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Kurzfassung

In dieser Arbeit wird das Districting and Routing Problem for Security Control eingeführt
und als kombinatorisches Optimierungsproblem modelliert. Mehrere (Meta-)Heuristiken
und exakte Methoden basierend auf gemischt-ganzzahliger linearer Programmierung
werden zur Lösung des Problems verwendet. Die Ergebnisse der verschiedenen Ansätze
werden anschließend analysiert und verglichen. Zum Abschluss wird ein Ausblick auf
weitere Forschungsmöglichkeiten zu diesem neuen Problem gegeben.

Der private Sicherheitssektor ist ein stetig wachsendes Geschäft. Regelmäßige tägliche
Sicherheitskontrollen sind ein essentieller und wichtiger Mechanismus um Diebstahl und
Vandalismus in Firmengebäuden vorzubeugen. Typischerweise patrouillieren Mitarbeiter
eines Sicherheitsdienstes durch eine Menge von Gebäuden, wobei jedes dieser Gebäude
eine bestimmte Anzahl von Besuchen an allen oder nur an ausgewählten Tagen eines
gegebenen Planungshorizonts benötigt und jeder Besuch in einem bestimmten Zeitfenster
stattfinden muss. Ein wichtiges Ziel der Sicherheitsfirma ist daher, alle Gebäude in eine
minimale Anzahl disjunkter Distrikte, d.h. Cluster, zu unterteilen, sodass für jeden
Cluster und jeden Tag des Plannungszeitraums eine zulässige Route existiert, durch die
alle notwendigen Objektbesuche abgedeckt werden. Jede Route ist begrenzt durch die
tägliche Maximalarbeitszeit eines Mitarbeiters und muss die Zeitfenster aller Besuche
einhalten. Je zwei Besuche des selben Gebäudes müssen einen vorgegebenen zeitlichen
Mindestabstand einhalten. Wir nennen dieses Problem das Districting and Routing
Problem for Security Control. In unserem heuristischen Ansatz teilen wir das Problem
in einen Districting-Teil in dem jedes Gebäude einem Distrikt zugeteilt werden muss
und einen Routing-Teil in dem zulässige Routen für jede Kombination von Distrikt und
Planungsperiode gefunden werden müssen. Das Problem kann zwar in zwei Subprobleme
zerlegt werden, diese können jedoch nicht unabhängig voneinander gelöst werden.

Der Districting-Teil des Problems wird gelöst, indem initiale Lösungen mittels einer Dis-
tricting Construction Heuristic erzeugt werden und diese Lösungen durch einen Iterative
Destroy & Recreate Algorithmus verbessert werden, indem versucht wird, die Anzahl der
benötigten Distrikte zu minimieren. Um das Districting-Problem zu lösen, müssen viele
Instanzen des Routing-Problems gelöst werden. Deshalb präsentieren wir ein Verfahren,
mit dessen Hilfe die Gültigkeit einer gegebenen Route effizient überprüft werden kann.
Initiale Lösungen für das Routing-Problem werden mittels einer adaptierten Greedy
Construction Heuristic generiert, um gute Startlösungen für die darauffolgenden Verbesse-
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rungsheuristiken zu erzeugen. Diese Lösungen werden anschließend mittels eines Variable
Neighborhood Descent Ansatzes verbessert. Zusätzlich wird ein gemischt-ganzzahliges
lineares Programm für den Routing-Teil vorgestellt. Die Ergebnisse unserer Tests zeigen,
dass die Konstruktionsheuristiken Lösungen für das Routing-Problem erzeugen, die nahe
an den unteren Schranken des exakten Algorithmus liegen und der Iterative Destroy &
Recreate Algorithmus die Anzahl der Distrikte der Startlösungen, die von der Districting
Construction Heuristic erzeugt wurden, signifikant reduzieren kann.



Abstract

In this thesis the Districting and Routing Problem for Security Control (DRPSC) is
introduced and modeled as a combinatorial optimization problem. Multiple (meta-
)heuristics and exact methods based on mixed integer linear programming are considered
to practically solve the problem. The results of these different approaches are then
analyzed and compared. Finally, an outlook on future work for this new problem is given.

The private security sector is a steadily growing business. Regular security controls
on a day by day basis are an essential and important mechanism to prevent theft and
vandalism in commercial buildings. Typically, security workers patrol through a set of
objects where each object requires a particular number of visits on all or some days
within a given planning horizon, and each of these visits has to be performed in a specific
time window. An important goal of the security company is to partition all objects
into a minimum number of disjoint clusters, called districts, such that for each cluster
and each day of the planning horizon a feasible route for performing all the requested
visits exists. Each route is limited by a maximum working time and has to satisfy the
visits’ time window constraints. Any two visits of an object must be separated by a
minimum separation time. We call this problem the Districting and Routing Problem for
Security Control. In our heuristic approach we split the problem into a districting part
where objects have to be assigned to districts and a routing part where feasible routes
for each combination of district and period have to be found. Although the problem can
be decomposed, these parts cannot be solved independently.

The districting part of the problem is solved by generating initial solutions using a
districting construction heuristic and improving the initial solutions by applying an
iterative destroy & recreate algorithm trying to minimize the number of districts. In the
course of solving the districting problem, feasible solutions for many instances of the
routing problem have to be found. Therefore, we present an efficient method for checking
the feasibility of a given route. Initial solutions to the routing problem are generated with
a routing construction heuristic in a greedy fashion resulting in good starting solutions
for the following improvement heuristics. These solutions are then improved using a
variable neighbourhood descent approach. Additionally, an exact mixed integer linear
programming model for the routing part is proposed. Computational results show that
the routing construction heuristics is able to generate solutions close to the lower bounds
provided by the exact algorithm and the iterative destroy & recreate algorithm is able to
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reduce the number of districts significantly from the starting solutions, overall yielding
very plausible solutions.
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CHAPTER 1
Introduction

The area of private security control for protecting public and private property is a steadily
growing business [47]. As in the area of private security control constant surveillance of
an object might not be economically viable or even necessary, security firms have to send
security guards to visit a large number of sites multiple times over the course of a day
in order to fulfill their custodial duty. Therefore, security companies face the problem
of having to schedule tours for their employees in order to cover all needed visits of all
objects of customers under their guardianship. It is economically viable, to strive for
generating as few tours as possible, since this reduces the number of employees needed
for the patrolling business. The complexity of this task leaves a high potential for solving
it by algorithmic techniques to minimize the number of employees needed to cover all
customers.

Thus, we propose the Districting and Routing Problem for Security Control (DRPSC)1

which consists of a districting part and a routing part. In the districting part all objects
have to be partitioned into a minimum number of disjoint subsets, such that all objects
of a single district can be serviced by a single security guard (or team of guards) within
each working day of a planning horizon. Given such a partitioning, a routing problem
has to be solved for each combination of district and day. We seek for a tour starting and
ending at a central location which satisfies a maximum tour duration, e.g., the work shift
duration, and the time window constraints for each visit of that period. In case multiple
visits are required at an object in the same period, there typically has to be a separation
time between consecutive visits to ensure a better distribution over time. For minimizing
the number of districts, it is important to minimize the duration of the planned tours in
order to incorporate as many objects into the resulting districts as possible, which shows
the inseparability of the districting and routing part. Figure 1.1 schematically shows a
problem instance and an example for a solution for the districting and routing problem.

1The problem specification was derived from real-world scenarios provided by CAPLAS GmbH
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districts
tour day 1
tour day 2

Figure 1.1: Example for a solution of an instance of the DRPSC: objects are clustered
into districts and for each day of the planning horizon (e.g., 2 days) and for each district,
a tour is given, that contains all visits, that have been requested.
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We address the routing part of the problem by an exact mixed integer linear programming
formulation (MIP) based on Miller-Tucker-Zemlin (MTZ) [28] inequalities and a routing
construction heuristic in a greedy fashion with a subsequent variable neighborhood
descent (VND). For the districting part an exact MIP formulation is stated and an
iterative destroy & recreate (IDR) approach based on the route elimination algorithm
by Nagata and Bräysy [32] for the vehicle routing problem with time windows is pro-
posed. The starting solutions for the IDR are generated using a districting construction
heuristic (DCH) based on a greedy insertion heuristic.

This thesis is structured as follows:

• The remainder of Chapter 1 gives a formal definition of the Districting and Routing
Problem for Security Control with all its constraints. Additionally, the complexity
of the problem is discussed.

• Chapter 2 gives a literature overview of problems related to the DRPSC and
discusses the most important approaches to those problems with regard to solving
the DRPSC.

• Chapter 3 describes the algorithms and heuristics used in this thesis. The concept
of linear discrete optimization via mixed integer linear programming, the heuristic
methods of greedy construction heuristics, variable neighborhood descent and regret
heuristics and the route elimination algorithm are introduced.

• Chapter 4 explains in depth, how the routing part of the DRPSC was solved.
Therefore, the means to efficiently checking the feasibility of a given route are
described. Moreover, an exact mixed integer linear programming model and
multiple strategies for greedy construction heuristics with a subsequent variable
neighborhood descent are presented.

• In Chapter 5, the approaches to solve the districting part of the DRPSC are outlined.
We give an exact approach in the form of a mixed integer linear programming model
of the districting problem. Furthermore, multiple variants of a DCH combined with
a regret heuristic for generating initial solutions are discussed. Finally, we show
how an iterative destroy & recreate algorithm further minimizes the number of
districts of these solutions.

• Chapter 6 explains how the test data was generated that has been used for the
benchmarks. The results of the approaches for the routing and the districting part
are presented and analyzed separately.

• Chapter 7 summarizes the findings of this thesis and gives an outlook on future
work on the DRPSC.

The results of this thesis have been accepted at the 10th International Workshop on
Hybrid Metaheuristics:
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1.1. Problem Definition

Michael Prischink, Christian Kloimüllner, Benjamin Biesinger, and Günther R.
Raidl. Districting and routing for security control. In Hybrid Metaheuristics,
10th Int. Workshop, HM 2016, Lecture Notes in Computer Science. Springer,
2016. to appear

1.1 Problem Definition
This Section formalizes the Districting and Routing Problem for Security Control. We are
given a set of objects I = {1, . . . , n} and a starting location 0, which we call in relation
to the usual terminology in vehicle routing depot. There are p planning periods (days)
P = {1, . . . , p}, and for each object i ∈ I a set of visits Si = {i1, . . . , i|Si|} is defined.
Not all visits, however, have to take place in each period. The visits requested in period
j ∈ P for object i ∈ I are given by subset Wi,j ⊆ Si.

For each visit ik ∈ Si, i ∈ I, k = 1, . . . , |Si|, we are given its duration tvisit
ik
≥ 0 and a

time window Tik = [T e
ik
, T l

ik
], during which the whole visit including its visit time has

to take place. The time windows of successive visits of an object may also overlap but
visit ik always has to start before a visit ik′ with k, k′ ∈Wi,j , k < k′ and they have to
be separated by a minimum duration of tsep. The maximum duration, i.e., the makespan,
of each planned tour must not exceed a global maximum duration tmax.

Next, we define underlying graphs on which our proposed algorithms operate. For each
period j ∈ P we define a directed graph Gj = (V j , Aj) where V j refers to the set
of visits requested at corresponding objects, i.e., V j =

⋃
i∈IWi,j , and the arc set is:

Aj = {(ik, i′k′) | ik ∈ Wi,j , i
′
k′ ∈ Wi′,j} \ {(ik, ik′) | ik, ik′ ∈ Wi,j , k

′ ≤ k}. We have arc
weights associated with every arc in Aj , j ∈ P which are given by ttravel

i,i′ , the duration of the
fastest connection from object i to object i′. We assume that the triangle inequality holds
among these travel times. Let us further define the special nodes 00 and 01 representing
the start and end of a tour and the augmented node set V̂ j = V j ∪ {00, 01}, ∀j ∈ P .
Accordingly, we add outgoing arcs from node 00 to all visits ik ∈ V j and arcs from all
visits ik ∈ V j to node 01, formally, Âj = Aj ∪ {(00, ik) | ik ∈ V j} ∪ {(ik, 01) | ik ∈ V j}.
Consequently, we define the augmented graph Ĝj = (V̂ j , Âj).

The goal of the DRPSC is to assign all objects in I to a smallest possible set of districts
R = {1, . . . , δ}, i.e., to partition I into δ disjoint subsets Ir, r ∈ R, with Ir ∩ Ir′ = ∅ for
r, r′ ∈ R, r 6= r′ and

⋃
r∈R Ir = I, so that a feasible tour τr,j exists for each district Ir,

r ∈ R and each planning period j ∈ P . A tour τr,j = (τr,j,0, τr,j,1, . . . , τr,j,lr,j , τr,j,lr,j+1)
with τr,j,0 = 00, τr,j,lr,j+1 = 01, lr,j =

∑
i∈Ir |Wi,j |, and τr,j,1, . . . , τr,j,lr,j ∈

⋃
i∈Ir Wi,j has

to start at the depot node 00, has to perform each visit ik ∈ Wi,j in the respective
sequence for each object i ∈ Ir exactly once, and finally has to return back to the depot,
i.e., reach node (01). A tour τr,j is feasible if each visit τr,j,u, u = 0, . . . , lr,j + 1 including
its visit time can take place in its time window Tik , with waiting before a visit is allowed,

4



1.2. Complexity

the minimum duration tsep between visits of the same object is fulfilled, and the total
tour duration, i.e., the makespan, does not exceed tmax.

