
An Evolutionary Algorithm for Column
Generation in Integer Programming:

an Effective Approach for 2D Bin Packing

Jakob Puchinger and Günther R. Raidl

Institute of Computer Graphics and Algorithms
Vienna University of Technology, Vienna, Austria

{puchinger|raidl}@ads.tuwien.ac.at

Abstract. We consider the 3-stage two-dimensional bin packing prob-
lem, which occurs in real-world problems such as glass cutting. For it,
we present a new integer linear programming formulation and a branch
and price algorithm. Column generation is performed by applying either
a greedy heuristic or an Evolutionary Algorithm (EA). Computational
experiments show the benefits of the EA-based approach. The higher
computational effort of the EA pays off in terms of better final solutions;
furthermore more instances can be solved to provable optimality.

1 Introduction

The Two-Dimensional Bin Packing (2BP) problem occurs in different variants
in important real-world applications such as glass, paper, and steel cutting. A
recent survey on 2D packing problems is given in Lodi et al. [5]. Among the
algorithms for exactly solving the general 2BP problem are the branch and
bound algorithm of Martello and Vigo [7] and the hybrid Branch and Price /
Constraint Programming algorithm presented by Pisinger and Sigurd [8].

In many cases there is a special requirement on the cutting patterns: only
orthogonal guillotine cuts are allowed, i.e., pieces may only be cut horizontally
or vertically from one border to the one opposite. Furthermore, the number of
stages of such cuts, i.e., the height of the cutting tree of each bin, is often limited
in real-world applications. The case of two-stage cutting was first considered by
Gilmore and Gomory [3]. More recently two-stage 2BP was considered in Lodi et
al. [4] and Belov and Scheithauer [1]. Three-stage cutting problems were treated
in Vanderbeck [10] and Puchinger et al. [9], where particular real-world problems
with specific additional properties were considered.

In Sec. 2 we present an Integer Linear Programming (ILP) model for classical
3-stage 2BP, based on the model of [4]. In Sec. 3 a column generation formula-
tion and a Branch and Price (B&P) framework, based on [8], are proposed. We
describe a greedy heuristic in Sec. 4 and an evolutionary algorithm in Sec. 5 for
solving the pricing problem within the B&P approach, i.e., for generating new
columns. In Sec. 6 experimental results are given and analyzed.

This work is supported by the Austrian Science Fund (FWF) under grant P16263-N04.



2 Jakob Puchinger and Günther R. Raidl

...void space

1

2

3

4

5

6

7

8

14

11

10

9

16

15

17

13

12

W

H

Stacks of items:
(1,2,3), (4,5,6),..., (15,16,17)

stripe 1

stripe 2

Fig. 1. A three-stage cutting pattern for one bin in normal form.

2 Three-Stage Two-Dimensional Bin Packing

The 2BP problem consists of a set of n rectangular items, each having a height
hi and a width wi, i = 1, ..., n. The objective is to pack them into a minimum
number of rectangular bins, each having height H and width W . Items may not
overlap and we do not consider rotation.

A feasible layout for 3-stage 2BP consists of a set of bins, each bin consists of
a set of stripes, each stripe consists of a set of stacks, and each stack consists of
items having equal width. Every such pattern can be reduced into its so-called
normal form by moving each item to its uppermost and leftmost position, so
that void space appears only at the bottom of stacks, to the right of the last
stack in each stripe and below the last stripe, see Fig. 1. In the sequel we consider
only patterns in normal form.

In [4] a polynomial-sized ILP model for 2-stage 2BP has been proposed. We
extend this model in order to get a polynomial-sized ILP formulation for 3-stage
2BP.

