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Summary. This chapter reviews approaches where metaheuristics are used to boost
the performance of exact integer linear programming (IP) techniques. Most exact
optimization methods for solving hard combinatorial problems rely at some point
on tree search. Applying more effective metaheuristics for obtaining better heuris-
tic solutions and thus tighter bounds in order to prune the search tree in stronger
ways is the most obvious possibility. Besides this, we consider several approaches
where metaheuristics are integrated more tightly with IP techniques. Among them
are collaborative approaches where various information is exchanged for providing
mutual guidance, metaheuristics for cutting plane separation, and metaheuristics for
column generation. Two case studies are finally considered in more detail: (i) a La-
grangian decomposition approach that is combined with an evolutionary algorithm
for obtaining (almost always) proven optimal solutions to the knapsack constrained
maximum spanning tree problem and (ii) a column generation approach for the pe-
riodic vehicle routing problem with time windows in which the pricing problem is
solved by local search based metaheuristics.

1 Introduction

When considering optimization approaches that combine aspects from metaheuris-
tics with mathematical programming techniques, the resulting hybrid system may
either be of exact or heuristic nature. Exact approaches are guaranteed to yield
proven optimal solutions when they are given enough computation time. In con-
trast, heuristics only aim at finding reasonably good approximate solutions usually
in a more restricted time; performance guarantees are typically not provided. Most of
the existing hybrid approaches are of heuristic nature, and mathematical program-
ming techniques are used to boost the performance of a metaheuristic. Exploiting
solutions to exactly solvable relaxations of the original problem, or searching large
neighborhoods by means of mathematical programming techniques are examples for
such approaches; see also Chapter ??. On the other hand, there are also several
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highly successful ways to exploit metaheuristic strategies for enhancing the perfor-
mance of mathematical programming techniques, and often these methods retain
their exactness. We refer to such improvement techniques as MetaBoosting and
study them in detail in the present chapter.

Most exact approaches for solving hard combinatorial optimization problems
(COPs) are based on a tree search, where the search space is recursively parti-
tioned in a divide-and-conquer manner into mutually disjoint subspaces by fixing
certain variables or imposing additional constraints. In a naive enumeration tree each
subspace is further divided as long as it contains more than one feasible solution.
Obviously, the size of such a naive search tree increases rapidly with the problem
size, and naive enumeration is therefore inefficient. The key to successfully approach
larger problem instances is to have some mechanism for substantially pruning the
search tree. This is usually done by identifying subspaces that need not to be further
pursued, as they cannot contain a feasible solution that is better than a solution
already found before. The scalability of a tree search thus depends essentially on the
efficiency of this pruning mechanism.

In branch-and-bound (B&B), upper and lower bounds are determined for the
objective values of solutions, and subspaces for which the lower bounds exceed the
upper bounds are discarded. Considering a minimization problem, any feasible so-
lution provides a (global) upper bound. Thus, any (meta-)heuristic that is able to
determine good heuristic solutions in reasonable time may be an essential help in
B&B for pruning the search tree, even when the heuristic itself does not provide any
performance guarantee.

Applying an effective metaheuristic to obtain better upper bounds for B&B is
the most obvious way how one can boost the performance of an exact optimization
technique by means of a metaheuristic. When considering established integer (linear)
programming (IP) techniques including cutting plane methods, column generation,
and diverse variants of relaxation based approaches in more detail, we can observe
several further possibilities for exploiting the strengths of metaheuristics.

The next section will introduce our basic notations and briefly review impor-
tant IP techniques. In Sections 3 to 5 we describe various successful MetaBoosting
strategies. Two exemplary case studies are presented together with some practical
results in more detail in Sections 6 and 7: First, we consider a Lagrangian decomposi-
tion/evolutionary algorithm hybrid for the knapsack constrained maximum spanning
tree problem, and second, a column generation approach that uses metaheuristics
for solving the pricing problem is discussed for the periodic vehicle routing problem
with time windows. Conclusions are drawn in Section 8.

2 Integer Programming Techniques

This section introduces some basic notations and gives a short introduction into
prominent IP techniques. For an in-depth coverage of the subject we refer to the
books on linear optimization by Bertsimas and Tsitsiklis [6] and on combinatorial
and integer optimization by Nemhauser and Wolsey [37] and Wolsey [53].

We consider IP problems of the form

zIP = min{cx | Ax ≥ b, x ≥ 0, x ∈ Z
n}, (1)
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where x is an n-dimensional integer variable vector in column form and c ∈ Qn

an n-dimensional row vector. Their dot-product cx is the objective function that
should be minimized. Matrix A ∈ Qm×n and the m-dimensional column vector
b ∈ Qm together define m inequality constraints. A mixed integer program (MIP)
would involve a combination of integer and real-valued variables.

Maximization problems can be transformed into minimization problems by sim-
ply changing the sign of c. Less-than constraints are similarly brought into greater-
than-or-equal form by changing the sign of the corresponding coefficients, and equal-
ities can be translated to pairs of inequalities. Thus, we can handle all kinds of
linear constraints by appropriate transformations. Without loss of generality, we
may therefore restrict our following considerations to minimization problems of this
standard form.

2.1 Relaxations and Duality

One of the most important concepts in integer programming are relaxations, where
some or all constraints of a problem are loosened or omitted. Relaxations are mostly
used to obtain related, simpler problems that can be solved efficiently yielding
bounds and approximate (not necessarily feasible) solutions for the original problem.
Embedded within a B&B framework, these techniques may lead to effective exact
solution techniques.

The linear programming (LP) relaxation of the IP (1) is obtained by relaxing
the integrality constraints, yielding

zLP = min{cx | Ax ≥ b, x ≥ 0, x ∈ R
n}. (2)

Large instances of such LPs can be efficiently solved using simplex-based or interior-
point algorithms. The solution to the LP relaxation provides a lower bound for the
original minimization problem, i.e. zIP ≥ zLP, since the search space of the IP is
contained within the one of the LP and the objective function remains the same.

We can further associate a dual problem to an LP (2), which is defined by

wLP = max{ub | uA ≤ c, u ≥ 0, u ∈ R
m} (3)

with u being the m-dimensional dual variable row vector. The dual of the dual LP
is the original (primal) LP again. Important relations between the primal problem
and its dual are known as weak and strong duality theorems, respectively:

Weak duality theorem: The value of every finite feasible solution to the dual prob-
lem is a lower bound for the primal problem, and each value of a finite feasible
solution to the primal problem is an upper bound for the dual problem. As a
consequence, if the dual is unbounded, the primal is infeasible and vice versa.

Strong duality theorem: If the primal has a finite optimal solution with value z∗
LP,

than its dual has the same optimal solution value w∗
LP = z∗

LP and vice versa.

In case of an IP we have to distinguish between weak and strong duals: A weak
dual of an IP (1) is any maximization problem w = max{w(u) | u ∈ SD} such that
w(u) ≤ cx for all x ∈ {Ax ≥ b, x ≥ 0, x ∈ Zn}. An obvious weak dual of (1) is the
dual (3) of its LP relaxation (2). A strong dual is a weak dual that further has an
optimal solution u∗ such that w(u∗) = cx∗ for an optimal solution x∗ of (1). For
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solving IPs, weak duals which are iteratively strengthened during the course of the
optimization process are often utilized.

Another commonly used relaxation of IPs, which often yields significantly tighter
bounds than the LP relaxation, is Lagrangian relaxation [20, 21]. Consider the IP

zIP = min{cx | Ax ≥ b, Dx ≥ d, x ≥ 0, x ∈ Z
n}, (4)

where constraints Ax ≥ b are “easy” in the sense that the problem can be effi-
ciently solved when the m′ “complicating” constraints Dx ≥ b are dropped. Simply
removing these constraints yields a relaxation, but the resulting bound will usually
be weak because of this complete ignorance. In Lagrangian relaxation, constraints
Dx ≥ d are replaced by corresponding penalty terms in the objective function:

zLR(λ) = min{cx + λ(d − Dx) | Ax ≥ b, x ≥ 0, x ∈ Z
n}. (5)

Vector λ ∈ Rm′

is the vector of Lagrangian multipliers, and for any λ ≥ 0, zLR(λ) ≤
zIP, i.e. we have a valid relaxation of the IP. We are now interested in finding a
specific vector λ yielding the best—i.e. largest—possible lower bound, which leads
to the Lagrangian dual problem

z∗
LR = max

λ≥0
{zLR(λ)}. (6)

This Lagrangian dual is a piecewise linear, convex function which can usually be
well solved by iterative procedures like a subgradient method. A more elaborate
algorithm that has been reported to converge faster on several problems is the
volume algorithm [4], whose name is inspired by the fact that primal solutions are
also considered, whose values come from approximating the volumes below active
faces of the dual problem.