Note that the routing part can be solved for a given district Ir and period j ∈ P separately
and consists of finding a feasible tour τr,j .

1.2 Complexity
It has been shown that deciding whether there exists a feasible tour for the TSPTW is
an NP-complete problem [44]. The TSPTW is the problem of finding the shortest tour
visiting all nodes of a given set of vertices exactly once and then returning to the starting
node while visiting each node within its given time window. We show that any algorithm
that solves the DRPSC also solves the TSPTW. We reduce the number of requested visits
for each object to 1, relax the maximum allowed tour duration and reduce the number of
periods to 1, i.e., |Si| = 1,∀i, tmax =∞ and |P | = 1. It is easy to see that the following
decision problem of the DRPSC also decides the decision problem of the TSPTW. Does
a feasible solution with ≤ 1 districts exist? This proves the NP-hardness of the DRPSC.

Many variants of vehicle routing problems are hard to solve in practice. Exact approaches
are usually only able to solve smaller instances. In the literature many (meta-)heuristics
have been applied to various vehicle routing problems with great success [23]. Therefore,
we also propose a heuristic approach for the DRPSC which is able to solve real-world
instances.
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CHAPTER 2
Related Work

To the best of our knowledge there is no work covering all the aspects of the Districting
and Routing Problem for Security Control as considered here. But the literature contains
many routing and scheduling problems that share many properties of the DRPSC,
which leads to promising approaches. In this chapter the most important of these
related problems are introduced. Amongst these problems are the vehicle routing
problem with time windows (VRPTW), the pickup and delivery problem with time
windows (PDPTW), the traveling salesman problem with time windows (TSPTW),
the periodic vehicle routing problem with time windows (PVRPTW) and especially its
generalization, the fairly new periodic vehicle routing problem with time windows and
time spread constraints (PVRPTS). These time spread constraints are somewhat similar
to the separation time of the DRPSC.

2.1 Vehicle Routing Problem with Time Windows
The VRPTW is a well-studied problem. In decades of research many exact and heuristic
methods have been proposed for solving it [46, 21, 40, 33, 48]. It consists of a number
of customers that have to be serviced by a set of vehicles starting and ending at a
depot. Each vehicle has a finite capacity and each customer has a demand to be serviced.
Customers can only be serviced within their respective time windows. The objective
of the VRPTW is to minimize the number of tours (or vehicles) needed to service all
customers, the total distance covered while servicing all customers, or a combination
of these objectives. A majority of the literature focuses specifically on minimizing
the total length of each tour without taking the makespan of the planned tours into
account [40, 33, 48], whereas the objective of the routing part of the DRPSC is to find a
tour, whose makespan is less or equal to the maximum tour duration tmax. A common
approach is to focus on minimizing the number of needed routes first and only in a second
step minimizing the travel time or makespan, e.g., by using a hierarchical objective
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2.2. Pickup and Delivery Problem with Time Windows

function [33, 40]. Nagata and Bräysy [32] propose a route minimization heuristic which
in particular tries to minimize the number of routes needed to service all customers.
They rely on a destroy-and-recreate heuristic which iteratively tries to delete routes
while maintaining an ejection pool (EP). This EP stores all objects which are yet to
be inserted. The algorithm tries to identify objects which are difficult to insert in one
of the current routes and utilizes this information for choosing objects to be removed
and re-inserted. As this approach produced excellent results for the VRPTW we adopt
this basic idea of destroy-and-recreate here. Exact solution approaches for the VRPTW
were proposed by Ascheuer et al. [1] who developed a branch-and-cut algorithm using
several valid inequalities and were able to solve most instances with up to 50–70 nodes to
proven optimality. Dash et al. [12] introduced a time bucket formulation and new cutting
planes which could solve instances with up to 200 nodes. Baldacci et al. [2] introduce the
ngL-tour relaxation. By using column generation as well as dynamic programming they
are able to solve instances with up to 233 nodes to optimality and report new optimal
solutions that have not been found previously. A current state-of-the-art method for
heuristically solving several variants of the VRPTW is a hybrid genetic algorithm (GA)
by Vidal et al. [48]. As many other approaches described in the literature [33, 40] they
use a penalty function for handling infeasible routes, which is described in more detail
in [33]. In the GA the initial solutions are created randomly but there are also more
elaborate construction heuristics available: Solomon [46] proposes several algorithms
for constructing only feasible solutions by extending the well-known savings heuristic, a
nearest neighbor heuristic, and insertion heuristics using different criteria.

2.2 Pickup and Delivery Problem with Time Windows
The PDPTW is a generalization of the VRP [13]. A number of requests for transporting
goods from pickup to delivery locations have to be fullfilled. The objective is to construct
a number of routes that satisfy all these requests while corresponding pickup and delivery
requests have to be on the same route and the delivery location must be visited after its
corresponding pickup location. For this problem also time window constraints for picking
up and delivering goods and capacity constraints for the vehicles have to be considered.

2.3 Traveling Salesman Problem with Time Windows
The TSPTW seeks for a minimum tour visiting a given set of nodes and returning back
to the starting location. Additionally, time window constraints for each node have to be
considered. For the TSPTW, the most common objective in the literature is to minimize
the total travel time, rather than minimizing the makespan of the tour [35, 10, 25, 30].
As the practical difficulty of the problems usually increases when makespan minimization
is considered, specialized algorithms have been developed for this purpose [8, 14]. The
routing part of the DRPSC is similar to the TSPTW as the aim is to find a feasible tour of
duration less than a prespecified value which is related to the minimization problem of the
TSPTW. In the TSPTW, however, multiple visits of the same objects and a separation

7



2.4. Periodic Vehicle Routing Problem with Time Windows

time between them are not considered. Interestingly, López-Ibáñez et al. [26] showed
that by adapting two state-of-the-art metaheuristics for travel time minimization of the
TSPTW [25, 35] to makespan minimization it is possible to outperform the specialized
algorithms. Ascheuer et al. [1] proposed a number of simple construction heuristics for
the asymmetric TSPTW which could be adapted for the DRPSC which delivered quick
but not always feasible solutions for the routing part.

2.4 Periodic Vehicle Routing Problem with Time
Windows

The PVRPTW generalizes the VRPTW by adding a planning horizon of multiple days.
Customers do not require daily service. Instead, there is a number of different patterns,
i.e., combination of days, whereas service is only required on the days of one such pattern
for each customer, resulting in different tours for each day of the planning horizon. A
hybrid genetic algorithm combining population-based methods with two neighborhood-
based metaheuristics resulted in very high quality solutions for previously published
benchmark instances [34].

2.5 Periodic Vehicle Routing Problem with Time
Windows and Time Spread Constraints

An interesting related problem, which also arises in the field of security, is the PVRPTS [27].
The idea behind the problem is to generate unpredictable tours for money transporters by
scheduling two visits of the same customer at different times. The PVRPTS is therefore
a generalization of the PVRPTW, where arrival times at a customer must vary over the
course of multiple periods, i.e., the arrival times between any two visits in all periods
must differ in more than a pre-specified value. A similar problem arises when solving the
DRPSC, where two visits of the same object within one tour have to be separated by a
given separation time. Michallet et al. [27] proposed a mixed integer linear model and a
multi-start iterated local search for solving this problem.

8



CHAPTER 3
Methods

In this chapter the algorithms and heuristic methods, on which the approaches in this
thesis for solving the DRPSC are based, are explained. The optimization technique of
mixed integer linear programming was used in an approach to find exact solutions to
the routing part of the DRPSC. Since these exact methods were unable to solve larger
problem instances, different metaheuristic approaches were examined. First, different
greedy construction heuristics were applied to the problem instances to generate good
initial solutions both for the routing and the districting part within reasonable running
times. Then, the local search strategy of variable neighborhood descent (VND) was used
to increase the quality of these initial solutions. To further improve on these construction
heuristics, we also integrated a regret heuristic into the construction heuristics. Finally,
the so called route eliminination algorithm is introduced, which we adapted for the
districting part of the DRPSC.

3.1 Mixed Integer Linear Programming
First, the basics of linear programming (LP) are introduced, following the book of
Bertsimas and Tsitsiklis [4], and then (mixed) integer linear programming is explained.

3.1.1 Linear Programming

A general linear programming problem is the problem of minimizing or maximizing a
linear cost function f(x) = c1 · x1 + c2 · x2 + · · · + cn · xn according to a cost vector
c = (c1, . . . , cn) and subject to linear constraints. LetM1,M2,M3 be finite index sets and
let N1 and N2 be index sets defining which of the variables from vector x are constrained
to be either nonnegative or nonpositive. Then, a linear programming problem is stated

9



3.1. Mixed Integer Linear Programming

as follows:

minimize c′x (3.1)
subject to a′ix ≥ bi ∀i ∈M1 (3.2)

a′ix ≤ bi ∀i ∈M2 (3.3)
a′ix = bi ∀i ∈M3 (3.4)
xj ≥ 0 ∀j ∈ N1 (3.5)
xj ≤ 0 ∀j ∈ N2 (3.6)

In linear programming the variables of the x vector are called decision variables and
the term (3.1) is denoted as objective function whereas inequalities respectively equal-
ities (3.2)-(3.4) are called constraints. Any vector x satisfying all constraints as well
as all nonnegativity and nonpositivity restrictions is called feasible solution. There are
programs for which there exists no feasible solution, one feasible solution or multiple
feasible solutions, and linear programming formulations may also be unbounded which
means that the value of the objective function can grow arbitrarily small. If there does
not exist any feasible solution the problem is also said to be infeasible, if there exists
only one feasible solution, this solution is the optimal solution at the same time. A
feasible solution x∗ that minimizes the objective function (3.1) is also called an optimal
solution and the value of c′x∗ is then called the optimal cost. In case the linear program
is unbounded the optimal cost is said to be −∞.

General Form

We infer transformation rules which can be applied to every linear program:

objective function any objective function which maximizes the cost function can be
rewritten to minimize it, i.e., max{c′x} ⇔ min−c′x

equalities any equality can be rewritten in the form of the two inequalities, i.e., a′ix =
bi ⇔ a′ix ≤ bi ∧ a′ix ≥ bi

inequalities any inequality of the form a′ix ≤ bi can be rewritten in the form −a′ix ≥ −bi

Thus, maximization problems can always be transformed into minimization problems
and according to the transformation rules any constraint of a linear program can always
be rewritten to be in the form of

a′ix ≥ bi (3.7)

which leads to the definition of the (compact) general form for linear programs:

minimize c′x (3.8)
subject to Ax ≥ b (3.9)

x ∈ Rn (3.10)

10
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Standard Form

A linear program of the form

minimize c′x (3.11)
subject to Ax = b (3.12)

x ∈ Rn ≥ 0 (3.13)

is said to be in standard form. Any linear program stated in general form can be translated
in standard form, and as already said that any linear program can be converted into
general form we conclude that any linear program can also be converted into standard
form. To this purpose we define the following rules to transform general-form linear
programs into standard form:

eliminating free variables Any unrestricted variable xj in general form can be rewrit-
ten as the difference of two nonnegative numbers x+

j − x
−
j .

eliminating inequality constraints Any inequality constraint of the form aix ≥ bi
can be rewritten as aix + si = bi with si ≥ 0 where si is called surplus variable.
Similarly, any inequality fo the form aix ≤ bi can be rewritten as aix− si = bi with
si ≥ 0 where si is called slack variable.

Standard form is computationally more convenient and is used by practical solution
methods for linear programs, such as the simplex method [11] or the ellipsoid method [50].
Today, most commercial and open-source solvers implement the simplex algorithm for
solving linear programs.

3.1.2 (Mixed) Integer Linear Programming

Many real-world problems can be modeled by (mixed) integer linear programs (MIP).
The definition of linear programs is extended by adding variables which are constrained
to be integer. Here, we distinguish between general integer variables and binary variables.
Binary variables are often useful in MIPs to model decisions, e.g., which facility to
open, which arcs to traverse, in network design or routing problems. We infer the terms
integer linear program (IP), mixed integer linear program (MIP), and binary integer linear
program (BIP) where the former consists of decision variables constrained solely to be
integer, MIPs have integer as well as continuous variables, and the latter consist only of
binary decision variables. A mixed integer linear program is defined as follows:

minimize c1x1 + c2x2 (3.14)
subject to A1x1 +A2x2 ≤ b (3.15)

x1 ≥ 0 (3.16)
x2 ≥ 0 and integer (3.17)
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When relaxing the integer constraints on the variables of vector x2, it is called linear
programming relaxation (LP relaxation) of the MIP. When taking minimization problems
into account, the solution to the LP relaxation provides a lower bound on the optimal
solution to the MIP. Note, that rounding the optimal solution of the LP relaxation is not
necessarily an optimal solution to the MIP.

A solution x∗ with value z∗ = c(x∗) to a MIP of the form

min{c(x1,x2) | x1 ∈ X1 ⊆ Zn,x2 ∈ X2 ⊆ Rn} (3.18)

is optimal, if there is a lower bound
¯
z and an upper bound z̄ on the optimal cost value

such that
¯
z = z = z̄.

