
Districting and Routing for Security Control?

Michael Prischink1,2, Christian Kloimüllner1, Benjamin Biesinger1, and
Günther R. Raidl1

1 Institute of Computer Graphics and Algorithms
TU Wien

Favoritenstraße 9–11/1861, 1040 Vienna, Austria
{kloimuellner|biesinger|raidl}@ac.tuwien.ac.at

2 Research Industrial Systems Engineering
Concorde Business Park F, 2320 Schwechat, Austria

michael.prischink@rise-world.com

Abstract. Regular security controls on a day by day basis are an essen-
tial and important mechanism to prevent theft and vandalism in busi-
ness buildings. Typically, security workers patrol through a set of objects
where each object requires a particular number of visits on all or some
days within a given planning horizon, and each of these visits has to be
performed in a specific time window. An important goal of the security
company is to partition all objects into a minimum number of disjoint
clusters such that for each cluster and each day of the planning horizon
a feasible route for performing all the requested visits exists. Each route
is limited by a maximum working time, must satisfy the visits’ time
window constraints, and any two visits of one object must be separated
by a minimum time difference. We call this problem the Districting and
Routing Problem for Security Control. In our heuristic approach we split
the problem into a districting part where objects have to be assigned to
districts and a routing part where feasible routes for each combination
of district and period have to be found. These parts cannot be solved
independently though. We propose an exact mixed integer linear pro-
gramming model and a routing construction heuristic in a greedy like
fashion with variable neighborhood descent for the routing part as well
as a districting construction heuristic and an iterative destroy & recre-
ate algorithm for the districting part. Computational results show that
the exact algorithm is only able to solve small routing instances and the
iterative destroy & recreate algorithm is able to reduce the number of
districts significantly from the starting solutions.

1 Introduction

As in the area of private security control constant surveillance of an object might
not be economically viable or even necessary, security firms face the problem of

? We want to thank Günter Kiechle and Fritz Payr from CAPLAS GmbH for the
collaboration on this topic. This work is supported by the Austrian Science Fund
(FWF) grant P24660-N23 and by the Austrian Research Promotion Agency (FFG)
under contract 849028.

sending security guards to visit a large number of sites multiple times over the
course of a day in order to fulfill their custodial duty.

Security companies have to schedule tours for their employees in order to
cover all needed visits of all objects under their guardianship. The complex-
ity of this task leaves a high potential for solving this problem by algorithmic
techniques to minimize the number of needed tours. Thus, we propose the Dis-
tricting and Routing Problem for Security Control (DRPSC) which consists of
a districting part and a routing part. In the districting part all objects should
be partitioned into a minimum number of disjoint districts, such that a single
district can be serviced by a single security guard within each working day of a
planning horizon. Given such a partitioning a routing problem has to be solved
for each combination of district and day. We seek for a tour starting and end-
ing at a central location which satisfies a maximum tour duration and the time
window constraints for each requested visit. In case multiple visits are required
at an object in the same period, there typically has to be a separation time
between consecutive visits to ensure a better distribution over time. To min-
imize the number of districts, it is important to minimize the duration of the
planned tours in order to incorporate as many objects into the resulting districts
as possible, which shows the inseparability of the districting and routing parts.

We address the routing part by an exact mixed integer linear programming
formulation (MIP) and a routing construction heuristic (RCH) with a subsequent
variable neighborhood descent (VND). For the districting part we propose an
iterative destroy & recreate (IDR) approach based on an initial solution identified
by a districting construction heuristic (DCH).

This article is structured as follows. In Section 2 a formal problem definition
of the DRPSC is given followed by a survey of related work in the literature in
Section 3. The proposed algorithms for solving the routing subproblem and the
districting problem are described in Sections 4 and 5, respectively. Computa-
tional results are shown and discussed in Section 6, before final conclusions are
drawn and an outlook for possible future work is given in Section 7.

2 Problem Definition

This section formalizes the DRPSC. We are given a set of objects I = {1, . . . , n}
and a starting location, which we call in relation to the usual terminology in
vehicle routing depot 0. There are p planning periods (days) P = {1, . . . , p},
and for each object i ∈ I a set of visits Si = {i1, . . . , i|Si|} is defined. Not all
visits, however, have to take place in each period. The visits requested in period
j ∈ P for object i ∈ I are given by subset Wi,j ⊆ Si.

For each visit ik ∈ Si, i ∈ I, k = 1, . . . , |Si|, we are given its duration tvisitik
≥ 0

and a time window Tik = [T e
ik
, T l
ik

], during which the whole visit has to take
place. The time windows of successive visits of an object may also overlap but
visit ik always has to take place before a visit ik′ with k, k′ ∈ Wi,j , k < k′ and
they must be separated by a minimum duration of tsep. The maximum duration
of each planned tour must not exceed a global maximum duration tmax.

Next, we define underlying graphs on which our proposed algorithms operate.
For each period j ∈ P we define a directed graph Gj = (V j , Aj) where V j refers
to the set of visits requested at corresponding objects, i.e., V j =

⋃
i∈IWi,j ,

and the arc set is: Aj = {(ik, i′k′) | ik ∈ Wi,j , i
′
k′ ∈ Wi′,j} \ {(ik, ik′) | ik, ik′ ∈

Wi,j , k
′ ≤ k}. We have arc weights associated with every arc in Aj which are

given by ttraveli,i′ , the duration of the fastest connection from object i to object
i′. We assume that the triangle inequality holds among these travel times. Let
us further define the special nodes 00 and 01 representing the start and end of
a tour and the augmented node set V̂ j = V j ∪ {00, 01}, ∀j ∈ P . Accordingly,
we add outgoing arcs from node 00 to all visits ik ∈ V j and arcs from all visits
ik ∈ V j to node 01, formally, Âj = Aj ∪{(00, ik) | ik ∈ V j}∪{(ik, 01) | ik ∈ V j}.
Consequently, we define the augmented graph Ĝj = (V̂ j , Âj).

