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Abstract

In this thesis, I present several different methods for solving the Car Sequencing Problem.
The process of scheduling vehicles along a production line has to take several constraints
into account which are defined by the body shop, the paint shop and the assembly shop.
I attached importance especially to the paint shop constraints, because no violations are
allowed here. Beside the enhancement of an Integer Linear Program (ILP), I developed
an alternative formulation. I give a review about the Variable Neighbourhood Search
(VNS) and combine this metaheuristic with the exact methods to achieve good heuristic
results in relatively short time. In addition, a newly developed heuristic using exact
methods is presented which is also used as starting heuristic for VNS. I compare the
results obtained by my algorithms with results published in the literature using two sets
of benchmarks. One set is taken from the CSPlib, an publicly available set of problems.
ROADEF and the car manufacturer Renault published the other set of instances for the
ROADEF Challenge 2005. In contrast to the CSPlib instances, the ROADEF instances
include constraints defined by the paint shop. In some cases, I was able to half the
computation time for the CSPlib instances using exact methods. For the instances
defined by ROADEF some new best solutions were obtained.

Zusammenfassung

In dieser Diplomarbeit präsentiere ich einige verschiedene Methoden um das Car Se-
quencing Problem zu lösen. Die Reihung der Fahrzeuge für die Produktion muss ver-
schiedenste Bedingungen erfüllen, die von der Karosseriefertigung, der Lackierstation
und dem Fließband vorgegeben werden. Besonderes Augenmerk lege ich auf die Be-
dingungen der Lackierstation, da hier keine Verletzungen auftreten dürfen. Zusätzlich
zur Verbesserung eines ganzahligen linearen Programms (ILP), das in [10] vorgestellt
wurde, entwickle ich einen neuen Ansatz. Es wird ein Überblick über variable Nacht-
barschaftsuche (VNS) gegeben, die dann, um gute Lösungen zu erhalten, mit den ex-
akten Ansätzen kombiniert wird. Weiters wird eine neue Heuristik, die exakte Meth-
oden mitverwendet, vorgestellt, die auch als Startheuristik für VNS verwendet wird.
Die Ergebnisse, die meine Algorithmen liefern, werden mit Resultaten aus der Liter-
atur mit Hilfe von zwei verschiedenen Instanzbibliotheken verglichen. Die eine Gruppe
von Instanzen wird von der CSPlib – eine öffentliche Sammlung von Benchmarks– zur
Verfügung gestellt. ROADEF und der Autohersteller Renault stellten die andere In-
stanzsammlung für die ROADEF Challenge 2005 zur Verfügung. Im Gegensatz zu den
Instanzen der CSPlib verfügen die Instanzen von ROADEF über Bedingungen, die von
der Lackierstation definiert werden. In einigen Fällen konnte ich die benötigte Rechen-
zeit zum Lösen der CSPlib-Instanzen mit exakten Methoden halbieren, sowie neue,
bessere Lösungen zu manchen ROADEF-Instanzen präsentieren.
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1 Introduction

The production of cars involves several steps that are performed in sequence. Although
the vehicles are similar to each other, each car has particular components installed
which are assembled by different working bays. The workload for these stations has to
be smoothed. As shown in [10], this problem is known to be NP-hard. This means that
there exists no polynomial deterministic algorithm at present, which leads to a proveable
optimal solution for this so called Car Sequencing Problem.

In 2003, the French Operations Research society ROADEF pronounced a challenge with
the Car Sequencing Problem as subject. The contest is called ROADEF Challenge 2005,
since the evaluation procedure ended in February 2005.

Bin Hu, who participated in this challenge, proposed an exact approach for solving the
Car Sequencing Problem using integer linear programming methods inter alia in his
master’s thesis [10]. I enhanced his Integer Linear Program.

In addition to this enhancement, I present heuristics for solving the Car Sequencing
Problem. One combines the well known metaheuristic Variable Neighbourhood Search
with newly developed exact algorithms. The other divides the problem into two sub-
problems which are solved using exact methods.

Thesis overview

In the next chapter, I will give a detailed description of the Car Sequencing Problem
including a real world problem and its reduction for partly academic development of
different algorithms. Further, a formal description and some suggestions for evaluating
the objective function are presented. Chapter 3 describes different strategies for solving
the Car Sequencing Problem and other related topics, which can be found in literature.

In chapter 4, I discuss two different Integer Linear Programming formulations. I also
prove that these two formulations describe the same polyhedron of integer feasible so-
lutions. Afterwards, in chapters 5 and 6, I present the Variable Neighbourhoods Search
and its combination with the exact methods described in chapter 4. Furthermore, a new
heuristic for solving the Car Sequencing Problem is discussed.

The two last chapters present test results with various instances and describe some new
methods which might be promising.
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2 The Car Sequencing Problem

This section describes the Car Sequencing Problem. First the real world problem is
presented, then the problem is reduced to a formulation which can also be found in the
literature. Differences between this description and the description defined by ROADEF
Challenge 2005, which I used for this thesis, will be highlighted. At the end of the chapter
a formal description of the problem is given.

2.1 Real world problem

During my visit at the company MAN AG, Vienna and Steyr, Austria, I was introduced
to the task of scheduling a set of trucks with (slightly) different configurations along a
production line so that the workload for the workers is smoothed. This is due to the fact
that workers with too much load get tired and make mistakes whereas underemployed
workers unneccessarily raise costs.

For the Car Sequencing Problem a sequence is searched which takes the constraints
defined by the working bays into account. In addition, the number of colour changes
within this sequence has to be minimised.

Body Shop Paint Shop
Assembly

Shop

Figure 2.1: Stages along the production line

The production line itself consists of three stages: the body shop, the paint shop and
the assembly shop (see figure 2.1 and [8, 13]). Each of these stages has its own set of
constraints which have to be met when arranging the cars along the production line.
Because various working bays along the production line install different components and
options, the assembly shop and the body shop define similar constraints. While the
body shop produces different chassis, e.g. with three, four or five doors, the assembly
shop installs components like air conditions or different gear boxes.

There are several constraints defined by the assembly and body shop:

• No more than l cars are allowed to require the component c in a sliding window of
m vehicles.

2



2 The Car Sequencing Problem

• Exactly l cars requiring component c have to be spread over each subsequence with
length m.

• No vehicle with component c1 may be following a car with component c2.

• The number of cars requiring component c has to fall into [lmin, lmax] for each day.

• At least lmin cars without component c have to follow a vehicle with component c
installed.

In contrary, the paint shop defines only one constraint:

• At most s cars with the same colour are allowed to be arranged consecutively.

In addition to this constraint, the number of colour changes has to be minimised. There
are two reasons for this. First, colour changes are very expensive in time and money,
since the injector has to be cleaned. In addition, this pollutes the environment. Sec-
ond, the injector has to be cleaned after a given number of cars for preserving good
performance. If the injector is not cleaned frequently, the colour would agglutinate.
This would lead to improper painting results. Since cleaning the injector is a displeasing
and exhausting work, the staff would get imprecise if the same colour would be used
afterwards. Therefore the colour has to be changed after cleaning the injector.

An arrangement with low costs and smoothed workload for the body shop can be expen-
sive in respect to the paint shop and vice versa. To cope with these circumstances, stocks
and buffers are interposed between the stages, because they provide the possibility of
rearranging the cars during the production process.