The items are sorted so that h1 ≥ h2 ≥ . . . ≥ hn. The order of the items
within each stack is not relevant, so they can always be ordered according to
their indices. A solution may contain at most n stacks. We label each stack with
the index of the highest item it contains, i.e., the smallest item index. Similarly, a
solution has at most n stripes, and a stripe’s label is the label of its highest stack.
Finally at most n bins are needed and we label each of them with the smallest
index of the stripes it contains. The model uses the following 0/1-variables:

– αj,i, j = 1, . . . , n, i = j, . . . , n: rectangle i is contained in stack j;
– βk,j , k = 1, . . . , n, j = 1, . . . , n: stack j is contained in stripe k;
– γl,k, l = 1, . . . , n, k = l, . . . , n: stripe k is contained in bin l;
– δl,i,j , l = 1, . . . , n−1, i = l+1, . . . , n, and j = l, . . . , i−1: item i contributes

to the total height of all stripes in bin l; i.e., item i appears in stack j, stack
j appears in stripe j, and stripe j appears in bin l.



An EA for Column Generation 3

The 3-stage 2BP problem can now be stated as the following ILP:

minimize
n∑

l=1

γl,l (1)

subject to
i∑

j=1

αj,i = 1, ∀i = 1, . . . , n (2)

n∑

i=j+1

αj,i ≤ (n− j)αj,j , ∀j = 1, . . . , n− 1 (3)

αj,i = 0, ∀j = 1, . . . , n− 1 ∀i > j | wi 6= wj ∧ hi + hj > H (4)
n∑

k=1

βk,j = αj,j ∀j = 1, . . . , n (5)

n∑

i=j

hiαj,i <

n∑

i=k

hiαk,i + (H + 1)(1− βk,j),

∀k = 2, . . . , n, ∀j = 1, . . . , k − 1 (6)
n∑

i=j

hiαj,i ≤
n∑

i=k

hiαk,i + H(1− βk,j),

∀k = 1, . . . , n− 1, ∀j = k + 1, . . . , n (7)
n∑

j=1

wjβk,j ≤ Wβk,k, ∀k = 1, . . . , n (8)

k∑

l=1

γl,k = βk,k, ∀k = 1, . . . , n (9)

n∑

i=l

hi


γl,i +

i−1∑

j=l

δl,i,j


 ≤ Hγl,l, ∀l = 1, . . . , n− 1 (10)

αj,i + γl,j − 1 ≤ δl,i,j ≤ (αj,i + γl,j)/2,

∀l = 1, . . . , n− 1, ∀i = l + 1, . . . , n, ∀j = l, . . . , i− 1 (11)
n∑

k=l+1

γl,k ≤ (n− l)γl,l, ∀l = 1, . . . , n− 1 (12)

The objective function (1) minimizes the number of used bins. Equations (2)
state that each item has to be packed once. In (3) it is ensured that items are
only assigned to a used stack j, i.e., the stack contains item j. The fact that
the items packed into the same stack must have identical width is guaranteed
by (4). In an implementation, it is not necessary to use all of the αj,i, j 6= i, but
only those for which wi = wj and hi + hj ≤ H. However, we keep them in our
model for the sake of clarity. Each used stack is packed exactly once according
to (5). Constraints (6) and (7) ensure for each stripe k and each contained



4 Jakob Puchinger and Günther R. Raidl

stack j that the stack’s height does not exceed the stripe’s height (= stack k’s
height). Constraints (8) guarantee that width W is not exceeded and no stacks
are packed into unused stripes (βk,k = 0). Equations (9) ensure each used stripe
being packed into a bin. In (10) it is guaranteed that height H is not exceeded
and no stripes are packed into unused bins (γl,l = 0). Constraints (11) force
variables δl,i,j to be set to one iff rectangle i appears in stack j, stripe j is used,
and stripe j appears in bin l. In (12) it is ensured that no stripes are packed into
an unused bin.

3 Column Generation Formulation

A general introduction to integer linear programming, B&P, and column gen-
eration can be found in Wolsey [11]. Our column generation formulation for
3-stage 2BP is based on the set covering model from [8] and the ILP from the
last section.