Given a solution λ to the Lagrangian dual problem (6) and a corresponding
optimal solution x∗ to the Lagrangian relaxation (5) that is also feasible to the
original problem (4), i.e. Dx∗ ≥ d, the following complementary slackness condition
holds: x∗ is an optimal solution to the original problem (4) if and only if

λ(d − Dx∗) = 0. (7)

Provided the Lagrangian dual problem is solved to optimality, it can be shown
that the Lagrangian relaxation always yields a bound that is at least as good as the
one of the corresponding linear relaxation.

A third general-purpose relaxation technique for IPs is surrogate relaxation [25].
Here, some or all constraints are scaled by surrogate multipliers and cumulated into
a single inequality by adding the coefficients. Similarly as in Lagrangian relaxation,
the ultimate goal is to find surrogate multipliers yielding the overall best bound.
Unfortunately, this surrogate dual problem usually has not such nice properties as
the Lagrangian dual problem and solving it is often difficult. However, if one is able
to determine optimal surrogate multipliers, the bound obtained for the IP is always
at least as good as (and often better than) those obtained from the corresponding
linear and Lagrangian relaxations.
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2.2 LP-Based Branch-and-Bound

By solving the LP relaxation of an IP we obtain a lower bound on the optimal IP
solution value and the solution will in general contain fractional variable values. (If
all variable values would be integer, we already would have solved the IP.) The stan-
dard way to continue towards an optimal integer solution is the already mentioned
B&B. Branching usually takes place over some variable xi with a fractional LP-value
x∗

i , defining as first subproblem the IP with the additional inequality xi ≤ ⌊x∗
i ⌋ and

as second subproblem the IP with inequality xi ≥ ⌈x∗
i ⌉. For these subproblems

with the additional branching constraints, the LP relaxations are resolved leading
to increased lower bounds and eventually solutions where all integer variables have
integral values. As mentioned in the introduction, primal heuristics are usually also
applied to each subproblem in order to find improved feasible solutions and corre-
sponding global upper bounds, enabling a stronger pruning of the search tree.

2.3 Cutting Plane Algorithm and Branch-and-Cut

When modeling COPs as IPs an important goal is to find a strong formulation, for
which the solution value of the LP relaxation in general provides a tight bound.
For many COPs it is possible to strengthen an existing IP formulation significantly
by including further inequalities, which would actually be redundant w.r.t. the in-
teger optimum. In general it is even possible to strengthen a model such that the
LP relaxation already yields an integer optimum; however, the number of required
constraints often grows exponentially with the problem size. Naively solving such
an LP by standard techniques might quickly become too costly in practice.

Dantzig et al. [10] proposed the cutting plane algorithm for this purpose, which
usually only considers a fraction of all constraints explicitly but is nevertheless able
to determine an optimal solution to the whole LP.

The cutting plane approach starts by solving a reduced LP consisting of a small
subset of initial inequalities only. It then tries to find inequalities that are violated by
the obtained solution but are valid for the original problem (i.e. contained in the full
LP). These valid inequalities are called cuts or cutting planes, and they are added
to the current reduced LP, which is then resolved. The whole process is iterated
until no further cutting planes can be determined. If the algorithm computing the
cuts provides a proof that no further violated inequality exists, the final solution
is optimal for the original full LP. The subproblem of identifying cuts is called
separation problem. In practice it is crucial to have an efficient method for separating
cuts as usually a significant number of valid inequalities must be derived until the
cutting plane algorithm terminates.

From a theoretical point of view it is possible to solve any IP using a pure cutting
plane approach with appropriate classes of cuts. There exist generic types of cuts,
such as the Chvatal-Gomory cuts [53], which guarantee such a result. In practice,
however, it may take a too long time for such a cutting plane approach to converge
to the optimum, partly because it is often a hard subproblem to separate effective
cuts and partly because of the large number of needed cuts.

The combination of B&B with cutting plane methods yields the highly effective
class of branch-and-cut algorithms which are widely used. Specialized branch-and-
cut approaches have been described for many applications and are known for their
effectiveness. Cut separation is usually applied at each node of the B&B tree to
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tighten the bounds of the LP relaxation and to exclude infeasible solutions as far as
possible.

For cutting plane separation effective heuristic methods come into play once
again: For strengthening the LP relaxations it is often sufficient to generate cuts
heuristically since the correctness of the final solution does not depend on the gen-
erated cuts as long as they are valid. Almost all modern mixed integer programming
(MIP) solvers include sophisticated generic cut separation heuristics, and they play
a major role in the success of these solvers.

2.4 Column Generation and Branch-and-Price

Often it is possible to model COPs via strong formulations involving a huge number
of variables. Dantzig-Wolfe decomposition [11] is a technique for obtaining such
models from compact formulations in a systematic way. It replaces the original
problem variables by linear combinations of the extreme points and extreme rays of
the original search space, yielding a potentially exponential number of new variables.
The obtained models can result in much stronger relaxations than their compact
counterparts.

Despite the many variables, the LP relaxations of such formulations can often
be efficiently calculated. The column generation approach starts with only a small
subset of all variables (corresponding to columns in the matrix notation of the IP)
and solves the corresponding restricted LP relaxation. It is then tried to identify one
or more so far ignored variables whose inclusion may lead to an improved solution.
This subproblem is called pricing problem. For a minimization problem a variable
can eventually improve the current LP solution if it has negative reduced costs. After
adding such a new variable to the restricted LP, it is resolved and the process iterated
until no further variables with negative reduced costs exist. The final solution is an
optimal solution for the complete LP.

Column generation can be seen as dual to the cutting plane approach, since
inequalities correspond to variables in the dual LP. For a recent review on column
generation see [35]. The cutting stock problem is an early example for the successful
application of column generation based methods [24]. Every possible cutting pattern
is represented by a variable and the pricing problem corresponds to the classical 0–1
knapsack problem, which can be solved efficiently in pseudo-polynomial time.

As the column generation algorithm only solves the LP relaxation, it must in
general also be combined with B&B in order to obtain optimal integer solutions.
When column generation is performed for each node of the B&B tree, the approach
is called branch-and-price. One of the main difficulties in the implementation of
such methods lies in the development of appropriate branching rules. Furthermore,
the individual LPs may sometimes be degenerated, or newly added columns may
only improve the solutions marginally leading to many iterations until convergence.
In the latter cases, stabilization techniques as discussed in [13] often improve the
situation.

Similarly as cutting plane separation may be performed by effective heuristics,
one can also heuristically solve the pricing problem in column generation. Care must
be taken that in the final iteration it is necessary to prove that no further columns
with negative reduced costs exist so that the obtained solution value is guaranteed
to be a lower bound for the original IP.
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Finally, it occasionally makes sense to combine a cutting plane approach with
column generation and embed both in B&B. Such methods, called branch-and-cut-
and-price, are sometimes extremely successful but are typically also rather complex
and highly specialized.

3 Metaheuristics for Finding Primal Bounds

Branch-and-bound based approaches rely on tight primal bounds that are most
commonly obtained from feasible solutions. Obviously, heuristics and metaheuristics
can be applied to the original problem before starting the B&B process, providing
initial solutions. The search space of the exact method is immediately reduced,
usually improving overall computation times. Such an approach has the practical
advantage of also providing feasible solutions at an early stage of the optimization
process.

Furthermore (meta-)heuristics can be repeatedly applied throughout the whole
tree search, providing possibly improved solutions. Again, this can speed up the
overall optimization essentially by further pruning the search tree. Even the optimal
solution might be discovered by one of those heuristics. On the other hand, when
heuristics are applied too often and have rather long run-times, they might slow
down the overall process. Thus, an appropriate balance is required.

3.1 Initial Solutions

Generic MIP based heuristics for computing initial solutions are widely used. They
range from early heuristics such as described in [2, 30] over pivot and complement [3]
to the recent feasibility pump [17, 5], which is also discussed in Chapter ?? of this
book. The major commercial generic MIP solvers such as CPLEX3 or XPRESS MP4

have very strong heuristics for finding initial feasible solutions, often outperforming
simple problem-specific heuristics in terms of solution quality and speed. Unfortu-
nately, not much is publicly known about these heuristics.

An interesting approach specifically tailored to the multidimensional knapsack
problem (MKP) involving metaheuristics is presented in Vimont et al. [52]. The
MKP can be defined by the following IP:

(MKP) maximize z =
n

X

j=1

pjxj (8)

subject to

n
X

j=1

wijxj ≤ ci, i = 1, . . . , m, (9)

xj ∈ {0, 1}, j = 1, . . . , n. (10)

A set of n items with profits pj > 0 and m resources with capacities ci > 0 are
given. Each item j consumes an amount wij ≥ 0 from each resource i. Variables xj

3 http://www.ilog.com
4 http://www.dashoptimization.com
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indicate which items are selected. The objective is to choose a subset of items with
maximum total profit that does not violate any of the capacity constraints (9).