The usual approach is to find steadily improving upper and lower bounds, such that the
upper bounds decrease and lower bound increase through a run of the solving algorithm.
Obviously, the algorithm can stop if equality (3.18) is fulfilled. Feasible solutions, for
instance, can be used as bounds. If we are facing a maximization problem, then a
lower bound to the problem could be a feasible solution of a construction- and/or a
metaheuristic. These bounds are called primal bounds. On the other side, there is
also the need of finding upper bounds for maximization problems and lower bounds for
minimization problems. These bounds are called dual bounds and can be obtained by
solving relaxations of the given problem to proven optimality or by obtaining any feasible
solution of the dual of the problem.

Branch-and-Bound

The solution strategy of branch-and-bound is implemented by all available commercial
and open-source MIP solvers. The idea behind this strategy is to generate smaller and
easier solvable problems from the whole problem and solve these subproblems. If all
subproblems are solved, that information can be used to get a solution to the overall
problem. Most solvers generate a branch-and-bound tree where they fix some values
of the variables, and solve the subproblems with these fixed values. However, if this
mechanism would be used without exploiting any further information it would result in a
complete enumeration of possible solutions to the problem which is not computationally
tractable for most combinatorial optimization problems. Thus, the information on lower
and upper bounds of the subproblems can be exploited and branches can be pruned
according to the following strategies:

prune by optimality if the lower and upper bound for a given subproblem k is the
same, this branch can be pruned, i.e., z̄k =

¯
zk

prune by bound consider we are given a maximization problem and the upper bound
of subproblem k is smaller than the global lower bound we can prune this branch,
i.e., z̄k ≤ ¯

z.

prune by infeasibility if a given subproblem is infeasible, this branch can be pruned.

12
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There are many possible ways to apply and implement branch-and-bound, such as how to
obtain good upper bounds in case of a maximization problem. Usually the LP-Relaxation
is used resulting in LP-based branch-and-bound. There also exist multiple branching
strategies and several options on how to examine the created branches or subproblems,
respectively. The interested reader is referred to the book Integer Programming by
Laurence A. Wolsey [49] which is a good literature and reference for integer programming
method, techniques, solution approaches, decomposition mechanisms and more.

3.2 Greedy Construction Heuristics
For optimization problems greedy construction heuristics (GCH) have proven to be
efficient in yielding mostly good results within a short amount of time. The idea of a
GCH is to iteratively find a solution by choosing the locally best successor with the help
of a predefined greedy evaluation function in building up a solution while never reverting
any decision made earlier. Although there are many problems, where a greedy heuristic
always finds an optimal solution, for many other problems these locally optimal choices
do not lead to an optimal global solution [9].

3.3 Variable Neighborhood Search
Variable neighborhood search (VNS) was first introduced by Mladenović and Hansen [29]
for solving combinatorial optimization problems. The observation, that a local optimum
is often very close to local optima of other neighborhoods and the fact that a global
optimum is a local optimum for all possible neighborhoods, led to the idea of systematically
searching for a local optimum in multiple neighborhoods and escaping those local optima
in a perturbation phase [17].

3.3.1 Variable Neighborhood Descent

The variable neighborhood descent (VND) method changes neighborhood structures
deterministically. The VND finds a local optimum for an initial solution x with respect
to lmax neighborhoods N1, . . . , Nlmax as presented in algorithm 1.

The VND searches the first neighborhood of a starting solution x for the best neighbor
solution x′ (line 3). If the best neighbor solution x′ is better than the current solution x
(line 4), make it the new incumbent solution (line 5) and restart the search at the first
neighborhood structure (line 6). If the best neighbor solution does not improve on the
current solution, move to the next neighborhood (line 8) and search that neighborhood
for a better solution. The heuristic stops, when the last neighborhood Nkmax was searched
and no further improvement was found (line 10). Since finding the best neighbor solution
may be time-consuming, the alternative is to use a first improvement strategy for selecting
a neighbor solution x′. Instead of selecting the best neighbor solution, the first neighbor
solution x′ that yields an improvement over the current solution x is chosen.
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Algorithm 1 Variable neighborhood descent (VND)
Function VND(x, lmax)

1: l← 1
2: repeat
3: x′ ← choose a neighbor in Nl(x)
4: if solution x′ is better than x then
5: x← x′ // keep new best solution
6: l← 1 // go to the first neighborhood
7: else
8: l← l + 1 // move to the next neighborhood
9: end if

10: until l = lmax

3.3.2 General Variable Neighborhood Search

The general variable neighborhood search (GVNS) uses a perturbation step in each
iteration followed by a VND until a time limit is reached. A different neighborhood than
for the VND is used for the so called shaking operation to escape local optima. The
algorithm is shown in 2. For each iteration, before the VND is executed (line 5), the
neighborhood is randomly changed in a shaking operation (line 4). If the new solution
obtained by the VND is better than the current solution (line 6), it becomes the new
incumbent solution (line 7) and the first neighborhood is used for the next iteration
(line 8), otherwise the GVNS moves to the next neighborhood (line 10). When a given
time limit is reached, the algorithm returns with the best solution found.

Algorithm 2 General VNS
Function GVNS(x, lmax, kmax)

1: repeat
2: k ← 1
3: repeat
4: x′ ← random neighbor from Nk(x)
5: x′′ ← VND(x′, lmax)
6: if solution x′′ is better than x then
7: x← x′′ // keep new best solution
8: k ← 1 // go to the first neighborhood
9: else

10: k ← k + 1 // move to the next neighborhood
11: end if
12: until k = kmax
13: until timelimit reached
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3.4 Regret Heuristics
The problem of greedy heuristics is, that they often delay difficult decisions until the
last iterations. For example for the VRPTW, the customers that are more difficult or
expensive to insert into a route are often only inserted after most other customers are
incorporated into a partial solution. This leaves less options for inserting those customers.
The idea of regret heuristics is to add a look-ahead mechanism into the heuristic to
prevent difficult decisions from being left over for the last iterations [37]. The pilot
method is another approach that enhances a greedy method by looking ahead for each
possible choice [18]. Regret heuristics have been used as a metric of how costly not
inserting a specific unrouted customer immediately may become for the VRPTW with
great success [38, 36].

Staying at the example of the VRPTW, before deciding which customer to add next
to a route, each customer from the set of all unassigned customers U is given a regret
value δki . This value denotes the difference in cost between inserting customer i in the
best possible route and the k-th best route. For k = 2, the regret-2 heuristic chooses the
customer i such that

i = arg max
i∈U

(δ2
i − δ1

i ) (3.19)

More generally a regret-q heuristic chooses customer i by selecting

i = arg max
i∈U

( q∑
h=2

δhi − δ1
i

)
(3.20)

Ties between multiple customers with the same regret value are broken by inserting
the customer with the lowest insertion cost. Customer i is inserted at the position of
minimum cost in the best route.

3.5 Methods for Routing Problems
In this Section we will introduce a number of methods used for solving the routing problems
presented in Chapter 2. Fischetti et al. [1] presented a number of greedy construction
heuristics for routing problems reaching from very simple and fast (Section 3.5.1) to
more sophisticated strategies (Sections 3.5.2, 3.5.3). The route elimination algorithm
explained in Section 3.5.4 by Nagata and Bräysy [32] is an efficient route minimization
heuristic originally developed for the VRPTW.

3.5.1 Sorting Heuristics

The simplest construction heuristics provide an initial solution by sorting all nodes of a
tour depending on a sorting criterion. The resulting sequence of nodes is then checked
for feasibility, i.e., if each node can be visited without violating its time window. This is
generally a very fast heuristic.
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• Sort the nodes by the start of their time window in increasing order and check the
feasibility of the resulting sequence.

• Sort the nodes by the end of their time window in increasing order and check the
feasibility of the resulting sequence.

• Compute the midpoint of the time windows of all nodes, order the nodes accordingly
and check if the resulting sequence is feasible.

3.5.2 Nearest-Neighbor Heuristic

This construction heuristic greedily appends the node which increases the travel time or
makespan by the smallest amount to the partial tour, whereas the selection is limited
only to nodes leading to a feasible tour.

3.5.3 Insertion heuristics

Insertion heuristics incrementally add nodes to a partial tour, starting with an empty tour,
until either all nodes are inserted or the insertion of the next node becomes infeasible.
All unassigned nodes are inserted at the position in the partial tour which worsen the
objective value the least. Two possible criteria for the insertion are:

• Select the node and insertion position by lowest increase in overall tour length
while maintaining a feasible tour.

• Choose the node with the least feasible insertion positions and insert it at the
insertion position with the lowest increase in the overall tour length.

The adoption of these strategies for the routing part of the DRPSC are discussed in
Section 4.3.

3.5.4 Route Elimination Algorithm

Due to the twofold nature of the objective of the VRPTW, most heuristics minimize the
number of routes first and only then minimize the route lengths [7, 37, 16, 3, 24, 31, 40].
Since minimizing the number of routes is often the most time consuming part of these
two objectives, Nagata and Bräysy [32] suggest an efficient heuristic for minimizing the
number of routes for the VRPTW. The basic idea of the so called route elimination
algorithm is to start with a solution containing one route per customer and then iteratively
eliminating routes from this initial trivial solution and reinserting the customers from
these eliminated routes into the remaining routes, reducing the number of routes one
at a time. For the difficult task of reinserting customers into the remaining routes,
the use of an ejection pool (EP) [24] containing all unassigned customers is suggested.
Furthermore, the algorithm allows the infeasible insertion of customers followed by a
procedure to regain a feasible solution. The presented algorithm generated solutions
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equal to or better than the previously best-known solutions for the well-known large-scale
benchmark instances by Gehring and Homberger [15].

Algorithm 3 Function DeleteRoute(σ)
1: remove a randomly selected route from σ
2: initialize EP with customers from the removed route
3: initialize all penalty values pi ← 1
4: while EP 6= ∅ and time < maxTime do
5: remove customer iin from EP with LIFO strategy
6: if N fe

in(iin, σ) 6= ∅ then
7: select random σ′ ∈ N fe

ej (iin, σ)
8: σ ← σ′

9: else
10: σ ← Squeeze(iin, σ)
11: end if
12: if iin is not included in σ then
13: piin ← piin + 1
14: generate the set N fe

ej (iin, σ) of feasible solutions by ejecting up to kmax customers
from σ

15: select σ′ ∈ N fe
ej (iin, σ), minimizing

k∑
l=1

= pliout

16: σ ← σ′

17: add ejected customers {i1out . . . i
k
out} to the EP

18: σ ← execute random local search moves on σ while remaining feasible
19: end if
20: end while
21: if EP 6= ∅ then
22: Restore σ to the initial state
23: end if
24: return σ

The procedure of eliminating one route of a feasible solution σ is shown in algorithm 3.
After removing a route from the solution σ, the customers assigned to that route are
added to the ejection pool (EP) (lines 1, 2) and the penalty values pi for all customers
are initialized (line 3). As long as the EP is not empty and the time limit has not been
reached (line 4), the algorithm tries to reinsert the customers of the EP into the remaining
routes. First, a customer from the EP is selected with a last-in first-out strategy (LIFO)
and removed from the EP (line 5). If the set N fe

in(iin, σ) of feasible partial solutions
obtained by inserting iin into all insertion positions of σ is not empty, i.e., there is at
least one feasible insertion position for iin in σ, then continue with a randomly selected
solution σ′ from this set as the incumbent solution else try to squeeze customer iin into
the current solution σ. The function Squeeze (line 10) tries to insert a customer into an
existing partial solution, by allowing temporarily infeasible solutions and then trying to
restore the feasibility of the solution by applying a local search with 2-opt* [39], intra-
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and inter-route relocation and intra- and inter-route exchange [22]. If these methods
fail, the penalty value piin of customer iin is incremented and feasible candidate solutions
N fe

ej (iin, σ) including iin are generated by removing up to kmax customers from the existing
solution σ (lines 13, 14). The solution σ′ generated by removing customers iout with
minimum total penalty is chosen from N fe

ej (iin, σ) is the selected as the new incumbent
solution (lines 15, 16). The ejected customers {i1out, . . . , i

k
out} are added to the EP. In a

final perturbation step, the incumbent solution is changed by executing random local
search moves (line 18) for a specified number of times, whereas infeasible moves are not
allowed in this step.
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CHAPTER 4
Solving the Routing Problem

An important factor when approaching the DRPSC is finding a practically efficient
approach to the numerous underlying routing problems that have to be solved. This
section shows the strategies that are embedded as a subcomponent into the approach
for optimizing the districting and are used when the feasibility of a district needs to be
checked. As already mentioned, this subproblem is similar to the well-known TSPTW
which has been exhaustively studied in the literature. There is, however, one substantial
and significant difference: Objects have to be visited several times per period and between
every two visits of the same object there has to be a specific separation time. Nevertheless,
many fruitful ideas of the literature can be adopted to our problem.

As a single routing problem is solved for each period j ∈ P and each district r ∈ R
independently, we are given one graph Gjr = (V j

r , A
j
r). The node set is defined as

V j
r = V j ∩

⋃
i∈Ir Wi,j and the arc set as Ajr = Aj \ {(ik, i′k′) | ik /∈ V j

r ∨ i′k′ /∈ V j
r }.

