
Bringing Order into the Neighborhoods: Relaxation

Guided Variable Neighborhood Search∗

Jakob Puchinger and Günther R. Raidl

Institute of Computer Graphics and Algorithms (E186)

Vienna University of Technology,

Favoritenstraße, 9–11, 1040 Vienna, Austria

Phone: +43-1-58801-18616

Email:{puchinger|raidl}@ads.tuwien.ac.at

Abstract

In this article we investigate a new variant of Variable Neighborhood Search (VNS):

Relaxation Guided Variable Neighborhood Search. It is based on the general VNS

scheme and a new Variable Neighborhood Descent (VND) algorithm. The ordering of the

neighborhood structures in this VND is determined dynamically by solving relaxations

of them. The objective values of these relaxations are used as indicators for the potential

gains of searching the corresponding neighborhoods. We tested this new approach on

the well-studied multidimensional knapsack problem. Computational experiments show

that our approach is beneficial to the search, improving the obtained results. The

concept is, in principle, more generally applicable and seems to be promising for many

other combinatorial optimization problems approached by VNS.

Keywords: Variable Neighborhood Search, Integer Linear Programming, Multidi-

mensional Knapsack Problem

∗This work is supported by the European RTN ADONET under grant 504438.

1



1 Introduction

The general Variable Neighborhood Search (VNS) heuristic including Variable Neighborhood

Descent (VND) (Hansen and Mladenović, 1999, 2003) is a relatively young metaheuristic

concept that has successfully been applied to several combinatorial optimization problems.

It relies on the principle of searching different neighborhood structures in a systematic way.

In Hansen and Mladenović (2003) the following significant question is raised: What is the

best order in applying the neighborhoods?

Usually, neighborhoods are sorted according to increasing complexity of searching for the best

moves, which often, but not always, corresponds to the size of neighborhoods. Sometimes,

however, such an order might be hard to estimate or even be misleading. In particular, a

prespecified, fixed order might in general not be ideal during all phases of the optimization

process. We will introduce a new dynamic approach, in which the neighborhoods are always

processed in an order that depends on estimated improvement-potentials.

We call this enhanced variant of general VNS Relaxation Guided Variable Neighborhood

Search. It follows the standard VNS scheme but uses a new VND algorithm. As a specific

technique for determining improvement-potentials for the neighborhoods considered in VND,

we employ (Integer) Linear Programming (ILP/LP) techniques. Note that combining meta-

heuristics and ILP techniques is a highly promising research area for its own (Dumitrescu and

Stuetzle, 2003; Puchinger and Raidl, 2005a), our approach can also be seen as a contribution

to this direction.

The VND is guided by always sorting the neighborhoods according to estimations of the

improvement-potentials depending on the current solution. For each neighborhood this po-

tential is determined by quickly solving a relaxation. Searching the neighborhoods in this

order is expected to increase solution quality and/or to speed up VNS.

In order to evaluate this new approach, we use the Multidimensional Knapsack Problem

(MKP). It is a well-studied, strongly NP-hard combinatorial optimization problem occurring

in many different application areas. In the last decades a multitude of exact and metaheuristic

algorithms were developed for the MKP, some of them being very complex. We examine the

benefits of relaxation guided VNS in comparison to standard version of VNS on this problem.

Although it is not our primary goal to compete with the leading algorithms for large and

complex MKP instances, we get relatively good results that are in general not far from the

best known solutions.

2



In the next section we present the general scheme of Relaxation Guided VNS. Section 3 intro-

duces the MKP in detail. We then describe the neighborhood structures used for the MKP,

together with computational experiments comparing standard VNS and relaxation guided

VNS in Section 4. Some extensions of this approach using more neighborhood structures and

further experiments are presented in Section 5. We close with some concluding remarks and

an outlook on future work.