Figure 2.2 (a) shows a setup with multiple parallel lines. At the end of the incoming
line, it has to be decided to which buffer line the next car is put. The outgoing line is
filled with cars taken from the parallel buffer lines. They operate with First In, First
Out (FIFO) strategy. The loop in figure 2.2 (b) enables the recirculation of cars. This
method is often used if the cars have to be repaired. If a car is not properly assembled,
it is taken out of the arrangement. After the problem has been corrected, the car is
inserted at a new position. The layout shown in figure 2.2 (c) grants random access to
all cars currently in the buffer. Therefore it is guaranteed that a buffered car can be
reinserted at each position. Figure 2.3 shows an exemplary assembly line layout with
different buffers during the production process.

Since buffers and stocks raise additional costs, a layout with as few buffers as possibel is
preferred. Therefore scheduling applications have to consider all different stages of the
production process to meet as many constraints as possible.

In big car factories there are several production lines in parallel which merge into each
other. At the first production line the chassis is produced. The second production line
provides the gear boxes, whereas on the third production line the motor is assembled.
Each of these production lines defines its own restrictions and each time a motor is
installed, the production line providing the engines must already have produced the

3



2 The Car Sequencing Problem

. . .

. . .

. . .

parallel buffersincoming line outgoing line

(a)

. . .

. . .

incoming line outgoing lineloop buffer

(b)

incoming line outgoing linerandom access buffer

(c)

Figure 2.2: Different buffer strategies: rearrangement through merging of parallel
lines (a); recirculation (b) and random access stock (c).
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2 The Car Sequencing Problem

Figure 2.3: A detailed view of an assembly line [13].

appropriate motor. Therefore the scheduling process has to take several production
lines into account.

Since the car factory operates 24 hours a day, the production of the last day has to be
borne in mind, because the last cars produced at day N − 1 influence the workload in
the morning of day N , i.e. the current day. The final arrangement of vehicles along the
production line for day N results of two major steps. First of all the cars to be produced
are chosen from a pool of commissioned vehicles. Secondly this set of cars is arranged
to meet as many constraints as possible.

2.2 Problem reduction

Since the real world problem as stated above is too hard to solve, the problem is re-
duced. The first part of the selection can be neglected for two reasons. The procedure of
extracting a set of vehicles is very extensive and some constraints cannot be formulated
by exact methods since they include imprecise information. These constraints include
restrictions like: ”Client A is a better customer than client B. Therefore vehicles ordered
by client A have to be produced faster than the other ones.“ Since expression like ”is
a better customer“ cannot me measured, it is difficult to express these constraints in a
mathematical sense. On the other hand, the arrangement of vehicles along the produc-
tion line is on its own hard to solve. Furthermore only one assembly line without any
buffers and stocks is considered.

5



2 The Car Sequencing Problem

Many assembly line restricitions are disregarded in problem descriptions which can be
found in literature ([5, 6, 7]). Altogether only one kind of constraints is left. These are
constraints which can be expressed as ratio lc/mc (”No more than lc cars are allowed to
require the component c in a sliding window of mc vehicles“). In addition, constraints
defined by the paint shop are neglected completely and constraints violations are counted
regardless of the workloads for the working bays.

2.3 ROADEF Challenge 2005

Since the ROADEF Challenge 2005 [1] was supported by the automobile manufacturer
Renault, the problem description used for the challenge included the constraints defined
by the paint shop and the working bay constraints which can be expressed as ratios
l/m.

In contrast to instances produced for academic testing (see [5, 7]), instances published
by Renault [1] also take the production of the day before into account.

2.3.1 Counting the violations

ROADEF introduced an advanced method for counting violations of constraints defined
by the assembly shop. In the literature ([5, 6, 7]) only the positions where a violation
occurs are counted, whereas for the ROADEF Challenge 2005, the number of violations
is calculated. Table 2.1 shows an example for different countings. Let us consider a
component with the constraint that at most one car within three cars is allowed to
require the component. Therefore the constraint can be expressed as 1/3. If counting
as proposed in literature is applied, this setup leads to 3 violations (E). If the method
defined by ROADEF is used, we count 4 violations.

. . .
+ + +

. . . total
E E E 3

(a)

. . .
+ + +

. . . total
0 0 0 1 2 1 0 4

(b)

Table 2.1: Difference of counting violations: used in literature (a) and by ROADEF (b).
Cars marked with + indicate cars requiring the component.

6



2 The Car Sequencing Problem

2.3.2 Paint shop constraints

So far I only described the constraints defined by the assembly shop in detail. Although
the paint shop constraints differ in verbal formulation, they can be expressed in a similar
way to the assembly shop constraints. Since at most s consecutive cars can be painted
with the same colour, at least one car in s + 1 cars has to be painted with another
colour (s denotes the colour block or paint batch limit). Therefore the constraints can
be reformulated as

No more than s cars are allowed to require the colour f in a sliding window
of s+ 1 vehicles.

This formulation is equivalent to the formulation stated above for assembly line con-
straints, whereby this constraint can be expressed as ratio s/(s+1).

2.3.3 Priority of constraints

ROADEF defined three different priority levels of constraints to be considered: paint
shop constraints, important assembly line constraints and less important assembly line
constraints. This means, that a violation of an important or high priority constraint
(HPRC) is worse than a violation of a less important or low priority constraint (LPRC).
To differ between these classes of importance, weight factors are assigns to each occurring
violation or colour change. These factors are taken from the set {1, 103, 106}.
The objective function has to take these costs into account which is simply done by
building the weighted sum of all constraint violations and colour changes.

2.4 Formalisation

I will give a formal description of the problem, here. This notation will be used in the
whole document.

There is a given set of components C, a set of colours F ⊆ C and a set of configurations

K = {k : k = kc ∪ {kf} with kc ⊆ C\F ∧ kf ∈ F} .

This means that each configuration is a subset of components to be installed, but exactly
one colour has to be applied to one configuration. For each k ∈ K, there is a demand
δk which indicates how many vehicles with configuration k have to be produced. n =∑

k∈K δk is the number of commissioned cars. Each component c defines a length mc

and a quota lc. Only lc cars are allowed to require component c in a sliding window of
length mc. This can be written as lc/mc. For all colours f ∈ F , lf is equal to s and mf

is equal to s + 1, where s is the maximum colour block allowed. costc represents the

7



2 The Car Sequencing Problem

costs raised if a violation of the corresponding constraints occurs. A permutation Π of
the comissioned cars is searched which minimises the objective function κ(Π).

κ(Π) =
n∑

i=1

costs(i)

costs(i) = change(i) +

|C\F |∑

j=1

(viol(i, j) · costj) ∀i ∈ {1, . . . , n}

change(i) =

{
costf if a colour change occurred at position i

0 otherwise
∀i ∈ {1, . . . , n}

viol(i, c) = number of violations at position i by component c

Table 2.2 shows the symbols used in the formalisation.