An exact algorithm based on implicit enumeration and reduced cost propagation
is applied. The enumeration algorithm tries to first handle the unpromising parts
of the search space, with the goal of reducing it substantially. After computing an
initial solution yielding a lower bound, the problem is first partitioned by fixing the
number of selected items to certain values [50]. Each of the resulting subproblems
is then explored by B&B with a special branching strategy based on the solution to
the LP relaxation and reduced costs at each search tree node.

The search space is further reduced by fixing some variables using a propagation
mechanism. It is based on the reduced cost constraint originally described in [38].
After solving the LP relaxation yielding a solution (x), the following reduced cost
inequality can be devised:

X

j:xj=0

|cj |xj +
X

j:xj=1

|cj |(1 − xj) ≤ UB − LB, (11)

where c is the reduced cost vector corresponding to x and LB is a primal lower
bound, typically the objective value of a feasible solution.

This approach relies heavily on tight primal bounds, since constraint (11) be-
comes tighter with increasing values of LB. These bounds come from a sophisticated
tabu search based hybrid algorithm described in [50]. The search space is partitioned
via additional constraints fixing the total number of items to be packed. Lower and
upper bounds for the number of items are calculated by solving modified LP re-
laxations of the original MKP. For each remaining partition of the search space,
tabu search is independently applied, starting with a solution derived from the LP
relaxation of the partial problem. The whole tabu search approach has further been
improved in [51] by additional variable fixing.

This example demonstrates that a combination of highly developed specialized
methods for computing bounds with the aid of a metaheuristic, generating dependent
cuts, and guiding the search is sometimes able to achieve exceedingly good results.

3.2 B&B Acting as Local Search Based Metaheuristic

Fischetti and Lodi proposed local branching as an extension for generic branch-
and-cut based MIP solvers with the aim of producing good heuristic solutions early
during the exact tree search [18]. Local branching introduces the spirit of classical
k-opt local search in B&B by modifying the branching rule and the strategy for
choosing the next tree node to process. Let us consider MIPs with 0–1 variables; let
x = (x1, . . . , xn) be the variable vector and B ⊆ {1, . . . , n} be the index set of the 0–1
variables. A k-opt neighborhood around a given incumbent solution x = (x1, . . . , xn)
can be defined by the local branching constraint

∆(x, x) :=
X

j∈S

(1 − xj) +
X

j∈B\S

xj ≤ k, (12)

where S corresponds to the index set of the 0–1 variables that are set to one in
the incumbent solution, i.e. S = {j ∈ B | xj = 1}. ∆(x, x) resembles the classical
Hamming distance between x and x for integer values.
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Starting from an initial solution, the search space is partitioned into the k-opt
neighborhood of this incumbent and the remaining part of the search space by ap-
plying the local branching constraint and its inverse ∆(x, x) ≥ k + 1, respectively.
The MIP solver is then forced to find the best solution in the k-opt neighborhood
first. If an improved solution x′ has been found, a new subproblem ∆(x, x′) corre-
sponding to the search of the k-opt neighborhood of this new incumbent is split off
the remaining search space and solved in the same way; otherwise a larger k may
be tried. The process is repeated until no further improvement can be achieved.
Finally, the remaining problem corresponding to all yet unconsidered parts of the
search space is processed in a standard way.

This basic mechanism is extended by introducing time limits, automatically
modifying the neighborhood size k, and adding diversification strategies to improve
performance. An extension of the branching constraint for general integer variables
is also described. Results on various MIP benchmark instances using CPLEX as MIP
solver indicate the advantages of the approach in terms of an earlier identification
of high-quality solutions.

Hansen et al. [27] suggest a variant of local branching which follows more closely
the classical variable neighborhood search metaheuristic for choosing the next k-opt
neighborhood to process. Improved results are reported. Fischetti et al. [19] describe
another variant of the original local branching where they consider problems in
which the set of variables naturally partitions into two levels and fixing the first-
level variables to some values yields substantially easier subproblems.

Danna et al. [9] suggest a different approach called relaxation induced neighbor-
hood search (RINS) for exploring the neighborhoods of incumbent solutions more
intensively. The central idea is to occasionally devise a sub-MIP at a node of the
B&B tree that corresponds to a special neighborhood of an incumbent solution: Vari-
ables having the same values in the incumbent and in the current solution of the
LP relaxation are fixed, and an objective cutoff is set based on the objective value
of the incumbent. A sub-MIP is solved on the remaining variables with a given time
limit. If a better solution can be found it is passed to the global MIP-search, which
is resumed after the sub-MIP’s termination. In the authors’ experiments, CPLEX
is used as MIP solver, and RINS is compared to standard CPLEX, local branching,
combinations of RINS and local branching, and guided dives. Results indicate that
RINS often performs best. CPLEX includes RINS as a standard strategy for quickly
obtaining good heuristic solutions since version 10. Local branching constraints are
said to be often less effective as they are dense inequalities involving all integer
variables. In particular, adding the inverse local branching constraints of already
searched k-opt neighborhoods to the remaining problem is found to be disadvanta-
geous as the reduced node processing throughput caused by the series of these dense
constraints outweighs the benefit of avoiding redundant exploration of parts of the
search space.

Recently Ghosh [23] proposed a distance induced neighborhood search (DINS). It
is conjectured that better MIP solutions are more likely to be close to the solution
of the LP relaxation than farther away. Hence, an appropriate distance metric is
utilized. DINS combines soft fixing of variables as in local branching as well as hard
fixing of variables as in RINS, plus an additional rebounding procedure, which adapts
the lower and upper bounds of selected variables. Experimental results indicate that
DINS outperforms both local branching and RINS; DINS is also integrated now in
CPLEX.
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3.3 Solution Merging

In solution merging new, possibly better solutions are created from attributes ap-
pearing in two or more promising heuristic solutions. Such an approach is based on
the assumption that high-quality solutions often share many attributes.

Recombination, the primary variation operator in genetic algorithms, can be seen
as a classical solution merging approach. Usually, two parent solutions are selected
and an offspring is derived by simple random inheritance of parental attributes. Clas-
sical recombination operations do not try to optimize this offspring, which therefore
often is worse than its parents. However, these operations are computationally cheap
and can be repeated many times in order to achieve improvements.

Alternatively, one can put more effort into the derivation of such offspring. A
sometimes effective technique is path relinking [26], which traces a path in the search
space from one parent to a second by repeatedly exchanging a single attribute only
(or more generally by performing a series of moves in a simple neighborhood struc-
ture). An overall best solution found on this path is finally taken as offspring.

This idea can further be extended by considering not just solutions on a single
path between two parents, but the whole subspace of solutions induced by the joined
attributes appearing in a set of two or more input solutions. An optimal merging
operation returns a best solution from this subspace, i.e. it identifies a best possible
combination of the parents’ attributes. Depending on the underlying problem, iden-
tifying such an optimal offspring is often a hard optimization problem on its own,
but due to the usually quite limited number of different attributes appearing in the
parents, it can often be solved in reasonable time in practice.

For mixed integer programming, Rothberg [47] suggests a tight integration of an
evolutionary algorithm (EA) including optimal merging in a branch-and-cut based
MIP solver. In regular intervals the evolutionary algorithm is applied as B&B tree
node heuristic. The population of the EA consists of the best non-identical solutions
found so far, which have either been discovered by the MIP tree search or by previous
iterations of the EA.

Mutation selects one parent, fixes a randomly chosen subset of variables, and
calls the MIP solver for determining optimal values for the remaining problem. Since
the number of variables to be fixed is a critical parameter, an adaptive scheme is
applied to control it. In contrast to classical EAs, mutation is performed before re-
combination on a fixed number of randomly chosen solutions, since at the beginning
of the optimization only one or very few solutions will be in the population.

Recombination is performed by first fixing all variables that have the same values
in two selected parental solutions and applying the MIP solver to this reduced
subproblem. The exploration of this subproblem is eventually truncated when a given
node-limit is exceeded. New high-quality solutions discovered during this search are
added to the population. This recombination is further generalized to more than
two parents by fixing variable values that are identical in all of them.

The applied selection strategy simply chooses the first parent from the popula-
tion at random, and the second is then chosen randomly amongst the solutions with
a better objective value than the first one. This guarantees a certain bias towards
better solutions. For mutation the same mechanism is used, but only the second
solution is used.
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Experimental results indicate that this hybrid often is able to find significantly
better solutions than other heuristic methods for several very difficult MIPs. The
method is integrated in the commercial MIP solver CPLEX since version 10.