2 Relaxation Guided VNS

Relaxation Guided VNS (RGVNS) follows the the general VNS scheme (Hansen and Mlade-

nović, 1999, 2003) and incorporates an improved VND, which we call Relaxation Guided

Variable Neighborhood Descent (RGVND). Let us assume that the neighborhood structures

N1, . . . , Nkmax are to be used within VND. An important question, which often has a sub-

stantial impact on the algorithm’s performance, is the order in which the neighborhoods are

to be considered. Occasionally, this ordering is straight-forward, since the neighborhoods

are nested, such that neighborhood Ni always fully contains N − i− 1, ∀i = 2, . . . , kmax.

An example are classical k-opt neighborhoods for the traveling salesman problem or more

general k-exchange neighborhoods. However, a particular strength of VND/VNS often lies

in the combination of different types of neighborhoods which do not form such a monotone

sequence of extensions.

In such cases, rules of thumb are typically used for defining a meaningful order. Examples

are: (a) search smaller neighborhoods first; (b) search neighborhoods first for which faster

algorithms exist; and (c) search neighborhoods first which are generally considered to be

“more promising”. In many situations, however, these strategies do not lead to the overall

best ordering. Furthermore, the ordering that is best suited in a particular situation might in

general depend on the current solution, i.e. there is not a single ordering which is optimal at

any time of the heuristic search. With the exception of our preliminary results we published

in Puchinger and Raidl (2005b), we are not aware of any previous work where the ordering

of the neighborhoods is determined in an automatic way and, especially, is adapted during

the search.

The central point of our extended variant of VND is that we automatically steer the order in

which the neighborhood structures are processed in dependence of estimated improvement-

potentials. These potentials are devised by quickly solving a relaxation of each neighborhood

3



structure. If the improvement-potentials are able to predict to a certain degree which neigh-

borhoods are more promising and which are less, considering the neighborhoods in this order

will yield better results and/or shorter running times.

In the following we will consider maximization problems; minimization problems can be

treated analogously.

Assume that we are given a Combinatorial Optimization Problem (COP) defined as

zCOP = max{f(x) | x ∈ S}, (1)

with S being a finite set of solutions and f(x) : S → R an objective function. In analogy

to the relaxation of an ILP (Wolsey, 1998), we introduce the following formal definition of a

relaxation of a COP.

Definition 1 A relaxation R of COP is any maximization problem defined as

zR = max{fR(x) | x ∈ SR} (2)

with the following properties:

(i) S ⊆ SR

(ii) f(x) ≤ fR(x), ∀x ∈ S.

The following evident result (Wolsey, 1998) yields a bound for COP.

Proposition 1 If R is a relaxation of COP, zR ≥ z.

If such a relaxation is chosen appropriately, it is substantially faster to calculate its optimal

solution than the solution to the original COP. An example is the widely used LP relax-

ation of an ILP formulation for a COP, which can be solved in polynomial time. Other

generic relaxation methodologies from the ILP domain, which are commonly applied with

much success, are e.g. the surrogate relaxation, in which constraints are combined, and the

Lagrangian relaxation, where constraints are transformed into penalty terms added to the

objective function.

It is a prerequisite for our RGVND scheme that the used relaxations can be solved to op-

timality much faster than their corresponding original neighborhood structures on one side,

4



Algorithm 1: Relaxation Guided VND (RGVND)
Input: A feasible solution x

l← 11

π = DetermineOrderOfNeighborhoods(x)2

repeat3

Find the best neighbor x∗ ∈ Nπ(k)(x) | f(x∗) ≥ f(x′) ∀x′ ∈ Nπ(k)(x)4

if f(x∗) > f(x) then5

x← x∗6

k ← 17

π = DetermineOrderOfNeighborhoods(x)8

else9

k ← k + 110

until k = kmax11

return x12

and that the obtained bounds are “good” in the sense that they give some indication for the

objective values of the best solution in the neighborhood.

As a second precondition we assume that the used neighborhoods are not nested since this

would lead to trivial orderings and render our approach meaningless, i.e. Nk 6⊆ Nk′ and

Nk′ 6⊆ Nk holds for any Nk, Nk′ with k 6= k′.