The goal of the DRPSC is to assign all objects in I to a smallest possible set
of districts R = {1, . . . , δ}, i.e., to partition I into δ disjoint subsets Ir, r ∈ R,
with Ir ∩ Ir′ = ∅ for r, r′ ∈ R, r 6= r′ and

⋃
r∈R Ir = I, so that a feasible

tour τr,j exists for each district Ir, r ∈ R and each planning period j ∈ P . A
tour τr,j = (τr,j,0, τr,j,1, . . . , τr,j,lr,j , τr,j,lr,j+1) with τr,j,0 = 00, τr,j,lr,j+1 = 01,
lr,j =

∑
i∈Ir |Wi,j |, and τr,j,1, . . . , τr,j,lr,j ∈

⋃
i∈Ir Wi,j has to start at the depot

node 00, has to perform each visit ik ∈ Wi,j in the respective sequence for each
object i ∈ Ir exactly once, and finally has to return back to the depot, i.e., reach
node (01). A tour τr,j is feasible if each visit τr,j,u, u = 0, . . . , lr,j + 1 takes place
in its time window Tik , where waiting before a visit is allowed, the minimum
duration tsep between visits of the same object is fulfilled, and the total tour
duration does not exceed tmax.

Note that the routing part can be solved for a given district Ir and each
period j ∈ P independently and consists of finding a feasible tour τr,j .

3 Related Work

To the best of our knowledge there is no work covering all the aspects of the
DRPSC as considered here. The similarity of the DRPSC to the vehicle routing
problem with time windows (VRPTW), however, leads to a huge amount of re-
lated work. A majority of the approaches in the literature aim at minimizing the
total route length without taking the makespan into account [4, 6, 9, 11–13, 15,
16]. As the practical difficulty usually increases when makespan minimization is
considered, specialized algorithms have been developed for the traveling sales-
man problem with time windows (TSPTW) [3, 5], which is the specialization of
the VRPTW to just one tour. The routing part of the DRPSC is similar to the
TSPTW as the aim is to find a feasible tour of duration less than a prespeci-
fied value which is related to the minimization problem of the TSPTW. In the
TSPTW, however, multiple visits of the same objects and a separation time be-
tween them are not considered. Interestingly, López-Ibáñez et al. [7] showed that
by adapting two state-of-the-art metaheuristics for travel time minimization of
the TSPTW [6, 12] to makespan minimization it is possible to outperform the
specialized algorithms. Many of the proposed approaches focus on first minimiz-

ing the number of needed routes and only in a second step minimizing the travel
time or makespan, e.g., by using a hierarchical objective function [11, 13]. Nagata
and Bräysy [10] propose a route minimization heuristic which in particular tries
to minimize the number of routes needed to solve the VRPTW. They also rely on
a destroy-and-recreate heuristic which iteratively tries to delete one route while
maintaining an ejection pool (EP). The EP stores all objects which are yet to be
inserted. The algorithm tries to identify objects which are difficult to insert in
one of the current routes and utilizes this information for choosing objects to be
removed and re-inserted. As this approach produced excellent results we adopt
this basic idea of the destroy-and-recreate heuristic here.

Exact solution approaches for the VRPTW were proposed by Ascheuer et
al. [1] who developed a branch-and-cut algorithm using several valid inequalities
and were able to solve most instances with up to 50–70 nodes. Baldacci et al. [2]
introduce the ngL-tour relaxation. By using column generation as well as dy-
namic programming they are able to solve instances with up to 233 nodes to
optimality and report new optimal solutions that have not been found previ-
ously. A current state-of-the-art method for heuristically solving several variants
of the VRPTW is a hybrid genetic algorithm (GA) by Vidal et al. [16]. As many
other approaches described in the literature [11, 13] they use a penalty function
for handling infeasible routes, which is described in [11]. In the GA the initial
solutions are created randomly but there are also more elaborate construction
heuristics available: Solomon [15] proposes several algorithms for constructing
only feasible solutions by extending the well-known savings heuristic, a nearest
neighbor heuristic, and insertion heuristics using different criteria. Numerous
simple construction heuristics for the asymmetric TSPTW are also proposed by
Ascheuer et al. [1].

4 Routing Problem

An important factor when approaching the DRPSC is a practically efficient ap-
proach to the underlying routing problems. This part is embedded in the whole
approach for optimizing the districting as a subcomponent which is called when
the feasibility of a district needs to be checked. As already mentioned, this sub-
problem is similar to the well-known TSPTW which has been exhaustively stud-
ied in the literature. There is, however, one substantial and significant difference:
objects have to be visited several times per period and between every two visits
of the same object there has to be a specific separation time. Nevertheless, many
fruitful ideas of the literature can be adopted to our problem.

As a single routing problem is solved for each period j ∈ P and each district
r ∈ R independently, we are given one graph Gjr = (V jr , A

j
r). The node set is

defined as V jr = V j ∩
⋃
i∈Ir Wi,j and the arc set as Ajr = Aj \ {(ik, i′k′) | ik /∈

V jr ∨ i′k′ /∈ V jr }. Similarly, we define the augmented graph containing the tours’

start and end nodes 00 and 01 as Ĝjr = (V̂ jr , Â
j
r) where V̂ jr = V̂ j ∩

⋃
i∈Ir Wi,j

and Âjr = Âj \ {(ik, i′k′) | ik /∈ V̂ jr ∨ i′k′ /∈ V̂ jr }.