Similarly, we define the augmented graph containing the tours’ start and end nodes
00 and 01 as Ĝjr = (V̂ j

r , Â
j
r) where V̂ j

r = V j
r ∪ {00, 01} and Âjr = Ajr ∪ {(00, ik) | ik ∈

V j
r } ∪ {(ik, 01) | ik ∈ V j

r }.

For computing the duration of a tour τ we first define the arrival and waiting times for each
visit of the tour. Moreover, let us define the auxiliary function κ : V j

r 7→ I which maps the
visit ik ∈ V j

r , to its corresponding object i ∈ Ir, and the auxiliary function γ : V j
r 7→ N

which maps visit ik ∈ V j
r , to its corresponding index in the set of visits for this particular

object. For every visit ik ∈ V j
r , aik denotes the arrival time at the object, whereas a00 and

a01 denote the departure and arrival time for the depot nodes 00 and 01, respectively. Let
twait
τu = max(0, T eτu −max(aτu−1 + tvisit

τu−1 + ttravel
κ(τu−1),κ(τu), aκ(τu)γ(τu)−1 + tvisit

κ(τu)γ(τu)−1
+ tsep))

denote the waiting time before a visit τu can be fulfilled. We aim at finding a feasible
tour τ = (00, τ1, . . . , τl, 01), τ1, . . . , τl ∈ V j

r , l = |V j
r | through all visits starting and ending

at the depot such that the total tour duration T (τ) = a01 − a00 does not exceed tmax.
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In the next sections we will present an exact approach and multiple heuristics for solving
this routing problem.

4.1 Mixed Integer Linear Programming Model
In the following we aim at formulating the routing problem for a single time period and
district as a MIP model. Subtours are implicitly excluded through the computation of
the arrival times as they define the ordering of the visits of the objects. Arrival times
have to be checked in order to ensure that every visit complies with its time window.
This formulation is used to evaluate the quality of the solutions to small instances of the
routing problem of the metaheuristic approaches presented in this thesis.

The following compact mixed integer programming (MIP) model operates on the previ-
ously defined and reduced graph Gjr and is based on Miller-Tucker-Zemlin (MTZ) [28]
constraints. We use binary decision variables yik,i′k′ ∀(ik, i

′
k′) ∈ Ajr which are set to 1 if

the arc between the k-th visit of object i and the k′-th visit of object i′ is used in the
solution, and 0 otherwise. We model arrival times by additional continuous variables
aik ∀ik ∈ V j

r and by these variables ensure compliance with the time windows and the
elimination of subtours. For each district r ∈ R and each period j ∈ P we solve the
following model:

min
∑
ik∈V jr

(twait
ik

+ tvisit
ik

) +
∑

(ik,i′k′ )∈Â
j
r

(yik,i′k′ · t
travel
κ(ik),κ(i′

k′ )
) (4.1)

s.t.
∑

(ik,i′k′ )∈Â
j
r

yik,i′k′
=

∑
(i′
k′ ,ik)∈Âjr

yi′
k′ ,ik

∀ik ∈ V j
r (4.2)

∑
(00,ik)∈Âjr

y00,ik = 1 (4.3)

∑
(ik,01)∈Âjr

yik,01 = 1 (4.4)

aik − ai′
k′

+ tmax · (1− yi′
k′ ,ik

) ≥ ttravel
κ(i′

k′ ),κ(ik) + tvisit
i′
k′

∀ik ∈ V̂ j
r , (ik, i′k′) ∈ Âjr (4.5)

aik + ttravel
0,κ(ik) · (1− y00,ik) ≥ ttravel

0,κ(ik) ∀(00, ik) ∈ Âjr (4.6)

twait
ik

+ tmax · (1− yik,i′k′ ) ≥ ai′k′ − aik − t
travel
κ(ik),κ(i′

k′ )
− tvisit

ik

∀ik ∈ V̂ j
r , (ik, i′k′) ∈ Âjr (4.7)

aik−1 ≤ aik − t
sep ∀ik, ik−1 ∈ V j

r (4.8)∑
(ik,i′k′ )∈Â

j
r

yik,i′k′
= 1 ∀ik ∈ V j

r (4.9)

T eik ≤ aik ≤ T
l
ik
− tvisit

ik
∀ik ∈ V j

r (4.10)
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yik,i′k′
∈ {0, 1} ∀(ik, i′k′) ∈ Âjr (4.11)

The objective function (4.1) minimizes the total makespan within which all object visits
take place by summing up all visit times, travel times, and waiting times. Equalities (4.2)
ensure that the number of ingoing arcs is equal to the number of outgoing arcs for each
node ik ∈ V j

r . Equalities (4.3) and (4.4) ensure that there must be exactly one ingoing
and outgoing arc for the depot in each period j ∈ P . Inequalities (4.5) are used to
recursively compute the arrival times for every visit. If an edge (ik, i′k′) is not used, then
the constraint is deactivated. These inequalities can also be lifted by replacing tmax with
the term (T li′

k′
− tvisit

i′
k′

)− T lik − t
travel
κ(ik),κ(i′

k′ )
− tvisit

ik
. Inequalities (4.8) model the minimum

time required between two different visits of the same object, i.e., ensure the separation
time tsep. Inequalities (4.9) state that there must exist an ingoing and an outgoing arc
for the k-th visit of object i, if this particular visit is requested in the considered period
j ∈ P . It is ensured that every time window of every visit ik ∈ V j

r is fulfilled in (4.10).
In (4.11) the domain definitions for the binary edge-decision variables yik,i′k′ are given.

In the context of the districting problem we use this model only for checking feasibility
which can usually be done faster than solving the optimization problem to optimality. To
this end we replace the objective function by min{0} and add the following constraints
for limiting the makespan to tmax:

∑
ik∈V jr

(twait
ik

+ tvisit
ik

) +
∑

(ik,i′k′ )∈Â
j
r

(yik,i′k′ · t
travel
κ(ik),κ(i′

k′ )
) ≤ tmax (4.12)

4.2 Feasibility of a Tour
When generating solution candidates for the routing problem, the task of checking whether
or not a sequence of visits is feasible arises. This chapter shows how the non-trivial task
of checking, if there exists a schedule for tour τ arriving at each requested visit τu within
its given time window Tτu , respecting the separation time tsep between multiple visits of
the same object i and returning to the depot 0 within the maximum tour duration tmax,
is accomplished.

Given a sequence of visits τ , we first determine if a tour can be scheduled such that the
time window constraints of all visits are satisfied. For this purpose, we compute the
earliest possible arrival time aik for each visit and minimize waiting times.

Since the tour τ starts at the depot at the earliest possible time, the departure at the
depot a00 is set to 0. For each subsequent visit τu, the arrival time aτu is the maximum
of T eτu and the arrival time at the preceding visit aτu−1 including visit time tvisit

τu−1 and
travel time ttravel

κ(τu−1),κ(τu) from the preceding visit’s object κ(τu−1) to the current visit’s
object κ(τu). The depot has no requested visit times, therefore we define tvisit

00 = tvisit
01 = 0.

Furthermore, for each object i the separation time tsep between visit ik and ik−1 for all
k > 1 has to be respected.
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tvisit
τu−1 T eτu tvisit

τu T lτu

|
aτu−1 aτu

ttravel
κ(τu−1),κ(τu)

Figure 4.1: Early arrival at object κ(τu) resulting in waiting time before the start T eτu of
the time window of visit τu

tvisit
τu−1 T eτu tvisit

τu T lτu

| |
aτu−1 aτu

ttravel
κ(τu−1),κ(τu)

Figure 4.2: Arrival at κ(τu) after the start T eτu of the time window of visit τu due to long
travel time

tvisit
κ(τu)γ(τu)−1 T eτu tvisit

τu T lτu

| |
aκ(τu)γ(τu)−1 aτutsep

Figure 4.3: Separation time tsep between two visits κ(τu)γ(τu)−1 and τu of the same object
has to be respected before visit τu can start

The three scenarios for computing the earliest arrival time at an object κ(τu) for visit τu
are depicted in Figures 4.1 through 4.3. Satisfying the visit τu−1 with duration tvisit

tu−1 and
travelling from object κ(τu−1) to κ(τu) in time ttravel

κ(τu−1),κ(τu) while still arriving before
the start T eτu of the time window of visit τu at object κ(τu) results in a waiting time as
shown in Figure 4.1. Arriving after the start T eτu of the time window of τu is presented in
Figure 4.2. Finally, arriving early but having to respect the necessary separation time
tsep between two visits of the same object can be seen in Figure 4.3.

The earliest possible arrival time aτu is computed as follows:

a00 = 0

aτu =



max{T eτu , aτu−1 + tvisit
τu−1 + ttravel

κ(τu−1),κ(τu)}

for u > 1, γ(τu) = 1

max{T eτu , aτu−1 + tvisit
τu−1 + ttravel

κ(τu−1),κ(τu), aκ(τu)γ(τu)−1 + tvisit
κ(τu)γ(τu)−1

+ tsep}

for u > 1, γ(τu) > 1

a01 = aτl + tvisit
τl

+ ttravel
κ(τl),0

If for any arrival time aik with ik ∈ V j
r the following condition is violated, the sequence
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T eτu
|

T lτu

aτu tvisit
τu

Figure 4.4: Late arrival, fulfilling visit ik is impossible before the end T l
ik

of the time
window

of visits is infeasible:
aik + tvisit

ik
≤ T l

ik
(4.13)

The violation of this constraint is shown in Figure 4.4. Visit ik can not be finished within
its respective time window.

The resulting tour duration T (τ) = a01 − a00 might still be far from minimum at this
point, since departing at the depot at time 0 might raise waiting times at some point
of the tour. If one arrives at an object before the start T eτu of the time window of the
requested visit, one would have to wait for the designated time window to start. To avoid
this, Savelsbergh [45] proposed the so called forward time slack (FTS) for computing
the maximum possible delay of the departure at the depot while retaining a feasible
tour for the TSPTW. Since the time constraints of the DRPSC additionally contain the
separation time, the FTS has to take multiple visits of the same object into account. The
FTS F (τu, τu′) for the partial tour τ ′ = τu, . . . , τu′ adapted to our problem is

F ′(τu, τu′) =



T lτu − t
visit
τu − aτu for u = u′

F ′(τu, τu′−1)− T lτu′−1
+ T lτu′ − t

visit
τu′
− ttravel

κ(τu′−1),κ(τu′ )
for u′ > 1, γ(τu′) = 1

min{F ′(τu, τu′−1)− T lτu′−1
+ T lτu′ − t

visit
τu′
− ttravel

κ(τu′−1),κ(τu′ )
,

F ′(τu, τκ(τu′ )γ(τu′ )−1)− T lτκ(τu′ )γ(τu′ )−1
+ T lu′ − tvisit

τu′
− tsep}

for u′ > 1, γ(τu′) > 1
F (τu, τu′) = min

v=u,...,u′
{F ′(τu, τv)} (4.14)

By simply delaying the departure at the depot by the FTS, the tour would always be
scheduled for the latest possible arrival time at the depot. To avoid this, one also has
to take the waiting times within the tour into account, when computing a schedule for
a tour of minimum duration. Considering the tour duration of tour τ must not exceed
tmax, formally, if
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4.3. Routing Construction Heuristics

T (τ)−min(F (00, 01),
l∑

u=1
twait
τu ) < tmax (4.15)

holds, the sequence τ of visits is a feasible tour, otherwise it is infeasible.

4.3 Routing Construction Heuristics
To provide initial solutions to the routing problem, a routing construction heuristic (RCH)
based on an insertion heuristic by starting from a partial tour τ ′ = (00, 01) containing
only the start and end nodes and iteratively adding all visits ik ∈ V j

r to τ ′ was developed.
A 2-step approach is used by ordering visits according to some criteria and then inserting
them at the first feasible or best possible insertion position, respectively. For the insertion
order we compute the flexibility value flex of each visit ik ∈ V j

r , since visits with a lower
flexibility value may be more difficult to insert as they need to be scheduled at a very
specific time. Ties are broken randomly.

flex(ik) = T lik − T
e
ik
− tvisit

ik
(4.16)

flex(i(1 )
k ) ≤ flex(i(2 )

k ) ≤ · · · ≤ flex(i(|V
j
r |)

k ) (4.17)

In a second phase we insert the ordered visits into the partial tour τ ′. We start at the
beginning of the tour, i.e., we try to insert visit i(1 )

k after the starting node 00, and move
backwards in the tour until node 01 is reached. For the first feasible insertion strategy,
the heuristic inserts the current visit at the first feasible insertion position found, whereas
for the best feasible insertion strategy, insertion costs are computed for each possible
insertion position and the visit is inserted at the position of minimum cost. We define
these costs as:

dik,u′ =

aτu′ + tvisit
τu′

+ ttravel
κ(τu′ ),κ(τu) − aτu if (4.19) and (4.20) hold

∞ otherwise
(4.18)

These insertion costs dik,u′ determine the amount of time by which the visit τu has to
be moved backwards in order to insert the new visit τu′ . Note, that dik,u′ may also be
negative, if the space for insertion of visit τu′ is bigger than necessary. However, this is
desirable as we use those insert positions more likely which have bigger gaps and smaller
gaps are kept for later insertion operations. In Section 6.2 we compare both the first
feasible and the best possible variant to each other in terms of solution quality and
runtime.