Let P be the set of all feasible 3-stage packings of a single bin. The 0/1-
variable xp indicates whether packing p ∈ P appears in the solution. For every
rectangle i = 1, . . . , n and every packing p ∈ P, let Ap

i = 1 iff packing p contains
rectangle i; otherwise Ap

i = 0. The 3-stage 2BP problem can now be formulated
as:

minimize
∑

p∈P
xp (13)

subject to
∑

p∈P
xpA

p
i ≥ 1 ∀i = 1, . . . , n, (14)

xp ∈ {0, 1} ∀p ∈ P. (15)

In general, P is too huge for explicitly considering all variables xp, p ∈ P . For-
tunately, we can use delayed column generation to solve the Linear Programming
(LP) relaxation of the problem without explicitly considering the majority of the
variables [11]. We start with a small set of initial patterns P ′ ⊂ P taken from an
initial feasible solution, and solve the LP relaxation of the problem restricted to
P ′. Based on the obtained solution, we search for a new variable/pattern whose
inclusion in the restricted problem might improve the result. The extended LP
is resolved and the whole process repeated until no further improvements are
possible.

In addition, every M -th iteration the restricted problem is solved to inte-
grality by using branch and cut, possibly providing a new incumbent solution
(M = 100 turned out to be a reasonable choice).

The reduced costs of a packing p ∈ P are

cπ
p = 1−

n∑

i=1

Ap
i πi, (16)

where πi are the dual variables of the restricted LP-relaxed problem. Only vari-
ables with negative reduced costs can improve the current solution of the master
problem leading us to the challenge of finding such a variable/pattern.



An EA for Column Generation 5

The Pricing Problem consists of finding a packing p with the smallest reduced
costs cπ

p . It is a 3-Stage 2D Knapsack Packing (2DKP) problem with respect to
the profits πi. It can be modeled as follows:

maximize
n∑

i=1

πi

i∑

j=1

αj,i (17)

subject to
i∑

j=1

αj,i ≤ 1, ∀i = 1, . . . , n (18)

n∑

i=1

hi

i∑

j=1

δi,j ≤ H (19)

αj,i + βj,j − 1 ≤ δi,j ≤ αj,i + βj,j

2
∀i = 1, . . . , n, ∀j = 1, . . . , i (20)

and the constraints:
(3), (4), (5), (6), (7), and (8).

Variables αj,i and βk,j have the same meaning as in the ILP of Sec. 2. The 0/1-
variables δi,j are set to one iff item i contributes to the total height of all used
stripes, i.e., iff item i appears in stack j, and stack j appears in stripe j.

Branching If no further variables with negative reduced costs can be deter-
mined, and the difference between the solution value of the LP-relaxed restricted
problem and the value of the so-far best integer solution is greater than or equal
to one, branching becomes necessary. We use a branching rule similar to the one
described in [8]. The solution space is divided into two parts, where two different
items i1 and i2 have not to be or have to be in the same bin. We always choose
the two highest possible items from a pattern/variable with an LP solution value
closest to 0.5.

The first branch corresponds to adding the constraint
∑

p∈P
xpA

p
i1

Ap
i2

= 0, (21)

the second branch corresponds to adding the two constraints
∑

p∈P
xpA

p
i1

(1−Ap
i2

) = 0 and
∑

p∈P
xp(1−Ap

i1
)Ap

i2
= 0. (22)

In the actual implementation we do not explicitly add the constraints (21) and
(22), but the variables violating them are fixed to zero.

The following constraints have to be added to the pricing problem in order to
guarantee that patterns violating the branching constraints cannot be generated.
In the first branch

i1∑

j=1

αj,i1 +
i2∑

j=1

αj,i2 ≤ 1, (23)



6 Jakob Puchinger and Günther R. Raidl

and in the second branch

i1∑

j=1

αj,i1 =
i2∑

j=1

αj,i2 . (24)

In the sequel, we call i1 and i2 conflicting if constraint (23) is active and say
that i1 induces i2 and vice-versa if equation (24) is active.