3.4 Metaheuristics and Lagrangian Relaxation

As mentioned in Section 2.1, Lagrangian relaxations may sometimes yield substan-
tially tighter lower bounds than simpler LP relaxations. Furthermore, heuristic so-
lutions and, thus, upper bounds are often either automatically obtained as interme-
diate by-products from the subgradient procedure or by applying typically rather
simple Lagrangian heuristics such as rounding or repairing procedures. When embed-
ded in a B&B framework, such Lagrangian relaxation based methods are frequently
turned into highly successful exact optimization approaches.

To further improve performance by obtaining better upper bounds, more sophis-
ticated metaheuristics may be applied in combination with Lagrangian relaxation.
For example, a well-working hybrid of a Lagrangian relaxation approach and vari-
able neighborhood descent has recently been described for a real-world fiber optic
network design problem in Leitner and Raidl [33].

An interesting additional aspect of such combinations is that also the meta-
heuristic may benefit by exploiting diverse intermediate results from the subgra-
dient search. A successful example for this is the hybrid Lagrangian genetic algo-
rithm (GA) for the prize collecting Steiner tree problem proposed by Haouari and
Siala [28]. They apply a Lagrangian relaxation on a minimum spanning tree for-
mulation of the prize collecting Steiner tree problem and use the volume algorithm
for solving the Lagrangian dual. After termination, the GA is started on a reduced
problem, consisting only of the edges appearing in all the intermediate trees derived
by the volume algorithm. Furthermore, some of the GA’s initial solutions are de-
rived from the volume algorithm’s intermediate reduced edge costs by applying a
greedy Lagrangian heuristic. Last but not least, the GA uses a modified objective
function: Instead of the original costs, the reduced costs that are finally obtained by
the volume algorithm are used; in this way, the metaheuristic search is guided into
regions of the search space deemed promising by the Lagrangian relaxation.

The authors of the present chapter describe a similar approach for the knapsack
constrained maximum spanning tree problem in [40]. Section 6 summarizes this work
as an exemplary case study.

4 Collaborative Hybrids

In collaborative combinations of different types of optimization techniques, the al-
gorithms exchange information but are not part of each other; i.e. there is no clear
master containing the other method(s) as subprocedures [42]. The individual algo-
rithms may be executed sequentially, intertwined, or in a parallel way and exchange
information for guidance. In principle, any metaheuristic that provides incumbent
solutions to a B&B-based approach might already be considered to fall into this
class of approaches. The above mentioned hybrid Lagrangian relaxation approach
from Haouari and Siala can, for example, also be regarded a sequential collaborative
combination, where the Lagrangian relaxation provides guidance for the GA.
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Intertwined and parallel combinations allow for mutual guidance, i.e., all par-
ticipating methods may exploit information from each other. Talukdar et al. [49]
describe a very general agent-based model for such systems, called asynchronous
teams (A-Teams). This problem solving architecture consists of a collection of agents
and memories connected in a strongly cyclic directed way, and each optimization
agent works on the target problem, a relaxation, or a subclass of the original problem.
Denzinger and Offerman [12] describe a similar framework called TECHS (TEams
for Cooperative Heterogeneous Search). It consists of teams of one or more agents
using the same search paradigm. Communication between the agents is controlled
by so-called send- and receive-referees.

A specific example for a successful intertwined collaboration of an EA and the
branch-and-cut based MIP solver XPRESS MP is the hybrid algorithm from French
et al. [22] for solving general IPs. It starts with a branch-and-cut phase, in which
information from the B&B tree nodes is collected in order to derive candidate solu-
tions that are added to the originally randomly initialized EA-population. When a
certain criterion is satisfied, the EA takes over for some time using the augmented
initial population. After termination of the EA, its best solutions are passed back
and grafted onto the B&B tree. Full control is given back to branch-and-cut after
the newly added nodes had been examined to a certain degree. Reported results on
instances of the maximum satisfiability problem show that this hybrid yields better
solutions than XPRESS MP or the EA alone.

Another cooperative approach involving a memetic algorithm and branch-and-
cut has been described by Puchinger et al. [44] for the MKP. Both methods are
performed in parallel and exchange information in a bidirectional asynchronous way.
In addition to promising primal solutions, the memetic algorithm also receives dual
variable values of certain LP relaxations and uses them for improving its repair and
local improvement functions by updating the items’ pseudo-utility ratios. Results
that are often better than those from [50] and partly competitive to those from [51]
have been obtained.

5 Metaheuristics for Cut and Column Generation

As already pointed out in Section 2, in cut and column generation based IP methods
the dynamic separation of cutting planes and the pricing of columns can be done
by means of (meta-)heuristics in order to speed up the optimization process. Such
approaches are reviewed in more detail in the following two sections.

5.1 Cut Separation

In branch-and-cut algorithms inequalities that are satisfied by feasible integer so-
lutions but are violated by the current solution to the LP relaxation have to be
derived quickly. Of course, the cuts one wants to find should be strong in the sense
that they cut away “large” portions of the search space, leading to a significant
increase of the LP solution value and thus to relatively few iterations until conver-
gence of the cutting plane algorithm. As many classes of strong cuts are difficult
to separate, heuristic separation procedures are commonly applied. More sophisti-
cated metaheuristics, however, have so far only rarely been used for this purpose.
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A reason might be the usually large number of cuts that must be generated, and
hence the strong requirements w.r.t. speed. Nevertheless, there exist some examples
of successful metaheuristic cut separation approaches.

Augerat et al. [1] consider a capacitated vehicle routing problem and describe
a branch-and-cut algorithm in which a sequence of methods consisting of a simple
construction heuristic, a randomized greedy method, and a tabu search is used for
separating capacity constraints. The approach starts with the fastest simple heuristic
and switches to the next, more complex strategy as long as no valid cutting plane
could be found.

Another example is the branch-and-cut algorithm by Gruber and Raidl for the
bounded diameter minimum spanning tree problem described in detail in Chapter ??

of this book. The diameter bound is ensured via an exponentially large number of so-
called jump inequalities. Again, a sequence of methods is used for their separation,
starting from a greedy construction technique over a local search procedure to a
tabu search algorithm. On several benchmark instances, this algorithm outperforms
other state-of-the-art IP approaches for this problem, and some larger instances than
before could be solved to proven optimality.

Rei et al. [46] describe the acceleration of Benders decomposition by local branch-
ing. The basic principle of Benders decomposition is to project a MIP into the space
of complicating integer variables only; continuous variables and the constraints in-
volving them are replaced by corresponding constraints on the integer variables.
These constraints, however, are not directly available but need to be dynamically
created. According to the classical method, an optimal solution to the relaxed master
problem (including only the already separated cuts) is needed and an LP involving
this solution must be solved in order to separate a single new cut. Rei et al. improved
this method by introducing phases of local branching on the original problem in or-
der to obtain multiple feasible heuristic solutions. These solutions provide improved
upper bounds and further allow to derive multiple additional cuts before the relaxed
master problem needs to be resolved.

5.2 Column Generation

In column generation based algorithms the pricing problem often is difficult by itself,
and applying fast (meta-)heuristics can be a meaningful option. It can be beneficial
for the overall performance if most of the columns are heuristically derived.

Filho and Lorena [16] apply a heuristic column generation approach to graph
coloring. A GA is used to generate initial columns and to solve the pricing problem
at every iteration. Column generation is performed as long as the GA finds columns
with negative reduced costs. The master problem is solved using CPLEX.

Puchinger and Raidl [41, 43] describe an exact branch-and-price algorithm for
the three-stage two-dimensional bin packing problem. Rectangular items have to be
orthogonally packed into the least number of larger rectangles of fixed size, and only
non-overlapping three-stage guillotine packing patterns are allowed. The pricing
problem occurring in this application is a three-stage two-dimensional knapsack
packing problem. Fast column generation is performed by applying a sequence of
four methods: (i) a greedy heuristic, (ii) an evolutionary algorithm, (iii) solving a
restricted, simpler IP-model of the pricing problem using CPLEX within a certain
time-limit, and finally (iv) solving a complete IP-model by CPLEX. The algorithms
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coming later in this sequence are only executed if the previous ones did not find
columns with negative reduced costs. The greedy heuristic is based on the classi-
cal finite first fit heuristic but is adapted to consider additional constraints intro-
duced by the branching decisions during the search process of the branch-and-price
algorithm. The EA uses a direct set-based representation for solutions making it
possible to ignore the order of the items to be packed and therefore avoiding re-
dundancies introduced by many symmetries. Specific recombination and mutation
operators were developed for this problem. The presented computational experi-
ments show that each pricing algorithm contributes essentially to the whole column
generation process. Applied to large problem instances with limited run-time, bet-
ter solutions are often obtained by the sequential pricing compared to using just
one strategy. It is conjectured that also in other applications such combinations of
multiple (meta-)heuristic and exact pricing algorithms may be beneficial.