We further maintain global variables for the forward time slack F (τ ′) and all arrival times
aτu of each partial tour τ ′ computed during the execution of the insertion heuristic for
evaluating the feasibility of inserting object ik at position u in tour τ . For an insertion
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4.4. Variable Neighborhood Descent

to be feasible, the latest allowed arrival time at visit τu′ must be greater or equal to the
earliest possible arrival at that visit considering the previous visit’s earliest arrival, its
visit time and the travel time between τu−1 and τu′ . Furthermore, the earliest departure
at τu′ including the travel time between τu′ and τu must be smaller or equal to the earliest
arrival at τu delayed by the forward time slack of the partial tour from τu to the depot.
Using the definition of the forward time slack in equality (4.14) and if inequality (4.13)
holds, then the insertion is feasible if, in addition, also the following two inequalities hold:

T lτu′ − t
visit
τu′
≥ max{aτu−1 + tvisit

τu−1 + ttravel
κ(τu−1),κ(τu′ ), aκ(τu)γ(τu)−1 + tvisit

κ(τu)γ(τu)−1
+ tsep} (4.19)

aτu′ + tvisit
τu′

+ ttravel
κ(τu′ ),κ(τu) ≤ aτu + F (τu, 01) (4.20)

4.4 Variable Neighborhood Descent
If the solution found by the RCH is infeasible we additionally employ a VND to reduce
the number of infeasibilities and possibly come to a feasible solution. First, we insert
each infeasible visit ik into the tour on the position u′ where the costs dik,u′ are minimum.
We use a lexicographical penalty function to penalize infeasible tours where the first
criterion is the number of time window violations and the second criterion is the duration
of the route as proposed by López-Ibáñez et al. [25]. We use three common neighborhood
structures from the literature and search them in a best improvement fashion in the
following order:

Swap: This neighborhood considers all exchanges between two distinct visits (Figure 4.5).

2-opt: This is the classical 2-opt neighborhood for the traveling salesman problem where
all edge exchanges are checked for improvement (Figure 4.6).

Or-opt: This neighborhood considers all solutions in which sequences of up to three
consecutive visits are moved to another place in the same route (Figure 4.7).

If at some point during the algorithm the value of the penalty function is zero we
terminate with a feasible solution.
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4.4. Variable Neighborhood Descent
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Figure 4.5: swap operation

original 0

1 2

3

45

2-opt 0

1 2

3

45

Figure 4.6: 2-opt operation
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Figure 4.7: or-opt operation
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CHAPTER 5
Solving the Districting Problem

In the previous section we introduced a fast heuristic for efficiently testing feasibility of a
given set of objects by building a single tour for each period through all requested visits
of these objects. In the districting part of the DRPSC we face the problem of intelligently
assigning objects to districts such that the number of districts is minimized. For checking
the feasibility of this assignment the previously introduced RCH and VND are used. The
MIP model representing the districting problem is given in Section 4.1. We propose a
districting construction heuristic for generating initial results and an iterative destroy &
recreate (IDR) algorithm for solving the districting problem of the DRPSC by iteratively
reducing the number of districts.

5.1 Mixed Integer Linear Programming Model
We model the problem in the following by a compact mixed integer programming (MIP)
formulation. This formulation shall serve as a starting point for a decomposition approach
in future work. As for the routing model we also rely on Miller-Tucker-Zemlin constraints
here to exclude subtours from consideration. We introduce the following decision variables:

fr =
{

1 district r is used
0 otherwise

xi,r =
{

1 object i is assigned to district r
0 otherwise

yj,r,ik,i′k′
=


1 the arc between the k-th visit of object i and the k′-th visit

of object i′ used in route r of period j
0 otherwise
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5.1. Mixed Integer Linear Programming Model

Additionally, we introduce the following variables to model the arrival and departure
times which are used later on to ensure compliance with given time windows:

• aj,r,ik : Denotes the arrival time at object i ∈ I in period j ∈ P for visit ik ∈Wi,j

and district r ∈ R

Using the variables defined above, the compact MIP formulation is stated as follows:

min
∑
r∈R

fr (5.1)

s.t. xi,r ≤ fr ∀i ∈ I, r ∈ R (5.2)∑
r∈R

xi,r = 1 ∀i ∈ I (5.3)

∑
(ik,i′k′ )∈Â

j

yj,r,ik,i′k′
=

∑
(i′
k′ ,ik)∈Âj

yj,r,i′
k′ ,ik

∀ik ∈ V j , r ∈ R, j ∈ P (5.4)

∑
(00,ik)∈Âj

yj,r,00,ik = 1 ∀j ∈ P, r ∈ R (5.5)

∑
(ik,01)∈Âj

yj,r,ik,01 = 1 ∀j ∈ P, r ∈ R (5.6)

yj,r,ik,i′k′
≤ xκ(ik),r ∀(ik, i′k′) ∈ Âj , j ∈ P, r ∈ R, ik 6= 00 (5.7)

yj,r,ik,i′k′
≤ xκ(i′

k′ ),r
∀(ik, i′k′) ∈ Âj , j ∈ P, r ∈ R, i′k′ 6= 01 (5.8)

aj,r,ik − aj,r,i′
k′

+ tmax · (1− yj,r,i′
k′ ,ik

) ≥ ttravel
κ(i′

k′ ),κ(ik) + tvisit
i′
k′

∀(i′k′ , ik) ∈ Âj , j ∈ P, r ∈ R (5.9)
aj,r,ik + tmax · (1− yj,r,00,ik) ≥ ttravel

0,κ(ik) ∀(00, ik) ∈ Âj , j ∈ P, r ∈ R (5.10)

aj,r,ik−1 ≤ aj,r,ik − t
sep ∀ik, ik−1 ∈ V j , j ∈ P, r ∈ R (5.11)

aj,r,01 − aj,r,00 ≤ tmax ∀j ∈ P, r ∈ R (5.12)∑
r∈R

∑
(ik,i′k′ )∈Â

j

yj,r,ik,i′k′
= 1 ∀ik ∈ V j , j ∈ P (5.13)

T eik ≤ aj,r,ik ≤ T
l
ik
− tvisit

ik
∀ik ∈ V j , j ∈ P, r ∈ R (5.14)

fr ∈ {0, 1} ∀r ∈ R (5.15)
xi,r ∈ {0, 1} ∀i ∈ I, r ∈ R (5.16)
yj,r,ik,i′k′

∈ {0, 1} ∀(ik, i′k′) ∈ Âj , j ∈ P, r ∈ R (5.17)

Objective function (5.1) minimizes the number of needed districts. By inequalities (5.2) it
is ensured that an object can only be assigned to a district if the corresponding district is
used. Equalities (5.3) state that every object must be assigned to exactly one district, and
equalities (5.4) ensure that the number of ingoing arcs is equal to the number outgoing
arcs for every object, in every district and each period. The departure of the the depot
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5.2. Districting Construction Heuristic

Algorithm 4 Districting Construction Heuristic
1: init: R← {1}, U ← sort(I)
2: for all i ∈ U do
3: inserted ← false
4: for all r ∈ R do
5: if insert(i, r) then
6: inserted ← true
7: break
8: end if
9: end for

10: if notinserted then
11: r′ ← create |R|+ 1-th new empty district
12: R← R ∪ {r′}
13: insert(i, r′)
14: end if
15: end for

has to have exactly one outgoing arc (5.5) and the arrival at the depot has to have exactly
one ingoing arc (5.6). We connect assignment variables with arc-selection variables by
inequalities (5.7) and (5.8). Inequalities (5.9)-(5.11) are used to compute arrival times
for every object visit and each period where this visit is requested. Inequalities (5.9)
compute the arrival time at station i if an arc (i′k′ , ik) ∈ Aj between the k′-th visit of
i′ and the k-th visit of i exists. Equalities (5.10) set the start time of the departure at
the depot for each period. Inequalities (5.11) model the minimum waiting between two
different visits of the same object, i.e., the so called separation time. Inequalities (5.12)
ensure that each tour for a given period and district does not exceed the maximum time
budget tmax, i.e., the makespan has to be lower or equals the maximum time budget for
a single tour. Equalities (5.13) make sure that an outgoing arc for the k-th visit of object
i exists if it is requested, i.e., ik ∈ Wi,j . Inequalities (5.14) ensure that all given time
windows are satisfied. Domain definitions for the variables are stated in (5.15)-(5.17).

5.2 Districting Construction Heuristic
Starting with one district, objects are iteratively added to the existing districts R.
Whenever adding an object i to any of the available districts in R would make the
assignment infeasible, i is added to a newly created district r′. The overall DCH is shown
in Algorithm 4 and explained below.

First, the set of districts R is initialized with the first empty district 1 and the set
of objects I is sorted by extending the flexibility values as defined in equation (4.16)
from visits to objects. All objects are sorted by the sum of their flexibility values∑
j∈P

∑
ik∈Wi,j

flex(ik) in ascending order. As in the RCH, the resulting set U is denoted
as the set of unscheduled visits. The DCH terminates when all i ∈ U have been
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5.3. Regret Heuristics

scheduled (line 2) and as a consequence, all requested visits have been inserted successfully
and we obtain a feasible solution to the DRPSC. The insertion of object i into district r
(lines 5 and 13) is accomplished by checking for each scheduled visit ik ∈Wi,j if ik can be
feasibly inserted into the particular district r (for the definition of feasibility of a tour see
also Section 4.2). In line 5 the DCH inserts i either into the first feasible or into the best
possible insert position, as described in Section 4.3. The insert function returns false,
if no feasible insertion position is found for at least one ik ∈ Wi,j , ∀j ∈ P . It returns
true, if a feasible insertion position is found for each visit ik ∈Wi,j , ∀j ∈ P . If the loop
over all districts (line 4) terminates without finding any feasible insertion position the
variable inserted stays false and a new empty district is created in line 11. The proposed
constructive algorithm will terminate with a feasible solution after |U | iterations.

5.3 Regret Heuristics
Instead of simply trying to assign objects i ∈ I to districts in the order of their creation,
as seen in Algorithm 4, additionally a regret-q heuristic proposed by Pillac et al. [36] for
the VRPTW, is developed to determine the regret value for not inserting object i at a
district r. Let dik,u,j,r be the cost of inserting visit ik into the tour of period j of district
r at position u and

δ1
i = min

r∈R

max
j∈P

 ∑
ik∈Wi,j

min
u=1,...,l

{dik,u,j,r}


 ∀i ∈ I (5.18)

be the minimum cost of all districts’ r ∈ R maximum increase of all periods’ j ∈ P tour
duration for inserting all visits ik ∈ Wi,j . These values δ(1,...,p)

i ∀i ∈ I define a ranking
based on the insertion costs in ascending order for inserting object i into district r ∈ R
where δpi references the p-th best district for insertion of object i ∈ I. Thus, in the sum
of equalities (5.18) the costs for the best insertions of the visits of object i are considered.
Then, we take the maximum of the aggregated insertion costs over all periods j ∈ P . The
insertion costs for every district are then ranked where lower insertion costs are better.
The best district for assignment of object i is the district maximizing

∑q
p=2(δpi − δ1

i )
which is also referred to as the maximum regret value where δpi is the p-th best district.
Object i is then assigned to the district resulting in δ1

i . This way, we always use the
object i ∈ I for insertion which has the highest regret value of all objects.

5.4 Iterative Destroy & Recreate
Nagata et al. [32] proposed a route elimination algorithm for reducing the number of
vehicles needed in the VRPTW. We apply the basic idea to the districting problem.
The algorithm starts with the initial assignment where every customer is reached by a
separate route. Then, one district r ∈ R is chosen for elimination at a time, maintaining
all now unassigned objects in an ejection pool (EP). Then, the algorithm tries to assign
all objects of the EP to the remaining districts R \ {r}. If the EP becomes emtpy, the
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5.4. Iterative Destroy & Recreate

Algorithm 5 District elimination algorithm
1: init: EP ← ∅, ci ← 0 ∀i ∈ I
2: choose a district rdel ∈ R for deletion
3: R← R \ {rdel}
4: EP ← EP ∪ {i | i ∈ Irdel}
5: while EP 6= ∅ ∧ termination criterion not met do
6: iins ← arg maxi∈EP {ci}
7: Rf ← feasible districts for assignment of iins

8: ciins ← ciins + |R| − |Rf |
9: if Rf 6= ∅ then

10: assign object iins to a randomly chosen feasible district r ∈ Rf
11: else
12: select random district rins ∈ R
13: assign object iins to district rins

14: call VND for district rins (see Section 4.4)
15: while ∃ an infeasible tour for any period of district rins do
16: idel ← arg mini∈Irins{ci}
17: Irins ← Irins \ {idel}
18: EP ← EP ∪ {idel}
19: call VND for district rins (see Section 4.4)
20: end while
21: end if
22: end while

number of districts was successfully reduced and another district is chosen for elimination.
We adapt this idea to the DRPSC and use the result of the DCH described in Section 5.2
as initial solution.

Let the assignment of an object i ∈ I to a district r ∈ R be feasible if and only if a
feasible tour can be scheduled for all assigned visits of all objects for each period. Let
ci be a penalty value of object i ∈ I denoting failed attempts of inserting object i into
a district. Each time a visit cannot be inserted, this penalty value is increased by one,
revealing objects which are difficult to assign to one of the available districts.