C . . . set of components c ∈ C
F ⊆ C . . . set of colours f ∈ F

k . . . set of configurations k ∈ K
δk . . . demand for configuration k ∈ K
lc . . . quota for component c ∈ C
mc . . . sliding window length for component c ∈ C
s . . . maximum colour block length
lf . . . quota for colour f ∈ F ; set to s
mf . . . sliding window length for colour f ∈ F ; set to s + 1

costc . . . costs raised by a violation of the constraint for component c ∈ C
costf . . . costs for a colour change with colour f ∈ F

costs(i) . . . costs raised by the car placed at position i
viol(c, i) . . . number of violations occurring at position i for component c ∈ C\F

n . . . number of cars (is equal to
∑

k∈K δk)
κ(Π) . . . costs for sequence Π

Table 2.2: Symbols used in the formalisation

2.5 Suggestions

As also stated in [7], this traditional method of counting violations privileges the last
positions along the production line, since violations at those positions are counted less
than violations in the beginning or middle of the sequence. Table 2.3 illustrates this
phenomenon where the last positions of the current day are shown. Let us assume, that
the constraint for this component is expressed as 1/3. In table (a) only 3 violations are

8



2 The Car Sequencing Problem

counted, whereas in table (b) the ”right“ number of 4 violations is counted. Although
the positions past the last car are not used, they are needed for counting, since violations
at the end of a day are less penalised than violations in the middle.

. . .
+ + +

0 0 0 1 2

(a)

. . .
+ + +

0 0 0 1 2 1 0

(b)

Table 2.3: The traditional counting (a) and the new one (b). Cars marked with +
indicate cars requiring the component.

To avoid this disparity between different positions, the next day N + 1 should be con-
sidered too. Since the arrangement of cars produced on day N + 1 can change, it should
be assumed that all cars of day N + 1 require no components. Furthermore the colour
of the first car of the next day is different to the colour of the last car of the current day.
Because of this, no violation of paint shop constraints can occur.

2.6 Setting used for this thesis

For this thesis I use the method of counting the violations of the working bay constraints
defined by ROADEF. Furthermore I accounted for the constraints defined by the paint
shop and the day N − 1 is borne in mind, too. For comparison with test results found
in literature the traditional method of counting the violations is used.
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3 Related Work

Several different approaches have been made to solve the Car Sequencing Problem or
parts of it. The methods used vary from greedy heuristics to Ant Colony Optimisation
(ACO), whereas only a few exact algorithms were proposed.

3.1 Greedy heuristics

Gottlieb et al. [6] proposed greedy heuristics using different evaluation strategies. In
principle, they build sequences of cars simply by adding the next best car (in respect
to some evaluation function) to a current partially filled sequence. Once a car is placed
at a position, it stays there. Some of the proposed evaluation functions take the cur-
rently available cars and the already existing sequence into account, whereas others only
compute a global value indicating wether a car is hard to arrange or not.

Many other approaches like Local Search or ACO use similar greedy heuristics for com-
puting initial solutions [6, 7, 11].

3.2 Local Search

Many attempts for solving the Car Sequencing Problem use Local Search. These ap-
proaches try to (locally) improve intermediate solutions until no further improvements
can be achieved. Puchta et al. [6, 17] proposed a Local Search using six different moves.
A current solution is rearranged using swap moves (swapping two cars), insert moves
(remove one car and insert it at another position), transposition moves (swapping two
consecutive cars), similar swap moves (swapping two cars similar in respect to their
configuration), Lin2Opt moves (inverting a subsequence of cars) and random moves (re-
arranging the cars in a subsequence randomly). The type of move and the affected
positions are chosen by random. In contrast, Jaskiewicz et al. [11] decide the initial
position, where the move is applied to, by using a greedy heuristic first. Afterwards
they look for the best move to be applied at this position.

Perron et al. [15] define similar moves, but they apply them to subsequences. Therefore
swap moves are defined as swapping two sequences of cars and block insert moves shift
a sequence of cars to another position.

10



3 Related Work

3.3 Ant Colony Optimisation (ACO)

The idea behind Ant Colony Optimisation (ACO) is to model a metaheuristic similar
to the behaviour of ants searching a optimal path connecting to different places [6, 7].
For the Car Sequencing Problem, a number of ants build an arrangement of cars—each
ant on its own. Each time a car is following another car in the sequence, a pheromone
trail is layed which indicates the quality of car one following car two. Multiple cycles
are performed, whereby good sequences are indicated by trails with a big amount of
pheromone.

Gravel et al. [7] and Gottlieb et al. [6] presented algorithms using ACO with different
heuristics for deciding which car to consider next.

3.4 Exact methods

There are few approaches solving the Car Sequencing Problem using exact methods.
Gravel et al. [7] proposed an Integer Linear Program (ILP) approach. This ILP is able
to solve commonly used benchmark instances in acceptable time [7]. In addition, the
optimality of the obtained solutions is proven. For test results comparing this ILP with
the ILPs propsed by myself see chapter 7.

Hu proposed an ILP approach in his diploma thesis [10]. His ILP also takes constraints
defined by the paint shop into account, whereby the size of solveable instances is lim-
ited.

3.5 The paint shop only

Epping et al. [2, 3, 4] concentrated on reducing the colour changes only with respect
to a given arrangement of the components. They showed that even this reduction of
the problem is NP-complete [4]. Furthermore they proposed a dynamic programming
approach with a memory and time complexity of O(|F |∗n|F |∗|K|). Therefore this method
is not applicable for large instances with either many colours, configurations or cars to be
arranged. Another approach uses a variation of Multiple Sequence Alignment to receive
an optimal colouring [2].
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4 Integer Linear Programming
Formulations

An Integer Linear Program (ILP) represents a mathematical formulation of an opti-
misation problem. It defines a linear objective function which has to be minimised or
maximised subject to linear constraints. The decision variables have to be integer and
the solution has to fullfill all constraints. Figure 4.1 gives the standard form of an ILP,
with c as n-dimensional cost vector, x as n-dimensional vector of decision variables, A
as coefficient matrix and b as vector of scalars.

minimise
cTx

subject to
Ax ≥ b

x ∈ Zn

Figure 4.1: An ILP in stadard form

In general, ILPs are solved using exact algorithms like ”Branch and Bound“ or ”Branch
and Cut“ [14]. The result of these exact algorithms is an optimal solution. This means,
that there exists no other solution with a better objective value. Fr the Car Seuencing
Problem, an optimal solution is an arrangement along the production line that minimises
the number of working bay violations and colour changes. If there are multiple optimal
solutions, only one needs to be obtained. Although in general it is possible that no
solution can be found, for the Car Sequencing Problem only instances with at least one
integer solution are taken into account.

In [7], an attempt to solve the Car Sequencing Problem in an exact way is made using
an ILP. Hu also proposed an ILP approach in [10]. Since these ILPs are outperformed
by other approaches using heuristics, I decided to try to improve them.

Below I will discuss two resulting ILPs: the first was developed by myself, while the
other one is an enhancement of the ILP proposed by Hu.
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4 Integer Linear Programming Formulations

n . . . number of cars
k ∈ K . . . configuration k

δk . . . demand for configuration k ∈ K
c ∈ C . . . component c

f ∈ F ⊆ C . . . colour f
s . . . paint batch limit

lc/mc . . . constraint for component c ∈ C\F
s/(s+1) . . . constraint for colour f ∈ F
costc . . . costs for violations by component c
costf . . . costs for colour change to colour f ∈ F

Table 4.1: Used symbols

4.1 Component ILP

Table 4.1 shows the symbols used in this ILP formulation called Component ILP (C-
ILP). Each configuration k ∈ K comprises of relevant components c ∈ C. The entries
of matrix A express these relations:

ack =

{
1 if configuration k contains component c

0 otherwise
∀c ∈ C, ∀k ∈ K

For computation complexity, it is essential that

∃ c : aci 6= acj ∀(i, j) with i 6= j.

This constraint ensures, that all configurations are pairwise different. Therefore the
search space is reduced.