For computing the duration of a tour τ we first define the arrival and waiting
times for each visit of the tour. Moreover, let us define the auxiliary function
κ : V jr 7→ I which maps the visit ik ∈ V jr , to its corresponding object i ∈
Ir, and the auxiliary function γ : V jr 7→ N which maps visit ik ∈ V jr , to its
corresponding index in the set of visits for this particular object. For every visit
ik ∈ V jr , aik denotes the arrival time at the object, whereas a00 and a01 denote
the departure and arrival time for the depot nodes 00 and 01, respectively. Let
twait
τu = max(0, T eτu−max(aτu−1+tvisitτu−1

+ttravelκ(τu−1),κ(τu)
, aκ(τu)γ(τu)−1

+tvisitκ(τu)γ(τu)−1
+

tsep)) denote the waiting time before a visit τu can be fulfilled. We aim at finding
a feasible tour τ = (00, τ1, . . . , τl, 01), τ1, . . . , τl ∈ V jr , l = |V jr | through all visits
starting and ending at the depot such that the total tour duration T (τ) =
a01 − a00 does not exceed tmax.

4.1 Exact Mixed Integer Linear Programming Model

The following compact mixed integer programming (MIP) model operates on the
previously defined and reduced graph Gjr and is based on Miller-Tucker-Zemlin
(MTZ) [8] constraints. We use binary decision variables yik,i′k′ ∀(ik, i

′
k′) ∈ Ajr

which are set to 1 if the arc between the k-th visit of object i and the k′-th
visit of object i′ is used in the solution, and 0 otherwise. We model arrival times
by additional continuous variables aik ∀ik ∈ V jr and ensure by these variables
compliance with the time windows and the elimination of subtours. For each
district r ∈ R and each period j ∈ P we solve the following model:

min
∑

ik∈V
j
r

(t
wait
ik

+ t
visit
ik

) +
∑

(ik,i
′
k′

)∈Âjr

(yik,i′k′
· ttravelκ(ik),κ(i′

k′
)) (1)

s.t.
∑

(ik,i
′
k′

)∈Âjr

yik,i′k′
=

∑
(i′
k′
,ik)∈Âjr

yi′
k′
,ik

∀ik ∈ V jr (2)

∑
(00,ik)∈Âjr

y00,ik = 1 (3)

∑
(ik,01)∈Âjr

yik,01 = 1 (4)

aik − ai′
k′

+ t
max · (1− yi′

k′
,ik

) ≥ ttravelκ(i′
k′

),κ(ik) + t
visit
i′
k′

∀ik ∈ V̂ jr , (ik, i
′
k′) ∈ Â

j
r (5)

aik + t
travel
0,κ(ik) · (1− y00,ik) ≥ t

travel
0,κ(ik) ∀(00, ik) ∈ Âjr (6)

t
wait
ik

+ t
max · (1− yik,i′k′

) ≥ ai′
k′
− aik − t

travel
κ(ik),κ(i′

k′
) − t

visit
ik

∀ik ∈ V̂ jr , (ik, i
′
k′) ∈ Â

j
r (7)

aik−1
≤ aik − t

sep ∀ik, ik−1 ∈ V jr (8)∑
(ik,i

′
k′

)∈Âjr

yik,i′k′
= 1 ∀ik ∈ V jr (9)

T
e
ik
≤ aik ≤ T

l
ik
− tvisitik

∀ik ∈ V jr (10)

yik,i′k′
∈ {0, 1} ∀(ik, i′k′) ∈ Â

j
r (11)

The objective function (1) minimizes the total makespan within which all object
visits take place by summing up all visit times, travel times, and waiting times.

Equalities (2) ensure that the number of ingoing arcs is equal to the number of
outgoing arcs for each node ik ∈ V jr . Equalities (3) and (4) ensure that there
must be exactly one ingoing and outgoing arc for the depot in each period j ∈ P .
Inequalities (5) are used to recursively compute the arrival times for every visit. If
an edge (ik, i

′
k′) is not used, then the constraint is deactivated. These inequalities

can be individually lifted by using (T l
i′
k′
− tvisiti′

k′
) + (ttravelκ(i′

k′),κ(ik)
+ tvisiti′

k′
) instead

of ttmax, which is also done in our implementation. Inequalities (6) set the start
time at the depot for each period. Inequalities (7) compute the waiting time at
the k-th visit of object i before traveling to the k′-th visit of object i′. We need
these waiting times twait

ik
∀ik ∈ V jr for the objective function to minimize the

makespan of the route. These inequalities can also be lifted by replacing tmax

with the term (T li′
k′
− tvisiti′

k′
) − T lik − ttravelκ(ik),κ(i′k′)

− tvisitik
. Inequalities (8) model

the minimum time required between two different visits of the same object, i.e.,
ensure the separation time tsep. Inequalities (9) state that there must exist an
ingoing and an outgoing arc for the k-th visit of object i, if this particular visit is
requested in the considered period j ∈ P . It is ensured that every time window
of every visit ik ∈ V jr is fulfilled in (10). In (11) the domain definitions for the
binary edge-decision variables yik,i′k′ are given.

In the context of the districting problem we use this model only for checking
feasibility which can usually be done faster than solving the optimization prob-
lem to optimality. To this end we replace the objective function by min{0} and
add the following constraints for limiting the makespan to tmax:∑

ik∈V
j
r

(t
wait
ik

+ t
visit
ik

) +
∑

(ik,i
′
k′

)∈Âjr

(yik,i′k′
· ttravelκ(ik),κ(i′

k′
)) ≤ t

max
(12)

4.2 Heuristics

For larger districts the exact feasibility check using the MIP model might be too
slow, hence we also propose a faster greedy construction heuristic followed by a
variable neighborhood descent.