Initial feasible solution In order to initialize the column generation algorithm,
a feasible solution is needed. The packing patterns of its bins are used as initial
P ′. This solution is generated by the order-based Finite First Fit heuristic from
[9] without considering the additional application-specific constraints described
there. The heuristic is called 20n times for different item orders, and the best
obtained solution is used. The first five item orders are determined by sorting
the items according to decreasing height, width, area, 2hi +wi, and hi +2wi; all
further orders are random permutations.

4 Solving the Pricing Problem

The pricing problem is solved by a greedy First Fit heuristic respecting the
Branching Constraints (FFBC); see Fig. 2.

Similarly to the initialization heuristic, FFBC considers the items in a given
order. One item after the other is packed into the first stack it fits. If the item
does not fit into any existing stack, a new stack is created in the first stripe
it fits. If no such stripe exists and there is enough space left in the bin, a new
stack is created and packed into a new stripe. Otherwise, the algorithm proceeds
with the next item. If the addition of an item to a stack would increase the
corresponding stripe’s height, we check if enough vertical space is left in the bin
and actually add the item with a probability of 0.5.

The constraints resulting from branching are handled as follows. If an item
is considered for packing, we first check whether there are any conflicts with
already packed items in the bin (checkNoConflicts in Fig. 2); if there are, the
item is skipped. Otherwise we recursively check if other items are induced, and
if any of those stay in conflict with any other induced or already packed item
(recursiveCheck in Fig. 2). If such a conflict occurs, none of these items can be
packed. Otherwise, we immediately try to also pack all the induced items. If this
is impossible we skip the whole chain of items.

FFBC is iteratively applied to up to 100 different item orders until a solution
with negative reduced costs is found. The first five orders are determined by
sorting the items according to decreasing πi, πi

hi·wi
, πi

hi+wi
, πi

hi
, and πi

wi
; all further

orders are random permutations.
If the heuristic does not find a packing pattern with negative reduced costs,

the general purpose ILP-solver CPLEX is finally called on the pricing problem
in order to perform an exact search, eventually proving that no such patterns
exist anymore.



An EA for Column Generation 7

Algorithm FFBC(items, bin)
forall items i with πi > 0

if checkNoConflicts(i)
induced = recursiveCheck(i)
if induced == ∅

pack(bin, i)
else

tmp = bin
packed = pack(tmp, i)
if packed

forall items j in induced
packed = pack(tmp,j)

if not packed
break

if packed
bin = tmp

Abbreviations:
*.h: height of *
*.w: width of *
*.uh: unused height of *
*.uw: unused width of *
R: random value ∈ [0, 1)

Function pack(b, i)
forall stripes s in b

forall stacks a in s
if wi == a.w

if hi + a.h ≤ s.h
pack i into a
return true

else if a.h + hi − s.h ≤ b.uh ∧R < 1
2

pack i into a
return true

forall stripes r in b
if wi ≤ s.uw ∧ hi ≤ s.h

create stack containing i, pack it into s
return true

else if wi ≤ s.uw ∧ hi − s.h ≤ b.uh ∧R < 1
2

create stack containing i, pack it into s
return true

if hi ≤ b.uh
create stack containing i
pack it into new stripe, pack it into b
return true

return false

Fig. 2. First fit heuristic respecting the branching constraints.

5 An Evolutionary Algorithm for the Pricing Problem

Since the 2DKP problem is strongly NP-hard, calling the ILP-solver may be very
time-consuming. A more sophisticated metaheuristic, performed when FFBC did
not find a variable with negative reduced costs and before solving the problem in
an exact way, could lead to a faster overall column generation since significantly
fewer calls of the ILP-solver may be needed. We decided to apply an Evolutionary
Algorithm (EA) operating directly on stripes, stacks, and items.