The following expression computes the demand for each component c ∈ C:

dc =
∑

k∈K
(ack · δk) ∀c ∈ C

For computing the correct number of violations, the production of day N − 1 has to
be borne in mind. Therefore matrix E = eci is defined as 1 if the car at position
n − i required component c. The number of columns of Matrix E is maxc∈C{mc} − 1,
because this is the maximum number of cars possibly having an impact on the number
of violations of any constraint on day N .

eci =

{
1 if the car at position n− i required c

0 otherwise
∀c ∈ C, ∀i ∈ {0, . . . ,max

c∈C
{mc} − 1}
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4 Integer Linear Programming Formulations

All matrices and vectors defined so far are given constants for each individual instance.
For solving the problem by moving each component until all requirements are met, I
have to declare binary decision variables which state if the car at position i requires
component c or not. Therefore matrix B has n columns and |C| rows. Possible values
of bci are 0 and 1.

bci =

{
1 car at position i requires component c

0 otherwise
∀c ∈ C, ∀i ∈ {0, . . . , n− 1}

Each car must be painted with exactly one colour. Therefore the sum of all colour-entries
has to be 1 for each car.

∑

f∈F
bfi = 1 ∀i ∈ {0, . . . , n− 1}

Furthermore the number of components used must be equal to the number of components
available.

n−1∑

i=0

bci = dc ∀c ∈ C

At this time it is not guaranteed that the demand for configurations is satisfied. For
this reason, some extra computations are required and so I introduce matrix P with
dimension |K| × n. If configuration k is produced at position i, the corresponding entry
pki is 1 and 0 otherwise. The value of pki can only be 1 if all entries for ack are equal to
bci (∀c ∈ C). If the entries for ack and bci are 1, the expression

ack · bci

yields 1. In all other cases, this expression is equal to 0. Furthermore if both entries are
equal to 0, the expression

(1− ack) · (1− bci)

yields 1. Again, all other cases result in 0. Therefore the sum

ack · bci + (1− ack) · (1− bci)

is 1 only if both entries are equal. These observations lead to following inequations.

pki ≤ ack · bci + (1− ack) · (1− bci) ∀k ∈ K, ∀c ∈ C, ∀i ∈ {0, . . . , n− 1}
pki ≥ 0 ∀k ∈ K, ∀i ∈ {0, . . . , n− 1}
n−1∑

i=0

pki = δk ∀k ∈ K
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4 Integer Linear Programming Formulations

Since only one configuration can be manufactured at each position along the production
line, the sum over each column of matrix P has to be 1.

∑

k∈K
pki = 1 ∀i ∈ {0, . . . , n− 1}

A detailed analysis reveals that this constraint can be neglected as it can be derived from
the constraints stated above. Since all configurations are pairwise different, at most one
entry in matrix P can be equal to 1. Furthermore the sum over all entries of matrix
P is equal to n. Therefore each column in entry P sum up to 1. In addition following
relationship exists:

bci =
∑

k∈K
ack · pki ∀i ∈ {0, . . . , n− 1}, ∀c ∈ C

This is due the fact that each configuration k assigned to position i assigns the compo-
nents c ∈ C needed by configuration k to position i too.

At the moment there is no computation done for counting the violations of the working
bay constraints or colour changes. For this purpose matrix Q is introduced. Its entries
indicate the quantity of cars requiring component c in a subsequence of length mc minus
the quota lc for this component. Because of this definition, only integer values can be
entered even though its entries need not to be integers.

qc0 = bc0 +

mc−2∑

j=0

(ecj − lc) ∀c ∈ C

qci =

{
qc(i−1) + bci − ec(mc−i−1) ∀i ∈ {1, . . . , mc − 1}
qc(i−1) + bci − bc(i−mc) ∀i ∈ {mc, . . . , n− 1} ∀c ∈ C

Note that the constraints defined by the paint shop can be expressed as s
s+1

, since at
most s cars might be painted with the same colour. If at most s cars are painted with
the same colour in a subsequence of s+1 cars there has to be at least one colour change.
Therefore no violation of the constraints defined by the paint shop can occur. Because of
this equivalence of the constraints defined by the working bays and paint shop, it is very
easy to add them to the ILP formulation. Since these constraints are hard constraints
which means no violations are allowed, following inequations have to be added.

qfi ≤ 0 ∀f ∈ F, ∀i ∈ {0, . . . , n− 1}

For computing the actual number of violations, only entries in matrix Q with values
greater than 0 are relevant. Only entries for components have to be considered, since no
violations are allowed to occur for paint shop constraints. Thus matrix G of dimension
|C\F | × n contains non negative (integer) values.

gci ≥ 0 ∀i ∈ {0, . . . , n− 1}, ∀c ∈ C\F
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gci ≥ qci ∀i ∈ {0, . . . , n− 1}, ∀c ∈ C\F

Since this formulation for counting the number of violations requires 2 · |C| ·n variables,
matrices Q and G should be reduced to just one matrix. This can be easily achieved by
resolving the recursion in matrix Q and expressing the sums explicitly. Tests revealed
that neither of these two formulations is better than the other one using CPLEX for
solving this ILP. Matrix G is defined as

gci ≥ 0 ∀i ∈ {0, . . . , n− 1}, ∀c ∈ C\F

gci ≥
i∑

j=0

bcj +

mc−i−2∑

j=0

ecj − lc ∀i ∈ {0, . . . , mc − 2}, ∀c ∈ C\F

gci ≥
i∑

j=i−mc+1

bcj − lc ∀i ∈ {mc − 1, . . . , n− 1}, ∀c ∈ C\F

This formulation uses at most |C| ·n variables, but now I have to rework the constraints
for the paint shop.

i∑

j=0

bfj +

s−i−1∑

j=0

efj ≤ s ∀i ∈ {0, . . . , s− 1}, ∀f ∈ F

i∑

j=i−s
bfj ≤ s ∀i ∈ {s, . . . , n− 1}, ∀f ∈ F

Only colour changes are left to be counted. For this purpose, I introduce matrix W with
|F | × n entries. wfi is 1 if a change to colour f occurs at position i and 0 otherwise.

wf0 ≥ 0 ∀f ∈ F
wf0 ≥ bf0 − ef0 ∀f ∈ F
wfi ≥ 0 ∀i ∈ {1, . . . , n− 1}, ∀f ∈ F
wfi ≥ bfi − bf(i−1) ∀i ∈ {1, . . . , n− 1}, ∀f ∈ F

Now it is possible to define the objective function which has to be minimised.

