj =
∑

j∈I1(xf)

xf
j − κ. (6.32)

In the second neighborhood, ILP-Add-and-Remove IAR(xf , κ), we force precisely
κ items not yet packed, i.e. from I0, to be included in the knapsack. To achieve
feasibility any combination of items from I1 may be removed. This is achieved by
adding the following equation to (6.1)–(6.3):

∑

j∈I0(xf)

xj = κ. (6.33)

107

Chapter 6. The Multidimensional Knapsack Problem

As relaxations IRF R(xf , κ) and IARR(xf , κ) we use the corresponding LP-
relaxations in which the integrality constraints (6.3) are replaced by 0 ≤ xj ≤ 1, j =
1, . . . , n. Note that depending on the specific instance’s characteristics, both neigh-
borhoods may become quite large even for κ = 1. Nevertheless, the LP-relaxations
can be solved to optimality very quickly by means of standard LP algorithms. For
searching the (integer) neighborhoods we use a general purpose ILP-solver (CPLEX)
with a certain time limit.

Relaxation Guided VNS

The Relaxation Guided Variable Neighborhood Search (RGVNS) is based on the
previously defined neighborhoods IRF (xf , κ) and IAR(xf , κ). We first solve the
LP-relaxations of IRF (xf , κ) and IAR(xf , κ) for k = 1, . . . , κmax, where κmax is a
prespecified upper limit on the number of items we want to remove or add. The
neighborhoods are sorted according to decreasing LP-relaxation solution values. Ties
are broken by considering smaller κs earlier.

Shaking

In the VNS framework, after RGVND has explored all neighborhoods, shaking is
performed. Shaking flips l different, randomly selected variables of the current best
solution and applies greedy repair and local improvement according to [14], as de-
scribed in 6.3.4 using efficiencies e(dual).

As usual in general VNS, l runs from 1 to some lmax and is reset to 1 if an improved
solution is found.

Relaxation Guided VNS versus Standard VNS

We compare RGVNS to standard VNS using the ILP based neighborhoods
IRF (xf , κ) and IAR(xf , κ), for κ = 1, . . . , 10. In RGVNS the neighborhoods are
ordered according to their LP-relaxations, whereas in standard VNS the neighbor-
hoods are statically ordered according to increasing κ and always switching between
IRF (xf , κ) and IAR(xf , κ). We further compare RGVNS to RandVNS where the
neighborhoods are always ordered randomly. For shaking lmax was set to n.

The algorithms tested were implemented in C++ using CPLEX 9.0. The ILP-based
neighborhoods were not always fully explored but CPLEX was terminated after at
most 2 seconds. The total run-time given to the algorithms was limited to 500
seconds. The experiments were performed on a 2.4GHz Intel Pentium 4 machine.

108

6.4. Relaxation Guided VNS for the MKP

As before, we used the hardest instances of Chu and Beasley’s benchmark library
(with n = 500 items and m ∈ {5, 10, 30} constraints). In order to evaluate the
results of our experiments statistically, we performed 30 independent runs on each
instance, therefore the experiments were performed on 9 instances only: The first
instance of each instance category.

Table 6.11 lists the mean and median percentage gaps of the final solutions’ objective
values with respect to the LP-relaxation. Corresponding standard deviations are
shown in parentheses. The pVNS,RGVNS columns list the error probabilities in t-
tests and Wilcoxon rank sum tests of the hypotheses that differences exist. These
statistical tests were computed using the statistics software R3.

Table 6.11.: Comparison of VNS and RGVNS; listed are average and median per-
centage gaps, standard deviations in parentheses, and error probabilities
pVNS,RGVNS obtained by t-tests and Wilcoxon rank sum tests.

VNS RandVNS RGVNS pVNS,RGVNS pRandVNS,RGVNS

m α mean median mean median mean median t-test W-test t-test W-test

5 0.25 0.091 0.096 0.088 0.088 0.082 0.076 < 0.01 0.04 < 0.01 < 0.01
(0.011) (0.006) (0.010)

0.5 0.042 0.041 0.037 0.036 0.034 0.034 < 0.01 < 0.01 < 0.01 < 0.01
(0.005) (0.004) (0.000)

0.75 0.023 0.023 0.023 0.023 0.023 0.023 n.a. n.a. n.a. n.a.
(0.000) (0.000) (0.000)

10 0.25 0.251 0.251 0.229 0.236 0.212 0.204 < 0.01 < 0.01 < 0.01 < 0.01
(0.018) (0.025) (0.016)

0.5 0.115 0.108 0.105 0.108 0.108 0.108 < 0.01 < 0.01 0.20 0.42
(0.009) (0.009) (0.007)

0.75 0.073 0.075 0.071 0.070 0.075 0.079 0.19 0.19 < 0.01 < 0.01
(0.003) (0.003) (0.005)

30 0.25 0.685 0.686 0.639 0.642 0.635 0.614 < 0.01 < 0.01 0.583 0.383
(0.047) (0.025) (0.034)

0.5 0.291 0.304 0.256 0.244 0.272 0.277 < 0.01 < 0.01 < 0.01 < 0.01
(0.032) (0.019) (0.022)

0.75 0.152 0.154 0.139 0.0136 0.131 0.131 < 0.01 < 0.01 < 0.01 < 0.01
(0.016) 0.009 (0.000)

For seven out of the nine instances RGVNS yields significantly better results than
the VNS approach with fixed neighborhood ordering. For one of the test cases
(m = 5, α = 0.75) all obtained results were equal, whereas for the (m = 10, α =
0.75) case the standard approach yielded slightly better results than RGVNS, but
without statistical significance. When comparing RGVNS to RandVNS, one can

3http://www.r-project.org/

109

Chapter 6. The Multidimensional Knapsack Problem

observe that in four cases RGVNS was significantly better, in one case results were
equal, in two cases RandVNS was better, and in two cases no conclusions can be
drawn. As expected the random ordering yields better results than the fixed order,
but the relaxation guided approach outperforms both of the naive orderings.

6.4.3. Extending RGVNS for the MKP

The pure RGVNS approach of the previous section did not provide satisfactory re-
sults when comparing it to state-of-the-art metaheuristics. We therefore extend the
RGVNS described in the previous section by some fast to solve standard neighbor-
hood structures. Those simpler neighborhood structures are not ordered according
to relaxations, but explored in a fixed order, before relying on the relaxation based
ordering for calling IRF (xf , κ) and IAR(xf , κ) with κ = 1, . . . , κmax.

Furthmore, we introduce an additional parameter: βmax, used to limit the total
number of explored ILP-based neighborhoods of RGVND explored before shaking.
If, for example, we choose βmax = 10, and κmax = 10, a total of 20 ILP-based
neighborhoods are sorted according to their LP-relaxations, but only the first 10 are
considered in VND.

Swap Neighborhood

The first neighborhood we use is a simple swap SWP(xf), where a pair of items

(xf
i , xf

j) | i ∈ I1 and j ∈ I0 are exchanged, i.e. xf
i := 0 and xf

j := 1. Infeasible so-

lutions are discarded. Note that this neighborhood is contained in both, IRF (xf , 1)
and IAR(xf , 1). Its main advantage is that it can be explored much faster.

Greedy Neighborhoods

Based on the ideas of Chu and Beasley [14] and as another simplification of IRF
and IAR but an extension of SWP, we define two additional neighborhoods based
on greedy concepts.

In the first case, the Remove-and-Greedy-Fill neighborhood RGF (xf , κ), κ items are
removed from xf , i.e. a κ-tuple of variables from I1(x

f) are flipped. The resulting
solution is then locally optimized using the greedy first-fit heuristic from Section
6.4.2.

In the second case, the Add-and-Greedy-Repair neighborhood AGR(xf , κ), κ items
are added to xf , i.e. κ variables from I0(x

f) are flipped. The resulting solution,

110

6.4. Relaxation Guided VNS for the MKP

Table 6.12.: Results of the different approaches, using the whole Chu and Beasley
500-variables instance set.

VNS–N1−3 VNS–N1−5 VNS RGVNS RGVNS+N1−3 RGVNS+N1−5

m α %LP # %LP # %LP # %LP # %LP # %LP #

5 0.25 0.124 0 0.109 0 0.113 2 0.090 2 0.088 4 0.087 6
0.5 0.065 0 0.053 0 0.049 0 0.042 7 0.043 5 0.042 4
0.75 0.041 1 0.029 2 0.032 1 0.026 7 0.027 6 0.026 8

10 0.25 0.357 0 0.293 0 0.271 1 0.234 5 0.230 6 0.232 4
0.5 0.180 0 0.137 0 0.131 0 0.108 4 0.108 3 0.103 8
0.75 0.103 0 0.083 0 0.084 1 0.069 7 0.069 6 0.072 5

30 0.25 0.890 0 0.825 0 0.716 0 0.609 5 0.595 6 0.615 4
0.5 0.414 0 0.332 0 0.310 0 0.265 4 0.263 6 0.268 3
0.75 0.232 0 0.216 0 0.189 1 0.167 3 0.168 3 0.167 3

Average 0.267 0.1 0.231 0.2 0.211 0.7 0.179 4.9 0.177 5.0 0.179 5.0

which is usually infeasible, is then repaired and locally improved using the greedy
algorithms from Section 6.4.2.

Computational Experiments

In these experiments, we combined the simpler neighborhoods, which were explored
using a best improvement strategy, with the ILP-based neighborhoods. We used the
whole set of the hardest instances of Chu and Beasley’s benchmark library (with
n = 500 items and m ∈ {5, 10, 30} constraints). As berfore, the experiments were
performed on a 2.4GHz Intel Pentium 4 machine and each run was terminated
after 500s of CPU-time. The neighborhoods are ordered as follows: N1:=SWP(xf),
N2:=RGF (xf , 1), N3:=AGR(xf , 1), N4:=RGF (xf , 2), N5:=AGR(xf , 2).

In Table 6.12 we show results of the following algorithm variants: VNS with neigh-
borhoods N1 to N3 only (VNS–N1−3), VNS with neighborhoods N1 to N5 only
(VNS–N1−5), VNS with the ILP-based neighborhoods (VNS), RGVNS with the ILP-
based neighborhoods (RGVNS), RGVNS with additionally N1 to N3, and RGVNS
with additionally N1 to N5.

We can observe a clear performance difference between N1−3, N1−5, and the ILP
based neighborhoods. RGVNS+N1−3 yields the best average percentage gap on
average. Furthermore the RGVNS+ methods yield the highest number of best so-
lutions found.

The fact that the RGVNS variants yielded the best average percentage gaps for
all classes together with the results from the previous section, clearly documents

111

Chapter 6. The Multidimensional Knapsack Problem

the benefits of sorting the neighborhoods according to a dynamically determined
potential for improvement.

Experiments on Cores

Since using the core-concept for reducing the search space for the MA was a very
successful idea, we want to investigate the effects of applying RGVNS to approximate
MKP cores of different sizes. Here CPLEX was given a maximum of 5 seconds
for exploring the ILP-based neighborhoods, kmax and βmax were set to 10, and
κmax = n.

In Table 6.13, the results of RGVNS when applied to approximate cores of differ-
ent sizes are shown together with the results of RGVNS on the original problem.
The table lists average percentage gaps to the optimal objective value of the LP-
relaxation (%LP) and the number of times this core size yields the best solution of
this experiment (#). Furthermore the average total number of iterations performed
by RGVND inside RGVNS is displayed.