6 Case Study: A Lagrangian Decomposition/EA Hybrid

This first case study demonstrates a combination of a Lagrangian decomposition ap-
proach with an evolutionary algorithm (EA) for the knapsack constrained maximum
spanning tree problem. The EA exploits information of the Lagrangian decompo-
sition and improves previously obtained primal solutions. Proven optimal solutions
are obtained in most cases, especially also on large problem instances. More details
on this work can be found in [40].

6.1 The Knapsack Constrained Maximum Spanning Tree Problem

The knapsack constrained maximum spanning tree (KCMST) problem arises in prac-
tical situations where the aim is to design a most profitable communication network
under a strict limit on total costs, e.g. for cable laying or similar resource constraints.
The problem is also referred to as budget or side constrained minimum spanning
tree problem and is NP-hard [54].

It is defined on an undirected connected graph G = (V, E) with node set V
and edge set E ⊆ V × V representing all possible connections. Each edge e ∈ E
has associated a weight we ∈ Z+ (corresponding to costs) and a profit pe ∈ Z+.
In addition, a weight limit (capacity) c > 0 is specified. We seek a spanning tree
GT = (V, T ), T ⊆ E, on G that maximizes the total profit

P

e∈T pe and where
weight

P

e∈T we does not exceed c. By introducing binary variables xe, ∀e ∈ E,
indicating which edges are part of the solution, i.e. xe = 1 ↔ e ∈ T and xe = 0
otherwise, the problem can be stated as:

(KCMST) max p(x) =
X

e∈E

pexe (13)

s.t. x represents a spanning tree on G, (14)
X

e∈E

wexe ≤ c, (15)

xe ∈ {0, 1}, ∀e ∈ E. (16)
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Obviously, the problem represents a combination of the classical minimum spanning
tree problem (with changed sign in the objective function) and the 0–1 knapsack
problem due to constraint (15). Yamada et al. [54] proposed a straight-forward
Lagrangian relaxation where the knapsack constraint is relaxed and primal solutions
are improved by local search. We enhance this approach in the following.

6.2 Lagrangian Decomposition of the KCMST Problem

The aforementioned natural combination lends itself to obtain tighter upper bounds
via Lagrangian decomposition (LD), which is a special variant of Lagrangian re-
laxation that can be meaningful when there is evidence of two or possibly more
intertwined subproblems, and each of them can be efficiently solved on its own by
specialized algorithms.

For this purpose, we duplicate variables xe, ∀e ∈ E, by introducing new, cor-
responding variables ye and including linking constraints, leading to the following
reformulation:

max p(x) =
X

e∈E

pexe (17)

s.t. x represents a spanning tree on G, (18)
X

e∈E

weye ≤ c, (19)

xe = ye, ∀e ∈ E, (20)

xe, ye ∈ {0, 1}, ∀e ∈ E. (21)

Now we relax the linking constraints (20) in a Lagrangian fashion using Lagrangian
multipliers λe ∈ R, ∀e ∈ E, hence obtaining the Lagrangian decomposition of the
original problem, denoted by KCMST-LD(λ):

max p(x) =
X

e∈E

pexe −
X

e∈E

λe(xe − ye) (22)

s.t. x represents a spanning tree on G, (23)
X

e∈E

weye ≤ c, (24)

xe, ye ∈ {0, 1}, ∀e ∈ E. (25)

Stating KCMST-LD(λ) in a more compact way and emphasizing the now indepen-
dent subproblems yields

(MST) max {(p − λ)T x | x =̂ a spanning tree on G, x ∈ {0, 1}E} + (26)

(KP) max {λT y | wT y ≤ c, y ∈ {0, 1}E}. (27)

For a given λ, the maximum spanning tree (MST) subproblem (26) can be
efficiently solved by standard algorithms. The 0–1 knapsack subproblem (27) is
known to be weakly NP-hard and we apply the COMBO dynamic programming
algorithm [36] for efficiently solving it.

To obtain the tightest (smallest) upper bound, we have to solve the Lagrangian
dual problem:
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minλ∈RE v(KCMST-LD(λ)), (28)

where v(KCMST-LD(λ)) denotes the optimal solution value to KCMST-LD(λ). This
is achieved by applying the volume algorithm [4].

6.3 Lagrangian Heuristic

We employ several methods to also derive heuristic solutions and corresponding
lower bounds. An obvious Lagrangian heuristic is the following: Whenever the span-
ning tree created in an iteration of the volume algorithm satisfies the capacity limit,
we already have a feasible KCMST. In order to further improve such solutions we
consecutively apply a local search based on an edge exchange neighborhood. Thereby
we select an edge (u, v) not present in the solution and identify the least profitable
edge—choosing an edge with highest weight in case of ties—of the path that con-
nects nodes u and v in the current tree and that may be replaced by (u, v) without
violating the capacity constraint. We then exchange these two edges in case the
profit increases or it stays the same but the overall weight decreases. The edge to be
included, (u, v), is either chosen (i) at random from E \ T , or (ii) at the beginning
of the local search, all edges are sorted according to decreasing p′

e = pe − λe (the
reduced profits used to solve the MST subproblem) and in every iteration of the
local search the next less profitable edge not active in the current solution is chosen.
The latter selection scheme results in a greedy search where every edge is considered
at most once. Since Lagrangian multipliers are supposed to be of better quality in
later phases of the optimization process, local search is only applied when the ratio
of the incumbent lower and upper bounds is larger than a certain threshold τ . Local
search stops after 100 consecutive non-improving iterations have been performed.

6.4 Evolutionary Algorithm for the KCMST

The EA for heuristically solving the KCMST is based on a direct edge-set represen-
tation as described in [45]. This encoding and its corresponding variation operators
are known to provide strong locality and heritability, and all operations can effi-
ciently be performed in time that depends (almost) only linearly on the number of
nodes.

The general framework is steady-state, i.e. in each iteration one feasible offspring
solution is created by means of recombination, mutation, and eventually local im-
provement, and it replaces the worst solution in the population. Duplicates are not
allowed in the population; they are always immediately discarded. The EA’s oper-
ators work as follows.

Initialization: A diversified initial population is obtained via a random span-
ning tree construction based on Kruskal’s algorithm with a bias towards selecting
edges with high profits. In case a generated solution is infeasible with respect to the
knapsack constraint, it is stochastically repaired by iteratively selecting a not yet
included edge at random, adding it to the tree, and removing an edge with highest
weight from the induced cycle.

Recombination: An offspring is derived from two selected parental solutions
in such a way that it always exclusively consists of inherited edges: In a first step
all edges contained in both parents are immediately adopted. The remaining ones
are merged into a single candidate list. From this list, we iteratively select edges
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by binary tournaments with replacement favoring high-profit edges again. Selected
edges are included in the solution if they do not introduce a cycle; otherwise, they
are discarded. The process is repeated until a complete spanning tree is obtained.
If it exceeds the capacity limit, the solution is repaired in the same way as during
initialization, but only considering parental edges for inclusion.

Mutation: Mutation is performed by inserting a new randomly selected edge
and removing another edge from the introduced cycle. The choice of the edge to be
included is again biased towards high-profit edges by utilizing a normally-distributed
rank-based selection, see [45]. The edge to be removed from the induced cycle is
chosen at random among those edges whose removal retains a feasible solution.

Local Search: With a certain probability, a newly derived candidate solution
is further improved by the previously described local search procedure.

6.5 LD/EA Hybrid

For the LD/EA hybrid we apply similar ideas as described in [28] for the prize col-
lecting Steiner tree problem, where the EA is used successfully for finding better
final solutions after performing LD. Here, the EA is adapted to exploit a variety of
(intermediate) results from LD. Of course, the EA is only applied if the best feasible
solution obtained by LD does not correspond to the determined upper bound; oth-
erwise a proven optimal solution is already found. These steps are performed after
LD has terminated and before the EA is executed:

1. For the selection of edges during initialization, recombination, and mutation,
original edge profits pe are replaced by reduced profits p′

e = pe −λe. In this way,
Lagrangian dual variables are exploited, and the heuristic search emphasizes the
inclusion of edges that turned out to be beneficial in LD.

2. The edge set to be considered by the EA is reduced from E to a subset E′

containing only those edges that appeared in any of the feasible solutions en-
countered by LD. For this purpose, LD is extended to mark those edges.

3. The best feasible solution obtained by LD is directly included in the EA’s initial
population.

4. Finally, the upper bound obtained by LD is exploited by the EA as an additional
stopping criterion: When a solution with a corresponding total profit is found,
it is optimal, and the EA terminates.