∑

f∈F

(
costf ·

n−1∑

i=0

wfi

)
+
∑

c∈C\F

(
costc ·

n−1∑

i=0

gci

)

4.1.1 ILP formulation

At this stage I summerize all considerations and present the resulting formulation:

16
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objective function

min
∑

f∈F

(
costf ·

n−1∑

i=0

wfi

)
+
∑

c∈C\F

(
costc ·

n−1∑

i=0

gci

)
(4.1)

subject to

0 ≤ bci ≤ 1 ∀c ∈ C, ∀i ∈ {0, . . . , n− 1} (4.2)
∑

f∈F
bfi = 1 ∀i ∈ {0, . . . , n− 1} (4.3)

n−1∑

i=0

bci = dc ∀c ∈ C (4.4)

0 ≤ pki ≤ 1 ∀k ∈ K, ∀i ∈ {0, . . . , n− 1} (4.5)

pki ≤ ack · bci + (1− ack) · (1− bci) ∀k ∈ K, ∀c ∈ C, ∀i ∈ {0, . . . , n− 1} (4.6)
n−1∑

i=0

pki = δk ∀k ∈ K (4.7)

bci =
∑

k∈K
ack · pki ∀i ∈ {0, . . . , n− 1}, ∀c ∈ C (4.8)

0 ≤ gci ∀i ∈ {0, . . . , n− 1}, ∀c ∈ C\F (4.9)

gci ≥
i∑

j=0

bcj +
mc−i−2∑

j=0

ecj − lc ∀i ∈ {0, . . . , mc − 2}, ∀c ∈ C\F (4.10)

gci ≥
i∑

j=i−mc+1

bcj − lc ∀i ∈ {mc − 1, . . . , n− 1}, ∀c ∈ C\F (4.11)

i∑

j=0

bfj +

s−1−i∑

j=0

efj ≤ s ∀i ∈ {0, . . . , s− 1}, ∀f ∈ F (4.12)

i∑

j=i−s
bfj ≤ s ∀i ∈ {s, . . . , n− 1}, ∀f ∈ F (4.13)

0 ≤ wfi ≤ 1 ∀i ∈ {0, . . . , n− 1}, ∀f ∈ F (4.14)

wf0 ≥ bf0 − ef0 ∀f ∈ F (4.15)

wfi ≥ bfi − bf(i−1) ∀i ∈ {1, . . . , n− 1}, ∀f ∈ F (4.16)

bci, pki integer ∀c ∈ C, ∀k ∈ K, ∀i ∈ {0, . . . , n− 1} (4.17)
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+
constraint cost

comp #1 1 0 1 1/3 1
comp #2 0 1 1 2/3 10
colour #1 1 0 0 4/5 100
colour #2 0 1 1 4/5 100

demand 3 3 2 — —

Table 4.2: A test instance

4.1.2 Example for the formulation

I will present a simple example for this formulation. Table 4.2 shows the values defined
by a test instance. There are three different configurations – each consisting of two
possible components and one of two colours. This specification leads to matrices A
and D. Additionally matrix E is presented. Because maxc∈C{mc} = 5, only the last
5− 1 = 4 cars produced the day before are needed for computing potential violations.

A =




1 0 1
0 1 1
1 0 0
0 1 1


 D =




5
5
3
5


 E =




0 1 1 1
1 1 0 0
0 0 1 1
1 1 0 0




Let’s examine the following sequence along the production line:

(
,

+
, , , , , ,

+
)

The resulting matrices are

B =




0 1 1 1 1 0 0 1
1 1 0 0 0 1 1 1
0 0 1 1 1 0 0 0
1 1 0 0 0 1 1 1




Q =




0 0 1 2 2 1 0 0
1 1 0 −1 −2 −1 0 1
−3 −3 −3 −2 −1 −1 −1 −2
−1 0 0 −1 −2 −2 −2 −1




G =

(
0 0 1 2 2 1 0 0
1 1 0 0 0 0 0 1

)

H =
(

0 0 1 0 0 1 0 0
)
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Matrix G and vector H are relevant for evaluation. Since the sum over row one in matrix
G is 6 and the second row sums up to 3, the costs for violating the constraints defined
by the production lines are (6 · 1) + (3 · 10) = 36. Vector H sums up to 2 which means
that there are two colour changes. Because one colour change costs 100, the objective
function yields 236 in total.

4.1.3 Correctness of the formulation

I have to show that this ILP formulation will allways produce an optimal solution to the
Car Sequencing Problem. A solution is valid if there is exactly one car at each possi-
ble position, which means that exactly one configuration is assigned to every position.
Furthermore no violations are tolerated for constraints defined by the paint shop.

Constraint (4.6) ensures that at most one configuration is assigned to each position.
Because of constraint (4.7),

∑
k∈K

∑n−1
i=0 pki is equal to n. Therefore each position has

exactly one configuration assigned which also means that each position has exactly one
colour assigned, since each configuration consists exactly one colour.

Constraints (4.12) and (4.13) make sure that no violations of paint shop constraints
occur. If there are more than s consecutive cars painted with the same colour, the left
sides of these inequations would be greater than s. Thus no violations for constraints
defined by the paint shop can occur.

So far I have shown that each solution found by the ILP system is valid. Now optimality
has to be proven. Constraints (4.10) and (4.11) in combination with the objective
function (4.1) guarantee that each violation is counted. Since the entries of matrix
G appear with positive sign in the objective function,

∑
c∈C\F

∑n−1
i=0 gci is minimised.

Therefore only occurring violations are counted. In addition all colour changes are
taken into account by constraints (4.14) to (4.16). Because the objective function (4.1)
is minimised, the ILP formulation must lead to an optimum.

4.2 Configuration ILP

Hu [10] proposed an ILP for solving the Car Sequencing Problem in his diploma thesis
(see appendix 8.2.6 for a reprint of his formulation). In praxis his approach can solve
instances with up to 20 cars in acceptable time. I tried to strengthen his formulation. In
this section I am going to present the results of this effort and show the enhancements.
Later on I will show that the changes did not affect the correctness of his formulation.
I refer to this formulation as K-ILP.
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I use the same symbols as in the preceding formulation (see table 4.1). Furthermore
matrices A, B and the vector D are defined in the same way as above.

Exactly one configuration has to be placed at each position along the production line.
Hence matrix P is defined. Its entries pki are 1 if configuration k is assigned to position
i. Otherwise 0 is entered.

pki =

{
1 configuration k is assigned to position i

0 otherwise
∀k ∈ K, ∀i ∈ {0, . . . , n− 1}

In contrast to the original formulation assigning cars to each position, this reformulation
of the decision variables forms the major improvement, because cars with same configu-
rations are handled as if they are equal. Normally this reduces the number of variables
significantly which also means that the search space is reduced.

To ensure that all demanded cars are produced and exactly one car is allocated for each
position following constraints have to be declared.

∑

k∈K
pki = 1 ∀i ∈ {0, . . . , n− 1}

n−1∑

i=0

pki = δk ∀k ∈ K

At any time it has to be guaranteed that the sum of all used components equals the
number of available components.

n−1∑

i=0

∑

k∈K
ack · pki = dc ∀c ∈ C

For computing the number of violations, matrix R is introduced. rci specifies the quan-
tity of component c used so far till position i. rcj − rc(j−mc) counts the number of
components used in the last subsequence of length mc. Although it is not required that
the entries are integers, this is necessary by the definition of R.

rc0 = 0 ∀c ∈ C\F
rci = rc(i−1) +

∑

k∈K

(
ack · pk(i−1)

)
∀i ∈ {1, . . . , n}, ∀c ∈ C\F

The actual number of violations is stored in the entries of matrix G. Again, only non
negative (integer) values are permitted.

gci ≥ rc(i+1) − lc +
mc−2−i∑

j=0

ecj ∀i ∈ {0, . . . , mc − 2}, ∀c ∈ C\F
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gci ≥ rc(i+1) − rc(i+1−mc) − lc ∀i ∈ {mc − 1, . . . , n− 1}, ∀c ∈ C\F

Only the number of colour changes is missing. Therefore matrix B with dimension
|F |×n has to be declared. bfi is equal to 1 if the car at position i is painted with colour
f and 0 in all other cases.

bfi =
∑

k∈K
afk · pki ∀f ∈ F, ∀i ∈ {0, . . . , n− 1}

Since only up to s consecutive cars are allowed to be painted with the same colour, two
additional constraints have to be added.

s−i−1∑

j=0

efj +

i∑

j=0

bfj ≤ s ∀i ∈ {0, . . . , s− 1}, ∀f ∈ F

i∑

j=i−s
bfj ≤ s ∀i ∈ {s, . . . , n− 1}, ∀f ∈ F

In addition each car must be painted with exactly one colour, but this is already guar-
anteed by constraints defined so far, because exactly one configuration is assigned to
each car. Since each configuration contains only one colour, no car can be painted with
two or more colours. If a constraint expressing that each car is painted with exactly one
colour is added to the formulation, experiments showed that the runtime increases using
CPLEX for solving the ILP.