The results obtained by applying RGVNS to the smaller approximate cores clearly
dominate the results obtained without core and with δ = 0.2n. This can be explained
by the fact that CPLEX is used in RGVNS, and that it is able to find better solutions
when dealing with smaller problem sizes. Interestingly, the number of iterations
stays about the same for the different settings. The reason is that CPLEX is given
the same constant time limit for searching the neighborhoods within RGVND.

Table 6.13.: Solving cores of different sizes with RGVNS (average over 10 instances
and average over all problem classes, n = 500).

m α no core δ = 0.1n δ = 0.15n δ = 0.2n

%LP # Niter %LP # Niter %LP # Niter %LP # Niter

5 0.25 0.088 4 230 0.080 5 208 0.080 6 223 0.082 4 230
0.5 0.043 5 236 0.040 7 215 0.040 8 226 0.040 7 239
0.75 0.027 5 246 0.026 8 230 0.026 8 252 0.026 7 240

10 0.25 0.230 0 225 0.198 7 200 0.211 2 193 0.210 3 205
0.5 0.108 1 209 0.096 5 201 0.096 3 199 0.100 1 205
0.75 0.069 2 208 0.066 7 207 0.066 7 211 0.066 4 214

30 0.25 0.595 5 202 0.599 3 196 0.593 4 191 0.609 5 195
0.5 0.263 3 197 0.260 0 198 0.254 6 189 0.261 3 197
0.75 0.168 2 191 0.158 5 191 0.164 3 187 0.164 2 191

Average 0.177 3.0 216 0.169 5.2 205 0.170 5.2 208 0.173 4.0 213

112

6.5. Collaborative Approaches for the MKP

As noted before, using approximate MKP cores of fixed size instead of the original
problem consistently improves the solution quality when using a fixed run-time.

6.5. Collaborative Approaches for the MKP

Until now, we have developed individual exact and metaheuristic approaches, here
we want to let those approaches collaborate in their quest for finding better solutions.
We study a hybrid system in which metaheuristics and the ILP-based approaches
are executed in parallel and continuously exchange information in a bidirectional,
asynchronous way.

The intention is to run the metaheuristics and the ILP-based approach in parallel
on two individual machines. In our tests, however, we executed the algorithms in a
pseudo-parallel way as individual processes on a single machine. The two processes
were started at the same time and their pseudo-parallel execution was handled by
the operating system.

We will see that this combination of a metaheuristic and an exact optimization
method is able to benefit from synergy: Experimental results document that within
the same limited total CPU-time, the cooperative system can yield better heuristic
solutions than each algorithm alone.

6.5.1. Collaborative MA and B&C

In this section we describe several variants of combining the MA, as described in
Section 6.3.4, with the different ILP-based approaches (see Sections 6.2 and 6.3).

If a new so-far best solution is encountered by one of the algorithms, it is immediately
sent to the partner. If the MA receives such a solution, it is included into the
population by replacing the worst solution, as in the case of any other newly created
solution candidate. In the ILP-based approaches, a received solution is set as new
incumbent solution, providing a new global lower bound.

When the ILP-based approach finds a new incumbent solution, it also sends the
current dual variable values associated to the MKP-constraints, which are devised
from the LP-relaxation of the node in the B&C tree currently being processed. When
the MA receives these dual variable values, it recalculates the efficiencies and the
item ordering Π for repair and local improvement as described in Section 6.3.4.

113

Chapter 6. The Multidimensional Knapsack Problem

6.5.2. Collaborative RGVNS and B&C

We further tested collaborative variants of RGVNS (see Section 6.4.1) and different
ILP-based approaches (see Sections 6.2 and 6.3).

The collaborative strategy is analogous to the one described in the previous section:
If a new so-far best solution is encountered by one of the algorithms, it is immediately
sent to the partner. If RGVNS receives such a solution, it is considered as the newly
encountered best solution, k is reset to one, and a new RGVND is started from this
new solution. When RGVND receives these dual variable values, it also recalculates
the efficiencies and the item ordering Π for repair and local improvement.

6.5.3. Computational Experiments

The computational experiments were performed, as before, on a LINUX operated
Intel Pentium 4 computer with 2.4 GHz. The algorithms were given a total CPU-
time of 500 seconds.

The metaheuristics and the ILP-based methods were started at the same time and
were each given 250 seconds (equal), or running time was assigned by a 2:1 ratio,
terminating the metaheuristics after 167 seconds and the ILP-based approach was
performed with a time-limit of 333 seconds (skewed). We studied these two variants,
since preliminary tests with the cooperative approaches suggested that the meta-
heuristics were sometimes the main contributor in finding improved solutions during
the early stages of the optimization process.

In Table 6.14 we show the results of the collaboration between the MA and CPLEX
without any additional constraints, exchanging so far best solutions only (B&C MA),
and additionally exchanging dual variable values (B&C MA D). Both versions were
tested with the equal and skewed cooperation strategies. For comparison purposes
we also list the results of CPLEX (B&C) and the MA running alone.

The results presented in Table 6.14 show a slight advantage for the cooperative
strategies. Use of the skewed collaboration scheme and the exchange of dual variable
values improved the solution quality obtained. Interestingly, the MA executed alone
obtained the highest number of best solutions obtained, whereas it yielded on average
the worst solution quality. The best average solution quality and the second highest
number of obtained best solutions is achieved with B&C MA D using the skewed
collaboration strategy.

In Table 6.15 we show the results of the collaboration between the MA and the
locally constrained ILP-based approach (LC), where constraint 6.15 is added to the

114

6.5. Collaborative Approaches for the MKP

Table 6.14.: Collaborative strategies (average over 10 instances and average over all
problem classes, n = 500).

No Cooperation Equal Cooperation Skewed Cooperation
B&C MA B&C MA B&C MA D B&C MA B&C MA D

m α %LP # %LP # %LP # %LP # %LP # %LP #

5 0.25 0.080 6 0.078 7 0.079 6 0.077 7 0.078 6 0.078 8
0.5 0.040 7 0.040 9 0.041 5 0.041 5 0.039 8 0.039 10
0.75 0.025 7 0.025 8 0.025 8 0.025 7 0.025 7 0.025 7

10 0.25 0.206 4 0.208 5 0.207 2 0.203 5 0.205 3 0.199 5
0.5 0.094 5 0.099 3 0.093 5 0.098 2 0.095 3 0.096 4
0.75 0.066 4 0.066 4 0.067 3 0.067 4 0.066 5 0.066 2

30 0.25 0.598 3 0.604 3 0.594 3 0.596 3 0.592 3 0.574 5
0.5 0.258 2 0.254 5 0.257 4 0.255 4 0.254 3 0.257 4
0.75 0.158 3 0.159 6 0.158 3 0.156 7 0.158 2 0.156 4

Average 0.169 4.6 0.170 5.6 0.169 4.3 0.169 4.9 0.168 4.4 0.166 5.4

ILP formulation (6.1)–(6.3) of the MKP, first restricting the search space to the
more promising part in the neighborhood of the solution to the LP-relaxation. The
neighborhood size parameter k was set to 25, which yielded the best results in Section
6.2.2. We list different variants exchanging so far best solutions only (LC MA), and
additionally exchanging dual variable values (LC MA D). Both versions were tested
with the equal and skewed cooperation strategies. For comparison purposes we also
list the results of LC and the MA running alone.

The results shown in Table 6.15 do not allow clear conclusions. On the one hand,
the best average solution quality is obtained using LC alone. On the other hand,
this result is due to the very good solutions obtained for m = 30, α = 0.25. For the
remaining results, LC MA D provides better or equal results, which can be seen by
the highest average number of times it obtained the best solutions. Again the skewed
collaboration strategy provides slightly better results than the equal strategy.

In Table 6.16 we show the results of the collaboration between the MA and CPLEX
(B&C) applied to cores of different sizes (δ = 0.15n and δ = 0.2n). We list the results
for the variant where so far best solutions and dual variable values are exchanged
with the skewed cooperation strategy (B&C MA D) . For comparison purposes we
also list the results of B&C and the MA running alone.

When solving cores of different sizes, the cooperative approach cannot always im-
prove the results of the individual algorithms. Considering the core size δ = 0.1n,
the collaborative approach dominates the individual algorithms, especially for the
instances with m = 30. In case of δ = 0.2n the results are not as clear anymore,

115

Chapter 6. The Multidimensional Knapsack Problem

Table 6.15.: Collaborative strategies (average over 10 instances and average over all
problem classes, n = 500).

No Cooperation Equal Cooperation Skewed Cooperation
LC MA LC MA LC MA D LC MA LC MA D

m α %LP # %LP # %LP # %LP # %LP # %LP #

5 0.25 0.080 6 0.078 7 0.077 7 0.080 7 0.075 10 0.078 7
0.5 0.039 9 0.040 8 0.040 7 0.039 7 0.039 8 0.039 8
0.75 0.025 7 0.025 7 0.025 9 0.025 6 0.025 7 0.025 9

10 0.25 0.206 3 0.208 5 0.206 2 0.200 5 0.202 3 0.202 4
0.5 0.095 3 0.099 2 0.095 4 0.092 6 0.092 5 0.094 4
0.75 0.066 4 0.066 5 0.067 5 0.066 5 0.066 5 0.065 6

30 0.25 0.555 7 0.604 3 0.594 4 0.607 2 0.591 2 0.571 5
0.5 0.257 2 0.254 3 0.251 6 0.257 3 0.251 5 0.260 2
0.75 0.155 6 0.159 4 0.156 5 0.154 6 0.156 5 0.155 8

Average 0.164 5.2 0.170 4.9 0.168 5.4 0.169 5.2 0.166 5.6 0.165 5.9

since restricting the search space to cores enables the individual algorithms to find
very high quality solutions.

Table 6.16.: Collaborative strategy with different core sizes (average over 10 in-
stances and average over all problem classes, n = 500).

B&C MA B&C MA D
δ = 0.15n δ = 0.2n δ = 0.15n δ = 0.2n δ = 0.15n δ = 0.2n

m α %LP # %LP # %LP # %LP # %LP # %LP #

5 0.25 0.076 6 0.076 6 0.074 8 0.074 8 0.076 6 0.075 7
0.5 0.039 8 0.039 7 0.039 8 0.040 7 0.039 8 0.039 7
0.75 0.025 8 0.025 8 0.024 9 0.024 8 0.024 8 0.025 8

10 0.25 0.195 6 0.198 5 0.202 3 0.208 1 0.197 5 0.202 3
0.5 0.090 5 0.092 4 0.091 4 0.093 3 0.088 7 0.089 6
0.75 0.064 7 0.065 8 0.067 2 0.068 1 0.065 5 0.065 6

30 0.25 0.566 3 0.537 5 0.575 2 0.569 3 0.549 5 0.548 3
0.5 0.243 4 0.250 2 0.246 2 0.253 1 0.241 3 0.246 3
0.75 0.160 0 0.151 6 0.157 2 0.157 1 0.154 2 0.154 4

Average 0.162 5.2 0.159 5.7 0.164 4.4 0.165 3.7 0.159 5.4 0.160 5.2

In Table 6.17 we show the results of the collaboration variants between RGVNS
and CPLEX (B&C) applied to the original problem and to cores generated with
δ = 0.1n. In RGVNS CPLEX was given a maximum of 5 seconds for exploring the
ILP-based neighborhoods, kmax and βmax were set to 10, and κmax = n. We tested
the collaboration variant where dual variable values are exchanged (B&C RGVNS)

116

6.6. Further Computational Experiments

with the skewed cooperation strategy. For comparison purposes we also list the
results of (B&C) and the RGVNS running alone.