Given a sequence of visits τ , we first determine if a tour can be scheduled such
that the time window constraints of all visits are satisfied. For this purpose, we
compute the earliest possible arrival time aik for each visit and minimize waiting
times.

Feasibility of a tour: Since the (intermediate) tour τ starts at the depot
at the earliest possible time, the departure at the depot a00 is set to 0. For
each subsequent visit τu, the arrival time aτu is the maximum of T eτu and the
arrival time at the preceding visit aτu−1

including visit time tvisitτu−1
and travel

time ttravelκ(τu−1),κ(τu)
from the preceding visit’s object κ(τu−1) to the current visit’s

object κ(τu). The depot has no requested visit times, therefore we define tvisit00 =
tvisit01 = 0. Furthermore, for each object i the separation time tsep between visit
ik and ik−1 for all k > 1 has to be respected. Formally:

a00 = 0

aτu =


max{T eτu , aτu−1

+ tvisitτu−1
+ ttravelκ(τu−1),κ(τu)}

for u > 1, γ(τu) = 1

max{T eτu , aτu−1
+ tvisitτu−1

+ ttravelκ(τu−1),κ(τu), aκ(τu)γ(τu)−1
+ tvisitκ(τu)γ(τu)−1

+ tsep}

for u > 1, γ(τu) > 1

a01 = aτl + t
visit
τl

+ t
travel
κ(τl),0

If for any arrival time aik with ik ∈ V jr the following condition is violated,
the sequence of visits is infeasible:

aik + t
visit
ik
≤ T l

ik
(13)

The resulting tour duration T (τ) = a01 − a00 can be minimized while keeping
τ feasible by delaying the departure at the depot by the so called forward time
slack proposed by Savelsbergh [14] for the TSPTW. The forward time slack
F (τu, τu′) for the partial tour τ ′ = τu, . . . , τu′ adapted to our problem is

F
′
(τu, τu′) =



T lτu − t
visit
τu
− aτu for u = u′

F ′(τu, τu′−1)− T
l
τ
u′−1

+ T lτ
u′
− tvisitτ

u′
− ttravelκ(τ

u′−1
),κ(τ

u′)
for u′ > 1, γ(τu′) = 1

min{F ′(τu, τu′−1)− T
l
τ
u′−1

+ T lτ
u′
− tvisitτ

u′
− ttravelκ(τ

u′−1
),κ(τ

u′)
,

F ′(τu, τκ(τ
u′)γ(τu′)−1

)− T lτκ(τ
u′)γ(τu′)−1

+ T l
u′ − t

visit
τ
u′
− tsep}

for u′ > 1, γ(τu′) > 1

F (τu, τu′) = min
v=u,...,u′

{F ′(τu, τv)} (14)

The tour duration of tour τ must not exceed tmax. Formally, if

T (τ)−min(F (00, 01),

l∑
u=1

t
wait
τu

) < t
max

(15)

holds, the sequence τ is feasible, otherwise infeasible.

Routing Construction Heuristic: We developed a Routing Construction
Heuristic (RCH) based on an insertion heuristic by starting from a partial tour
τ ′ = (00, 01) containing only the start and end nodes and iteratively adding all
visits ik ∈ V jr to τ ′. A 2-step approach is used, where we first order the visits ac-
cording to some criteria and then insert them at the first feasible or best possible
insert position, respectively. For the insertion order we compute the flexibility
value of each visit ik ∈ V jr where visits with less flexibility are inserted first:

flex(ik) = T
l
ik
− T eik − t

visit
ik

(16)

flex(i
(1)
k) ≤ flex(i

(2)
k) ≤ · · · ≤ flex(i

(|V j
r |)

k) (17)

Visits with less flexibility may be more difficult to insert as they need to be
scheduled at a very specific time. Ties are broken randomly.

In a second phase we start by trying to insert the first visit, i.e., i
(1)
k , into

the partial tour τ ′. We start at the front, i.e., try to insert it after the start node
00, and move backwards to the end. Then, we either stop when we found the
first feasible insert position in the first feasible variant or we compute insertion
costs for each possible insert position and insert the visit at the position with
the minimum costs for the best possible insertion variant. We define these costs
as:

dik,u′
=

{
aτ
u′

+ tvisitτ
u′

+ ttravelκ(τ
u′),κ(τu) − aτu if (19) and (20) hold

∞ otherwise
(18)

These insertion costs dik,u′ determine the amount of time by which the visit
τu has to be moved backwards in order to insert the new visit τu′ . Note that
dik,u′ may also be negative, if the space for insertion of visit τu′ is bigger than
necessary. However, this is desirable as we use those insert positions more likely
which have bigger gaps and smaller gaps are kept for later inserts. In Section 6
we compare both, the first feasible and the best possible variant, to each other
in terms of solution quality and runtime.

We further maintain global variables for the forward time slack F (τ ′) and
all arrival times aτu of each partial tour τ ′ computed during the execution of
the insertion heuristic. For an insertion to be feasible, the latest allowed arrival
time at visit τu′ must be greater or equal to the earliest possible arrival at that
visit considering the previous visit’s earliest arrival, its visit time and the travel
time between τu−1 and τu′ . Furthermore, the earliest departure at τu′ including
the travel time between τu′ and τu must be smaller or equal to the earliest
arrival at τu delayed by the forward time slack of the partial tour from τu to
the depot. Using the definition of the forward time slack in equality (14) and
if inequality (13) holds, then the insertion is feasible if, in addition, also the
following two inequalities hold:

T
l
τ
u′
− tvisitτ

u′
≥ max{aτu−1

+ t
visit
τu−1

+ t
travel
κ(τu−1),κ(τ

u′)
, aκ(τu)γ(τu)−1

+ t
visit
κ(τu)γ(τu)−1

+ t
sep} (19)

aτ
u′

+ t
visit
τ
u′

+ t
travel
κ(τ

u′),κ(τu) ≤ aτu + F (τu, 01) (20)

Local improvement: If the solution found by the RCH is infeasible we ad-
ditionally employ a VND to reduce the number of infeasibilities and possibly
come to a feasible solution. First, we insert each infeasible visit ik into the tour
on the position u′ where the costs dik,u′ are minimum. We use a lexicographi-
cal penalty function to penalize infeasible tours where the first criterion is the
number of time window violations and the second criterion is the duration of
the route as proposed by López-Ibáñez et al. [6]. We use three common neigh-
borhood structures from the literature and search them in a best improvement
fashion in random order while respecting the visit order:

Swap: This neighborhood considers all exchanges between two distinct visits.