Algorithm 2: DetermineOrderOfNeighborhoods(x)

for k = 1, . . . , kmax do1

Solve NR
k (x) yielding solution value zR

k2

Sort π = (1, . . . , kmax) according to decreasing zR
k3

return π4

In Algorithm 1 the pseudocode of RGVND is given. The significant differences to the standard

VND scheme, as described in Hansen and Mladenović (1999, 2003), are the calls of function

DetermineOrderOfNeighborhoods(x) in lines 2 and 8. This function determines the order of

the neighborhood structures by first solving their relaxations yielding objective values zR
k ,

and then sorting the neighborhoods according to decreasing zR
k . Ties are broken arbitrarily

or according to some static heuristic rules.

5



3 The Multidimensional Knapsack Problem

The Multidimensional Knapsack Problem (MKP) is a well-studied, strongly NP-hard com-

binatorial optimization problem occurring in many different applications. It can be defined

by the following ILP:

(MKP) maximize z =
n∑

j=1

pjxj (3)

subject to
n∑

j=1

wijxj ≤ ci, i = 1, . . . , m (4)

xj ∈ {0, 1}, j = 1, . . . , n. (5)

There are n items with profits pj > 0 and m resources with capacities ci > 0 given. Each

item j consumes an amount wij ≥ 0 from each resource i. The goal according to (3) is to

select a subset of items with maximum total profit; chosen items must, however, not exceed

resource capacities, see (4). The 0–1 decision variables xj indicate which items are selected.

The MKP first appeared in the context of capital budgeting (Lorie and Savage, 1955; Manne

and Markowitz, 1957). A comprehensive overview of practical and theoretical results for the

MKP can be found in the monograph on knapsack problems by Kellerer et al. (2004). A

recent review of the MKP was given by Fréville (2004). Besides exact techniques for solving

small to moderately sized instances based on dynamic programming (Gilmore and Gomory,

1966; Weingartner and Ness, 1967) and branch-and-bound (Shih, 1979; Gavish and Pirkul,

1985), many kinds of metaheuristics have already been applied to the MKP.

To our knowledge, the method currently yielding the best results, at least for commonly used

benchmark instances, was described by Vasquez and Hao (2001) and has recently been refined

by Vasquez and Vimont (2005). It is a hybrid approach based on tabu search. The search

space is reduced and partitioned via additional constraints, thereby fixing the total number

of items to be packed. Bounds for these constraints are calculated by solving a modified

LP-relaxation. For each remaining part of the search space, tabu-search is independently

applied, starting with a solution derived from the LP-relaxation of the partial problem. The

improvement described in Vasquez and Vimont (2005) lies mainly in an additional variable

fixing heuristic.

Various other metaheuristics have been described for the MKP (Glover and Kochenberger,

1996; Chu and Beasley, 1998), including several variants of hybrid evolutionary algorithms

6



(EAs); see Raidl and Gottlieb (2005) for a recent survey and comparison of EAs for the MKP.

The authors of the current article have developed different approaches, combining exact

methods with metaheuristics for solving the MKP (Puchinger et al., 2005, 2006; Puchinger,

2006).

4 Relaxation Guided VNS for the MKP

We now focus on the problem-specific details of our RGVNS implementation for the MKP,

introducing the used neighborhoods and their relaxations, and present results for indicating

the effectiveness of the new approach in comparison to standard VNS.

4.1 Representation and Initialization

Solutions are directly represented by binary strings, and all our neighborhoods are defined

on the space of feasible solutions only. Previous studies such as Raidl and Gottlieb (2005)

indicate that for the MKP, this seems to be in general a wise decision, since approaches also

considering infeasible solutions to a larger degree turned out to be typically less effective.

We denote by I1(xf ) = {j | xf
j = 1} the index-set of the items contained in the knapsack of

a current solution xf and by I0(xf ) = {j | xf
j = 0} its complement.

The initial solution for our VNS is generated using a greedy first-fit heuristic, considering

the items in a certain order that is determined by sorting the items according to decreasing

values xj of the solution to the MKP’s LP-relaxation; ties are broken randomly. See Raidl

and Gottlieb (2005) for more information on this randomized greedy heuristic.