As observed with the previous collaborative variants, the cooperation can slightly
improve the results obtained when solving the original problems, whereas this is not
obvious when solving core problems, where the individual algorithms can achieve
very high quality solutions.

Table 6.17.: Collaborative strategy with and without core (average over 10 instances
and average over all problem classes, n = 500).

No Core Core δ = 0.1n
B&C RGVNS B&C RGVNS B&C RGVNS B&C RGVNS

m α %LP # %LP # %LP # %LP # %LP # %LP #

5 0.25 0.080 5 0.088 1 0.083 3 0.075 9 0.080 5 0.075 9
0.5 0.040 5 0.043 1 0.039 7 0.039 6 0.040 4 0.040 6
0.75 0.025 5 0.027 2 0.026 4 0.024 9 0.026 4 0.024 7

10 0.25 0.206 3 0.230 0 0.206 3 0.198 6 0.198 6 0.199 6
0.5 0.094 4 0.108 0 0.096 3 0.088 8 0.096 3 0.089 7
0.75 0.066 4 0.069 1 0.067 3 0.065 4 0.066 5 0.066 4

30 0.25 0.598 4 0.595 4 0.580 5 0.621 0 0.599 3 0.606 1
0.5 0.258 3 0.263 2 0.253 4 0.246 4 0.260 0 0.247 3
0.75 0.158 2 0.168 0 0.162 2 0.151 8 0.158 2 0.153 6

Average 0.169 3.9 0.177 1.2 0.168 3.8 0.167 6.0 0.169 3.6 0.167 5.4

6.6. Further Computational Experiments

In order to compare the approaches we developed, to the Tabu Search based ap-
proach from Vasquez and Vimont [128], which yielded the best known results for
the benchmark instances used, we tested some of our methods on a dual AMD
Opteron 250 machine with 2.4 GHz, with total CPU times of 1800 seconds.

In Table 6.18 we list the results of [128], CPLEX without additional constraints
(B&C), CPLEX applied to cores generated with e(duals) and δ = 0.25 (B&C
C), B&C MA D applied to the same cores with the equal cooperation strategy
(B&C MA D C e) and with the skewed cooperation strategy(B&C MA D C s).
Since we used a dual-processor machine, the parallel approaches were really exe-
cuted in parallel, and wall-clock times of about 900 and 1200 seconds respectively
were needed. Shown are the average percentage gaps to the optimal objective value

117

Chapter 6. The Multidimensional Knapsack Problem

of the LP-relaxation (%LP), the number of times this algorithm yielded the best so-
lution for this experiment (#), and for [128] we further display the average running
times in seconds on a Intel Pentium 4 computer with 2 GHz.

Table 6.18.: Solving the MKP with different variants and total CPU times of 1800
seconds per instance, compared to best known approach (average over
10 instances and average over all problem classes, n = 500).

[128] B&C B&C C B&C MA D C e B&C MA D C s

m α %LP # t[s] %LP # %LP # %LP # %LP #

5 0.25 0.074 8 47469 0.073 9 0.073 9 0.073 9 0.073 9
0.5 0.038 7 20486 0.038 10 0.038 10 0.038 10 0.038 9
0.75 0.024 10 24883 0.024 8 0.024 9 0.024 9 0.024 9

10 0.25 0.174 9 34964 0.190 2 0.189 2 0.192 2 0.185 3
0.5 0.082 8 26333 0.087 4 0.083 6 0.084 5 0.082 6
0.75 0.057 10 21156 0.063 2 0.061 3 0.062 2 0.061 3

30 0.25 0.482 10 97234 0.546 1 0.544 1 0.540 2 0.534 3
0.5 0.210 10 113418 0.237 0 0.234 0 0.236 0 0.235 0
0.75 0.135 10 148378 0.150 0 0.147 2 0.149 1 0.148 1

Average 0.142 9.1 59369 0.156 4.0 0.155 4.7 0.155 4.4 0.153 4.8

The results shown provide the same overall picture as in the previous sections, the
parallel approach with the skewed cooperation strategy can slightly improve the
results of the individual algorithm.

We outperform the results obtained in [128] for the m = 5 class, since we achieve
slightly better results in substantially shorter running times. For the classes with
m ∈ {10, 30} the results provided in [128] are usually better than those for our
approach in terms of solution quality, but not in terms of running times.

Most of the best known solutions for the instances tested are achieved by the ap-
proach proposed in [128]. However, the main drawbacks of this approach are its huge
running times of more than 80 hours for the largest OR-Library instances. Running
our pseudo-parallel (B&C MA D) approach for up to 20 hours on one instance of
each type indicated that the results of [128] can be reached in 6 out of 9 cases.

6.7. Conclusions

We first studied the distance between LP-relaxed and optimal solutions of the MKP.
For the benchmark instances used we empirically observed that theses distances were
small, below 10% of the problem size, and depended on the number of variables

118

6.7. Conclusions

as well as on the number of constraints. This fact was explored for solving hard
to solve benchmark instances, where we restricted our search to explore this more
promising neighborhood of the LP-relaxations first, which improved the performance
of CPLEX applied to those instances.

We then presented the core concept for MKP, and proved an interesting result about
the structure of the solution to its LP-relaxation. We then empirically studied the
size of MKP cores of instances we were able to solve to proven optimality, and
further investigated the usefulness of solving approximate cores of fixed size. We
then applied CPLEX, as well as a memetic algorithm to the core problems which
provided clearly and consistently better results than solving the original problems
within the given fixed run-time.

As the next step we presented a new VNS variant: Relaxation Guided Variable
Neighborhood Search (RGVNS). The order in which the neighborhoods are inves-
tigated is determined dynamically by estimating their improvement-potential using
quickly determined solutions to relaxations. This idea seems to be particularly useful
if the order of the neighborhoods is not obvious and their relaxations can be quickly
solved and yield relatively tight bounds. We tested this approach on standard bench-
mark instances of the multidimensional knapsack problem. The results obtained in
our computational experiments show a clear advantage of RGVNS compared to VNS
without guidance.

Finally we studied several collaborative combinations of the presented MA, RGVNS
and the ILP-based approaches, where a metaheuristic and an exact method are
executed in parallel. The collaborative approaches were given the same total CPU-
times as the individual algorithms, and were able to improve the results obtained in
some of the tested variants. We were able to achieve competitive results compared
to best-known solutions needing significantly lower running times.

The structural analysis of LP-relaxed and optimal solutions of combinatorial opti-
mization problems can lead to interesting results, such as the core concept, which
in turn can be used in different ways for improving the solution quality of already
available algorithms. In the future we want to investigate whether the core con-
cept can be usefully expanded to other combinatorial optimization problems. The
incorporation of ILP-based techniques in metaheuristics such as VNS yielded the
successful RGVNS algorithm, a promising method we intend to evaluate further on
other optimization problems. Finally, the cooperation of metaheuristics and ILP-
based techniques is very promising, since the collaborative approaches managed to
achieve better or equally good results as the individual algorithms within the same
total CPU-time. Using these approaches in a parallel computing environment (e.g.
multiprocessor machines or clusters) could lead to strongly improved solution quality
using the same wall clock times as the individual algorithms.

119

120

Chapter 7

Conclusions and

Future Research Directions

The topic of this thesis is the combination of metaheuristics and integer programming
based algorithms for solving two differentNP-hard cutting and packing problems: A
problem originating from the glass cutting industry, the three-stage two-dimensional
bin packing problem (2BP), and a problem first mentioned in the context of capital
budgeting, the multidimensional knapsack problem (MKP).

First we introduced metaheuristics and integer programming and then discussed
different state-of-the-art approaches of combining them to solve combinatorial opti-
mization problems. The two main categories into which we divided these techniques
were collaborative and integrative combinations. Some of these combinations are
dedicated to very specific combinatorial optimization problems, whereas others are
designed to be more generally useful. Altogether, the work surveyed documents
that both exact optimization techniques and metaheuristics have specific advan-
tages which complement each other. Suitable combinations of exact algorithms and
metaheuristics can benefit greatly from synergy and often exhibit significantly higher
performance with respect to solution quality and time. Some of the techniques pre-
sented are mature, whereas others are still in their infancy and need substantial
further research in order to develop them fully. Future work on such hybrid systems
is highly promising.

121

Chapter 7. Conclusions and Future Research Directions

Two-dimensional Bin Packing

We developed two polynomial-sized ILP models for 3-stage 2BP; a restricted model
and an unrestricted one. The restricted model is particularly useful for obtaining
near-optimal solutions to 3-stage 2BP quickly. Solving the unrestricted model is
computationally more expensive.

Further to this, a branch-and-price algorithm based on a set covering formulation for
2BP was proposed. This B&P algorithm was enhanced by dual subset inequalities
stabilizing the column generation process. Column generation was performed by
applying a hierarchy of up to four pricing methods: (a) a fast greedy heuristic, (b)
an evolutionary algorithm, (c) solving a restricted form of the pricing problem using
CPLEX, and finally (d) solving the complete pricing problem using CPLEX.

We performed extensive computational experiments on standard benchmark in-
stances in order to analyze the performance of the models and algorithms developed.
The lower bounds obtained by column generation were strong. The best average re-
sults were achieved by B&P with all the proposed enhancements, in particular the
four-level pricing strategy. These are, to our knowledge, the best known results for
the 3-stage two-dimensional bin packing problem.

More generally, column generation performed by using a hierarchy of smart heuris-
tics, which also includes metaheuristics such as evolutionary algorithms and exact
algorithms, can significantly improve the optimization speed and the capabilities of
branch-and-price in finding optimal or near-optimal solutions.

The Multidimensional Knapsack Problem

We first studied the distance between LP-relaxed and optimal solutions of the MKP.
We empirically observed, for the smaller benchmark instances that theses distances
were small, usually below 10% of the problem size, and depended on the number
of variables as well as on the number of constraints. This fact was exploited when
solving hard benchmark instances by restricting the search to exploring this more
promising neighborhood of the LP-relaxations first. This improved the performance
of CPLEX applied to those instances significantly.

We then presented the core concept for MKP, proved an interesting result about
the structure of the solution to its LP-relaxation and empirically studied the size of
MKP cores of smaller benchmark instances. The usefulness of solving approximate
cores of fixed size was investigated. We then applied CPLEX as well as a memetic
algorithm to the core problems, the results of which were clearly and consistently
better than solving the original problems within the given fixed run-time.

122

Chapter 7. Conclusions and Future Research Directions

As next step a new variable neighborhood search variant was presented: Relaxation
Guided Variable Neighborhood Search (RGVNS). In this, the order in which the
neighborhoods are investigated within variable neighborhood descent is dynamically
determined by estimating their improvement-potential using quickly determined so-
lutions to relaxations. This idea seems to be particularly useful if the order of the
neighborhoods is not obvious and their relaxations can be solved quickly and yield
relatively tight bounds. We tested this approach on standard benchmark instances
of the MKP. The results obtained in our computational experiments show a clear
advantage of RGVNS when compared to VNS without guidance.

We finally studied several collaborative combinations of the presented MA, RGVNS
and the ILP-based approaches, where a metaheuristic and an exact method are exe-
cuted in parallel. The collaborative approaches were given the same total CPU-times
as the individual algorithms, and they were able to improve the obtained results in
some of the tested variants. We were able to achieve competitive results compared
to those of the currently leading algorithms for MKP while needing significantly
lower running times.

Future Research Directions

The structural analysis of LP-relaxed and optimal solutions of combinatorial opti-
mization problems can lead to interesting results, such as the core concept, which
can be used in different ways for improving the solution quality of already available
algorithms. In the future we want to investigate whether the core concept can be
beneficially applied to other combinatorial optimization problems.