If the EP becomes empty, a feasible assignment of objects to districts is found. Subse-
quently, another iteration is started, destroying a district and reassigning its objects to
the remaining ones. The district elimination algorithm is shown in Algorithm 5.

First, the EP is initialized to the empty set and the penalty values of all objects are set
to 0. Starting with the solution provided by DCH a district is chosen for elimination
in line 2. One of the following strategies is applied uniformly at random for selecting a
district for elimination:

Minimum number of scheduled visits: This implies that only a minimum number
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5.4. Iterative Destroy & Recreate

of visits has to be reinserted to regain a feasible solution.

Shortest tour duration: Selecting a district where the maximum tour duration over
all periods is minimum can be promising because this district might lead to a
district with visits of shorter durations resulting in easier insert operations.

Maximum waiting times: Selecting a district with a loose schedule may indicate less
or shorter visits, making them easier to reinsert.

After deleting a district all objects of this district are moved to the EP (line 4). As long
as the EP contains objects, we try to assign each object to one of the remaining districts.
An object with maximum penalty value is chosen for the next assignment (line 6). For the
chosen object iins the feasible districts for assignment are computed. If there is at least
one feasible district for an assignment of object iins (line 9) we assign the object to such a
district uniformly at random (line 10). If it is not possible to feasibly assign the object iins

to any of the remaining districts we randomly choose a district for assignment (line 11).
Then, we apply the VND described in Section 4.4 trying to make the district feasible.
If this is not possible and the assignment is still infeasible we iteratively try to remove
objects with lowest penalty values from this district rins in the following loop (line 15),
remove them from district rins (line 17), and finally add them to the EP (18). Then
again, we call the VND from Section 4.4 trying to make the resulting tour from the
actual assignment feasible. After an iteration of the outer loop the object with highest
penalty value of the EP has been inserted and other objects previously assigned to this
district may have been added to the EP. The idea behind this approach is to insert
difficult objects first and temporarily remove easy to insert objects from the solution to
reinsert them later. When the EP is empty, a new best assignment with one district less
is found. This algorithm iterates until a termination criterion, e.g., a time limit is met.
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CHAPTER 6
Results & Benchmarks

To evaluate our proposed algorithms, computational tests are performed on a set of
benchmark instances. As the DRPSC is a new problem we created new instances1 based
on the characteristics of real-world scenarios provided by an industry partner.

The algorithm is implemented in C++ using Gurobi 6.5 for solving the MIP. For each
combination of configuration and instance we performed 20 independent runs for the
IDR while for the routing part only one run was performed since these algorithms are
deterministic. All runs were executed on a single core of an Intel Xeon processor with
2.54 GHz. The IDR algorithm is terminated after a maximum of 900 CPU seconds. The
MIP model for the routing part was executed by Gurobi and was aborted after 3600
CPU seconds. A Wilcoxon signed-rank test with an error level of 5% was done for any
pair of non-deterministic approaches.

In the first set of experiments the routing part of the DRPSC is examined more closely
to evaluate RCH in comparison to the MIP model. Then, several configurations of our
proposed algorithms for the whole problem are investigated.

6.1 Test Instances
The benchmark instances were generated using distance matrices from TSPlib instances.
The depot was selected by taking the node for which the total distance to all other nodes
is a minimum. Visits and the time windows were added using a custom parameterized
algorithm as follows:

• v: between 1 and v visits are assigned to each period and node of the original TSP
instance uniformly at random.

1https://www.ac.tuwien.ac.at/research/problem-instances/#Districting_and_
Routing_Problem_for_Security_Control
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6.2. Results for the Routing problem

• α: small time windows of length within the set {5, . . . , 30} in minutes, chosen
uniformly at random, are assigned with probability α to each visit.

• β: medium time windows of length of 2,3,4 or 5 hours, chosen uniformly at random,
are assigned with probability β to each visit.

Large time windows are unrestricted and assigned to visits with probability 1− α− β.
Small and medium time windows of visits of the same object do not overlap and the
visit time is chosen uniformly at random from 3 to 20 minutes in steps of 1 minute.
A feasibility check is applied to all generated visits of a single object, i.e., there must
be a feasible route satisfying all visits of a single object, to prevent the generation of
infeasible instances. It is easy to see, that there can be no feasible solution to the
districting problem, if a district containing only a single object has no feasible route.
For all benchmark instances tsep is set to 60 minutes and tmax is set to 10 hours for the
districting results. A planning horizon spans 7 days.

6.2 Results for the Routing problem
First, the methods for the routing part are evaluated on a separate set of benchmark
instances. Very small instances for which a solution containing only one district could
be generated were tested. The routing algorithms used the requested visits for day 1 of
the planning period as input for finding a feasible tour. In Table 6.1 the MIP model is
compared to RCH, and RCH with the subsequent VND, denoted by RCH-VND. For this
comparison the objective is changed to minimize the makespan of a specific tour instead
of a lexicographical objective function which also considers the penalty value of a tour.
Therefore, the maximum tour duration constraint is relaxed and the resulting makespan
is given in minutes in the column obj. In the first four columns the instance parameters
are specified. Sequentially, the instance name, the number of objects |I|, the maximum
number of nodes of all objects |V | =

∑
i∈I |Si|, the percentage of small (α), and medium

time windows (β) and the maximum number of visits per objects v is given. For the RCH
and RCH-VND we give the objective value (makespan in minutes) and the time needed
for solving the instance. Then, the upper bound (UB), the lower bound (LB), the final
optimality gap, and the time spent by Gurobi for solving the MIP model is shown. In
the two remaining columns we present the relative gap between the MIP and RCH-VND
∆MIP = (objRCH-VND − LB)/objRCH-VND as well as the relative gap between RCH and
RCH-VND ∆RCH = (objRCH − objRCH-VND)/objRCH-VND. We performed only one run
for each instance because the methods applied to routing part are all deterministic.

In Table 6.1 we see that the MIP model was able to solve easier instances, i.e., instances
with very few visits, no small time windows and only up to 50% medium time windows,
to optimality, but soon had very high running times. Only very few instances with a
number of visits of up to 23 were solved to optimality and the gap could only be reduced
below 5% for 2 larger instances. The runtime for those instances varied widely between a
few seconds and over 30 minutes. The gap between lower and upper bound of the MIP
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Table 6.1: Results of the MIP, RCH, and RCH-VND for the routing part.

Instance RCH RCH-VND MIP Rel. Difference

name |I| |V | α β v obj t[s] obj t[s] UB LB Gap t[s] ∆MIP ∆RCH

burma14_01 13 19 0 0.2 2 495.80 < 0.01 333.49 0.03 332.62 332.62 0.00% 2025.56 0.26% 48.67%
burma14_02 13 21 0 0.2 2 525.49 0.01 440.86 0.05 433.42 421.91 2.66% 3600.00 4.30% 19.20%
burma14_03 13 19 0 0.2 2 607.11 < 0.01 397.14 0.03 395.15 387.89 1.84% 3600.00 2.33% 52.87%
burma14_04 13 19 0 0.2 2 409.54 < 0.01 273.28 0.01 272.93 272.93 0.00% 2318.17 0.13% 49.86%
burma14_05 13 17 0 0.5 2 372.63 < 0.01 312.70 0.02 311.10 311.10 0.00% 2.09 0.51% 19.16%
burma14_06 13 21 0 0.5 2 416.55 < 0.01 370.61 0.04 360.71 360.71 0.00% 3.35 2.67% 12.40%
burma14_07 13 20 0 0.5 2 386.02 < 0.01 342.00 0.02 336.25 336.25 0.00% 10.74 1.68% 12.87%
burma14_08 13 26 0 0.5 3 644.19 < 0.01 573.70 < 0.01 856.00 285.76 66.62% 3600.00 50.19% 12.29%
burma14_09 13 21 0 0.7 2 786.76 < 0.01 612.87 0.01 893.99 349.92 60.86% 3600.00 42.91% 28.37%
burma14_10 13 26 0.1 0.5 3 921.46 0.01 872.60 0.01 966.80 587.94 39.19% 3600.00 32.62% 5.60%
ulysses16_01 15 29 0 0.5 3 878.46 0.01 717.16 0.01 743.01 489.23 34.16% 3600.00 31.78% 22.49%
ulysses16_02 15 31 0 0.5 3 942.42 0.01 696.11 0.02 664.55 631.60 4.96% 3600.14 9.27% 35.38%
ulysses16_03 15 24 0.1 0.5 2 897.10 < 0.01 849.15 < 0.01 1126.33 450.89 59.97% 3600.00 46.90% 5.65%
ulysses16_04 15 29 0.1 0.5 3 838.78 0.01 838.78 0.01 1032.56 458.31 55.61% 3600.00 45.36% 0.00%
ulysses16_05 15 33 0.1 0.5 4 998.92 < 0.01 729.55 0.01 1001.00 611.42 38.92% 3600.00 16.19% 36.92%
ulysses16_06 15 23 0.1 0.7 2 814.06 < 0.01 692.76 0.01 684.19 684.19 0.00% 146.12 1.24% 17.51%
ulysses16_07 15 25 0.1 0.7 3 897.20 0.01 897.20 0.01 897.20 846.49 5.65% 3600.00 5.65% 0.00%
ulysses16_08 15 29 0.1 0.7 3 880.46 0.01 868.43 0.01 950.60 642.82 32.38% 3600.00 25.98% 1.38%
ulysses16_09 15 32 0.2 0.5 3 1042.15 0.01 895.57 0.01 892.83 801.35 10.25% 3600.00 10.52% 16.37%
ulysses16_10 15 28 0.2 0.7 3 1014.79 < 0.01 835.11 0.01 940.39 811.87 13.67% 3600.00 2.78% 21.52%

gr17_01 16 39 0 0.5 4 897.97 0.01 759.32 0.01 861.37 484.02 43.81% 3600.00 36.26% 18.26%
gr17_02 16 29 0 0.7 3 799.80 0.01 642.57 0.01 795.58 403.96 49.22% 3600.00 37.13% 24.47%
gr17_03 16 34 0 0.7 3 929.87 0.01 813.72 0.02 1010.92 437.85 56.69% 3600.00 46.19% 14.27%
gr17_04 16 43 0 0.7 4 862.50 0.01 763.70 0.02 983.55 496.14 49.56% 3600.00 35.04% 12.94%
gr17_05 16 24 0.1 0.5 2 709.42 < 0.01 575.97 0.01 828.98 379.97 54.16% 3600.00 34.03% 23.17%
gr17_06 16 33 0.1 0.5 3 896.88 0.01 622.95 0.02 893.58 468.21 47.60% 3600.00 24.84% 43.97%
gr17_07 16 37 0.1 0.5 4 1105.38 0.01 859.87 0.01 1205.00 358.63 70.24% 3600.00 58.29% 28.55%
gr17_08 16 21 0.1 0.7 2 746.57 < 0.01 639.42 0.01 813.48 285.02 64.96% 3600.00 55.42% 16.76%
gr17_09 16 25 0.2 0.7 2 874.32 < 0.01 855.20 < 0.01 952.60 357.71 62.45% 3600.00 58.17% 2.24%
gr17_10 16 37 0.2 0.7 4 921.85 0.02 894.37 0.02 865.85 865.78 0.01% 541.73 3.20% 3.07%
gr21_01 20 28 0.1 0.5 2 869.75 < 0.01 622.22 0.01 845.92 383.88 54.62% 3600.00 38.30% 39.78%
gr21_02 20 36 0.1 0.5 3 894.25 0.01 731.75 0.02 1031.00 518.16 49.74% 3600.00 29.19% 22.21%
gr21_03 20 29 0.1 0.7 2 884.47 < 0.01 715.57 0.01 1029.30 448.25 56.45% 3600.00 37.36% 23.60%
gr24_01 23 33 0 0.5 2 863.72 0.01 558.10 0.01 777.98 489.04 37.14% 3600.00 12.37% 54.76%
gr24_02 23 32 0 0.7 2 806.15 0.01 688.95 0.01 875.87 423.26 51.68% 3600.00 38.56% 17.01%
gr24_03 23 42 0 0.7 3 830.57 0.01 703.32 0.02 878.75 552.71 37.10% 3600.00 21.41% 18.09%
fri26_01 25 39 0.1 0.5 2 802.53 0.01 742.98 0.01 742.98 418.54 43.67% 3600.00 43.67% 8.01%
fri26_02 25 44 0.1 0.7 3 872.90 0.01 803.42 0.03 953.97 549.52 42.40% 3600.00 31.60% 8.65%
fri26_03 25 36 0.2 0.7 2 899.25 0.01 782.80 0.02 1122.99 470.71 58.08% 3600.00 39.87% 14.88%
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also increased with the instance size. For many of the larger instances the gap could not
be reduced below 50% within the running time of one hour. When looking at the relative
gap between the RCH and RCH-VND (∆RCH), we can conclude that the VND improved
greatly on the objective value of 36 of the 39 instances tested with only a minor increase
in running time. RCH-VND yielded reasonable solutions with objective values close to
the LB of the MIP for 9 out of the 10 smallest instances with 23 or less visits. Moreover,
for those instances where the relative gap between the MIP and RCH-VND is greater
than 10%, the MIP also has a relatively larger gap between UB and LB. When looking
at those instances, the objective value of the RCH-VND is still well below the upper
bound of the MIP for almost all instances. The running times of the RCH-VND did not
increase noticeably for larger instances. Figure 6.1 is giving a graphical overview of the
different objective values of the exact and heuristic approach.