Algorithm 1 Districting Construction Heuristic
1: init: R← {1}, U ← sort(I)
2: for all i ∈ U do
3: inserted ← false
4: for all r ∈ R do
5: if insert(i, r) then
6: inserted ← true
7: break
8: end if
9: end for

10: if not inserted then
11: r′ ← create |R|+ 1-th new empty district
12: R← R ∪ {r′}
13: insert(i, r′)
14: end if
15: end for

2-opt: This is the classical 2-opt neighborhood for the traveling salesman prob-
lem where all edge exchanges are checked for improvement.

Or-opt: This neighborhood considers all solutions in which sequences of up to
three consecutive visits are moved to another place in the same route.

If at some point during the algorithm the value of the penalty function is zero
we terminate with a feasible solution.

5 Districting Problem

In the previous section we have already introduced a fast heuristic for efficiently
testing feasibility of a given set of objects by building a single tour for each
period through all requested visits of these objects. In the districting part of
the DRPSC we face the problem of intelligently assigning objects to districts
such that the number of districts is minimized. For checking the feasibility of
this assignment we use the previously introduced RCH. Alternatively, we could
also use our MIP model for solving these subproblems but, as we will see in
Section 6, it is too slow to be used in practical scenarios. We propose a DCH
and an iterative destroy & recreate algorithm where the former generates an
initial solution and the latter tries to iteratively remove districts.

5.1 Districting Construction Heuristic

Starting with one district, objects are iteratively added to the existing districts
r ∈ R. Whenever adding an object i ∈ U to any of the available districts r ∈ R
would make the assignment infeasible, i ∈ U is added to a newly created district
r′. The overall DCH is shown in Algorithm 1 and explained below.

First, the set of districts R is initialized with the first empty district 1 and
the set of objects I is sorted by extending the flexibility values as defined in
equation (16) from visits to objects. All objects are sorted by the sum of their
flexibility values

∑
j∈P

∑
ik∈Wi,j

flex (ik) in ascending order. As in the RCH, the
resulting set U is denoted as the set of unscheduled visits. The DCH terminates
when all i ∈ U have been scheduled (2) and, as a consequence, all requested

visits have been inserted successfully and we obtain a feasible solution to the
DRPSC. The insertion of object i into district r (lines 5 and 13) is accomplished
by checking for each scheduled visit ik ∈ Wi,j if ik can be feasibly inserted
into the particular district r (for the definition of feasibility of a tour see also
Section 4.2). In line 5 the DCH inserts i either into the first feasible or into the
best possible insert position, as described in Section 4.2. The insert function
returns false, if no feasible insertion position is found for at least one ik ∈Wi,j ,
∀j ∈ P . It returns true, if a feasible insertion position is found for each visit
ik ∈ Wi,j , ∀j ∈ P . If the loop over all districts (line 4) terminates without
finding any feasible insertion position the variable inserted stays false and a new
empty district is created in line 11. The proposed constructive algorithm will
terminate with a feasible solution after |U | iterations.

5.2 Iterative Destroy & Recreate

Nagata and Bräysy [10] proposed a route elimination algorithm for reducing
the number of vehicles needed in the VRPTW. We apply the basic idea to
the districting problem. The algorithm starts with the initial assignment where
every object is reached by a separate route. Then, one district r ∈ R is chosen for
elimination at a time, maintaining all now unassigned objects in an ejection pool
(EP). Then, it is tried to assign all objects of the EP to the remaining districts
R\{r}. If this is successful, the number of districts could be reduced by one and
another district is chosen for elimination. We adapt this idea to the DRPSC and
use the result of the DCH described in Section 5.1 as initial solution.

Let the assignment of an object i ∈ I to a district r ∈ R be feasible if and
only if a feasible tour can be scheduled for all assigned visits of all objects for
each period. Let ci be a penalty value of object i ∈ I denoting failed attempts
of inserting object i into a district. Each time a visit cannot be inserted, this
penalty value is increased by one, revealing objects which are difficult to assign
to one of the available districts.

If the EP becomes empty, a feasible assignment of objects to districts is found.
Subsequently, another iteration is started, destroying a district and reassigning
its objects to the remaining ones. The overall district elimination algorithm is
shown in Algorithm 2.

First, the EP is initialized to the empty set and the penalty values of all
objects are set to 0. Starting with the solution provided by DCH a district
is chosen for elimination in line 2. One of the following strategies is applied
uniformly at random for selecting a district for elimination:

Minimum number of scheduled visits: This implies that only a minimum
number of visits has to be reinserted to regain a feasible solution.

Shortest tour duration: Selecting a district where the maximum tour dura-
tion over all periods is minimal can be promising because this district might
lead to a district with visits of shorter durations resulting in easier insert
operations.

Maximum waiting times: Selecting a district with a loose schedule may in-
dicate less or shorter visits, making them easier to reinsert.