The incorporation of ILP-based techniques in metaheuristics such as VNS yielded the
successful RGVNS algorithm, a promising method we intend to evaluate further on
other optimization problems. Incorporating metaheuristics in ILP-based techniques
was shown to be successful for the two-dimensional bin-packing problem. Both of
these approaches show the effectiveness of integrative combinations.

Finally the cooperation of metaheuristics and ILP-based techniques is very promis-
ing, since the collaborative approaches managed to achieve better or equally good
results as the individual algorithms within the same total CPU-time. Using these
approaches in a parallel computing environment such as multiprocessor machines or
clusters could lead to strongly improved solution quality using the same wall clock
times as the individual algorithms.

In the future, we want to investigate further cooperative strategies for different col-
laborative combinations, as well as integrative approaches for solving combinatorial
optimization problems.

123

124

Appendix A

Additional Tables for the MKP

A.1. Distances between LP-relaxed and optimal solutions

In Tables A.1 to A.3 we display the absolute values of the distances between optimal
solutions of the MKP x∗ and the solutions to the LP-relaxation xLP

∆LP =
n
∑

j=1

|x∗
j − xLP

j |,

the integral part of xLP

∆LP int =
∑

j∈Jint

|x∗
j − xLP

j |, with Jint = {j = 1, . . . , n : xLP
j is integral},

and the fractional part of xLP

∆LP frac =
∑

j∈Jfrac

|x∗
j − xLP

j |, with Jfrac = {j = 1, . . . , n : xLP
j is fractional}.

We further display the Hamming distance between x∗ and the (possibly infeasible)
arithmetically rounded LP solution xRLP

∆LProunded =
n
∑

j=1

|x∗
j − xRLP

j | with xRLP
j = dxLP

j − 0.5e, j = 1, . . . , n,

125

Appendix A. Additional Tables for the MKP

and the Hamming distance between x∗ and a feasible solution x′ created by sorting
the items according to decreasing LP-relaxation solution values applying a greedy-fill
procedure

∆LP feasible =

n
∑

j=1

|x∗
j − x′

j |.

Table A.1.: Distances between LP and optimal solutions

n m α ∆LP ∆LP int ∆LP frac ∆LP rounded ∆LP feasible

100 5 0.25 5.04 2 3.04 4 7
6.04 3 3.04 7 11
5.96 4 1.96 6 6
6.55 5 1.55 7 7
6.44 4 2.44 6 6
5.76 4 1.76 5 8
6.17 4 2.17 5 8
4.93 2 2.93 5 9
6.28 4 2.28 6 9
5.67 4 1.67 5 6

0.5 6.83 4 2.83 7 9
6.62 5 1.62 7 10
8.99 7 1.99 9 12
6.14 4 2.14 6 6
4.59 2 2.59 4 6
6.35 5 1.35 7 8
4.84 3 1.84 4 12
5.55 3 2.55 5 7
8.29 5 3.29 8 12
8.96 6 2.96 9 11

0.75 6.56 4 2.56 7 11
3.75 3 0.75 3 9
7.88 6 1.88 7 9
7.98 6 1.98 8 9
6.16 3 3.16 6 10
7.30 4 3.30 8 14
7.54 6 1.54 7 17
6.91 4 2.91 7 10
5.22 3 2.22 5 20
6.28 4 2.28 7 7

126

A.1. Distances between LP-relaxed and optimal solutions

Table A.2.: Distances between LP and optimal solutions

n m α ∆LP ∆LP int ∆LP frac ∆LP rounded ∆LP feasible

250 5 0.25 6.90 6 0.90 6 7
9.91 7 2.91 10 10
5.47 3 2.47 5 14

11.63 8 3.63 12 13
6.53 5 1.53 6 9
6.18 4 2.18 7 7
7.75 5 2.75 9 9
6.88 5 1.88 7 7
7.74 6 1.74 7 9
9.13 6 3.13 9 10

0.5 5.69 4 1.69 6 12
7.03 6 1.03 6 15
9.87 7 2.87 10 20
5.72 4 1.72 6 9

10.60 8 2.60 10 12
7.19 5 2.19 7 6

10.37 7 3.37 11 11
10.53 9 1.53 9 25
7.61 6 1.61 7 8

10.78 8 2.78 12 20

0.75 9.01 7 2.01 9 18
9.12 7 2.12 9 18
7.24 5 2.24 7 34
8.89 7 1.89 8 18
7.03 6 1.03 6 8
6.45 4 2.45 7 7
8.36 6 2.36 9 30
7.19 5 2.19 8 7
6.20 4 2.20 6 7
9.13 6 3.13 11 29

127

Appendix A. Additional Tables for the MKP

Table A.3.: Distances between LP and optimal solutions

n m α ∆LP ∆LP int ∆LP frac ∆LP rounded ∆LP feasible

100 10 0.25 9.36 5 4.36 8 10
9.13 5 4.13 8 12
7.6 2 5.6 7 14

10.11 4 6.11 10 17
8.97 5 3.97 8 8
8.75 6 2.75 9 9

10 5 5 10 13
11.44 6 5.44 11 13
8.81 6 2.81 7 11
5.95 1 4.95 6 8

0.5 8.76 5 3.76 8 10
4.58 2 2.58 4 10
6.49 3 3.49 5 17
9.26 6 3.26 8 10
6.84 4 2.84 7 16
3.36 0 3.36 0 7
8.25 5 3.25 6 23
6.49 3 3.49 5 14
5.8 2 3.8 5 19

8.92 4 4.92 9 20

0.75 3.74 1 2.74 2 19
4.97 1 3.97 5 22
8.1 4 4.1 8 12

5.97 2 3.97 6 11
5.53 2 3.53 5 11
9.43 5 4.43 10 16
9.06 3 6.06 10 24
8.13 4 4.13 7 22
6.25 2 4.25 7 19
6.33 2 4.33 5 18

128

A.2. MKP Core Structure

A.2. MKP Core Structure

In Tables A.4 to A.6 we examine cores generated by using the scaled efficiency
e(scaled), the efficiency e(st), the efficiency e(fp), and finally the efficiency e(duals)
(see also Section 6.3.3). Listed are the indices of the first zero (f) and the last one
(l), as well as the absolute sizes of the cores (s).

Table A.4.: Split intervals and cores for different efficiency measures, listed are their
first (f) and last (l) indices as well as their sizes (n = 100, m = 5).

e(scaled) e(st) e(fp) e(duals)
α Se Ce Se Ce Se Ce Se Ce

f l s f l s f l s f l s f l s f l s f l s f l s

0.25 17 34 18 17 54 38 16 39 24 16 50 35 17 37 21 17 50 34 28 32 5 19 32 14
22 33 12 18 33 16 14 40 27 19 40 22 17 38 22 20 38 19 27 31 5 23 32 10
24 40 17 17 41 25 22 40 19 15 41 27 23 41 19 17 40 24 27 31 5 18 45 28
7 46 40 8 44 37 7 53 47 7 43 37 8 49 42 7 44 38 26 30 5 16 37 22
17 43 27 12 54 43 18 43 26 14 57 44 19 42 24 14 55 42 27 31 5 11 41 31
25 36 12 20 37 18 24 39 16 16 37 22 25 36 12 19 38 20 27 31 5 20 36 17
14 50 37 16 50 35 14 50 37 20 50 31 14 50 37 17 50 34 28 32 5 25 40 16
22 50 29 22 56 35 21 49 29 21 46 26 22 48 27 22 52 31 26 30 5 26 57 32
12 33 22 12 52 41 17 33 17 17 51 35 14 32 19 14 51 38 26 30 5 22 37 16
13 32 20 21 37 17 9 38 30 21 43 23 11 34 24 21 41 21 25 29 5 18 33 16

0.5 44 71 28 37 73 37 46 69 24 37 74 38 45 70 26 38 73 36 50 54 5 41 57 17
45 68 24 29 77 49 44 66 23 35 70 36 45 67 23 29 73 45 48 52 5 42 56 15
36 65 30 34 74 41 43 65 23 30 78 49 37 64 28 33 76 44 52 56 5 45 68 24
37 87 51 26 74 49 32 86 55 25 73 49 36 87 52 27 73 47 50 54 5 45 68 24
39 58 20 37 62 26 46 58 13 36 59 24 44 58 15 37 59 23 51 55 5 38 58 21
34 68 35 43 78 36 43 64 22 47 74 28 40 65 26 45 73 29 52 56 5 48 59 12
49 68 20 40 62 23 45 67 23 42 62 21 48 67 20 41 62 22 51 55 5 38 63 26
41 60 20 7 65 59 43 64 22 2 64 63 45 62 18 4 63 60 51 55 5 11 65 55
37 75 39 37 70 34 36 77 42 36 63 28 37 75 39 37 66 30 50 54 5 47 57 11
45 72 28 45 66 22 42 64 23 42 61 20 43 66 24 43 64 22 52 56 5 46 61 16

0.75 63 78 16 72 91 20 60 82 23 71 90 20 62 80 19 71 91 21 74 78 5 73 88 16
46 98 53 58 99 42 53 93 41 65 96 32 50 95 46 59 99 41 75 79 5 60 81 22
68 82 15 65 92 28 66 83 18 61 94 34 67 83 17 64 93 30 75 79 5 66 86 21
64 95 32 55 86 32 64 90 27 70 90 21 64 92 29 63 86 24 74 78 5 68 86 19
66 90 25 62 94 33 67 89 23 60 94 35 66 89 24 60 94 35 75 79 5 71 93 23
74 90 17 65 87 23 75 93 19 62 91 30 76 91 16 65 87 23 73 77 5 66 85 20
63 87 25 69 89 21 67 84 18 71 84 14 64 87 24 71 87 17 74 78 5 67 84 18
69 86 18 57 86 30 69 84 16 57 84 28 69 85 17 57 85 29 74 78 5 69 81 13
67 91 25 67 86 20 67 91 25 67 87 21 67 91 25 67 87 21 73 77 5 72 85 14
64 80 17 60 80 21 65 82 18 64 80 17 67 81 15 62 81 20 73 77 5 52 81 30

129

Appendix A. Additional Tables for the MKP

Table A.5.: Split intervals and cores for different efficiency measures, listed are their
first (f) and last (l) indices as well as their sizes (n = 250, m = 5).

e(scaled) e(st) e(fp) e(duals)
α Se Ce Se Ce Se Ce Se Ce

f l s f l s f l s f l s f l s f l s f l s f l s

0.25 55 82 28 55 101 47 53 88 36 53 96 44 56 82 27 56 97 42 71 75 5 63 91 29
69 81 13 50 99 50 61 87 27 38 102 65 65 85 21 42 100 59 71 75 5 50 83 34
66 96 31 65 96 32 65 94 30 65 92 28 65 95 31 65 95 31 75 79 5 60 81 22
48 108 61 38 106 69 43 103 61 41 98 58 46 105 60 43 101 59 68 72 5 54 102 49
46 98 53 50 98 49 46 98 53 57 98 42 45 98 54 56 98 43 71 75 5 62 79 18
51 101 51 51 101 51 55 106 52 54 106 53 54 103 50 54 103 50 72 76 5 58 94 37
65 110 46 52 145 94 67 110 44 52 151 100 66 110 45 52 145 94 73 77 5 69 119 51
49 91 43 49 102 54 45 86 42 45 103 59 48 88 41 48 100 53 71 75 5 66 104 39
54 118 65 52 108 57 57 111 55 42 101 60 56 115 60 44 105 62 74 78 5 68 85 18
66 110 45 54 110 57 73 100 28 55 100 46 70 103 34 54 103 50 70 74 5 63 82 20