Structure of the EA We use a standard steady-state algorithm with binary
tournament selection and duplicate elimination. In each iteration, one new can-
didate solution is created by always applying recombination, and applying mu-
tation with a certain probability. The new solution replaces the worst solution
in the population if it is not identical to an already existing solution.

Representation and initialization The chosen representation is direct: Each
chromosome represents a bin as a set of stripes, each stripe as a set of stacks,
and each stack as a set of item references. Using such a hierarchy of sets makes
it easy to ignore the order of items, stacks, and stripes and to avoid symmetries.

Initial solutions are created via the FFBC heuristic using randomly generated
item orders. These orders are created in a biased way by assigning each item i a
random value ri ∈ [0, 1) and sorting the items according to decreasing riπi.



8 Jakob Puchinger and Günther R. Raidl

Recombination This operator first assigns a random value rs ∈ [0, 1) to each
stripe s in the two parent solutions. All these stripes are then sorted according to
decreasing rsps, with ps being the sum of the πi of the items contained in stripe
s. The stripes are then considered in this order and packed into the offspring’s
bin when they fit into it (i.e., their height is smaller than the remaining unused
height of the bin). Identical stripes of both parents appear twice in the ordered
list, but they are considered at their first appearance only.

When all stripes have been processed, repairing is usually necessary in order
to guarantee feasibility. First, the bin is traversed in order to check if items
appear twice, the first of these items is deleted. Then, the branching constraints
are considered: Items conflicting with others are removed. Afterwards, we try
to pack induced items; if this is not possible the corresponding original items
are also removed from the bin. Finally, FFBC is applied to the remaining items,
possibly improving the solution.

Mutation The mutation operator removes a randomly chosen item i from the
bin. If the branching constraints induce other items for i, they are also deleted.
Finally, FFBC is applied to the remaining items for local improvement.

6 Experimental Results

We performed experiments on the benchmark instances from Berkey and Wang
[2] (classes 1 to 6) and Martello and Vigo [7] (classes 7 to 10).

We compare CPLEX 8.1 directly applied to the ILP model (1) to (12) and
the two variants of the B&P approach with and without the EA for solving
the pricing problem. The B&P algorithm was implemented using the open-
source framework COIN/Bcp (version 2004/04) [6], the LPs were solved using
COIN/Clp. The computational experiments were performed on a Pentium 4 PC
with 2.8 GHz. The EA’s population size was 100, the mutation was performed
with probability 0.75, and the EA terminated when either 1 000 iterations were
performed without an improvement of the best solution or after a total of 100 000
iterations. Each of the experiments had a time limit of 1 000 seconds, which was
occasionally exceeded because CPLEX is given the same time limit of 1 000
seconds.

Table 1 shows results obtained for the 10 problem classes; in each class there
are 50 instances divided into 5 subclasses with n = 20, . . . , 100 items. For each
of the considered algorithms (CPLEX, B&P, B&P with EA), average objective
values z of finally best integer solutions, numbers of instances solved to provable
optimality Opt (out of 10), and average times t in seconds are given. The last
rows show totals and averages over all instances.

When CPLEX is directly applied to the ILP model, 335 out of 500 instances
could be solved to provable optimality. This is not bad, but substantially less
than B&P’s 402 instances and in particular the 409 completely solved instances of
the EA-enhanced B&P. The differences in the objective values of the finally best
integer solutions found by the three algorithms for instances that could not be



An EA for Column Generation 9

CPLEX B&P B&P with EA

Class n z Opt t [s] z Opt t [s] z Opt t [s]

20 7.2 10.0 0.0 7.2 10.0 0.3 7.2 10.0 6.3
40 13.6 6.0 404.8 13.6 8.0 206.1 13.6 8.0 204.0