Finally, matrix W is introduced. If a change to colour f occurs at position i, the
corresponding entry wfi is set to 1 and 0 otherwise. For expressing this in an (I)LP
relevant form, following constraints are necessary.

wfi ≥ 0 ∀i ∈ {0, . . . , n− 1}, ∀f ∈ F
wf0 ≥ bf0 − ef0 ∀f ∈ F
wfi ≥ bfi − bfi−1 ∀i ∈ {0, . . . , n− 1}, ∀f ∈ F

The objective function is composed of the number of constraint violations for components
and the number of colour changes. It has to be minimised.

∑

c∈C\F

(
costc ·

n−1∑

i=0

gci

)
+
∑

f∈F

(
costf ·

n−1∑

i=0

wfi

)

4.2.1 ILP formulation

In this section the resulting ILP formulation is presented.
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objective function

min
∑

c∈C\F

(
costc ·

n−1∑

i=0

gci

)
+
∑

f∈F

(
costf ·

n−1∑

i=0

wfi

)
(4.18)

subject to

0 ≤ pki ≤ 1 ∀i ∈ {0, . . . , n− 1}, ∀k ∈ K (4.19)
∑

k∈K
pki = 1 ∀i ∈ {0, . . . , n− 1} (4.20)

n−1∑

i=0

pki = δk ∀k ∈ K (4.21)

n−1∑

i=0

∑

k∈K
ack · pki = dc ∀c ∈ C (4.22)

rc0 = 0 ∀c ∈ C\F (4.23)

0 ≤ rci ∀c ∈ C, ∀i ∈ {1, . . . , n} (4.24)

rci = rc(i−1) +
∑

k∈K

(
ack · pk(i−1)

)
∀c ∈ C, ∀i ∈ {1, . . . , n} (4.25)

0 ≤ gci ∀c ∈ C, ∀i ∈ {0, . . . , n} (4.26)

gci ≥ rc(i+1) − lc +

mc−2−i∑

j=0

ecj ∀i ∈ {0, . . . , mc − 2}, ∀c ∈ C\F (4.27)

gci ≥ rc(i+1) − rc(i+1−mc) − lc ∀i ∈ {mc − 1, . . . , n− 1}, ∀c ∈ C\F (4.28)

0 ≤ bfi ≤ 1 ∀f ∈ F, ∀i ∈ {0, . . . , n} (4.29)

bfi =
∑

k∈K
afk · pki ∀f ∈ F, ∀i ∈ {0, . . . , n− 1} (4.30)

s−i−1∑

j=0

efj +
i∑

j=0

bfj ≤ s ∀i ∈ {0, . . . , s− 1}, ∀f ∈ F (4.31)

i∑

j=i−s
bfj ≤ s ∀i ∈ {s, . . . , n− 1}, ∀f ∈ F (4.32)

0 ≤ wfi ≤ 1 ∀f ∈ F, ∀i ∈ {0, . . . , n− 1} (4.33)

wf0 ≥ bf0 − ef0 ∀f ∈ F (4.34)

wfi ≥ bfi − bf(i−1) ∀f ∈ F, ∀i ∈ {0, . . . , n− 1} (4.35)

pki integer ∀k ∈ K, ∀i ∈ {0, . . . , n− 1} (4.36)
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4.2.2 Example for the formulation

The example of section 4.1.2 is used to demonstrate this formulation. Please recall
table 4.2 on page 18 for the example instance. For simplicity, we consider the same
sequence as in section 4.1.2

(
,

+
, , , , , ,

+
)
.

This leads to the following matrices:

P =




0 0 1 1 1 0 0 0
1 0 0 0 0 1 1 0
0 1 0 0 0 0 0 1




R =

(
0 0 1 2 3 4 4 4 5
0 1 2 2 2 2 3 4 5

)

G =

(
0 0 1 2 2 1 0 0
1 1 0 0 0 0 0 1

)

B =

(
0 0 1 1 1 0 0 0
1 1 0 0 0 1 1 1

)

W =

(
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0

)

The objective function yields 236 again.

4.2.3 Correctness of the formulation

Here I will show that this ILP formulation leads to a valid and optimal solution each
time. Again I have to ensure that the resulting schedule of cars describes a permutation.
Constraint (4.20) makes sure that exactly one configuration is assigned to each car.
Because

∑
k∈K δk is equal to n, constraint (4.21) assures that each demanded car is

produced. Moreover each car along the assembly line has to be painted with exactly
one colour. This is guaranteed by constraint (4.20), because each configuration consists
only one colour. Therefore the final schedule has to be a valid arrangement.

The argumentation for optimality is the same as presented in section 4.1.3. Since the
colour changes are counted in the same way, the arguments can be adopted. Furthermore
the entries of matrix G are minimised again. This leads to the conclusion that only
necessary violations are counted. Since matrix R defines the number of components
used up to the current position, the difference rc(i+1) − rc(i+1−mc) is the number of used
components during the production of the last mc cars. Therefore gci shows the number
of supernumerous fittings.
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4.3 Equivalence of the formulations

Below I will point out that both introduced formulations are equivalent which means
that the polyhedra defined by the formulations are equivalent. A polyhedron is the set
of all feasible solutions to the LP-relaxation of the ILP formulation. Therefore if both
formulations define the same set of solutions, they have to be equivalent.

The objective functions (4.1) and (4.18), respectively, are defined in the same way. It
is easy to see that the constraints (4.14)–(4.16) are equal to constraints (4.33)–(4.35).
The same can be said about constraints (4.31)–(4.32) and (4.12)–(4.13). Since con-
straint (4.8)—which is identical to (4.30) (∀f ∈ F )—states that bci =

∑
k∈K ack · pki,

(4.22) and (4.4) are equal too. (4.23)–(4.28) are equal to (4.9)–(4.11), because rc(i+1) −
rc(i+1−mc) =

∑i
j=i−mc+1 bcj. (4.21) is equal to (4.7).