0.5 89 178 90 101 162 62 98 174 77 109 175 67 94 176 83 105 166 62 130 134 5 109 145 37
104 171 68 108 171 64 99 176 78 106 176 71 106 174 69 107 174 68 130 134 5 125 146 22
125 137 13 117 145 29 115 148 34 118 148 31 122 143 22 118 143 26 128 132 5 119 140 22
91 184 94 74 184 111 100 169 70 78 169 92 94 179 86 76 179 104 131 135 5 106 152 47
103 155 53 83 155 73 107 152 46 89 153 65 105 153 49 87 153 67 127 131 5 106 141 36
98 192 95 94 192 99 105 200 96 85 200 116 102 195 94 88 195 108 129 133 5 123 141 19
128 144 17 96 160 65 127 141 15 99 157 59 128 143 16 98 159 62 132 136 5 122 144 23
123 171 49 107 171 65 123 182 60 92 182 91 124 177 54 101 177 77 131 135 5 119 141 23
95 133 39 103 209 107 95 132 38 103 202 100 95 133 39 104 206 103 128 132 5 113 165 53
96 149 54 96 156 61 91 170 80 91 170 80 94 155 62 94 158 65 128 132 5 117 139 23

0.75 195 213 19 155 213 59 178 211 34 153 211 59 189 213 25 154 213 60 189 193 5 175 200 26
174 200 27 159 200 42 177 200 24 175 200 26 175 201 27 166 201 36 189 193 5 171 195 25
175 198 24 174 210 37 170 200 31 167 205 39 175 198 24 171 205 35 190 194 5 168 198 31
157 194 38 182 227 46 167 195 29 184 225 42 162 195 34 182 226 45 189 193 5 184 210 27
162 196 35 167 211 45 167 197 31 176 204 29 167 197 31 173 207 35 187 191 5 183 201 19
172 197 26 167 220 54 171 194 24 161 214 54 171 195 25 164 217 54 188 192 5 180 203 24
180 212 33 166 212 47 182 209 28 174 209 36 181 211 31 171 211 41 189 193 5 184 199 16
180 217 38 161 208 48 182 217 36 159 210 52 181 216 36 159 209 51 190 194 5 174 206 33
178 206 29 178 215 38 176 202 27 176 216 41 178 202 25 178 216 39 188 192 5 173 205 33
191 207 17 176 205 30 189 223 35 174 211 38 188 214 27 175 206 32 188 192 5 173 198 26

130

A.2. MKP Core Structure

Table A.6.: Split intervals and cores for different efficiency measures, listed are their
first (f) and last (l) indices as well as their sizes (n = 100, m = 10).

e(scaled) e(st) e(fp) e(duals)
α Se Ce Se Ce Se Ce Se Ce

f l s f l s f l s f l s f l s f l s f l s f l s

0.25 6 58 53 11 48 38 4 62 59 12 49 38 6 59 54 12 47 36 22 31 10 18 48 31
14 54 41 15 53 39 9 60 52 10 54 45 11 57 47 13 54 42 23 32 10 22 42 21
8 39 32 8 53 46 8 36 29 8 47 40 8 37 30 8 52 45 21 30 10 15 31 17
4 54 51 6 56 51 4 51 48 3 54 52 4 52 49 6 54 49 23 32 10 16 35 20
10 50 41 2 35 34 15 48 34 3 35 33 13 49 37 3 36 34 22 31 10 17 41 25
5 58 54 3 45 43 7 58 52 2 46 45 6 57 52 2 46 45 24 33 10 14 42 29
19 60 42 19 52 34 19 62 44 14 49 36 19 60 42 18 52 35 23 32 10 19 47 29
6 54 49 7 48 42 7 59 53 6 48 43 7 56 50 6 48 43 21 30 10 17 37 21
6 45 40 5 35 31 3 47 45 3 37 35 4 46 43 4 36 33 22 31 10 11 37 27
12 34 23 12 36 25 17 33 17 21 35 15 17 33 17 17 36 20 23 32 10 23 34 12

0.5 15 65 51 28 92 65 15 70 56 28 93 66 16 68 53 28 93 66 46 54 9 35 63 29
30 83 54 30 81 52 29 85 57 29 81 53 29 84 56 29 81 53 50 58 9 48 68 21
28 58 31 28 75 48 24 62 39 24 80 57 27 58 32 27 77 51 46 55 10 40 81 42
18 64 47 20 67 48 15 66 52 24 70 47 17 65 49 22 67 46 50 59 10 41 66 26
26 61 36 21 73 53 19 63 45 22 71 50 23 62 40 22 71 50 46 55 10 33 64 32
24 69 46 37 62 26 20 70 51 36 62 27 22 69 48 36 61 26 48 57 10 49 53 5
37 72 36 22 69 48 30 74 45 21 72 52 33 73 41 22 71 50 48 57 10 40 70 31
36 72 37 36 71 36 36 72 37 36 73 38 36 73 38 36 72 37 49 58 10 47 59 13
38 69 32 38 69 32 41 72 32 44 72 29 41 72 32 41 72 32 48 57 10 46 57 12
44 67 24 39 82 44 39 68 30 35 80 46 40 69 30 37 81 45 48 57 10 38 83 46

0.75 62 96 35 61 88 28 67 97 31 62 88 27 63 97 35 62 89 28 72 81 10 68 81 14
62 95 34 61 95 35 59 97 39 58 97 40 61 95 35 59 95 37 70 79 10 65 78 14
54 98 45 53 96 44 49 99 51 54 94 41 52 98 47 54 96 43 72 81 10 63 82 20
42 99 58 42 99 58 46 98 53 46 98 53 45 98 54 45 98 54 70 78 9 66 79 14
66 97 32 69 85 17 66 99 34 68 84 17 66 97 32 69 84 16 71 79 9 67 91 25
57 93 37 61 94 34 57 93 37 58 94 37 57 93 37 60 94 35 72 80 9 52 82 31
62 94 33 54 94 41 58 95 38 53 95 43 60 95 36 54 95 42 71 80 10 63 87 25
58 94 37 58 94 37 55 99 45 53 99 47 58 97 40 55 97 43 70 79 10 66 82 17
60 98 39 64 90 27 61 97 37 65 91 27 61 98 38 64 90 27 71 80 10 70 84 15
67 91 25 60 86 27 67 87 21 61 90 30 67 91 25 61 88 28 72 81 10 69 81 13

131

Appendix A. Additional Tables for the MKP

A.3. Fixed MKP Core Results

Tables A.7 to A.9 list the results obtained by exactly solving cores of fixed size using
CPLEX (see Section 6.3.3). We created the cores by setting δ to 0.1n, 0.15n, 0.2n,
2m + 0.1n, and 2m + 0.2n. The e(duals) efficiency was used. Given are objective
values and run-times.

Table A.7.: Solving cores of different sizes exactly (n = 100, m = 5).

α no core δ = 0.1n δ = 0.15n δ = 0.2n δ = 2m + 0.1n δ = 2m + 0.2n
z t[s] z t[s] z t[s] z t[s] z t[s] z t[s]

0.25 24381 32.16 24329 0.51 24381 2.75 24381 10.46 24381 10.46 24381 26.43
24274 12.51 24274 0.09 24274 0.80 24274 2.91 24274 2.91 24274 5.82
23551 22.80 23523 0.40 23538 2.40 23551 5.86 23551 5.86 23551 12.45
23534 63.82 23477 0.84 23534 4.68 23534 20.05 23534 20.05 23534 37.66
23991 30.97 23939 0.18 23959 2.42 23991 9.25 23991 9.25 23991 16.10
24613 11.37 24613 0.16 24613 0.91 24613 3.68 24613 3.68 24613 6.58
25591 2.90 25591 0.18 25591 0.63 25591 1.60 25591 1.60 25591 2.64
23410 8.97 23367 0.19 23374 1.25 23374 5.76 23374 5.76 23410 5.00
24216 14.57 24216 0.32 24216 0.99 24216 3.99 24216 3.99 24216 9.94
24411 14.44 24411 0.11 24411 1.55 24411 4.70 24411 4.70 24411 9.50

0.5 42757 3.75 42705 0.21 42757 0.43 42757 1.22 42757 1.22 42757 1.92
42545 5.46 42545 0.24 42545 0.93 42545 2.38 42545 2.38 42545 4.67
41968 180.83 41959 0.35 41968 3.93 41968 36.83 41968 36.83 41968 108.66
45090 17.28 45033 0.21 45070 2.70 45090 4.65 45090 4.65 45090 11.37
42218 10.02 42148 0.43 42198 1.65 42218 2.67 42218 2.67 42218 6.80
42927 2.42 42927 0.12 42927 0.54 42927 1.08 42927 1.08 42927 1.69
42009 1.22 41980 0.18 41980 0.53 42009 0.51 42009 0.51 42009 0.83
45020 41.25 45010 0.32 45010 4.00 45010 12.99 45010 12.99 45010 30.95
43441 2.31 43441 0.16 43441 0.60 43441 1.15 43441 1.15 43441 1.57
44554 8.95 44554 0.33 44554 0.96 44554 2.10 44554 2.10 44554 6.21

0.75 59822 2.28 59799 0.13 59822 0.42 59822 0.97 59822 0.97 59822 1.84
62081 1.71 61983 0.19 62019 0.71 62081 0.44 62081 0.44 62081 0.53
59802 7.11 59760 0.51 59802 1.67 59802 2.98 59802 2.98 59802 4.24
60479 13.44 60479 0.22 60479 2.04 60479 5.39 60479 5.39 60479 7.70
61091 5.00 61029 0.24 61029 1.53 61091 1.69 61091 1.69 61091 2.90
58959 8.44 58959 0.09 58959 0.84 58959 4.38 58959 4.38 58959 5.88
61538 2.85 61538 0.20 61538 0.59 61538 1.23 61538 1.23 61538 1.85
61520 2.87 61520 0.29 61520 0.51 61520 1.39 61520 1.39 61520 1.97
59453 1.43 59453 0.11 59453 0.39 59453 0.76 59453 0.76 59453 1.01
59965 14.60 59960 0.13 59960 1.38 59960 4.28 59960 4.28 59965 8.53

132

A.3. Fixed MKP Core Results

Table A.8.: Solving cores of different sizes exactly (n = 250, m = 5).