Algorithm 2 District elimination algorithm
1: init: EP ← ∅, ci ← 0 ∀i ∈ I
2: choose a district rdel ∈ R for deletion
3: R← R \ {rdel}
4: EP ← EP ∪ {i | i ∈ I

rdel}
5: while EP 6= ∅ ∧ termination criterion not met do
6: iins ← argmaxi∈EP {ci}
7: Rf ← feasible districts for assignment of iins

8: ciins ← ciins + |R| − |Rf |
9: if Rf 6= ∅ then

10: assign object iins to a randomly chosen feasible district r ∈ Rf
11: else
12: select random district rins ∈ R
13: assign object iins to district rins

14: call VND for district rins (see Section 4.2)

15: while ∃ an infeasible tour for any period of district rins do
16: idel ← argmini∈I

rins
{ci}

17: Irins ← Irins \ {idel}
18: EP ← EP ∪ {idel}
19: call VND for district rins (see Section 4.2)
20: end while
21: end if
22: end while

After deleting a district all objects of this district are moved to the EP (line 4).
As long as the EP contains objects, we try to assign each object to one of the
remaining districts. An object with maximum penalty value is chosen for the next
assignment (6). For the chosen object iins the feasible districts for assignment
are computed. If there is at least one feasible district for an assignment of object
iins (9) we assign the object to such a district uniformly at random (10). If it is
not possible to feasibly assign the object iins to any of the remaining districts
we randomly choose a district for assignment (11). Then, we apply the VND
described in Section 4.2 trying to make the district feasible. If this is not possible
and the assignment is still infeasible we iteratively try to remove objects with
lowest penalty values from this district rins in the following loop (15), remove
them from district rins (17), and finally add them to the EP (18). Then again,
we call the VND from Section 4.2 trying to make the resulting tour from the
actual assignment feasible. After an iteration of the outer loop the object with
highest penalty value of the EP has been inserted and other objects previously
assigned to this district may have been added to the EP . The idea behind this
approach is to insert difficult objects first and temporarily remove easy to insert
objects from the solution to reinsert them later. When the EP is empty, a new
best assignment with one district less is found. This algorithm iterates until a
termination criterion, e.g., a time limit is met.

6 Computational Results

To evaluate our proposed algorithm computational tests are performed on a
benchmark set of instances. As the DRPSC is a new problem we created new
instances3 based on the characteristics of real-world data provided by an indus-

3 https://www.ac.tuwien.ac.at/files/resources/instances/drpsc/hm16.tar.gz

try partner. The main characteristics of real-world data are: Most of the time
windows are of medium size, the depot is centralized among the objects, travel
times are rather small with respect to visit times and the number of visits of
the objects is usually ranged from 1 to 4. The distance matrix is taken from
TSPlib instances and we added the depot, the visits and the time windows in
the following way: The depot is selected by taking the node for which the total
distance to all other nodes is a minimum. Each node of the original instance
has between 1 and v visits, where v is a parameter of the instance. Small time
windows have a length between 5 and 30 minutes, medium time windows have a
length of 2, 3, 4, or 5 hours, and visits with large time windows are unrestricted.
For the instance generation the length of a time window is assigned randomly to
a visit based on parameter values α and β: a small time window is chosen with
probability α, a medium time window with probability β, and a large time win-
dow with probability 1−α−β. Furthermore, we enforce that small and medium
time windows of visits of the same object do not overlap and we choose the visit
time uniformly at random from 3 to 20 minutes. For all our instances we set tsep

to 60 minutes and tmax to 10 hours.
The algorithm is implemented in C++ using Gurobi 6.5 for solving the MIP.

For each combination of configuration and instance we performed 20 independent
runs for the IDR while for the routing part we performed only one run because all
tested algorithms for the routing part are deterministic. All runs were executed
on a single core of an Intel Xeon processor with 2.54 GHz. The iterative destroy
& recreate algorithm is terminated after a maximum of 900 CPU seconds. The
MIP model for the routing part was aborted after 3600 CPU seconds.

In the first set of experiments the routing part of the DRPSC is examined
more closely to evaluate RCH in comparison to the MIP model. Then, several
configurations of our proposed algorithm for the whole problem are investigated.

6.1 Routing Part

First, the methods for the routing part are evaluated on a separate set of bench-
mark instances. In Table 1 the MIP model is compared to RCH, and RCH
with the subsequent VND, denoted by RCH-VND. As the goal for the routing
part is to minimize the makespan of a specific route, the maximum tour du-
ration constraint is relaxed and the resulting makespan is given in minutes in
the column obj . In the first four columns the instance parameters are spec-
ified. Sequentially, the instance name, the number of objects |I|, the maxi-
mum number of nodes of all objects |V |, the percentage of small (α), and
medium time windows (β) and the maximum number of visits per objects v
is given. For the RCH and RCH-VND we give the objective value (makespan
in minutes) and the time needed for solving the instance. Then, the upper
bound (UB), the lower bound (LB), the final optimality gap, and the time
spent by Gurobi for solving the MIP model is shown. In the two remaining
columns we present the relative gap between the MIP and RCH-VND ∆MIP =
(objRCH-VND − LB)/objRCH-VND as well as the relative gap between RCH and
RCH-VND ∆RCH = (objRCH − objRCH-VND)/objRCH-VND.

Table 1. Results of the MIP, RCH, and RCH-VND for the routing part.