6.6 Experimental Results

The ability of the LD to yield extremely tight upper bounds that are significantly
better than those resulting from the simple Lagrangian relaxation [54] is docu-
mented in [40]. Here we concentrate on the ability of the involved heuristics for
improving the primal solutions. Therefore we show and compare results for the pure
Lagrangian decomposition (LD), LD with local search (LD+LS), and the LD/EA
hybrid (LD+LS+EA). Due to the absence of publicly available test instances we
generated maximal planar graphs (P|V |,γ), and random (R|V |,|E|,γ,δ) as well as com-
plete graphs (K|V |,γ,δ) as detailed in [29]. The instances differ in

1. size: number of nodes |V | and edges |E|,
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2. profit/weight correlation γ: being uncorrelated, weakly or strongly correlated
for maximal planar graphs and of type outliers, weakly or strongly correlated
for the other graph types,

3. and capacity limit δ: low, medium, or high limit.

A detailed treatment of these instances is given in [40]. For the optional local search,
greedy edge selection is used for random and complete graphs with an application
threshold set to τ = 0.99 and random edge selection with τ = 0.995 for the maximal
planar graphs. The EA operates with a population size of 100 individuals, binary
tournament selection is used. Local search is applied with a probability of 20% on
each new candidate solution. The maximum number of EA iterations is 10000 for
maximal planar graphs and 30000 for random and complete graphs. The edge set
reduction was applied only in case of maximal planar graphs, as it turned out to be
sometimes too restricting in the other cases.

All experiments were performed on a 2.2 GHz AMD Athlon 64 PC with 2 GB
RAM. The results are given in Table 1; 10 runs per instance were performed for
the stochastic algorithms. We state the CPU-time in seconds t[s], the number of
iterations iter , the average lower bounds LB , i.e. the objective values of the best
feasible solutions. Upper bounds UB are expressed in terms of the relative gap to
these lower bounds: gap = (UB − LB)/LB ; corresponding standard deviations are
listed in columns σgap . Columns %-Opt show the percentages of instances for which
the gaps are zero and, thus, optimality has been achieved. For LD+LS+EA, the table
additionally lists the average numbers of EA iterations iterEA, the relative amounts
of edges discarded after performing LD red = (|E|−|E′|)/|E| ·100%, stating (red) in
case no reduction was applied, and the percentages of optimal solutions %-OptEA,
among %-Opt, found by the EA.

As can be seen, the solutions obtained by LD are already quite good and gaps are
small in general. Applying the local search (LD+LS) always improves the average
lower bound and in some cases helps to find more proven optimal solutions, which in
turn reduces the number of iterations of the volume algorithm. The hybrid approach
(LD+LS+EA) further boosts the average solution quality in almost all cases and
substantially increases the number of solutions for which optimality could be proven,
the increase in running time one has to pay is mostly only moderate. Of course, in
order to solve the very few remaining instances to proven optimality as well, one
could embed LD+LS+EA within a B&B.

7 Case Study: Metaheuristic Column Generation

In this section we discuss as a second case study a successful application of meta-
heuristics for solving the pricing subproblem within a column generation approach.
The presented results are part of a currently ongoing project of the authors.

7.1 The Periodic Vehicle Routing Problem with Time Windows

Periodic vehicle routing problems (PVRPs) are generalized variants of the classi-
cal vehicle routing problem (VRP) where customers must be served several times
within a given planning period. They occur in real-world applications as in courier
services, grocery distribution or waste collection. The PVRP considered here is the
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Table 1. Results of Lagrangian decomposition and hybrid algorithms on maximal planar, random, and complete graphs.

Instance

LD LD+LS LD+LS+EA

t[s] iter LB
gap σgap %-Opt t[s] iter LB

gap σgap %-Opt t[s] red iterEA LB
gap σgap %-Opt %-OptEA[·10−5] [·10−5] [·10−5] [·10−5] [·10−5] [·10−5]

P2000,u 1.48 791 147799.50 0.0683 0.2049 90 2.28 782 147799.55 0.0342 0.1489 95 2.90 41.21 150 147799.60 0 0 100 5
P2000,w 1.52 853 85570.50 0.3519 0.7513 80 2.38 844 85570.63 0.1994 0.5261 86 4.26 42.61 457 85570.78 0.0235 0.1643 98 12
P2000,s 2.12 1030 82521.70 1.9389 2.3118 40 2.66 868 82523.30 0 0 100 2.66 21.99 0 82523.30 0 0 100 0
P4000,u 3.35 859 294872.00 0.0340 0.1019 90 5.59 841 294872.03 0.0238 0.0866 93 8.64 40.17 316 294872.10 0 0 100 7
P4000,w 4.19 1053 170956.70 0.8195 0.9155 40 6.15 978 170957.79 0.1813 0.306 72 14.66 43.82 842 170958.06 0.0234 0.1147 96 24
P4000,s 4.71 1066 165049.80 1.0300 0.8590 30 5.99 915 165051.44 0.0364 0.1439 94 9.95 19.92 410 165051.48 0.0121 0.0848 98 4
P6000,u 5.66 912 441977.80 0.0680 0.1038 70 9.33 886 441977.96 0.0317 0.0786 86 15.41 40.25 339 441978.10 0 0 100 14
P6000,w 6.55 1022 256317.40 0.3904 0.4621 50 9.25 964 256318.09 0.1210 0.2452 76 24.47 45.14 909 256318.36 0.0156 0.0764 96 20
P6000,s 8.14 1157 247587.90 1.7368 1.3032 20 10.44 996 247592.04 0.0646 0.1481 84 33.73 19.94 1401 247592.09 0.0444 0.1264 89 5
P8000,u 8.32 960 589446.50 0.1017 0.1357 60 13.81 918 589446.89 0.0356 0.077 81 28.44 39.98 595 589447.09 0.0017 0.0168 99 18
P8000,w 9.78 1107 341902.50 0.5555 0.5139 30 14.18 1037 341903.85 0.1609 0.2124 58 48.40 44.82 1384 341904.37 0.0088 0.0499 97 39
P8000,s 10.88 1125 330117.10 1.5147 1.3065 20 14.20 990 330121.86 0.0727 0.1294 76 57.00 17.99 1727 330121.96 0.0424 0.1051 86 10

R300,11213,o,l 9.53 1737 542839.40 1.7477 1.8326 10 11.72 1737 542840.60 1.5271 1.5937 10 29.99 (92.93) 27000 542843.63 0.9706 0.6928 10 0
R300,11213,o,m 7.10 1536 580716.50 0.2583 0.2464 30 8.89 1506 580716.60 0.2411 0.2576 40 21.43 (91.63) 18000 580716.64 0.2342 0.2477 40 0
R300,11213,o,h 3.57 1260 591409.00 0.1690 0.2507 50 5.11 1259 591409.30 0.1183 0.1320 50 13.73 (91.02) 12285 591409.54 0.0778 0.1132 64 14
R300,11213,s2,l 24.58 1563 77466.60 8.5209 5.6046 20 24.45 1409 77473.00 0.2581 0.5161 80 24.69 (80.64) 336 77473.20 0 0 100 20
R300,11213,s2,m 15.37 1351 155244.80 5.4064 5.1165 0 14.77 1051 155253.20 0 0 100 14.73 (81.54) 0 155253.20 0 0 100 0
R300,11213,s2,h 16.52 1332 232877.70 6.5305 5.2668 10 16.74 1238 232892.50 0.1718 0.2847 70 18.34 (85.28) 2222 232892.89 0.0043 0.0428 99 29

R300,22425,o,l 26.39 3324 568771.90 6.8383 6.1475 10 32.10 3324 568788.80 3.8714 4.3327 10 52.08 (95.24) 26700 568796.00 2.6042 3.3654 11 1
R300,22425,o,m 14.70 1943 588410.30 0.2210 0.2020 30 18.83 1943 588410.50 0.1870 0.1605 30 33.05 (95.46) 18078 588410.80 0.1360 0.1272 40 10
R300,22425,o,h 7.28 1358 594373.50 0.0168 0.0505 90 10.10 1358 594373.50 0.0168 0.0505 90 12.40 (94.54) 3000 594373.50 0.0168 0.0505 90 0
R300,22425,s2,l 44.08 2059 77445.70 12.2628 9.0170 0 42.58 1793 77455.20 0 0 100 42.58 (86.26) 0 77455.20 0 0 100 0
R300,22425,s2,m 29.69 1687 154940.30 7.8185 8.9007 10 28.81 1392 154952.40 0 0 100 28.81 (93.71) 0 154952.40 0 0 100 0
R300,22425,s2,h 34.63 1964 232424.80 16.2741 12.5659 10 36.55 1885 232461.90 0.3013 0.3874 50 44.59 (89.39) 10682 232462.37 0.0990 0.1811 77 27