1 60 20.2 3.0 748.9 20.2 8.0 256.9 20.1 8.0 221.6
80 27.8 0.0 1000.6 27.6 9.0 182.1 27.6 9.0 183.9
100 32.7 0.0 1001.3 32.3 4.0 845.6 32.0 6.0 590.4

20 1.0 10.0 0.0 1.0 10.0 0.1 1.0 10.0 0.1
40 2.0 9.0 100.2 2.0 9.0 113.0 2.0 9.0 118.3

2 60 2.8 7.0 300.8 2.8 7.0 317.9 2.8 7.0 411.2
80 3.4 7.0 302.4 3.4 7.0 377.9 3.4 7.0 410.1
100 4.1 8.0 206.7 4.1 8.0 344.0 4.1 8.0 220.8

20 5.4 10.0 0.0 5.4 10.0 0.2 5.4 10.0 0.3
40 9.7 8.0 307.2 9.8 9.0 124.3 9.7 10.0 7.0

3 60 14.2 5.0 704.3 14.2 7.0 386.9 14.1 9.0 184.4
80 20.3 0.0 1000.4 19.5 7.0 423.9 19.3 8.0 280.2
100 23.9 0.0 1000.8 23.2 2.0 950.1 22.9 3.0 946.9

20 1.0 10.0 0.0 1.0 10.0 0.1 1.0 10.0 0.1
40 2.0 9.0 100.1 2.0 9.0 100.7 2.0 9.0 166.6

4 60 2.6 7.0 353.7 2.7 6.0 413.3 2.7 6.0 736.5
80 3.3 7.0 300.9 3.3 7.0 402.3 3.3 7.0 303.3
100 4.0 7.0 302.0 4.0 7.0 378.2 4.0 7.0 306.9

20 6.6 10.0 0.0 6.6 10.0 0.2 6.6 10.0 0.8
40 12.3 10.0 24.2 12.3 10.0 23.0 12.3 10.0 3.1

5 60 18.3 10.0 10.3 18.3 10.0 19.0 18.3 10.0 89.0
80 25.0 5.0 530.1 24.8 9.0 199.4 24.8 9.0 213.7
100 29.4 1.0 901.5 28.9 5.0 621.6 28.9 7.0 536.3

20 1.0 10.0 0.0 1.0 10.0 0.1 1.0 10.0 0.1
40 1.9 10.0 14.2 1.9 6.0 401.7 1.9 6.0 405.7

6 60 2.3 8.0 200.2 2.3 8.0 202.2 2.3 8.0 201.3
80 3.0 10.0 0.4 3.0 10.0 3.1 3.0 10.0 3.1
100 3.6 6.0 400.8 3.6 6.0 405.5 3.6 6.0 405.6

20 5.7 10.0 0.0 5.7 10.0 0.3 5.7 10.0 0.7
40 11.5 6.0 566.3 11.5 10.0 4.9 11.5 10.0 39.7

7 60 16.2 0.0 1000.2 16.2 9.0 128.5 16.1 10.0 24.7
80 23.5 0.0 1000.4 23.2 10.0 60.2 23.3 9.0 157.3
100 28.0 0.0 1000.7 27.1 10.0 292.1 27.1 10.0 269.6

20 6.1 10.0 0.0 6.1 10.0 0.8 6.1 10.0 0.9
40 11.4 10.0 0.6 11.5 9.0 133.7 11.4 10.0 120.1

8 60 16.4 10.0 8.6 16.5 9.0 116.0 16.5 9.0 118.6
80 22.6 8.0 288.6 22.7 9.0 177.8 22.9 7.0 346.5
100 28.2 8.0 410.0 28.3 7.0 506.4 28.4 6.0 508.9

20 14.3 10.0 0.0 14.3 10.0 0.1 14.3 10.0 0.2
40 27.8 10.0 0.0 27.8 10.0 0.4 27.8 10.0 0.6