4.2 ILP-Based Neighborhoods

Instead of simple bit-flip or k-exchange neighborhoods that would inherently lead to infeasible

solutions, we consider more sophisticated neighborhoods based on the MKP’s ILP model.

We want to force a certain number of items of the current feasible solution xf to be removed

from or added to the knapsack. This is realized by adding neighborhood-defining constraints

depending on xf to the ILP formulation of the MKP.

In the first neighborhood, ILP-Remove-and-Fill IRF (xf , κ), we force precisely κ items from

I1 to be removed from the knapsack and any combination of items from I0 is allowed to

7



be added to the knapsack as long as the solution remains feasible. This is accomplished by

adding the following equation to (3)–(5):

∑

j∈I1(xf )

xj =
∑

j∈I1(xf )

xf
j − κ. (6)

In the second neighborhood, ILP-Add-and-Remove IAR(xf , κ), we force precisely κ items

not yet packed, i.e. from I0, to be included in the knapsack. To achieve feasibility any

combination of items from I1 may be removed. This is achieved by adding the following

equation to (3)–(5):
∑

j∈I0(xf )

xj = κ. (7)

As relaxations IRFR(xf , κ) and IARR(xf , κ) for RGVND we use the corresponding LP-

relaxations in which the integrality constraints (5) are replaced by 0 ≤ xj ≤ 1, j = 1, . . . , n.

Note that depending on the specific instance’s characteristics, both neighborhoods may be-

come quite large even for κ = 1. Nevertheless, the LP-relaxations can be solved to optimality

very quickly by means of standard LP algorithms. For searching the (integer) neighborhoods

we use a general purpose ILP-solver – CPLEX 9.0 in our case – with a certain time limit.

4.3 Relaxation Guided RGVND

Our Relaxation Guided Variable Neighborhood Decent (RGVND) for the MKP uses the

previously defined neighborhoods IRF (xf , κ) and IAR(xf , κ) with κ = 1, . . . , κmax, where

κmax is a prespecified upper limit on the number of items that shall be removed or added.

It otherwise follows the general algorithm already presented in Section 2, i.e. the order in

which the neighborhoods are considered is always dynamically determined by solving the

LP-relaxations and sorting the neighborhoods according to decreasing solution values. Ties

are broken by considering neighborhoods with smaller κ earlier.

4.4 Shaking

When RGVND terminates with a solution that is locally optimal with respect to IRF (xf , κ)

and IAR(xf , κ) for κ = 1, . . . , κmax, shaking is performed within the VNS framework. Our

shaking flips l ≥ 1 different, randomly selected variables xj of the current solution and applies

the following fast repair and local improvement procedures that have originally been proposed

by Chu and Beasley (1998).

8



Both, repair and local improvement, are greedy first-fit strategies and guarantee that any

resulting candidate solution lies at the boundary of the feasible region, where optimal solu-

tions are always located. The repair procedure considers all items in a specific order Π and

removes selected items (xj = 1 → xj = 0) as long as any capacity constraint is violated.

Local improvement works vice-versa: It considers all items in the reverse order Π and includes

items not yet appearing in the solution as long as no capacity limit is exceeded.

Crucial for these strategies to work well is the choice of the ordering Π. Items that are likely

to be selected in an optimal solution should appear near the end of Π. As described by Chu

and Beasley (1998), Π is determined according to pseudo-utility ratios (efficiency values)

uj =
pj∑m

i=1 riwij
, (8)

where we set the relevance factors ri to the dual variable values of the solution to the LP-

relaxation of the MKP. Puchinger (2006) and Puchinger et al. (2006) evaluated in a slightly

different context various efficiency measures and concluded that the dual variable values are

in general a very good choice.

As usual in general VNS, l runs from 1 to some lmax and is reset to 1 if an improved solution

is found.