Now, I have to show that constraint (4.20) can be expressed with the help of (4.3) and
(4.8). Please recall, that each configuration k contains exactly one colour:

∑

f∈F
afk = 1 ∀k ∈ K (4.37)

This leads to following equations:

n−1∑

i=0

pki =

=(4.37)

n−1∑

i=0

∑

f∈F
ack · pki =

=
∑

f∈F

n−1∑

i=0

ack · pki =

=(4.8)
∑

f∈F
bfi =(4.3) 1 ∀k ∈ K (4.38)

Constraint (4.3) can be expressed with the help of (4.20), (4.30) and(4.37):

∑

f∈F
bfi =

=(4.30)
∑

f∈F

∑

k∈K
afk · pki =

=
∑

k∈K

∑

f∈F
afk · pki =

=(4.37)
∑

k∈K
pki =(4.20) 1 ∀i ∈ {0, . . . , n− 1} (4.39)
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Finally, I show that the constraint (4.6) is true. This constraint can also be written as

pki ≤ ack ·
(∑

k′∈K
ack′ · pk′i

)
+ (1− ack) ·

(
1−

(∑

k′∈K
ack′ · pk′i

))

∀k ∈ K, ∀c ∈ C, ∀i ∈ {0, . . . , n− 1} (4.40)

using equation (4.8). Since ack can either be 0 or 1, I differ between these two cases. If
ack = 1:

pki ≤
∑

k′∈K
ack′ · pk′i =

pki +
∑

k′∈K\{k}
ack′ · pk′i ∀k ∈ K (4.41)

Since ∑

k′∈K\{k}
ack′ · pk′i ≥ 0

inequation (4.41) is true. If ack = 0:

pki ≤1−
∑

k′∈K
ack′ · pk′i =

=1− pki · ack︸ ︷︷ ︸
0

−
∑

k′∈K\{k}
ack′ · pk′i ∀k ∈ K (4.42)

Since ∑

k′∈K\{k}
ack′ · pk′i ≤

∑

k′∈K\{k}
pk′i = 1− pki ∀k ∈ K

inequation (4.42) leads to

pki ≤ 1− (1− pki) = pki ∀k ∈ K (4.43)

Therefore the two ILP formulations are equivalent.

4.4 Implementation and runtime

Although both formulations are equivalent in mathematical sense, there are significant
differences in runtime due to different implementation. I implemented both approaches
using CPLEX by ILOG, Inc. CPLEX uses sophisticated ”branch and cut“-algorithms
for finding feasible solutions [14]. It fixes variables during each iteration. The runtime
is strongly influenced by the chosen fixed variables.

Furthermore CPLEX generates additional cuts deduced from the given constraints.
Sometimes CPLEX is able to generate better cuts because a redundant information
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4 Integer Linear Programming Formulations

is provided to the solver. Setting variables pki from the first formulation, for example,
to be integer (although this is not necessary) increases the number of iterations done
by CPLEX, but reduces the total runtime for finding an optimum. On the other hand,
it is possible that the number of iterations increases significantly, if some additional
redundant information is provided to CPLEX.

Tests show that the formulation given in section 4.2.1 is faster for solving instances with
constraints defined by the paint shop than the one in section 4.1.1. Although instances
like the ones defined by CSPlib without any colours can be solved generally with more
ease, the new ILP formulation seems to be better for these instances. Detailed test
results, also in comparison with other methods, are shown in chapter 7.
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5 Variable Neighbourhood Search
(VNS)

Contrary to exact algorithms which always return an optimal solution, heuristics gen-
erate solutions which are good, but not necessarily optimal. In return, the average
runtime decreases significantly. Metaheuristics are top level heuristics which guide other
heuristics. In addition they are independent of the problem descriptions. In [9] an
detailed introduction to Variable Neighbourhood Search (VNS) can be found. VNS is
a metaheuristic which tries to combine the effort to find (local) optima in respect to
several neighbourhoods with the attempt to escape the valleys which contain them. To
achieve this, two complementary concepts are joined: Local Search and Mutation (or
Shaking).

5.1 Local search

1
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xs x
∗

1
x
∗

2

Figure 5.1: Basic local search strategy.

A local search consists of two major steps. First an initial solution x is generated.
Secondly, a defined neighbourhood N (x) is searched. This neighbourhood contains
all solutions x′ which are similar to x in respect to some criteria. For example, if x
denotes a vector of 0-1 variables, x′ may denote a vector where at most two variables
are complementary. Within N (x), the goal is to obtain the solution x∗ with f(x∗) ≤
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5 Variable Neighbourhood Search (VNS)

f(x′), ∀x′ ∈ N (x), if f(x) denotes the objective function for this problem, which has to
be minimised. This is called the best improvement strategy. This procedure is repeated
until no better solutions can be found. As we can see in figure 5.1, x∗1 is found after the
neighbourhood of the initial solution xs was searched.

This best improvement approach might be very time consuming particularly if the neigh-
bourhood N (x) is large. To speed up this method, one can apply a move, i.e. using x′

as new initial solution, as soon as a x′ ∈ N (x) with f(x′) < f(x) was found. Again this
procedure is carried out until no further improvements can be achieved. This method is
also referred to as first improvement.

Although this method looks less time consuming, it is not ”better” in general than the
best improvement strategy. The local optima which are reached with these two methods
might nevertheless differ from each other. Figure 5.2 shows an example where the next
improvement strategy leads to solution x∗n which lies in the valley containing the global
optimum, whereas the best improvement strategy leads to solution x∗b . This solution lies
in the valley containing a local minimum different to the global one.
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xsx
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n

a

b

Figure 5.2: Different optima are found using the same initial solution xs and best im-
provement (a) or next improvement (b) strategy.

It might be useful to examine more than just one neighbourhood to obtain better re-
sults which leads to Variable Neighbourhood Descent (VND)—an approach which scans
different, perhaps partly overlapping neighbourhoods consecutively. If no improvement
can be achieved in the first neighbourhood N1(x), the second neighboorhood N2(x) is
browsed. If an improvement x′ in N2(x) is found, the search restarts with N1(x′) again.
This procedure is repeated until no improvements can be found in any neighbourhood
Ni(x̃) of the currently best solution x̃. If Ni(x) ⊂ Nj(x), there is no reason to iterate
through Ni(x) after Nj(x) was searched. Algorithm 5.1 describes VND in pseudocode.
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5 Variable Neighbourhood Search (VNS)

Algorithm 5.1: VND(x)

Input: x denotes the initial solution
Initialisation: define neighbourhoods Nt, for t = 1, . . . , tmax
Output: finds a local optimum in respect to all available neighbourhoods Nt, for

t = 1, . . . , tmax

repeat1

t← 12

repeat3

find x∗ with f(x∗) < f(x′), ∀x′ ∈ Nt(x)4

if f(x∗) < f(x) then5

x← x∗6

t← 17

else8

t← t + 19

until t = tmax10

until no improvement is achieved11

return x12

5.2 Shaking

The major disadvantage of Local Search algorithms is that a valley containing a local
optimum which is not equal to the global optimum can never be escaped from, especially
if no worse solutions are tolerated during the search. The usage of multiple neighbour-
hoods as in VNS generally reduces this disadvantage but cannot solve it entirely. To
avoid getting stuck on such a local optimum, some new techniques have to be intro-
duced.

In contrast to multistart strategies, where Local Search restarts with completely new
initial solutions several times, Shaking changes only a few variables randomly. This
leads to slightly different starting points which might yield new local optima when Local
Search is applied again. Exemplary code is shown in algorithm 5.2.

Algorithm 5.2: Shaking(u, x)

Input: u has to be smaller than the total number of variables, x denotes the current
best solution

Output: a slightly mutated solution

for i← 1 to u do1

change a—yet unchanged—variable xi randomly2

return x3
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Figure 5.3: An exemplary objective function (solid line) with the general tendency
(dotted line).

This approach is often better than multistart strategies, because often good local optima
are related to each other, which means that at least some of the variables are set to the
same values for two (local) optima [9]. For example, it can be said that certain subse-
quences of cars are better than other sequences because in general they lead to lower
values of the objective function. Therefore it is better to retain good subsequences and
replace only cars not included in good sequences. Figure 5.3 shows an exemplary objec-
tive function (solid line). The dotted line marks the general tendency of the objective
function. It is clear that in this exemplary case this local rearranging is more efficient
than multistart.