α no core δ = 0.1n δ = 0.15n δ = 0.2n δ = 2m + 0.1n δ = 2m + 0.2n
z t[s] z t[s] z t[s] z t[s] z t[s] z t[s]

0.25 59312 112.63 59312 27.04 59312 60.59 59312 101.18 59312 36.66 59312 77.26
61472 1755.26 61472 327.09 61472 1628.63 61472 1722.28 61472 1106.27 61472 1830.74
62130 50.36 62130 14.28 62130 19.25 62130 29.38 62130 19.37 62130 32.16
59463 3563.95 59453 1820.16 59463 2289.01 59463 2851.70 59463 2106.51 59463 3772.26
58951 3223.04 58951 383.31 58951 2402.69 58951 2543.56 58951 2181.86 58951 2479.33
60077 2729.24 60077 487.50 60077 2341.98 60077 2231.30 60077 1743.16 60077 2352.71
60414 853.05 60396 819.66 60396 1746.54 60414 664.16 60396 1929.33 60414 675.84
61472 1919.33 61449 1248.75 61472 1245.94 61472 1552.72 61472 817.38 61472 1852.49
61885 473.90 61885 98.08 61885 249.26 61885 330.36 61885 206.50 61885 349.91
58959 61.60 58959 24.14 58959 30.93 58959 38.35 58959 32.75 58959 40.14

0.5 109109 1027.54 109109 114.38 109109 496.63 109109 621.98 109109 418.25 109109 669.66
109841 186.65 109841 37.92 109841 63.77 109841 102.99 109841 57.77 109841 117.61
108508 1518.97 108508 294.34 108508 853.16 108508 1037.08 108508 864.18 108508 1207.03
109383 1023.42 109378 187.48 109383 473.01 109383 593.83 109383 435.13 109383 744.05
110720 3339.30 110720 914.55 110720 2288.79 110720 2465.61 110720 2284.07 110720 2815.36
110256 1850.41 110256 201.17 110256 1801.53 110256 1847.45 110256 1281.71 110256 1633.33
109040 2071.48 109040 304.08 109040 940.12 109040 1018.66 109040 985.95 109040 1211.04
109042 3232.11 109042 1075.12 109042 2073.19 109042 1923.72 109042 2066.98 109042 2134.04
109971 1364.62 109957 200.49 109971 308.85 109971 544.78 109971 344.41 109971 594.77
107058 2058.78 107058 383.94 107058 1784.36 107058 1761.84 107058 1660.88 107058 1796.97

0.75 149665 1836.91 149665 297.77 149665 647.57 149665 1125.22 149665 487.92 149665 1011.71
155944 431.14 155944 79.72 155944 228.58 155944 286.43 155944 303.58 155944 339.55
149334 1693.64 149334 247.96 149334 852.67 149334 1019.46 149334 891.75 149334 1012.22
152130 816.43 152130 167.97 152130 460.42 152130 540.05 152130 485.89 152130 535.75
150353 897.36 150353 316.83 150353 438.71 150353 1372.04 150353 415.68 150353 572.61
150045 31.81 150045 9.07 150045 13.65 150045 15.92 150045 12.58 150045 17.38
148607 13.73 148607 5.58 148607 5.99 148607 6.88 148607 5.26 148607 8.31
149782 1461.65 149782 180.35 149782 867.56 149782 1082.42 149782 380.46 149782 1052.60
155075 140.55 155075 24.15 155075 67.03 155075 71.34 155075 55.45 155075 79.08
154668 848.93 154668 77.07 154668 299.36 154668 378.62 154668 224.39 154668 395.30

133

Appendix A. Additional Tables for the MKP

Table A.9.: Solving cores of different sizes exactly (n = 100, m = 10).

α no core δ = 0.1n δ = 0.15n δ = 0.2n δ = 2m + 0.1n δ = 2m + 0.2n
z t[s] z t[s] z t[s] z t[s] z t[s] z t[s]

0.25 23064 348.29 22954 0.13 23050 1.10 23059 19.08 23064 141.60 23064 233.12
22801 299.35 22750 0.13 22750 4.44 22801 45.69 22801 124.26 22801 175.43
22131 55.65 22081 0.20 22131 1.27 22131 8.30 22131 23.01 22131 33.39
22772 703.33 22694 0.09 22772 1.13 22772 50.78 22772 311.79 22772 438.98
22751 26.50 22528 0.14 22654 1.34 22751 4.72 22751 14.72 22751 19.47
22777 316.51 22613 0.16 22716 1.74 22777 31.06 22777 193.82 22777 245.42
21875 33.90 21671 0.39 21841 0.82 21875 7.91 21875 17.66 21875 26.08
22635 25.21 22542 0.13 22635 0.72 22635 7.15 22635 12.02 22635 16.30
22511 30.70 22418 0.14 22423 1.77 22511 6.94 22511 16.48 22511 19.20
22702 54.94 22702 0.04 22702 0.17 22702 6.49 22702 24.57 22702 45.31

0.5 41395 107.79 41331 0.09 41331 0.60 41395 6.00 41395 44.27 41395 86.53
42344 54.89 42157 0.18 42344 0.93 42344 9.13 42344 31.60 42344 45.01
42401 96.34 42306 0.32 42350 2.61 42350 20.20 42350 118.13 42401 64.96
45624 120.55 45408 0.25 45624 1.21 45624 13.43 45624 61.86 45624 102.12
41884 43.01 41737 0.07 41801 0.56 41884 5.22 41884 22.86 41884 27.81
42995 129.76 42995 0.08 42995 0.91 42995 13.02 42995 63.05 42995 99.15
43574 169.38 43435 0.15 43552 0.97 43574 8.56 43574 46.33 43574 114.08
42970 64.81 42970 0.06 42970 0.81 42970 4.45 42970 35.81 42970 45.81
42212 99.74 42212 0.13 42212 0.54 42212 9.59 42212 32.04 42212 72.61
41207 85.19 41050 0.16 41078 1.61 41134 35.86 41165 131.58 41207 67.38

0.75 57375 4.79 57375 0.03 57375 0.37 57375 1.56 57375 2.88 57375 3.43
58978 54.72 58978 0.07 58978 1.19 58978 12.90 58978 41.01 58978 40.66
58391 51.69 58310 0.11 58391 0.57 58391 8.18 58391 29.65 58391 37.82
61966 8.64 61966 0.05 61966 0.22 61966 2.19 61966 4.01 61966 6.23
60803 9.96 60797 0.08 60797 0.24 60803 3.01 60803 5.66 60803 6.63
61437 24.14 61336 0.23 61348 1.90 61368 14.57 61437 9.87 61437 13.18
56377 89.21 56351 0.05 56377 1.22 56377 11.39 56377 38.32 56377 62.72
59391 11.13 59391 0.15 59391 0.74 59391 3.15 59391 6.25 59391 7.78
60205 14.38 60205 0.07 60205 0.48 60205 1.70 60205 7.47 60205 9.84
60633 17.12 60633 0.11 60633 1.26 60633 4.34 60633 10.60 60633 11.42

134

Bibliography

[1] E. Aarts and J. K. Lenstra. Local Search in Combinatorial Optimization. John
Wiley and Sons, 1997.

[2] R. K. Ahuja, Ö. Ergun, J. B. Orlin, and A. P. Punnen. A survey of very
large-scale neighborhood search techniques. Discrete Applied Mathematics,
123(1-3):75–102, 2002.

[3] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. On the solution of the
traveling salesman problem. Documenta Mathematica, Extra Volume ICM
III:645–656, 1998.

[4] T. Bäck, D. B. Fogel, and Z. Michalewicz. Handbook of Evolutionary Compu-
tation. Oxford University Press, New York, 1997.

[5] J. E. Baker. Reducing bias and inefficiency in the selection algorithm. In
Proceedings of the Second International Conference on Genetic Algorithms on
Genetic algorithms and their application, pages 14–21, Hillsdale, NJ, USA,
1987. Lawrence Erlbaum Associates, Inc.

[6] E. Balas and E. Zemel. An algorithm for large zero-one knapsack problems.
Operations Research, 28:1130–1154, 1980.

[7] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and
P. H. Vance. Branch-and-price: Column generation for solving huge integer
programs. Operations Research, 46(3):316–329, 1998.

135

Bibliography

[8] H. Ben Amor, J. Desrosiers, and J. Valério de Carvalho. Dual-optimal inequali-
ties for stabilized column generation. Technical Report G-2003-20, Les Cahiers
du GERAD, HEC Montréal and GERAD, Canada, 2003. Under revision for
Operations Research.

[9] J. O. Berkey and P. Y. Wang. Two-dimensional finite bin packing algorithms.
Journal of the Operational Research Society, 38:423–429, 1987.

[10] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena
Scientific, 1997.

[11] S. Bisotto, F. Corno, P. Prinetto, M. Rebaudengo, and M. S. Reorda. Optimiz-
ing Area Loss in Flat Glass Cutting. In GALESIA97, IEE/IEEE International
Conference on Genetic ALgorithms in Engineering Systems: Innovations and
Applications, Glasgow, UK, 1997.

[12] E. K. Burke, P. I. Cowling, and R. Keuthen. Effective local and guided variable
neighborhood search methods for the asymmetric travelling salesman problem.
In E. Boers et al., editors, Applications of Evolutionary Computing: EvoWork-
shops 2001, volume 2037 of LNCS, pages 203–212. Springer, 2001.

[13] S. Chen, S. Talukdar, and N. Sadeh. Job-shop-scheduling by a team of asyn-
chronous agents. In IJCAI-93 Workshop on Knowledge-Based Production,
Scheduling and Control, Chambery, France, 1993.

[14] P. C. Chu and J. Beasley. A genetic algorithm for the multiconstrained knap-
sack problem. Journal of Heuristics, 4:63–86, 1998.

[15] F. Chung, M. Garey, and D. Johnson. On packing two-dimensional bins. SIAM
Journal of Algebraic and Discrete Methods, 3:66–76, 1982.

[16] D. Clements, J. Crawford, D. Joslin, G. Nemhauser, M. Puttlitz, and
M. Savelsbergh. Heuristic optimization: A hybrid AI/OR approach. In Pro-
ceedings of the Workshop on Industrial Constraint-Directed Scheduling, 1997.
In conjunction with the Third Intenational Conference on Principles and Prac-
tice of Constraint Programming (CP97).

[17] R. K. Congram. Polynomially Searchable Exponential Neighbourhoods for Se-
quencing Problems in Combinatorial Optimisation. PhD thesis, University of
Southampton, Faculty of Mathematical Studies, UK, 2000.

[18] R. K. Congram, C. N. Potts, and S. L. van de Velde. An iterated dynasearch
algorithm for the single-machine total weighted tardiness scheduling problem.
INFORMS Journal on Computing, 14(1):52–67, 2002.

136

Bibliography

[19] C. Cotta and J. M. Troya. Embedding branch and bound within evolutionary
algorithms. Applied Intelligence, 18:137–153, 2003.

[20] E. Danna, E. Rothberg, and C. Le Pape. Exploring relaxation induced neigh-
bourhoods to improve mip solutions. Technical report, ILOG, 2003.

[21] G. B. Dantzig. Linear Programming and Extensions. Princeton University
Press, 1963.

[22] C. Darwin. The Origin of Species. John Murray, 1859.

[23] L. Davis. Applying adaptive algorithms to epistatic domains. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI), pages
162–164, 1985.

[24] R. Dawkins. The selfish gene. Oxford University Press, Oxford, 1976.

[25] J. Denzinger and T. Offermann. On cooperation between evolutionary al-
gorithms and other search paradigms. In Proc. Congress on Evolutionary
Computation (CEC) 1999. IEEE Press, 1999.

[26] G. Desaulniers, J. Desrosiers, and M. Solomon, editors. Column Generation.
Kluwer, 2005.

[27] G. Desaulniers, J. Desrosiers, and M. M. Solomon. Accelerating strategies in
column generation methods for vehicle routing and crew scheduling problems.
In C. C. Ribeiro and P. Hansen, editors, Essays and Surveys in Metaheuristics,
pages 309–324. Kluwer, Boston, 2001.

[28] G. Dobson. Worst-case analysis of greedy heuristics for integer programming
with nonnegative data. Mathematics of Operations Research, 7:515–531, 1982.

[29] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cambridge,
MA, 2004.

[30] I. Dumitrescu and T. Stuetzle. Combinations of local search and exact algo-
rithms. In G. R. Raidl, J.-A. Meyer, M. Middendorf, S. Cagnoni, J. J. R.
Cardalda, D. W. Corne, J. Gottlieb, A. Guillot, E. Hart, C. G. Johnson, and
E. Marchiori, editors, Applications of Evolutionary Computation, volume 2611
of LNCS, pages 211–223. Springer, 2003.