4.5 Experimental Comparison

We compare RGVNS to standard VNS with a fixed neighborhood ordering and a VNS

variant in which the neighborhoods are always considered in random order (RandVNS).

All three strategies use the same ILP-based neighborhoods IRF (xf , κ) and IAR(xf , κ),

for κ = 1, . . . , κmax = 10 for their VND. In standard VNS the neighborhood-ordering is

IRF (xf , 1), IAR(xf , 1), IRF (xf , 2), IAR(xf , 2), . . . IRF (xf , 10), IAR(xf , 10), i.e. the neigh-

borhoods are sorted according to increasing complexity and we always switch between IRF

and IAR. For shaking the maximum number of variable flips lmax was set to n to not restrict

the theoretical possibility of reaching any solution in the search space.

The algorithms were implemented in C++ using the ILP-solver CPLEX 9.0. The neigh-

borhoods were not always fully explored to provable optimality since this turned out to be

less effective. In our experiments, we allowed a maximum of two seconds per neighborhood

evaluation. If CPLEX did not terminate within this time, the so far best neighboring solu-

tions was used. The total run-time given to the algorithms was limited to 500 seconds. All

experiments were performed on a 2.4GHz Intel Pentium 4 machine.

9



As in many previous publications for the MKP, we use Chu and Beasley’s benchmark library

for our experiments, which is available at Beasley’s OR-Library1. In particular, we consider

here the largest instances with n = 500 items, m ∈ {5, 10, 30} constraints, and tightness-

ratios α ∈ {0.25, 0.5, 0.75}. Each instance has been generated randomly such that ci = α ·
∑n

j=1 wij for all i = 1, . . . , m. In order to evaluate the results of our experiments statistically,

we performed 30 independent runs on the first instances for each of the nine parameter

combinations.

For a solution with objective value z, we measure its quality by the %−gap =
(
zLP − z

)
/zLP ·

100%, where zLP is the solution value of the MKP’s LP-relaxation. Table 1 lists average

and median percentage gaps together with standard deviations (in parentheses) for the final

solutions of VNS, RandVNS, and RGVNS. We also performed Wilcoxon rank sum tests to see

how significant the observed differences in the results of the three algorithms are. Columns

pVNS,RGVNS and pRandVNS,RGVNS show obtained error probabilities for the hypotheses that

the mean gap of VNS is larger than the one of RGVNS and the mean gap of RandVNS is

larger than the one of RGVNS, respectively.

For seven out of the nine instances RGVNS yields significantly better results than the classical

VNS approach with fixed neighborhood ordering. For one of the test cases (m = 5, α = 0.75)

all obtained results were equal, whereas for the (m = 10, α = 0.75) case the standard

approach obtained on average slightly better results than RGVNS, but without statistical

significance. When comparing RGVNS to RandVNS, one can observe that in four cases

RGVNS was significantly better, in one case results were identical, in two cases RandVNS

was better, and in two cases no conclusion can be drawn. As expected the random ordering

yields better results than the fixed order, but the relaxation guided approach outperforms

both of the naive orderings.

5 Extending RGVNS for the MKP

The pure RGVNS approach of the previous section yields relatively good results, but it

cannot directly compete with today’s state-of-the-art metaheuristics for the MKP. We there-

fore extend the RGVNS described in the previous section by some standard neighborhood

structures which can be searched in faster ways. These simpler neighborhood structures are
1http://people.brunel.ac.uk/˜mastjjb/jeb/info.html

10



not ordered according to relaxations, but explored in a fixed order, before relying on the

relaxation based ordering for calling IRF (xf , κ) and IAR(xf , κ) with κ = 1, . . . , κmax.

Furthermore, we introduce an additional parameter βmax that limits the number of ILP-based

neighborhoods to be explored within one call of RGVND. In this way, shaking is performed

more frequently and diversification is emphasized. If, for example, we choose βmax = 10

and κmax = 10, a total of 20 ILP-based neighborhoods are sorted according to their LP-

relaxations, but only the 10 most promising are actually evaluated in the current call of

VND.