K300,o,l 247.29 19163 582646.00 4.0334 7.1749 10 316.33 19163 582660.30 1.5789 1.4435 10 333.98 (97.50) 27000 582663.46 1.0366 0.8511 10 0
K300,o,m 40.44 2909 592797.70 0.1856 0.1401 30 45.96 2864 592797.90 0.1518 0.1401 40 55.19 (97.70) 10212 592798.50 0.0506 0.0773 70 30
K300,o,h 30.13 2373 596076.40 0.0503 0.1074 80 35.49 2371 596076.50 0.0336 0.0671 80 36.13 (96.94) 1239 596076.70 0 0 100 20
K300,s2,l 63.20 2495 77225.70 28.6269 20.8442 0 60.80 2195 77247.80 0 0 100 60.80 (93.07) 0 77247.80 0 0 100 0
K300,s2,m 62.25 2704 154445.00 12.4958 8.3394 0 59.11 2404 154464.30 0 0 100 59.11 (94.48) 0 154464.30 0 0 100 0
K300,s2,h 76.60 3396 231665.00 15.9285 18.7408 10 78.10 3142 231701.90 0 0 100 78.10 (92.77) 0 231701.90 0 0 100 0
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Periodic Vehicle Routing Problem with Time Windows (PVRPTW). It is defined on
a complete directed graph G = (V, A), where V = {v0, v1, . . . vn} is the vertex set
and A = {(vi, vj) : vi, vj ∈ V, i 6= j} is the arc set. The planning horizon shall be
t days, also referred to as T = {1, . . . , t}. Vertex v0 represents the depot with time
window [e0, l0] at which we have a fleet of m homogeneous vehicles with capacity
Q and maximal daily working time D. Each vertex i ∈ VC , with VC = V \ {v0},
corresponds to a customer and has an associated demand qi ≥ 0, a service duration
di ≥ 0, a time window [ei, li], a service frequency fi and a set Ci of allowable com-
binations of visit days. For each arc (vi, vj) ∈ A there are given travel times (costs)
cij ≥ 0. The aim is (i) to select a single visit combination per customer and (ii) to
find at most m vehicle routes on each of the t days on G, such that

(1) each route starts and ends at the depot,
(2) each customer i belongs to fi routes over the planning horizon,
(3) the total demand of the route for each vehicle does not exceed the capacity limit

Q,
and its duration does not exceed the maximal working time D,

(4) the service at each customer i begins in the interval [ei, li] and every
vehicle leaves the depot and returns to it in the interval [e0, l0], and

(5) the total travel costs of all vehicles are minimized.

We further assume so-called hard time windows, i.e. arriving before ei at customer
i incurs a waiting time at no additional costs, whereas arriving later than li is not
allowed. The PVRPTW has been first mentioned in Cordeau et al. [8], where a tabu
search metaheuristic is described for it.

7.2 Set Covering Formulation for the PVRPTW

Among the most successful solution approaches for VRPs in general are algorithms
based on column generation. Therefore we focus on an IP formulation suitable for
such an approach and formulate the integer master problem (IMP) for the PVRPTW
as a set-covering model:

min
X

τ∈T

X

ω∈Ω

γω υωτ (29)

s.t.
X

r∈Ci

yir ≥ 1, ∀i ∈ VC , (30)

X

ω∈Ω

υωτ ≤ m, ∀τ ∈ T, (31)

X

ω∈Ω

αiω υωτ −
X

r∈Ci

βirτ yir ≥ 0, ∀i ∈ VC , ∀τ ∈ T, (32)

yir ∈ {0, 1}, ∀i ∈ VC , ∀r ∈ Ci, (33)

υωτ ∈ {0, 1}, ∀ω ∈ Ω, ∀τ ∈ T. (34)

The set of all feasible individual routes is denoted by Ω, and with each route ω ∈ Ω
we have associated costs γω and variables υωτ , ∀τ ∈ T , representing the number of
times route ω is selected on day τ . For each customer i ∈ VC , variable yir indicates
whether or not visit combination r ∈ Ci is chosen. The objective is to minimize
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the total costs of all routes (29). Covering constraints (30) guarantee that at least
one visit day combination is selected per customer, fleet constraints (31) restrict the
number of daily routes to not exceed the number of available vehicles m, and visit
constraints (32) link the routes and the visit combinations, whereas αiω and βirτ

are binary constants indicating if route ω visits customer i and if day τ belongs to
visit combination r ∈ Ci of customer i, respectively.

7.3 Column Generation for Solving the LP Relaxation

Here, our aim is to derive a lower bound for the IMP by exactly solving its LP
relaxation. An extension of the approach towards an exact branch-and-price al-
gorithm is part of our ongoing work. Conditions (33) and (34) are replaced by
yir ≥ 0 and υωτ ≥ 0, yielding the (linear) master problem (MP). Due to the
large number of variables (columns) corresponding to routes, this LP cannot be
solved directly. Instead, we restrict ourselves to a small number of initial columns
Ω′ ⊂ Ω, yielding the corresponding restricted master problem (RMP). Additional
columns (routes) that are able to improve the current LP solution are generated by
iteratively solving the pricing subproblem, which resembles in our case a shortest
path problem with resource constraints (SPPRC) [31] and is NP-hard. Regarding
the quality of the theoretically obtainable lower bound it is beneficial to restrict
the search to elementary paths, hence only considering the elementary SPPRC
(ESPPRC). The following ESPPRC pricing subproblem holds for each day τ ∈ T
and is solved on an auxiliary graph G′ = (V ′, A′), with V ′ = V ∪ {vn+1} and
A′ = {(v0, i), (i, vn+1) : i ∈ VC} ∪ {(i, j) : i, j ∈ VC , i 6= j}, where vn+1 is a copy of
the (starting) depot v0 and acts as target node:

min
X

i∈V ′

X

j∈V ′

ĉijτ xij (35)

s.t.
X

j∈VC

x0j = 1 (36)

X

i∈V ′

xik −
X

j∈V ′

xkj = 0 ∀k ∈ VC (37)

X

i∈VC

xi,n+1 = 1 (38)

X

i∈VC

X

j∈V ′

qi xij ≤ Q (39)

an+1 − w0 ≤ D (40)

ai + wi + di + cij − Mij(1 − xij) ≤ aj ∀(i, j) ∈ A′ (41)

ei ≤ (ai + wi) ≤ li ∀i ∈ V ′ (42)

wi ≥ 0 ∀i ∈ V ′ (43)

ai ≥ 0 ∀i ∈ V ′ \ {v0} (44)

a0 = 0 (45)

xij ∈ {0, 1} ∀(i, j) ∈ A′ (46)

Variables xij , ∀(i, j) ∈ A′, denote which arcs from A′ are used, and ĉijτ are the
reduced costs of using arc (i, j) on day τ :
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ĉijτ =

(

cij − ρτ if i = v0, j ∈ VC ,

cij − πiτ if i ∈ VC , j ∈ V ′.
(47)

with ρτ and πiτ being the dual variable values of constraints (31) and (32), respec-
tively. Equalities (36) to (38) are flow conservation constraints, and inequalities (39)
and (40) guarantee to not exceed the capacity and duration limits, respectively. Fi-
nally, (41) and (42) are time constraints, with variable ai denoting the arrival time
at customer i and wi the waiting time occurring after ai.

7.4 Exact and Metaheuristic Pricing Procedures

We apply an exact algorithm as well as metaheuristics for solving the ESPPRC
subproblem. The former is realized by a dynamic programming approach based
on [7, 14]. We use a label correcting algorithm and expand the partial paths from
the depot v0 to the target node vn+1, thereby retaining only non-dominated labels
taking into account the cumulated costs, load, duration, and overall waiting time,
as well as the arrival time and the set of unreachable nodes. To minimize route
duration we adhere to the concept of forward time slack [48] and maximize the
waiting time w0 at the depot without introducing a time window violation. This
is also considered when extending labels and checking the dominance relation. The
algorithm can also be stopped after a certain number of negative cost paths have
been found, i.e. applying a “forced early stop”, cf. [32].

The first metaheuristic is an instance of iterated local search (ILS) [34]. It starts
with the “empty” path (v0, vn+1) with zero costs and applies in each iteration a
perturbation and a subsequent local improvement phase. Both phases make use of
the following neighborhood structures: inserting, deleting, moving, replacing, and
exchanging individual customers. The local search selects them in a random fashion
and always accepts the first improving change. Perturbation applies ten random
neighborhood moves in a sequence.

Our second, alternative metaheuristic approach can be regarded a greedy ran-
domized adaptive search procedure (GRASP) [15]: In each iteration we start with
the “empty” path (v0, vn+1) with zero costs and successively try to add arcs having
negative costs, always selecting one at random in case there are more available; af-
terwards we also apply the perturbation and local search phase as described for the
ILS algorithm.