[31] H. Dyckhoff, G. Scheithauer, and J. Terno. Cutting and packing: An anno-
tated bibliography. In M. Dell’Amico, F. Maffioli, and S. Martello, editors,
Annotated Bibliographies in Combinatorial Optimization, pages 393–412. Wi-
ley, 1997.

137

Bibliography

[32] M. Dyer and A. Frieze. Probabilistic analysis of the multidimensional knapsack
problem. Mathematics of Operations Research, 14:162–176, 1989.

[33] A. Eiben and J. Smith. Introduction to Evolutionary Computing. Springer,
Berlin Heidelberg, 2003.

[34] G. R. Filho and L. A. N. Lorena. Constructive genetic algorithm and column
generation: an application to graph coloring. In Proceedings of APORS 2000 -
The Fifth Conference of the Association of Asian-Pacific Operations Research
Societies within IFORS, 2000.

[35] M. Fischetti and A. Lodi. Local Branching. Mathematical Programming Series
B, 98:23–47, 2003.

[36] L. J. Fogel, A. J. Owens, and M. Walsh. Artificial Intelligence through Simu-
lated Evolution. Wiley, Chichester, UK, 1966.

[37] A. P. French, A. C. Robinson, and J. M.Wilson. Using a hybrid genetic-
algorithm/branch and bound approach to solve feasibility an optimization in-
teger programming problems. Journal of Heuristics, 7:551–564, 2001.

[38] A. Fréville. The multidimensional 0-1 knapsack problem: An overview. Euro-
pean Journal of Operational Research, 155:1–21, 2004.

[39] A. Fréville and G. Plateau. An efficient preprocessing procedure for the mul-
tidimensional 0–1 knapsack problem. Discrete Applied Mathematics, 49:189–
212, 1994.

[40] A. Fritsch. Verschnittoptimierung durch iteriertes Matching. Master’s thesis,
University of Osnabrück, Germany, 1994.

[41] J. E. Gallardo, C. Cotta, and A. J. Fernández. Solving the multidimensional
knapsack problem using an evolutionary algorithm hybridized with branch
and bound. In Proceedings of the First International Work-Conference on the
Interplay Between Natural and Artificial Computation, volume 3562 of LNCS,
pages 21–30. Springer, 2005.

[42] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, New York, 1979.

[43] B. Gavish and H. Pirkul. Efficient algorithms for solving the multiconstraint
zero-one knapsack problem to optimality. Mathematical Programming, 31:78–
105, 1985.

[44] P. Gilmore and R. Gomory. The theory and computation of knapsack func-
tions. Operations Research, 14:1045–1075, 1966.

138

Bibliography

[45] P. C. Gilmore and R. E. Gomory. A linear programming approach to the
cutting-stock problem (part I). Operations Research, 9:849–859, 1961.

[46] P. C. Gilmore and R. E. Gomory. A linear programming approach to the
cutting-stock problem (part II). Operations Research, 11:363–888, 1963.

[47] P. C. Gilmore and R. E. Gomory. Multistage cutting-stock problems of two
and more dimensions. Operations Research, 13:90–120, 1965.

[48] F. Glover and G. Kochenberger. Critical event tabu search for multidimen-
sional knapsack problems. In I. Osman and J. Kelly, editors, Metaheuristics:
Theory and Applications, pages 407–427. Kluwer Academic Publishers, 1996.

[49] F. Glover and G. Kochenberger, editors. Handbook of Metaheuristics, vol-
ume 57 of International Series in Operations Research & Management Science.
Kluwer Academic Publishers, Norwell, MA, 2003.

[50] F. Glover and G. Kochenberger, editors. Handbook of Metaheuristics, vol-
ume 57 of International Series in Operations Research & Management Science.
Kluwer Academic Publishers, 2003.

[51] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.

[52] F. Glover, M. Laguna, and R. Mart́ı. Fundamentals of scatter search and path
relinking. Control and Cybernetics, 39(3):653–684, 2000.

[53] A. V. Goldberg and A. Marchetti-Spaccamela. On finding the exact solution
of a zero-one knapsack problem. In STOC ’84: Proceedings of the sixteenth
annual ACM symposium on Theory of computing, pages 359–368, New York,
NY, USA, 1984. ACM Press.

[54] D. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, 1989.

[55] D. Goldberg and R. Lingle. Alleles, loci, and the travelling salesman problem.
In J. J. Grefenstette, editor, Proceedings of the First Int. Conf. on Genetic
Algorithms, pages 154–159. Lawrence Erlbaum, 1985.

[56] J. Gottlieb. On the effectivity of evolutionary algorithms for multidimensional
knapsack problems. In C. Fonlupt et al., editors, Proceedings of Artificial
Evolution: Fourth European Conference, volume 1829 of LNCS, pages 22–37.
Springer, 1999.

[57] P. Hansen and N. Mladenović. An introduction to variable neighborhood
search. In S. Voß, S. Martello, I. Osman, and C. Roucairol, editors, Meta-
heuristics: advances and trends in local search paradigms for optimization,
pages 433–438. Kluwer Academic Publishers, 1999.

139

Bibliography

[58] P. Hansen and N. Mladenović. An introduction to variable neighborhood
search. In S. Voss, S. Martello, I. Osman, and C. Roucairol, editors, Meta-
heuristics, Advances and Trends in Local Search Paradigms for Optimization,
pages 433–458. Kluwer, 1999.

[59] P. Hansen and N. Mladenović. A tutorial on variable neighborhood search.
Technical Report G-2003-46, Les Cahiers du GERAD, HEC Montréal and
GERAD, Canada, 2003.

[60] R. Hinterding. Mapping order-independent genes and the knapsack problem.
In Proc. of the First IEEE Int. Conf. on Evolutionary Computation, pages
13–17. IEEE Press, 1994.

[61] J. Holland. Adaptation In Natural and Artificial Systems. University of Michi-
gan Press, 1975.

[62] H. Hoos and T. Stützle. Stochastic Local Search – Foundations and Applica-
tions. Morgan Kaufmann, San Francisco, CA, 2004.

[63] E. Hopper. Two-Dimensional Packing Utilising Evolutionary Algorithms and
Other Meta-Heuristic Methods. PhD thesis, University of Wales, Cardiff, U.K.,
2000.

[64] S.-M. Hwang, C.-Y. Kao, and J.-T. Horng. On solving rectangle bin packing
problems using GAs. In Proceedings of the 1994 IEEE International Confer-
ence on Systems, Man, and Cybernetics, pages 1583–1590. IEEE Press, 1997.

[65] N. Karmakar. A new polynomial-time algorithm for linear programming. Com-
binatorica, 4:373–395, 1984.

[66] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.

[67] L. Khachiyan. A polynomial algorithm in linear programming (english trans-
lation). Soviet Mathematics Doklady, 20:191–194, 1979.

[68] S. Kirkpatrick, C. Gellat, and M. Vecchi. Optimization by simulated annealing.
Science, 220:671–680, 1983.

[69] G. Klau, I. Ljubić, A. Moser, P. Mutzel, P. Neuner, U. Pferschy, G. Raidl, and
R. Weiskircher. Combining a memetic algorithm with integer programming to
solve the prize-collecting Steiner tree problem. In K. Deb et al., editors, Ge-
netic and Evolutionary Computation – GECCO 2004, volume 3102 of LNCS,
pages 1304–1315. Springer, 2004.

140

Bibliography

[70] K. Kostikas and C. Fragakis. Genetic programming applied to mixed integer
programming. In M. Keijzer, U.-M. O’ Reilly, S. M. Lucas, E. Costa, and
T. Soule, editors, Genetic Programming - EuroGP 2004, volume 3003 of LNCS,
pages 113–124. Springer, 2004.

[71] B. Kröger. Guillotineable bin packing: A genetic approach. European Journal
of Operational Research, 84:545–661, 1995.

[72] A. Z.-Z. Lin, J. Bean, and I. C. C. White. A hybrid genetic/optimization algo-
rithm for finite horizon partially observed markov decision processes. Journal
on Computing, 16(1):27–38, 2004.

[73] A. Lodi, S. Martello, and M. Monaci. Two-dimensional packing problems: A
survey. European Journal of Operational Research, 141:241–252, 2002.

[74] A. Lodi, S. Martello, and D. Vigo. Heuristic and metaheuristic approaches
for a class of two-dimensional bin packing problems. INFORMS Journal on
Computing, 11:345–357, 1999.

[75] A. Lodi, S. Martello, and D. Vigo. Recent advances on two-dimensional bin
packing problems. Discrete Applied Mathematics, 123:373–390, 2002.

[76] A. Lodi, S. Martello, and D. Vigo. Models and bounds for two-dimensional
level packing problems. Journal of Combinatorial Optimization, 8:363–379,
2004.

[77] J. Lorie and L. Savage. Three problems in capital rationing. The Journal of
Business, 28:229–239, 1955.

[78] R. Lougee-Heimer. The Common Optimization INterface for Operations Re-
search: Promoting open-source software in the operations research community.
IBM Journal of Research and Development, 47(1):57–66, 2003.

[79] H. R. Lourenço, O. Martin, and T. Stützle. Iterated local search. In Glover
and Kochenberger [50], pages 321–353.

[80] M. Lübbecke and J. Desrosiers. Selected topics in column generation. Les
Cahiers du GERAD G-2002-64, HEC Montréal, Canada, 2002. Operations
Research Scheduled for Publication in 53(6).

[81] A. Manne and H. Markowitz. On the solution of discrete programming prob-
lems. Econometrica, 25:84–110, 1957.

[82] A. Marino, A. Prügel-Bennett, and C. A. Glass. Improving graph colouring
with linear programming and genetic algorithms. In Proceedings of Eurogen99,
pages 113–118, 1999.

141

Bibliography

[83] S. Martello and P. Toth. A new algorithm for the 0-1 knapsack problem.
Management Science, 34:633–644, 1988.

[84] S. Martello and D. Vigo. Exact solutions of the two-dimensional finite bin
packing problem. Management Science, 44:388–399, 1998.

[85] A. Martin. General Mixed Integer Programming: Computational Issues for
Branch-and-Cut Algorithms. In M. Jünger and D. Naddef, editors, Com-
putational Combinatorial Optimization: Optimal or Provably Near-Optimal
Solutions, volume 2241 of LNCS, pages 1–25. Springer, 2001.

[86] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer, Berlin, 1996.

[87] M. Monaci. Algorithms for Packing and Scheduling Problems. PhD thesis,
University of Bologna, Italy, 2002.

[88] M. Monaci and P. Toth. A set covering based heuristic approach for bin-
packing problems. Technical Report OR-03-1, Dipartimento di Elettronica,
Informatica e Sistemistica, University of Bologna, 2003. Under revision for
INFORMS Journal on Computing.

[89] P. Moscato. On evolution, search, optimization, genetic algorithms and martial
arts: Towards memetic algorithms. Technical Report C3P 826, Pasadena, CA,
1989.

[90] P. Moscato. Memetic algorithms: A short introduction. In D. Corne et al.,
editors, New Ideas in Optimization, pages 219–234. McGraw Hill, 1999.

[91] A. Nagar, S. S. Heragu, and J. Haddock. A meta-heuristic algorithm for a
bi-criteria scheduling problem. Annals of Operations Research, 63:397–414,
1995.

[92] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
John Wiley & Sons, 1988.