5.1 Swap Neighborhood

The first neighborhood we use is a simple swap SWP(xf ), where a pair of items (xf
i , xf

j ) |
i ∈ I1 and j ∈ I0 is exchanged, i.e. xf

i := 0 and xf
j := 1. Infeasible solutions are discarded.

Note that this neighborhood is contained in both, IRF (xf , 1) and IAR(xf , 1). Therefore,

including it in the relaxation based ordering does not make sense. Its main advantage is its

simplicity and speed.

5.2 Greedy Neighborhoods

Based on the ideas of Chu and Beasley (1998) and as another simplification of IRF and IAR

but an extension of SWP, we define two additional neighborhoods based on greedy concepts.

In the first case, the Remove-and-Greedy-Fill neighborhood RGF (xf , κ), κ items are removed

from xf , i.e. a κ-tuple of variables from I1(xf ) are inverted. The resulting solution is then

locally optimized using the greedy first-fit heuristic from Section 4.4.

In the second case, the Add-and-Greedy-Repair neighborhood AGR(xf , κ), κ items are added

to xf , i.e. κ variables from I0(xf ) are inverted. The resulting solution, which is usually

infeasible, is then repaired and locally improved using the greedy algorithms from Section 4.4.

5.3 Computational Experiments

In these experiments, we combined the simpler neighborhoods, which were explored using

a best improvement strategy, with the ILP-based neighborhoods. This time, we used the

whole set of instances of Chu and Beasley’s benchmark library with n = 500 items, m ∈

11



{5, 10, 30} constraints, and tightness-ratios α = {0.25, 0.5, 0.75}. Ten different instances exist

for each parameter combination yielding 90 instances in total. As before, the experiments

were performed on a 2.4GHz Intel Pentium 4 machine, and each run was terminated after 500s

of CPU-time. The neighborhoods are ordered as follows: N1:=SWP(xf ), N2:=RGF (xf , 1),

N3:=AGR(xf , 1), N4:=RGF (xf , 2), N5:=AGR(xf , 2).

In Table 2 we show results of the following algorithm variants: VNS with neighborhoods N1

to N3 only (VNS–N1−3), VNS with neighborhoods N1 to N5 only (VNS–N1−5), VNS with

the ILP-based neighborhoods (VNS), RGVNS with the ILP-based neighborhoods (RGVNS),

RGVNS with additionally N1 to N3, and RGVNS with additionally N1 to N5. Listed are

average percentage gaps and numbers #-best indicating for how many instances each approach

could find the overall best solutions among the ten instances per group. In the last column

(VV05) the percentage gaps of the approach presented in Vasquez and Vimont (2005) are

shown, note that run-times of more than 80 hours were needed for some instances.

We can observe a clear performance difference between N1−3, N1−5, and the ILP-based

neighborhoods. RGVNS+N1−3 yields the best total average percentage gap. Furthermore

the two RGVNS+ methods yield the highest number of best solutions found.

The fact that the RGVNS variants in general yield the best average percentage gaps over all

categories together with the results from the previous section clearly documents the benefits of

sorting the neighborhoods according to a dynamically determined potential for improvement.

The RGVNS approach presented here is not able to compete with the approach from Vasquez

and Vimont (2005) in terms of solution quality. Enhancing RGVNS with other ideas such

as the MKP cores or parallel-execution of different algorithms (Puchinger et al., 2005, 2006;

Puchinger, 2006) can strongly increase its capabilities, and results close to the ones obtained

in Vasquez and Vimont (2005) have been achieved in significantly shorter running-times.

6 Conclusion

We presented an extension of traditional variable neighborhood search: Relaxation Guided

Variable Neighborhood Search (RGVNS). The order in which the neighborhoods are inves-

tigated is dynamically determined by estimating their improvement-potential using quickly

determined solutions to relaxations. This idea seems to be particularly useful if the order

of the neighborhoods is not obvious and their relaxations can be quickly solved and yield

12



relatively tight bounds. We tested this approach on standard benchmark instances of the

multidimensional knapsack problem. The results obtained in our computational experiments

show a clear advantage of RGVNS compared to VNS without guidance. In the future we

want to apply RGVNS on other problems in order to gain further experience with the pre-

sented approach. Also, we will study further possibilities of relaxations, such as surrogate

and Lagrangian relaxations.