As we require a fast method for deciding if a route is feasible within the districting
problem, we conclude that RCH-VND is a reasonable choice for using it within the
algorithms for solving the districting problem.

6.3 Results for the Districting Problem
The results for the districting problem are analyzed by comparing the different con-
struction heuristics with each other, followed by different configurations for the IDR
and finally, results of the districting construction heuristics combined with the iterative
destroy & recreate algorithm are investigated.

6.3.1 Comparison of the Districting Construction Heuristics

The comparison of the different districting construction heuristics is shown in table 6.2.
DCHb denotes the columns with the results for the best possible insertion strategy, DCHf

the first feasible insertion strategy (see Section 4.3) and SCH a simple construction
heuristic proposed by Nagata and Bräysy [33]. For the SCH each object is put into a
separate district which results in a trivial initial solution candidate. The first feasible
insertion strategy generated solutions with a better objective value than the best feasible
insertion strategy on 3 problem instances, the latter resulted in better solutions for 22
problem instances. The DCHb was able to outperform the DCHf by up to 3 districts on
all of the very large instances with more than 1000 visits. The results for the SCH are
obviously worse than the other two strategies, since the objective value always reflects
the number of objects of the problem instance. Comparing the running times of the
different construction heuristics reveal, that the DCHf was faster than the DCHb on all
but the smallest problem instances with running times of or below 0.1 seconds. It is
apparent, that the SCH was the fastest construction heuristic for all problem instances.
The DCHb took up to 12.1 seconds for solving instance rat575, α = 10, β = 50, v = 4,
which was almost three times longer than the runtime of 4.1 seconds of the DCHb on the
same problem instance.
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Table 6.2: Results of the different districting construction heuristics.

Instance DCHb DCHf SCH

name |I| |V | α β v obj t∗[s] obj t∗[s] obj t∗[s]

d198 197 297 10 50 2 11 0.3 11 0.2 197 <0.1
d198 197 472 10 50 4 16 0.9 17 0.3 197 <0.1
d198 197 288 20 70 2 13 0.2 14 0.2 197 <0.1
d198 197 500 20 70 4 20 0.5 20 0.2 197 <0.1
gil262 261 389 10 50 2 12 1 12 0.5 261 0.1
gil262 261 635 10 50 4 19 1.7 19 0.6 261 0.1
gil262 261 404 20 70 2 15 0.6 15 0.4 261 0.1
gil262 261 682 20 70 4 20 1.1 21 0.5 261 0.1
gr137 136 202 10 50 2 19 0.1 18 0.1 136 <0.1
gr137 136 357 10 50 4 30 0.2 31 0.1 136 <0.1
gr137 136 203 20 70 2 19 0.1 20 0.1 136 <0.1
gr137 136 335 20 70 4 33 0.1 33 0.1 136 <0.1
gr202 201 306 10 50 2 15 0.4 15 0.2 201 <0.1
gr202 201 495 10 50 4 23 0.7 22 0.3 201 <0.1
gr202 201 308 20 70 2 15 0.3 15 0.2 201 <0.1
gr202 201 499 20 70 4 25 0.4 26 0.3 201 <0.1
gr96 95 145 10 50 2 12 <0.1 13 <0.1 95 <0.1
gr96 95 247 10 50 4 22 0.1 23 0.1 95 <0.1
gr96 95 145 20 70 2 15 <0.1 14 <0.1 95 <0.1
gr96 95 235 20 70 4 25 0.1 25 0.1 95 <0.1

lin318 317 459 10 50 2 22 0.7 22 0.5 317 0.1
lin318 317 769 10 50 4 34 1.4 35 0.7 317 0.1
lin318 317 485 20 70 2 26 0.6 28 0.4 317 0.1
lin318 317 799 20 70 4 39 0.9 42 0.6 317 0.1
pr107 106 158 10 50 2 16 0.1 17 <0.1 106 <0.1
pr107 106 168 10 50 4 6 0.3 6 0.1 106 <0.1
pr107 106 162 20 70 2 18 0.1 19 <0.1 106 <0.1
pr107 106 222 20 70 4 8 0.1 8 0.1 106 <0.1
pr299 298 446 10 50 2 27 0.5 27 0.4 298 0.1
pr299 298 726 10 50 4 41 0.9 42 0.6 298 0.1
pr299 298 444 20 70 2 30 0.4 31 0.4 298 0.1
pr299 298 769 20 70 4 50 0.7 51 0.5 298 0.1
pr439 438 661 10 50 2 51 1.2 51 1 438 0.1
pr439 438 1075 10 50 4 25 6.7 26 2.4 438 0.1
pr439 438 673 20 70 2 57 1 59 0.9 438 0.1
pr439 438 1039 20 70 4 26 3.3 27 1.6 438 0.1
rat575 574 845 10 50 2 24 4.5 24 2.8 574 0.2
rat575 574 1446 10 50 4 35 12.1 36 4.1 574 0.2
rat575 574 870 20 70 2 27 3 27 2.2 574 0.2
rat575 574 1388 20 70 4 37 6 40 2.9 574 0.2
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6.3.2 Comparison of the District Deletion Strategies

The IDR uses four different strategies for selecting a district for deletion as explained in
Section 5.4. These strategies are tested by running the IDR with the simple construction
heuristic (SCH). This guarantees far more iterations of the IDR algorithm than with any
other construction heuristic as the SCH generates as many districts as there are objects
in the problem instance. This should make differences in the performance of the various
district deletion strategies most obvious. Table 6.3 shows the different run configurations
with regard to the selected deletion strategy whereas IDRdelrand shows the results of
selecting deletion strategies for each iteration uniformly at random; IDRdelvisits shows
the results of deleting the district with the least amount of scheduled visits, IDRdeltour

shows the results of deleting the district with the shortest maximum tour duration and
IDRdelwait deletes the district with maximum waiting time. The results do not show
that any of the proposed district deletion strategies to be consistently better than the
others. Each strategy was outperforming the other three strategies only on some problem
instances resulting in the same objective value for most instances. This suggests, that
the method for selecting a district for deletion might not be as important as the following
repair mechanisms for recreating feasible routes for the remaining districts.

6.3.3 Comparison of VND Neighborhoods

Repairing an infeasible solution during the recreation phase of the iterative destroy &
recreate algorithm for the districting problem is accomplished by using three different
neighborhood structures in a VND approach as described in Section 4.4. Since the
neighborhood structures are applied using a fixed order, resulting in more runs for the
first and the second neighborhood structure than for the third, their relative success rate
was compared. The columns sr[%] in table 6.4 show the relative success rate for each
VND neighborhood structure. The success rate is computed by dividing the number of
successful improvements within that neighborhood structure divided by the number of
total runs of that neighborhood structure. Columns sd show the standard deviation of
the success rate for the 20 runs of each instance. The swap neighborhood structure was
by far the most successful one for all tested instances followed by the or-opt neighborhood
structure. The success of the 2-opt neighborhood structure was inferior with rates below
3%. Further examination of these results led to the observation that many generated
2-opt and or-opt neighbors have to be dismissed as infeasible prematurely. This is because
the massive reordering of visits after applying the neighborhood moves of or-opt and
especially 2-opt often results in an invalid visit order for a single object, since visit ik has
to be satisfied before ik+1 as mentioned in Section 1.1. Since the swap move only changes
the order of two visits at a time, its performance suffered the least from this constraint.

6.3.4 Results of the Iterative Destroy & Recreate Algorithm

For testing the proposed districting construction heuristics in combination with the itera-
tive destroy & recreate algorithm for the DRPSC we used three different configurations.
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Table 6.3: Results of the different district deletion strategies.

Instance IDRdelrand IDRdelvisits IDRdeltour IDRdelwait

name runs |I| |V | α β v obj sd t∗[s] obj sd t∗[s] obj sd t∗[s] obj sd t∗[s]

d198 20 197 297 10 50 2 13.0 0.0 39 13.0 0.0 41 13.0 0.0 55 13.0 0.0 43
d198 20 197 472 10 50 4 18.0 0.0 112 18.0 0.0 118 18.0 0.0 209 18.0 0.0 152
d198 20 197 288 20 70 2 13.0 0.0 282 13.0 0.0 245 13.0 0.0 274 13.0 0.0 239
d198 20 197 500 20 70 4 21.0 0.0 366 21.0 0.0 335 21.0 0.0 407 21.0 0.0 286
gil262 20 261 389 10 50 2 11.0 0.0 130 11.0 0.0 41 11.0 0.0 46 11.0 0.0 51
gil262 20 261 635 10 50 4 17.0 0.0 374 17.0 0.0 240 17.0 0.0 374 17.0 0.0 290
gil262 20 261 404 20 70 2 12.0 0.0 74 12.0 0.0 121 12.0 0.0 117 12.0 0.0 91
gil262 20 261 682 20 70 4 19.0 0.0 404 19.0 0.0 413 19.0 0.0 433 19.0 0.0 482
gr137 20 136 202 10 50 2 18.0 0.0 387 19.0 0.0 87 18.0 0.0 550 18.0 0.0 253
gr137 20 136 357 10 50 4 27.0 0.0 310 27.0 0.0 281 27.0 0.0 253 26.2 0.4 593
gr137 20 136 203 20 70 2 18.0 0.0 379 19.0 0.0 156 19.0 0.0 178 19.0 0.0 133
gr137 20 136 335 20 70 4 28.0 0.0 362 28.0 0.0 336 28.0 0.0 366 28.0 0.0 359
gr202 20 201 306 10 50 2 17.0 0.0 37 17.0 0.0 25 17.0 0.0 57 17.0 0.0 57
gr202 20 201 495 10 50 4 24.0 0.0 236 24.0 0.0 190 24.0 0.0 254 24.0 0.0 260
gr202 20 201 308 20 70 2 16.0 0.0 448 16.0 0.0 305 17.0 0.0 43 16.0 0.0 404
gr202 20 201 499 20 70 4 25.0 0.0 542 25.0 0.0 501 25.0 0.0 402 25.0 0.0 414
gr96 20 95 145 10 50 2 12.0 0.0 153 12.0 0.0 385 12.0 0.0 154 12.0 0.0 271
gr96 20 95 247 10 50 4 18.0 0.0 92 18.0 0.0 179 18.0 0.0 129 18.0 0.0 126
gr96 20 95 145 20 70 2 13.0 0.0 41 12.0 0.0 437 12.0 0.0 447 12.0 0.0 474
gr96 20 95 235 20 70 4 20.0 0.0 243 20.0 0.0 107 20.0 0.0 142 20.0 0.0 234

lin318 20 317 459 10 50 2 29.0 0.0 132 29.0 0.0 155 29.0 0.0 133 29.0 0.0 29
lin318 20 317 769 10 50 4 42.0 0.0 543 42.0 0.0 291 42.0 0.0 279 42.0 0.0 331
lin318 20 317 485 20 70 2 31.0 0.0 521 31.0 0.0 467 31.6 0.5 175 31.0 0.0 518
lin318 20 317 799 20 70 4 48.0 0.0 470 48.0 0.0 476 48.0 0.0 545 47.9 0.3 384
pr107 20 106 158 10 50 2 14.0 0.0 43 13.0 0.0 253 13.0 0.0 268 14.0 0.0 54
pr107 20 106 168 10 50 4 4.0 0.0 56 4.0 0.0 122 4.0 0.0 109 4.0 0.0 179
pr107 20 106 162 20 70 2 15.0 0.0 133 15.0 0.0 120 15.0 0.0 83 15.0 0.0 135
pr107 20 106 222 20 70 4 6.0 0.0 223 6.0 0.0 269 6.0 0.0 441 6.0 0.0 214
pr299 20 298 446 10 50 2 31.0 0.0 368 31.0 0.0 493 31.0 0.0 250 31.0 0.0 277
pr299 20 298 726 10 50 4 45.0 0.0 352 44.8 0.4 318 45.0 0.0 421 44.4 0.5 538
pr299 20 298 444 20 70 2 31.0 0.0 564 32.0 0.0 482 32.0 0.0 339 32.0 0.0 408
pr299 20 298 769 20 70 4 50.0 0.0 477 50.0 0.0 568 50.0 0.0 519 51.0 0.0 419
pr439 20 438 661 10 50 2 64.0 0.0 466 64.0 0.0 309 64.0 0.0 381 64.1 0.3 583
pr439 20 438 1075 10 50 4 27.0 0.0 304 27.0 0.0 288 27.8 0.4 230 27.0 0.0 391
pr439 20 438 673 20 70 2 67.5 0.5 424 68.0 0.0 416 67.0 0.0 563 68.0 0.0 505
pr439 20 438 1039 20 70 4 28.0 0.0 224 28.0 0.0 336 28.0 0.0 586 28.0 0.0 543
rat575 20 574 845 10 50 2 25.0 0.0 467 25.0 0.0 488 25.1 0.3 587 25.0 0.0 381
rat575 20 574 1446 10 50 4 41.0 0.0 188 39.0 0.0 585 40.0 0.0 564 39.4 0.5 577
rat575 20 574 870 20 70 2 28.0 0.0 283 28.0 0.0 374 27.3 0.5 567 28.0 0.0 390
rat575 20 574 1388 20 70 4 44.0 0.0 229 44.0 0.0 394 44.0 0.0 173 44.0 0.0 229
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Table 6.4: Results of the different VND neighborhoods.