Whenever an iteration of the metaheuristics results in a negative cost path it
is stored and returned at the end of the procedure. Once one or more negative
cost routes have been determined for one of the daily subproblems, corresponding
variables are priced in for all days and the RMP is resolved. In the following iteration
we start the column generation with the same daily subproblem before considering
the others. The whole process is continued until a full iteration over all days yields
no new negative cost routes.

7.5 Experimental Results

Benchmark instances were taken from [8]. They are divided in types ‘a’ and ‘b’ having
narrow and wide time windows, respectively. We reduced some of them by selecting
only a random subset of the customers and decreasing the number of vehicles in an
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appropriate way; in this case we give a subscript denoting the index of the reduced
instance. The initial set of columns is provided by taking the routes of feasible
solutions of a variable neighborhood search described in [39]. All algorithms have
been implemented in C++ using GCC 4.1 and were executed on a single core of a
2.2 GHz AMD Opteron 2214 PC with 4 GB RAM. CPLEX in version 11.1 was used
as LP solver. The ESPPRC subproblem is solved in four alternative ways: (i) by
dynamic programming (DP), (ii) by dynamic programming with a forced early stop
after 1000 generated columns (DPS), (iii) by ILS and a subsequent application of DP
(ILS+DP), and finally (iv) by GRASP and running DP afterwards (GRASP+DP).
The metaheuristics’ iteration limit is originally set to 1000 and extended to 10000
if no new columns have been generated so far (on a per-run basis). DP is applied
after the metaheuristic if less than 100 new columns have been generated. In all
experiments, column generation was performed until the LP relaxation of the set
covering formulation has been solved to optimality, i.e. it has been proven by DP
that no further columns with negative reduced costs exist.

Table 2 shows the instances, the upper bounds (UB) initially provided by the
variable neighborhood search, the (exact) lower bounds (LB) obtained from column
generation, the percentage gaps between them, i.e. %-gap = (UB− LB)/LB · 100%,
the CPU-times of settings DP and DPS, as well as the minimal and average times
of settings ILS+DP and GRASP+DP over 10 runs per instance. It can be observed
that DPS is faster than DP for instances with narrow time windows, whereas it is
almost the opposite for instances with wide time windows. However, using one of
the metaheuristic combinations ILS+DP or GRASP+DP is almost always fastest,
especially for larger instances, when the speed of the heuristic column generation
outweighs the probably higher quality columns of the DP algorithm. Among the two
metaheuristic combinations, no obvious advantage is observable for either of them.

8 Conclusions

The present chapter reviewed important MetaBoosting literature and presented two
exemplary case studies where an in-depth description of successful hybrid algorithms
was given. Many different hybridization approaches exist, most of them are special-
ized methods for specific problems, but another significant part of the surveyed
research considers generic problems such as mixed integer programming. It is of-
ten possible to accelerate exact methods by introducing (meta-)heuristic knowledge
and, if fixed time-limits are given, the overall solution quality might also benefit
from such ideas.

In most exact approaches tight bounds are crucial aspects of success. Thus, dif-
ferent ways of applying metaheuristics for finding primal bounds were examined. The
obvious way of determining high quality initial solutions can be beneficial to the over-
all optimization process, as it has been described for the multidimensional knapsack
problem. General methods for determining improved primal solutions throughout
the search process for generic mixed integer programming, such as local branching
and relaxation or distance induced neighborhood search, have been found so effective
that some of them have been included into the commercial MIP solver CPLEX. So-
lution merging approaches based on evolutionary algorithms were also successfully
included in this solver. Other more problem specific methods often yielding opti-
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Table 2. Experimental results of column generation with different pricing strategies for the PVRPTW: CPU-times for exactly solving
the LP relaxation of the set covering formulation.

Instance
UB LB %-gap

DP DPS ILS+DP GRASP+DP

No. n m t t[s] t[s] min t[s] avg. t[s] min t[s] avg. t[s]

1a 48 3 4 2909.02 2882.01 0.94 5.01 4.87 11.44 13.92 13.40 18.59
2a 96 6 4 5032.06 4993.48 0.77 72.27 53.91 48.35 55.83 45.31 57.09
3a 144 9 4 7138.65 6841.44 4.34 374.07 291.61 231.17 265.28 223.03 262.89
4ar1 160 10 4 6929.84 6641.67 4.34 1240.96 1136.64 605.06 744.69 640.15 754.71
7a 72 5 6 6784.71 6641.39 2.16 24.78 17.10 16.98 20.77 19.58 23.82
9ar1 96 7 6 8545.80 8035.09 6.36 146.88 134.55 88.89 104.17 96.60 103.75
9ar2 120 8 6 8598.40 8140.15 5.63 898.90 693.44 446.49 545.09 475.98 521.66
8a 144 10 6 9721.25 9153.79 6.20 745.95 592.07 367.82 418.87 383.18 421.63

2br1 32 2 4 2709.15 2682.52 1.00 89.65 121.30 43.58 64.79 25.36 55.78
1b 48 3 4 2277.44 2258.85 0.82 156.77 158.66 76.66 109.17 99.59 123.35
2br2 64 4 4 2771.68 2733.55 1.40 277.76 254.38 131.72 192.18 168.75 188.61
3br1 72 4 4 3306.86 3241.90 2.00 726.37 749.11 426.10 533.68 417.05 488.95
7br1 24 2 6 3776.25 3677.21 2.70 0.54 0.55 1.92 2.29 1.72 2.25
8br1 36 2 6 3640.79 3476.43 4.73 10.01 10.15 8.50 13.26 10.24 12.55
7br2 48 3 6 3723.18 3599.72 3.43 48.04 31.78 30.95 43.13 34.03 43.20
8br2 60 3 6 4606.17 4324.87 6.50 1538.18 1196.51 826.08 1121.28 804.35 967.87
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mal or close to optimal primal solutions based on the hybridization of Lagrangian
relaxation and metaheuristics were also examined.

A multitude of collaborative approaches exist and some intertwined and parallel
combinations were described in this chapter. Parallel combinations gain importance
because of the current hardware developments and the broad availability of multi-
core processors.

Mathematical programming techniques based on problem decomposition, such
as cut and column generation approaches, play an essential role in the advances of
exact methods. Applications where metaheuristic algorithms are used for such tasks
were described. Especially sequential combinations of fast and simple construction
heuristics and more sophisticated metaheuristic approaches are very promising in
both cut and column generation.

Different aspects and difficulties in the development of hybrid methods were dis-
cussed in more detail in the two case studies. The first one describes a Lagrangian
decomposition approach combined with an evolutionary algorithm for solving the
knapsack constrained maximum spanning tree problem. The Lagrangian approach
combined with an implicit construction heuristic and a subsequent local search is
already a powerful procedure yielding tight gaps, but its combination with the EA
allows to optimally solve substantially more of the large-scale instances. The second
case study presents a column generation approach for solving the periodic vehicle
routing problem with time windows. A greedy randomized adaptive search proce-
dure, an iterated local search, and a dynamic programming algorithm are applied
for solving the pricing subproblem. The inclusion of metaheuristic techniques led to
a significant acceleration of the column generation process compared to using the
dynamic programming subproblem solver alone.

Hybridizing exact algorithms and metaheuristics, and MetaBoosting in partic-
ular are promising research areas. Further exciting results can be expected since
various possible synergies are still unexplored. Especially generating, exchanging,
and translating information about the ongoing optimization process by exploiting
advanced features of the different algorithms will possibly lead to further progress
in the field.
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local branching. Computers and Operations Research, 33(10):3034–3045, 2006.
28. M. Haouari and J. C. Siala. A hybrid Lagrangian genetic algorithm for the prize

collecting Steiner tree problem. Computers & Operations Research, 33(5):1274–
1288, 2006.

29. S. T. Henn. Weight-constrained minimal spanning tree problem. Master’s thesis,
University of Kaiserslautern, Department of Mathematics, May 2007.

30. F. S. Hillier. Efficient heuristic procedures for integer linear programming with
an interior. Operations Research, 17(4):600–637, 1969.

31. S. Irnich and G. Desaulniers. Shortest path problems with resource constraints.
In G. Desaulniers et al., editors, Column Generation, chapter 2, pages 33–65.
Springer, 2005.

32. J. Larsen. Parallelization of the Vehicle Routing Problem with Time Windows.
PhD thesis, Technical University of Denmark, 1999.

33. M. Leitner and G. R. Raidl. Lagrangian decomposition, metaheuristics, and
hybrid approaches for the design of the last mile in fiber optic networks. In
M. J. Blesa et al., editors, Hybrid Metaheuristics 2008, volume 5296 of LNCS,
pages 158–174. Springer, 2008.

34. H. R. Lourenco, O. Martin, and T. Stützle. Iterated local search. In F. Glover
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