[93] J. F. Oliveira and J. S. Ferreira. A faster variant of the Gilmore and Go-
mory technique for cutting stock problems. JORBEL – Belgium Journal of
Operations Research, Statistics and Computer Science, 34(1):23 –38, 1994.

[94] H. Pirkul. A heuristic solution procedure for the multiconstraint zero-one
knapsack problem. Naval Research Logistics, 34:161–172, 1987.

[95] D. Pisinger. An expanding-core algorithm for the exact 0–1 knapsack problem.
European Journal of Operational Research, 87:175–187, 1995.

142

Bibliography

[96] D. Pisinger. A minimal algorithm for the 0–1 knapsack problem. Operations
Research, 45:758–767, 1997.

[97] D. Pisinger. Core problems in knapsack algorithms. Operations Research,
47:570–575, 1999.

[98] D. Pisinger and M. Sigurd. Using decomposition techniques and constraint
programming for solving the two-dimensional bin packing problem. Techni-
cal Report 03/01, University of Copenhagen, Denmark, 2003. Submitted for
publication.

[99] A. Plateau, D. Tachat, and P. Tolla. A hybrid search combining interior point
methods and metaheuristics for 0-1 programming. International Transactions
in Operational Research, 9:731–746, 2002.

[100] J. Puchinger and G. R. Raidl. An evolutionary algorithm for column genera-
tion in integer programming: an effective approach for 2D bin packing. In X.
Yao et al., editor, Parallel Problem Solving from Nature - PPSN VIII, volume
3242 of LNCS, pages 642–651. Springer, 2004.

[101] J. Puchinger and G. R. Raidl. Combining metaheuristics and exact algorithms
in combinatorial optimization: A survey and classification. In Proceedings of
the First International Work-Conference on the Interplay Between Natural and
Artificial Computation, volume 3562 of LNCS, pages 41–53. Springer, 2005.

[102] J. Puchinger and G. R. Raidl. Models and algorithms for three-stage two-
dimensional bin packing. European Journal of Operational Research (EJOR),
Feature Issue on Cutting and Packing, 2005. Accepted for publication.

[103] J. Puchinger and G. R. Raidl. Relaxation guided variable neighborhood search.
In Proceedings of the XVIII Mini EURO Conference on VNS, Tenerife, Spain,
2005.

[104] J. Puchinger, G. R. Raidl, and M. Gruber. Cooperating memetic and branch-
and-cut algorithms for solving the multidimensional knapsack problem. In Pro-
ceedings of MIC2005, the 6th Metaheuristics International Conference, pages
775–780, Vienna, Austria, 2005.

[105] J. Puchinger, G. R. Raidl, and G. Koller. Solving a real-world glass cutting
problem. In J. Gottlieb and G. R. Raidl, editors, Evolutionary Computation
in Combinatorial Optimization – EvoCOP 2004, volume 3004 of LNCS, pages
162–173. Springer, 2004.

[106] J. Puchinger, G. R.Raidl, and U. Pferschy. The core concept for the multidi-
mensional knapsack problem. In Evolutionary Computation in Combinatorial
Optimization - EvoCOP 2006, LNCS. Springer, 2006.

143

Bibliography

[107] G. R. Raidl. An improved genetic algorithm for the multiconstrained 0–1
knapsack problem. In D. Fogel et al., editors, Proceedings of the 5th IEEE
International Conference on Evolutionary Computation, pages 207–211. IEEE
Press, 1998.

[108] G. R. Raidl and H. Feltl. An improved hybrid genetic algorithm for the gen-
eralized assignment problem. In H. M. Haddadd et al., editors, Proceedings
of the 2003 ACM Symposium on Applied Computing, pages 990–995. ACM
Press, 2004.

[109] G. R. Raidl and J. Gottlieb. Empirical analysis of locality, heritability and
heuristic bias in evolutionary algorithms: A case study for the multidimen-
sional knapsack problem. Evolutionary Computation Journal, 13(4), to appear
2005.

[110] I. Rechenberg. Evolutionsstrategie, Optimierung Technischer Systeme nach
Prinzipien der Biologischen Evolution. Frommann-Holzboog Verlag, 1973.

[111] A. Schrijver. Combinatorial optimization : polyhedra and efficiency. Springer,
2003.

[112] H.-P. Schwefel. Evolution and Optimum Seeking. Wiley, New York, 1995.

[113] S. Senju and Y. Toyoda. An approach to linear programming with 0–1 vari-
ables. Management Science, 15:196–207, 1968.

[114] W. Shih. A branch and bound method for the multiconstraint zero-one knap-
sack problem. Journal of the Operational Research Society, 30:369–378, 1979.

[115] M. M. Sigurd. Column Generation Methods and Application. PhD thesis,
University of Copenhagen, Denmark, 2004.

[116] A. T. Staggemeier, A. R.Clark, U. Aickelin, and J. Smith. A hybrid genetic
algorithm to solve a lot-sizing and scheduling problem. In 16th triannual
Conference of the International Federation of Operational Research Societies,
Edinburgh, 2002.

[117] G. Syswerda. Schedule optimization using genetic algorithms. pages 332–349.
Int. Thomson Computer Press, 1991.

[118] S. Talukdar, L. Baeretzen, A. Gove, and P. de Souza. Asynchronous teams:
Cooperation schemes for autonomous agents. Journal of Heuristics, 4:295–321,
1998.

[119] S. Talukdar, S. Murty, and R. Akkiraju. Asynchronous teams. In Glover and
Kochenberger [50], pages 537–556.

144

Bibliography

[120] H. Tamura, A. Hirahara, I. Hatono, and M. Umano. An approximate solu-
tion method for combinatorial optimisation. Transactions of the Society of
Instrument and Control Engineers, 130:329–336, 1994.

[121] P. Thompson and J. Orlin. The theory of cycle transfers. Technical Report
OR-200-89, MIT Operations Research Center, Boston, MA, 1989.

[122] P. Thompson and H. Psaraftis. Cycle transfer algorithm for multivehicle rout-
ing and scheduling problems. Operations Research, 41:935–946, 1993.

[123] A. M. Turing. Intelligent machinery. In D. Ince, editor, Collected Works of
A.M. Turing : Mechanical Intelligence. North Holland, 1992.

[124] J. Valério de Carvalho. Using extra dual cuts to accelerate convergence in
column generation. INFORMS Journal on Computing, 2003. To appear.

[125] F. Vanderbeck. A nested decomposition approach to a 3-stage 2-dimensional
cutting stock problem. Management Science, 47(2):864–879, 1998.

[126] F. Vanderbeck. On Dantzig-Wolfe decomposition in integer programming and
ways to perform branching in a branch-and-price algorithm. Operations Re-
search, 48(1):111–128, 2000.

[127] M. Vasquez and J.-K. Hao. A hybrid approach for the 0–1 multidimensional
knapsack problem. In Proceedings of the Int. Joint Conference on Artificial
Intelligence 2001, pages 328–333, 2001.

[128] M. Vasquez and Y. Vimont. Improved results on the 0-1 multidimensional
knapsack problem. European Journal of Operational Research, 165:70–81,
2005.

[129] V. V. Vazirani. Approximation algorithms. Springer, 2001.

[130] H. M. Weingartner and D. N. Ness. Methods for the solution of the multidi-
mensional 0/1 knapsack problem. Operations Research, 15:83–103, 1967.

[131] D. Whitley. The GENITOR algorithm and selection pressure: why rank-based
allocation of reproductive trial is best. In J. D. Schaffer, editor, Proceedings
of the Third Int. Conf. on Genetic Algorithms, pages 116–121. Morgan Kauf-
mann, 1989.

[132] L. A. Wolsey. Integer Programming. Wiley-Interscience, 1998.

[133] D. L. Woodruff. A chunking based selection strategy for integrating meta-
heuristics with branch and bound. In S. Voss et.al., editor, Metaheuristics:
Advances and Trends in Local Search Paradigms for Optimization, pages 499–
511. Kluwer Academic Publishers, 1999.

145

146

Curriculum Vitae

Personal Information

• Name: Jakob Puchinger

• Date and place of birth: May 24, 1978 in Vienna, Austria

• Nationality: Austrian

Education

• since 07/2003: PhD student in computer science, Vienna University of Tech-
nology. Supervisor: Prof. Günther Raidl.

• 10/1998 - 06/2003: Computer science studies with graduation to ”Diplom-
Ingenieur” (MSc), Vienna University of Technology.

• 10/1996 - 03/1998: Physics studies, Swiss Federal Institute of Technology
Zurich, Switzerland.

• 09/1983 - 06/1996: Preschool, elementary and secondary school, Lycée
Français de Vienne, Vienna, Austria. Baccalauréat/Matura (school leaving
examination) passed with distinction.

147

Curriculum Vitae

Work Experience

• since 3/2005: Research and teaching assistant, Algorithms and Data Struc-
tures Group, Institute of Computer Graphics and Algorithms, Vienna Univer-
sity of Technology.

• since 6/2003: Employed in the FWF project Combining Memetic Algorithms
with Branch and Cut and Price for Some Network Design Problem under grant
P16263-N04, Algorithms and Data Structures Group, Institute of Computer
Graphics and Algorithms, Vienna University of Technology.

Publications

Refereed Journal Articles

• Jakob Puchinger and Günther R. Raidl. Models and algorithms for three-
stage two-dimensional bin packing. European Journal of Operational Research,
feature issue on Cutting and Packing. Accepted for publication 2005.

Refereed Conference Papers

• Jakob Puchinger, Günther R. Raidl, and Ulrich Pferschy. The Core Concept
for the Multidimensional Knapsack Problem. To appear in Evolutionary Com-
putation in Combinatorial Optimization - EvoCOP 2006, Budapest, Hungary.
LNCS, Springer 2006.

• Jakob Puchinger and Günther R. Raidl. Combining metaheuristics and ex-
act algorithms in combinatorial optimization: A survey and classification. In
Proceedings of the First International Work-Conference on the Interplay Be-
tween Natural and Artificial Computation, volume 3562 of LNCS, pages 41-53.
Springer, 2005.

• Jakob Puchinger, Günther R. Raidl, and Martin Gruber. Cooperating memetic
and branch-and-cut algorithms for solving the multidimensional knapsack
problem In Proceedings of the 6th Metaheuristics International Conference
(MIC), pages 775-780, Vienna, Austria, 2005.

• Jakob Puchinger and Günther R. Raidl. Relaxation Guided Variable Neigh-
borhood Search. In Proceedings of the XVIII Mini EURO Conference on VNS.
Tenerife, Spain, 2005.

148

Curriculum Vitae

• Jakob Puchinger, Günther R. Raidl, and Gabriele Koller. Solving a real-
world glass cutting problem. In Jens Gottlieb and Günther R. Raidl, editors,
Evolutionary Computation in Combinatorial Optimization - EvoCOP 2004,
volume 3004 of LNCS, pages 162-173. Springer, 2004.

• Jakob Puchinger and Günther R. Raidl. An evolutionary algorithm for column
generation in integer programming: an effective approach for 2D bin packing.
In X. Yao et. al, editor, Parallel Problem Solving from Nature - PPSN VIII,
volume 3242 of LNCS, pages 642-651. Springer, 2004.

Thesis

• Jakob Puchinger. Methods for solving a glass-cutting problem (Verfahren
zur Lösung eines Glasverschnittproblems). Master’s thesis, Vienna University
of Technology, Institute of Computer Graphics and Algorithms, May 2003.
supervised by G. R. Raidl and G. Koller.

149