References

Chu, P. C. and J. Beasley (1998). “A genetic algorithm for the multiconstrained knapsack

problem.” Journal of Heuristics 4, 63–86.

Dumitrescu, I. and T. Stuetzle (2003). “Combinations of Local Search and Exact Algo-

rithms.” In Applications of Evolutionary Computation, G. R. Raidl, J.-A. Meyer, M. Mid-

dendorf, S. Cagnoni, J. J. R. Cardalda, D. W. Corne, J. Gottlieb, A. Guillot, E. Hart,

C. G. Johnson, and E. Marchiori, eds. Springer, volume 2611 of LNCS , 211–223.

Fréville, A. (2004). “The multidimensional 0-1 knapsack problem: An overview.” European

Journal of Operational Research 155, 1–21.

Gavish, B. and H. Pirkul (1985). “Efficient algorithms for solving the multiconstraint zero-one

knapsack problem to optimality.” Mathematical Programming 31, 78–105.

Gilmore, P. and R. Gomory (1966). “The theory and computation of knapsack functions.”

Operations Research 14, 1045–1075.

Glover, F. and G. Kochenberger (1996). “Critical event tabu search for multidimensional

knapsack problems.” In Metaheuristics: Theory and Applications, I. Osman and J. Kelly,

eds., Kluwer Academic Publishers. 407–427.

Hansen, P. and N. Mladenović (1999). “An Introduction to Variable Neighborhood Search.”

In Metaheuristics, Advances and Trends in Local Search Paradigms for Optimization,

S. Voss, S. Martello, I. Osman, and C. Roucairol, eds., Kluwer. 433–458.

Hansen, P. and N. Mladenović (2003). “A Tutorial on Variable Neighborhood Search.” Tech-

nical Report G-2003-46, Les Cahiers du GERAD, HEC Montréal and GERAD, Canada.

Kellerer, H., U. Pferschy, and D. Pisinger (2004). Knapsack Problems. Springer.

13



Lorie, J. and L. Savage (1955). “Three problems in capital rationing.” The Journal of

Business 28, 229–239.

Manne, A. and H. Markowitz (1957). “On the solution of discrete programming problems.”

Econometrica 25, 84–110.

Puchinger, J. (2006). Combining Metaheuristics and Integer Programming for Solving Cut-

ting and Packing Problems. Ph.D. thesis, Vienna University of Technology, Institute of

Computer Graphics and Algorithms.

Puchinger, J. and G. R. Raidl (2005a). “Combining Metaheuristics and Exact Algorithms

in Combinatorial Optimization: A Survey and Classification.” In Proceedings of the First

International Work-Conference on the Interplay Between Natural and Artificial Computa-

tion. Springer, volume 3562 of LNCS , 41–53.

Puchinger, J. and G. R. Raidl (2005b). “Relaxation Guided Variable Neighborhood Search.”

In Proceedings of the XVIII Mini EURO Conference on VNS . Tenerife, Spain.

Puchinger, J., G. R. Raidl, and M. Gruber (2005). “Cooperating Memetic and Branch-and-

Cut Algorithms for Solving the Multidimensional Knapsack Problem.” In Proceedings of

MIC2005, the 6th Metaheuristics International Conference. Vienna, Austria, 775–780.

Puchinger, J., G. R. Raidl, and U. Pferschy (2006). “The Core Concept for the Multidimen-

sional Knapsack Problem.” In Evolutionary Computation in Combinatorial Optimization

- EvoCOP 2006 . Springer, volume 3906 of LNCS , 195–208.

Raidl, G. R. and J. Gottlieb (2005). “Empirical Analysis of Locality, Heritability and Heuris-

tic Bias in Evolutionary Algorithms: A Case Study for the Multidimensional Knapsack

Problem.” Evolutionary Computation Journal 13(4), 441–475.