Instance RCH RCH-VND MIP Rel. Difference

name |I| |V | α β v obj t[s] obj t[s] UB LB Gap t[s] ∆MIP ∆RCH

burma14 01 13 19 0 0.2 2 495.80 < 0.01 333.49 0.03 332.62 332.62 0.00% 2025.56 0.26% 48.67%
burma14 02 13 20 0 0.2 2 624.47 < 0.01 374.60 0.02 352.93 343.50 2.67% 3600.00 8.30% 66.70%
burma14 03 13 21 0 0.2 2 525.49 0.01 440.86 0.05 433.42 421.91 2.66% 3600.00 4.30% 19.20%
burma14 04 13 19 0 0.2 2 607.11 < 0.01 397.14 0.03 395.15 387.89 1.84% 3600.00 2.33% 52.87%
burma14 05 13 22 0 0.2 2 606.07 < 0.01 409.24 0.03 356.71 337.43 5.40% 3600.00 17.55% 48.10%
burma14 06 13 19 0 0.2 2 409.54 < 0.01 273.28 0.01 272.93 272.93 0.00% 2318.17 0.13% 49.86%
burma14 07 13 23 0 0.5 2 714.04 < 0.01 508.69 0.05 493.48 456.82 7.43% 3600.00 10.20% 40.37%
burma14 08 13 17 0 0.5 2 372.63 < 0.01 312.70 0.02 311.10 311.10 0.00% 2.09 0.51% 19.16%
burma14 09 13 21 0 0.5 2 416.55 < 0.01 370.61 0.04 360.71 360.71 0.00% 3.35 2.67% 12.40%
burma14 10 13 20 0 0.5 2 386.02 < 0.01 342.00 0.02 336.25 336.25 0.00% 10.74 1.68% 12.87%

In Table 1 we see that the MIP model is able to solve easier instances to
optimality, but soon has very high running times. RCH-VND yields very reason-
able solutions with objective values close to the LB of the MIP for most cases.
When looking at the relative gap between the RCH and RCH-VND (∆RCH),
we can conclude that the VND improves greatly on the objective value with
only a minor increase in running time. Moreover, ∆MIP reveals that RCH-VND
produces results close to the results of the MIP, and for those instances where
the relative gap between the MIP and RCH-VND is greater than 10%, the MIP
also has a relatively larger gap between UB and LB.

As we require a fast method for deciding if a route is feasible within the
districting problem, we conclude that RCH-VND is a reasonable choice.

6.2 Districting Part

For testing the proposed algorithms for the DRPSC we used three different
configurations. In the IDR-DCHf algorithm we used the DCH for generating an
initial feasible solution candidate with the first feasible strategy in contrast to
the IDR-DCHb where we used a best possible strategy. Both configurations are
compared with the IDR-SCH, where a simple construction heuristic (SCH) as
proposed by Nagata and Bräysy [11] is used. In the SCH each object is put in a
separate district which results in a trivial initial solution candidate.

In Table 2 the results of the experiments are shown. Columns obj show the
average objective value, i.e., the minimum number of districts at the end of
optimization, after the full run of IDR while columns obj f and obj b show the
average objective value, i.e., the average number of districts, after the respective
construction heuristic. Columns t∗ show the median time in seconds after which
the best solution has been found during the run of IDR while tf and obj b show
the median time after which the respective construction heuristic has found an
initial solution. Columns sd show the standard deviation of the objective value
for 20 runs of a single instance.

We observe that for most instances the final objective value of the IDR is
the same for all three configurations. There are, however, differences for the
construction heuristics alone and DCHb for most but not all instances better

Table 2. Results of the DCH and IDR for the districting part.

Instance IDR-SCH IDR-DCHf IDR-DCHb

name runs |I| |V | α β v obj sd t∗[s] objf tf [s] obj sd t∗[s] objb tb obj sd t∗[s]

st70 1 20 69 105 0.1 0.7 2 3.0 0.0 11 6 < 0.1 3.0 0.0 5 5 0.1 3.0 0.0 9
st70 2 20 69 91 0.1 0.7 2 3.0 0.0 4 6 < 0.1 3.0 0.0 6 5 0.1 3.0 0.0 6
st70 3 20 69 106 0.1 0.7 2 3.0 0.0 11 6 < 0.1 3.0 0.0 13 5 0.1 3.0 0.0 11

rd100 1 20 99 152 0.1 0.5 2 6.0 0.0 8 9 < 0.1 6.0 0.0 10 9 0.1 6.0 0.0 14
rd100 2 20 99 160 0.1 0.5 2 6.0 0.0 16 8 0.1 6.0 0.0 14 8 0.1 6.0 0.0 6
rd100 3 20 99 152 0.1 0.5 2 6.0 0.0 3 7 0.1 6.0 0.0 2 8 0.1 6.0 0.0 7

tsp225 1 20 224 334 0.2 0.7 2 11.0 0.0 47 13 0.2 11.0 0.0 64 13 0.4 11.0 0.0 121
tsp225 2 20 224 341 0.2 0.7 2 11.0 0.0 46 13 0.3 11.0 0.0 67 13 0.5 11.0 0.0 36
tsp225 3 20 224 332 0.2 0.7 2 10.0 0.0 226 12 0.3 10.0 0.0 257 12 0.5 10.0 0.0 177

gr48 1 20 47 120 0.2 0.7 4 5.0 0.0 6 8 < 0.1 5.0 0.0 4 7 < 0.1 5.0 0.0 14
gr48 2 20 47 115 0.2 0.7 4 5.0 0.0 12 7 < 0.1 5.0 0.0 7 7 < 0.1 5.0 0.0 10
gr48 3 20 47 125 0.2 0.7 4 4.0 0.0 527 7 < 0.1 4.0 0.0 438 6 < 0.1 4.0 0.0 488

berlin52 1 20 51 133 0.0 0.7 4 5.0 0.0 3 6 < 0.1 5.0 0.0 2 7 0.1 5.0 0.0 7
berlin52 2 20 51 130 0.0 0.7 4 5.0 0.0 5 7 < 0.1 4.0 0.0 142 6 0.1 5.0 0.0 1
berlin52 3 20 51 140 0.0 0.7 4 5.0 0.0 19 7 < 0.1 5.0 0.0 14 6 0.1 5.0 0.0 16