9 60 43.7 10.0 0.1 43.7 10.0 1.4 43.7 10.0 1.5
80 57.7 10.0 0.2 57.7 10.0 3.6 57.7 10.0 3.8
100 69.5 8.0 200.3 69.5 10.0 7.9 69.5 10.0 8.5

20 4.5 10.0 0.0 4.5 10.0 0.7 4.5 10.0 0.5
40 7.7 9.0 185.8 7.7 9.0 166.1 7.8 8.0 217.4

10 60 10.7 3.0 822.1 10.7 2.0 857.2 10.5 3.0 825.1
80 14.0 0.0 1000.4 13.9 0.0 1048.8 13.6 0.0 1114.5
100 16.9 0.0 1000.7 16.9 0.0 1048.5 16.6 0.0 1151.4

Total 741.0 335.0 17702.0 737.5 402.0 12254.9 735.9 409.0 12068.2

Average 14.82 6.70 354.04 14.75 8.04 245.10 14.72 8.18 241.36

Table 1. Experimental results of the presented algorithms.



10 Jakob Puchinger and Günther R. Raidl

solved to optimality are in general relatively small. Nevertheless, B&P’s solution
values are in several cases significantly better than those of CPLEX, and the EA-
enhanced B&P performs best on average. The two variants of B&P with and
without the EA exhibit approximately the same total running times. Applying
CPLEX directly was significantly slower in most cases. Thus, the application of
the EA within the B&P framework is worth the additional effort.

7 Conclusions and Future Work

For 3-stage 2BP, we presented a compact ILP model having only O(n3) variables.
In practice, however, the proposed column generation approach having a number
of potential variables that grows exponentially with n turns out to be more
efficient. Using the described EA as an additional strategy for solving the pricing
problem pays off in terms of a higher capability of solving instances to provable
optimality, but also slightly better average solution values. The combination of
B&P and an EA in this form is also highly promising for other combinatorial
optimization problems. Research on more sophisticated interaction and a parallel
execution of these algorithms will be done next.

References

1. G. Belov and G. Scheithauer. A branch-and-cut-and-price algorithm for one-
dimensional stock cutting and two-dimensional two-stage cutting. Technical Report
MATH-NM-03-2003, Dresden University of Technology, Germany, 2003.

2. J. O. Berkey and P. Y. Wang. Two-dimensional finite bin packing algorithms.
Journal of the Operational Research Society, 38:423–429, 1987.

3. P. C. Gilmore and R. E. Gomory. Multistage cutting-stock problems of two and
more dimensions. Operations Research, 13:90–120, 1965.

4. A. Lodi, S. Martello, and D. Vigo. Models and bounds for two-dimensional level
packing problems. Journal of Combinatorial Optimization. To appear.

5. A. Lodi, S. Martello, and D. Vigo. Recent advances on two-dimensional bin packing
problems. Discrete Applied Mathematics, 123:373–390, 2002.

6. R. Lougee-Heimer. The Common Optimization INterface for Operations Research:
Promoting open-source software in the operations research community. IBM Jour-
nal of Research and Development, 47(1):57–66, 2003.

7. S. Martello and D. Vigo. Exact solutions of the two-dimensional finite bin packing
problem. Management Science, 44:388–399, 1998.

8. D. Pisinger and M. Sigurd. Using decomposition techniques and constraint pro-
gramming for solving the two-dimensional bin packing problem. Technical Report
03/01, University of Copenhagen, Denmark, 2003.

9. J. Puchinger, G. R. Raidl, and G. Koller. Solving a real-world glass cutting prob-
lem. In J. Gottlieb and G. R. Raidl, editors, Evolutionary Computation in Com-
binatorial Optimization – EvoCOP 2004, volume 3004 of LNCS, pages 162–173.
Springer, 2004.

10. F. Vanderbeck. A nested decomposition approach to a 3-stage 2-dimensional cut-
ting stock problem. Management Science, 47(2):864–879, 1998.

11. L. A. Wolsey. Integer Programming. Wiley-Interscience, 1998.