Shih, W. (1979). “A branch and bound method for the multiconstraint zero-one knapsack

problem.” Journal of the Operational Research Society 30, 369–378.

Vasquez, M. and J.-K. Hao (2001). “A Hybrid Approach for the 0–1 Multidimensional

Knapsack Problem.” In Proceedings of the Int. Joint Conference on Artificial Intelligence

2001 . 328–333.

Vasquez, M. and Y. Vimont (2005). “Improved results on the 0-1 multidimensional knapsack

problem.” European Journal of Operational Research 165, 70–81.

14



Weingartner, H. M. and D. N. Ness (1967). “Methods for the solution of the multidimensional

0/1 knapsack problem.” Operations Research 15, 83–103.

Wolsey, L. A. (1998). Integer Programming . Wiley-Interscience.

Table 1: Comparison of VNS, RandVNS, and RGVNS; listed are average and median per-

centage gaps, standard deviations in parentheses, and error probabilities of Wilcoxon rank

sum tests indicating the significance of differences.

VNS RandVNS RGVNS pVNS,RGVNS pRandVNS,RGVNS

m α mean median mean median mean median W-test W-test

5 0.25 0.091 0.096 0.088 0.088 0.082 0.076 0.04 < 0.01

(0.011) (0.006) (0.010)

0.5 0.042 0.041 0.037 0.036 0.034 0.034 < 0.01 < 0.01

(0.005) (0.004) (0.000)

0.75 0.023 0.023 0.023 0.023 0.023 0.023 n.a. n.a.

(0.000) (0.000) (0.000)

10 0.25 0.251 0.251 0.229 0.236 0.212 0.204 < 0.01 < 0.01

(0.018) (0.025) (0.016)

0.5 0.115 0.108 0.105 0.108 0.108 0.108 < 0.01 0.42

(0.009) (0.009) (0.007)

0.75 0.073 0.075 0.071 0.070 0.075 0.079 0.19 < 0.01

(0.003) (0.003) (0.005)

30 0.25 0.685 0.686 0.639 0.642 0.635 0.614 < 0.01 0.383

(0.047) (0.025) (0.034)

0.5 0.291 0.304 0.256 0.244 0.272 0.277 < 0.01 < 0.01

(0.032) (0.019) (0.022)

0.75 0.152 0.154 0.139 0.0136 0.131 0.131 < 0.01 < 0.01

(0.016) 0.009 (0.000)

15



Table 2: Average results of the different approaches, using the whole Chu and Beasley 500-

variables instance set.

VNS–N1−3 VNS–N1−5 VNS RGVNS RGVNS+N1−3 RGVNS+N1−5 VV05

m α %−gap #-best %−gap #-best %−gap #-best %−gap #-best %−gap #-best %−gap #-best %−gap

5 0.25 0.124 0 0.109 0 0.113 2 0.090 2 0.088 4 0.087 6 0.074

0.5 0.065 0 0.053 0 0.049 0 0.042 7 0.043 5 0.042 4 0.038

0.75 0.041 1 0.029 2 0.032 1 0.026 7 0.027 6 0.026 8 0.024

10 0.25 0.357 0 0.293 0 0.271 1 0.234 5 0.230 6 0.232 4 0.174

0.5 0.180 0 0.137 0 0.131 0 0.108 4 0.108 3 0.103 8 0.082

0.75 0.103 0 0.083 0 0.084 1 0.069 7 0.069 6 0.072 5 0.057

30 0.25 0.890 0 0.825 0 0.716 0 0.609 5 0.595 6 0.615 4 0.482

0.5 0.414 0 0.332 0 0.310 0 0.265 4 0.263 6 0.268 3 0.210

0.75 0.232 0 0.216 0 0.189 1 0.167 3 0.168 3 0.167 3 0.135

Average 0.267 0.1 0.231 0.2 0.211 0.7 0.179 4.9 0.177 5.0 0.179 5.0 0.142

16