ft70 1 20 69 167 0.1 0.5 4 8.0 0.0 12 12 < 0.1 8.0 0.0 12 10 0.1 8.0 0.0 18
ft70 2 20 69 180 0.1 0.5 4 8.0 0.0 33 11 < 0.1 8.0 0.0 15 11 0.1 8.0 0.0 18
ft70 3 20 69 144 0.1 0.5 4 7.0 0.0 41 9 < 0.1 7.0 0.0 36 9 0.1 7.0 0.0 19

ch150 1 20 149 360 0.2 0.5 4 11.0 0.0 589 15 0.2 11.0 0.0 480 15 0.4 11.2 0.4 881
ch150 2 20 149 402 0.2 0.5 4 12.0 0.0 342 17 0.2 12.0 0.0 338 15 0.4 12.0 0.0 387
ch150 3 20 149 357 0.2 0.5 4 11.0 0.0 655 14 0.2 11.0 0.0 520 13 0.4 11.0 0.0 808

results but needed more time. The IDR-SCH works surprisingly well and was
able to find good results in about the same amount of time as the other two
(more sophisticated) configurations.

7 Conclusions and Future Work

In this work we introduced a new vehicle routing problem which originates from
the security control sector. The goal of the Districting and Routing Problem
for Security Control is to partition a set of objects under surveillance into dis-
joint clusters such that for each period a route through all requested visits can
be scheduled satisfying complex time window constraints. As the objects may
require multiple visits, there needs to be a minimum separation time between
each two visits which imposes an interesting additional challenge. The proposed
heuristic solution approach starts with a greedy construction heuristic followed
by an iterate destroy and recreate algorithm. The latter works by iteratively de-
stroying districts and trying to insert the resulting unassigned objects into the
other districts. The computational results reveal that the MIP model is able to
solve smaller instances of the routing problem to optimality and that the quality
of the initial solutions of the districting problem has only a minor influence on
the final solution quality. There are several possibilities for extending this algo-
rithm in future work. As the feasibility check for a district is time-consuming
a caching mechanism to prevent checking the same assignment of objects all
over again seems promising. This could even be extended to checking subsets of
such assignments, which also must be feasible if any superset of these objects

results in feasible routes. Another idea is to use neighborhood structures which
exchange objects of two or more distinct clusters.

References

1. Ascheuer, N., Fischetti, M., Grötschel, M.: Solving the asymmetric travelling sales-
man problem with time windows by branch-and-cut. Mathematical Programming
90(3), 475–506 (2001)

2. Baldacci, R., Mingozzi, A., Roberti, R.: New state-space relaxations for solving the
traveling salesman problem with time windows. INFORMS Journal on Computing
24(3), 356–371 (2012)

3. Cheng, C.B., Mao, C.P.: A modified ant colony system for solving the travel-
ling salesman problem with time windows. Mathematical and Computer Modelling
46(9), 1225–1235 (2007)

4. Da Silva, R.F., Urrutia, S.: A general VNS heuristic for the traveling salesman
problem with time windows. Discrete Optimization 7(4), 203–211 (2010)

5. Gambardella, L.M., Taillard, E., Agazzi, G.: MACS-VRPTW: A multiple ant
colony system for vehicle routing problems with time windows. In: Corne, D.,
Dorigo, M., Glover, F., Dasgupta, D., Moscato, P., Poli, R., Price, K.V. (eds.)
New Ideas in Optimization, chap. 5, pp. 63–76. McGraw-Hill Ltd., UK, Maiden-
head, UK, England (1999)

6. López-Ibáñez, M., Blum, C.: Beam-ACO for the travelling salesman problem with
time windows. Computers & Operations Research 37(9), 1570–1583 (2010)

7. López-Ibáñez, M., Blum, C., Ohlmann, J.W., Thomas, B.W.: The travelling
salesman problem with time windows: Adapting algorithms from travel-time to
makespan optimization. Applied Soft Computing 13(9), 3806–3815 (2013)

8. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of
traveling salesman problems. Journal of the ACM 7(4), 326–329 (1960)

9. Mladenović, N., Todosijević, R., Urošević, D.: An efficient GVNS for solving trav-
eling salesman problem with time windows. Electronic Notes in Discrete Mathe-
matics 39, 83–90 (2012)

10. Nagata, Y., Bräysy, O.: A powerful route minimization heuristic for the vehicle
routing problem with time windows. Operations Research Letters 37(5), 333–338
(2009)

11. Nagata, Y., Bräysy, O., Dullaert, W.: A penalty-based edge assembly memetic
algorithm for the vehicle routing problem with time windows. Computers & Op-
erations Research 37(4), 724–737 (2010)

12. Ohlmann, J.W., Thomas, B.W.: A compressed-annealing heuristic for the traveling
salesman problem with time windows. INFORMS Journal on Computing 19(1),
80–90 (2007)

13. Prescott-Gagnon, E., Desaulniers, G., Rousseau, L.M.: A branch-and-price-based
large neighborhood search algorithm for the vehicle routing problem with time
windows. Networks 54(4), 190–204 (2009)

14. Savelsbergh, M.W.P.: The vehicle routing problem with time windows: Minimizing
route duration. ORSA Journal on Computing 4(2), 146–154 (1992)

15. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations Research 35(2), 254–265 (1987)

16. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A hybrid genetic algorithm with
adaptive diversity management for a large class of vehicle routing problems with
time-windows. Computers & Operations Research 40(1), 475–489 (2013)