Instance swap 2-opt or-opt

name runs |I| |V | α β v sr[%] sd sr[%] sd sr[%] sd

d198 20 197 297 10 50 2 53.93 0.07 2.41 0.02 14.39 0.10
d198 20 197 472 10 50 4 51.95 0.07 1.49 0.01 13.57 0.04
d198 20 197 288 20 70 2 51.73 0.10 1.68 0.02 12.13 0.16
d198 20 197 500 20 70 4 45.56 0.21 0.72 0.01 9.54 0.17
gil262 20 261 389 10 50 2 55.01 0.04 2.06 0.01 10.42 0.06
gil262 20 261 635 10 50 4 52.40 0.02 1.33 0.03 12.79 0.08
gil262 20 261 404 20 70 2 50.80 0.02 1.27 0.00 8.79 0.03
gil262 20 261 682 20 70 4 50.34 0.05 0.90 0.01 8.75 0.12
gr137 20 136 202 10 50 2 46.56 0.05 1.56 0.02 19.48 0.05
gr137 20 136 357 10 50 4 38.41 0.03 0.13 0.00 16.14 0.02
gr137 20 136 203 20 70 2 38.01 0.10 0.61 0.01 9.37 0.04
gr137 20 136 335 20 70 4 33.05 0.10 0.04 0.00 9.90 0.04
gr202 20 201 306 10 50 2 52.87 0.03 2.04 0.01 16.09 0.03
gr202 20 201 495 10 50 4 47.35 0.20 0.61 0.02 13.92 0.21
gr202 20 201 308 20 70 2 48.74 0.08 1.66 0.02 13.07 0.15
gr202 20 201 499 20 70 4 42.33 0.03 0.45 0.00 10.19 0.03
gr96 20 95 145 10 50 2 48.64 0.12 1.90 0.02 19.50 0.10
gr96 20 95 247 10 50 4 38.11 0.04 0.13 0.00 13.62 0.07
gr96 20 95 145 20 70 2 43.70 0.18 0.96 0.03 12.30 0.11
gr96 20 95 235 20 70 4 32.46 0.56 0.02 0.00 8.62 0.14

lin318 20 317 459 10 50 2 51.70 0.01 2.34 0.02 16.14 0.04
lin318 20 317 769 10 50 4 47.42 0.03 0.77 0.01 14.47 0.05
lin318 20 317 485 20 70 2 44.81 0.01 1.15 0.00 11.05 0.02
lin318 20 317 799 20 70 4 42.16 0.02 0.33 0.00 8.60 0.02
pr107 20 106 158 10 50 2 43.65 0.02 1.66 0.01 13.45 0.03
pr107 20 106 168 10 50 4 56.03 0.75 1.06 0.04 7.07 0.30
pr107 20 106 162 20 70 2 28.33 0.18 0.27 0.01 5.09 0.08
pr107 20 106 222 20 70 4 43.69 0.70 0.51 0.05 8.48 0.17
pr299 20 298 446 10 50 2 49.05 0.02 1.96 0.01 15.75 0.03
pr299 20 298 726 10 50 4 45.68 0.07 0.54 0.00 13.54 0.02
pr299 20 298 444 20 70 2 45.67 0.03 1.35 0.01 10.54 0.02
pr299 20 298 769 20 70 4 42.17 0.06 0.25 0.01 8.58 0.04
pr439 20 438 661 10 50 2 41.72 0.10 0.92 0.01 12.47 0.04
pr439 20 438 1075 10 50 4 52.80 0.33 1.51 0.09 12.18 0.79
pr439 20 438 673 20 70 2 38.06 0.03 0.59 0.01 7.80 0.04
pr439 20 438 1039 20 70 4 49.80 0.01 0.63 0.02 9.98 0.00
rat575 20 574 845 10 50 2 53.71 0.20 2.21 0.05 11.54 0.32
rat575 20 574 1446 10 50 4 52.34 0.07 1.51 0.07 10.06 0.29
rat575 20 574 870 20 70 2 52.66 0.08 1.67 0.02 8.73 0.10
rat575 20 574 1388 20 70 4 49.15 0.07 1.30 0.01 7.93 0.05
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Table 6.5: Results of the DCH and IDR for the districting part.

Instance IDR-SCH IDR-DCHf IDR-DCHb

name runs |I| |V | α β v obj sd t∗[s] objf tf [s] obj sd t∗[s] objb tb obj sd t∗[s]

st70_1 20 69 105 0.1 0.7 2 3.0 0.0 11 6 < 0.1 3.0 0.0 5 5 0.1 3.0 0.0 9
st70_2 20 69 91 0.1 0.7 2 3.0 0.0 4 6 < 0.1 3.0 0.0 6 5 0.1 3.0 0.0 6
st70_3 20 69 106 0.1 0.7 2 3.0 0.0 11 6 < 0.1 3.0 0.0 13 5 0.1 3.0 0.0 11

rd100_1 20 99 152 0.1 0.5 2 6.0 0.0 8 9 < 0.1 6.0 0.0 10 9 0.1 6.0 0.0 14
rd100_2 20 99 160 0.1 0.5 2 6.0 0.0 16 8 0.1 6.0 0.0 14 8 0.1 6.0 0.0 6
rd100_3 20 99 152 0.1 0.5 2 6.0 0.0 3 7 0.1 6.0 0.0 2 8 0.1 6.0 0.0 7
tsp225_1 20 224 334 0.2 0.7 2 11.0 0.0 47 13 0.2 11.0 0.0 64 13 0.4 11.0 0.0 121
tsp225_2 20 224 341 0.2 0.7 2 11.0 0.0 46 13 0.3 11.0 0.0 67 13 0.5 11.0 0.0 36
tsp225_3 20 224 332 0.2 0.7 2 10.0 0.0 226 12 0.3 10.0 0.0 257 12 0.5 10.0 0.0 177
gr48_1 20 47 120 0.2 0.7 4 5.0 0.0 6 8 < 0.1 5.0 0.0 4 7 < 0.1 5.0 0.0 14
gr48_2 20 47 115 0.2 0.7 4 5.0 0.0 12 7 < 0.1 5.0 0.0 7 7 < 0.1 5.0 0.0 10
gr48_3 20 47 125 0.2 0.7 4 4.0 0.0 527 7 < 0.1 4.0 0.0 438 6 < 0.1 4.0 0.0 488

berlin52_1 20 51 133 0.0 0.7 4 5.0 0.0 3 6 < 0.1 5.0 0.0 2 7 0.1 5.0 0.0 7
berlin52_2 20 51 130 0.0 0.7 4 5.0 0.0 5 7 < 0.1 4.0 0.0 142 6 0.1 5.0 0.0 1
berlin52_3 20 51 140 0.0 0.7 4 5.0 0.0 19 7 < 0.1 5.0 0.0 14 6 0.1 5.0 0.0 16

ft70_1 20 69 167 0.1 0.5 4 8.0 0.0 12 12 < 0.1 8.0 0.0 12 10 0.1 8.0 0.0 18
ft70_2 20 69 180 0.1 0.5 4 8.0 0.0 33 11 < 0.1 8.0 0.0 15 11 0.1 8.0 0.0 18
ft70_3 20 69 144 0.1 0.5 4 7.0 0.0 41 9 < 0.1 7.0 0.0 36 9 0.1 7.0 0.0 19

ch150_1 20 149 360 0.2 0.5 4 11.0 0.0 589 15 0.2 11.0 0.0 480 15 0.4 11.2 0.4 881
ch150_2 20 149 402 0.2 0.5 4 12.0 0.0 342 17 0.2 12.0 0.0 338 15 0.4 12.0 0.0 387
ch150_3 20 149 357 0.2 0.5 4 11.0 0.0 655 14 0.2 11.0 0.0 520 13 0.4 11.0 0.0 808

The iterative destroy & recreate algorithm was tested with both the DCH with the
first feasible (IDR-DCHf) and the best possible insertion strategy (IDR-DCHb). Both
configurations are compared with the IDR-SCH, where the simple construction heuristic
is used. The random district deletion strategy was chosen for all runs.

In Table 6.5 the results of the experiments are shown. Columns obj show the average
objective value, i.e., the minimum number of districts at the end of the optimization after
the full run of the IDR algorithm, while columns obj f and objb show the average number
of districts after the respective construction heuristic. Columns t∗ show the median
time in seconds after which the best solution has been found during the run of the IDR
algorithm while tf and tb show the median time after which the respective construction
heuristic has found an initial solution. Columns sd show the standard deviation of the
objective value for the 20 runs of a single instance.

We observe that for most instances the final objective value of the IDR is the same for
all three configurations. There are, however, differences for the construction heuristics
alone and the DCHb for most but not all instances yielded better results but needed
more time. The IDR-SCH works surprisingly well and was able to find good results in
about the same amount of time as the other two (more sophisticated) configurations.
Specifically, for the instances st70_1, st70_2 and st70_3 the IDR algorithm was able
to cut the objective value of the DCHf into half. Overall, the standard deviation was
zero for almost all instances, showing that the IDR is very robust over the course of
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multiple runs. Figure 6.2 shows the differences in the objective values and runtime of the
construction heuristics and the IDR.
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CHAPTER 7
Conclusions and Future Work

In this work we introduced a new vehicle routing problem which originates from the
security control sector. The goal of the Districting and Routing Problem for Security
Control is to partition a set of objects under surveillance into disjoint clusters such that
for each period a route through all requested visits can be scheduled satisfying complex
time window constraints. As the objects may require multiple visits there needs to be a
minimum separation time between each two visits which imposes an interesting additional
challenge. The proposed heuristic solution approach starts with a district construction
heuristic followed by an iterative destroy & recreate algorithm. The latter works by
iteratively destroying districts and trying to insert the resulting unassigned objects into
the other districts.

The computational results for the routing problem show that the proposed MIP model
is able to solve smaller instances to optimality. The variable neighborhood descent was
able to improve the initial solutions of the routing construction heuristics significantly.
Furthermore, the results of the RCH-VND came close to the lower bound of the MIP
results for all but a few instances. For those instances, where the RCH-VND did not
come close to the MIP, the MIP was also far from closing the gap between the lower and
upper bound, making the difficulty of solving these instances apparent.

On the one hand the tests showed that none of the different deletion strategies for
removing a district from an interim solution during the destroy phase of the iterative
destroy & recreate algorithm outperformed the others on more than a few specific problem
instances each. On the other hand a substantially superior success rate was observed
for the swap neighborhood structure of the VND during the recreation step of the IDR
algorithm. The greedy construction heuristic with a first feasible insertion strategy
yielded good starting solutions while the same heuristic with a best feasible insertion
strategy resulted in slightly better initial solutions for many problem instances. Overall
the iterative destroy & recreate algorithm improved on the initial solution, generated by
by the different construction heuristics. For the districting problem the results revealed
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that the quality of the initial solutions of the districting problem has only a minor
influence on the final solution quality of the IDR algorithm.

7.1 Future Work
For further evaluation of the heuristics proposed in this thesis, enhancing the MIP models,
which are presented in Sections 4.1 and 5.1 for the routing and the districting problem,
respectively, with decomposition techniques like branch & cut, column generation or
Benders decomposition is desirable. Especially for the districting part, solutions of a
MIP-based approach could provide more information about the solution quality of the
presented variants of the IDR algorithm.

Another interesting aspect for further analyzing the proposed approaches for solving the
DRPSC is the change in solution quality for different problem instances regarding the
relation between travel times and visit times of objects. One could investigate, which
approaches are specifically well suited for problem instances with rather long travel times
combined with very short visit times and vice versa.

As the feasibility check for a district is time-consuming a caching mechanism to prevent
checking the same assignment of objects to a district all over again seems promising.
This could even be extended to checking if such an assignment is a subset of a previously
evaluated assignment. Since by the nature of the DRPSC, a subset of objects always
has a feasible route if any superset of these objects results in a feasible route and for
a set of objects without a feasible route, any superset can immediately be considered
infeasible as well. An efficient way to prevent checking duplicate solutions multiple times
and subsequently convert them into new solutions was introduced by Raidl and Hu [42]
with solution archives. These trie-based complete solution archives have been used for
improving different algorithms and heuristics with great success [20, 19, 43, 6, 5] and a
similar approach could also benefit our proposed algorithm.

Using inter-route neighborhood structures which exchange objects of two or more dis-
tinct districts in large neighborhood search heuristics seems promising. Adaptive large
neighborhood search (ALNS) has already been successfully applied to many different
vehicle routing problems [37] and might yield good results for the DRPSC, by steering
the destroy and repair heuristics used by the ALNS towards reducing the number of
districts.

Finally, holding on to the hard time constraints introduced with the DRPSC might
often be counterproductive for real-world applications. Since small delays in the actual
execution of scheduled tours may occur from time to time anyways, softened time
constraints for object’s time windows, separation times and/or maximum working time
may result in solutions of practical relevance.
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