5.3 General VNS

To take advantage of VND and Shaking, the General Variable Neighbourhood Search
scheme has been introduced. This strategy starts with an initial solution x and improves
it by using VND and Shaking. First VND is used to find a local optimum x∗ for all
given neighbourhoods Ni(x). If no better solution can be achieved by VND, a mutation
move is applied to the current best solution x̃ which leads to a new starting solution for
VND. If the new computed local optimum x∗ is better than x̃, x∗ is used as new best
solution x̃. This procedure is repeated until x∗ obtained by VND is as good as x̃ (or
worse).

If no better solution can be obtained, the number of variables affected by a mutation
move is increased. After this the procedure starts again using the original number of
variables for mutation moves. See algorithm 5.3 for a pseudocode of VNS.

VNS stops if some conditions are met, e.g. a given amount of computation time has been
reached, or the number of iterations exceed a certain threshold. Other more sophisti-
cated stopping conditions can be thought of like the number of iterations since the last
improvement, etc.
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5 Variable Neighbourhood Search (VNS)

Algorithm 5.3: VNS()

Initialisation: define umax, the maximum number of variables possibly shaked; define
neighbourhoods Nt, for t = 1, . . . , tmax used by VND; generate initial
solution x

Output: an arrangement along the production line

repeat1

u← 12

repeat3

x← Shaking(u, x)4

x′ ← VND(x)5

if f(x′) < f(x) then6

x← x′7

u← 18

else9

u← u+ 110

until u = umax11

until stopping conditions are met12
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6 Combination of exact methods and
metaheuristics

Since exact methods are not applicable for large instances of the Car Sequencing Prob-
lem, i.e. instances with a large number of cars to be arranged, all methods with acceptable
runtime are heuristics [6, 7, 11, 15, 16, 17].

Additional to the improvement of exact methods, I implemented two algorithms based
on a combination of metaheuristics and exact methods. Commonly known or newly de-
veloped metaheuristics are used to guide exact algorithms. This hybridisation combines
the advantages of both approaches. The runtime to a feasible solution is reduced and at
least local optima can definitely be reached.

6.1 Combination VNS - ILP

In chapter 5 the basic principle of Variable Neighbourhood Search (VNS) was presented.
To apply VNS to the Car Sequencing Problem, I have to provide the Shaking algorithm
and I must define the different neighbourhoods Nt examined by VND. Some of the
neighbourhoods use ILP approaches. This means that each time a neighbourhood is
examined, a solution x∗ with f(x∗) ≤ f(x′), ∀x′ ∈ N (x) is definitely found (if enough
runtime was provided).

6.1.1 CarSPShaking

The Shaking algorithm used for my thesis is a simple one. VNS defines umax as upper
bound for the number of variables to be shaken. CarSPShaking performs up to umax
random swap moves. For my thesis umax is set to 3/4 · n. Since this move only has
to ensure that valleys containing local minima can be escaped, no complex computions
need to be done. Speed is much more important, because this random move can be
applied many times. Algorithm 6.1 shows this simple shake move.
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Algorithm 6.1: CarSPShaking(u, x)

Input: u has to be smaller than the total number of variables, x denotes the current
best solution

Output: a slightly mutated solution

for i← 1 to u do1

select two positions j, k randomly2

swap cars at positions j, k3

return x4

6.1.2 Neighbourhoods

My algorithm iterates through six different neighbourhoods: Swapping, Inserting, two
variations of Selection by Random and two variations of Selection by Costs. All but the
first two neighbourhoods are examined using the ILP approach described in section 4.2.
Although four of them are defined similarly, they cover different subsets of all possible
(integer) solutions. The neighbourhoods Swapping and Inserting utilise moves defined
by Gottlieb et al. in [6].

Random moves like Shaking might violate the hard constraints defined by the paint
shop. Additional to the violations of constraints defined by the working bays and colour
changes, the violations of hard constraints are counted when evaluating the objective
function. Each violation of hard constraints is penalised with n ∗ costf added to the
objective. Therefore it is better to change the colour at each position than violating a
hard constraint once.

x . . . sequence of cars of length ≥ 1
xi . . . car at position i
πi . . . subsequence of x of length ≥ 0

< xi > . . . subsequence of x of length = 1
cost(i) . . . costs of violations at position i
· . . . concatenates two subsequences

Table 6.1: Symbols used for definition of the neighbourhoods

In the subsections specifying the different neighbourhoods, I will present a formal de-
scription for each of them. Table 6.1 shows the used symbols. πi · πj denotes the
subsequence of cars in πi followed by the subsequence πj.

6.1.2.1 Swapping

The neighbourhood NS consits of all solutions generated by swapping two cars (see fig-
ure 6.1). There exist O(n

2−n
2

) different neighbours within this neighbourhood. Although
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a b

Figure 6.1: The cars at positions a and b are swapped. All other cars stay at their
position.

the move itself is very easy, the evaluation of the objective function is a bit tricky. To
reduce computation time, the objective function is recalculated for positions affected
by the move only. In addition to the positions swapped, these are all positions in the
interval [i, i+mc− 1] and [j, j +mc− 1], ∀c ∈ C. If these two intervals are overlapping,
only positions i to j−1 and i+mc to j+mc−1 have to be reevaluated. The evaluation
time for this move is in O(2 ·mc).

Formal NS can be written as:

NS(x) = { x′ : x′ = π1· < xi > ·π2· < xj > ·π3 ∧ x = π1· < xj > ·π2· < xi > ·π3 } (6.1)

6.1.2.2 Inserting

a b

Figure 6.2: One car is shifted from position b to position a. All cars between these two
positions are moved one position back.

The neighbourhood Inserting (NI) is similar to NS but only one car is rearranged. This
car is removed from position i and inserted again at position j. Therefore all cars placed
between positions i and j are moved one position forward or backward (see figure 6.2).
There are at most n2 − n different neighbours. Again, the reevaluation of the objective
function can be tricky. This time all costs raised by cars between positions i and j
have to be reevaluated. Additionally the violations for the positions in the interval
[max{i, j},max{i, j}+ s] have to be counted.

Table 6.2 (a) presents an example arrangement. The components of the cars are ne-
glected for simplicity. This example shows why the evaluation is more complex, although
Swapping is very similar.

If the maximum colour block s is set to 3, it is clear that the arrangement in table 6.2 (a)
has 2 violations of paint shop constraints. After removing the car at position 6 and
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inserting it again at position 1, there is one additional colour change. In return one
paint shop constraint violation at position 8 is eliminated. Table 6.2 (b) shows the
resulting arrangement if the car at position 6 is inserted at position 1.

If only the positions in the intervals [1, 4] and [6, 9], ∀c ∈ C are reevaluated, as it is
done for swap moves, the violation at position 4 in the original arrangement is corrected
but the new violation at position 5 would be ignored. Additional the colour change at
position 5 would be counted two times: once at position 5 (although there is no colour
change left) and once at its new position 6. Using 1 as costs for colour changes and 100
as costs for violations, the original arrangement would evaluate to 201 (2 violations plus
1 colour change). Recalculating intervals [1, 4] and [6, 9] would yield a change of −198,
which would result in 3 as costs for the new arrangement. The actual costs for the new
arrangement are 102.

Although the current evaluation of an insert move requires O(n) time, it can be achieved
in constant time O(mc).

position 1 2 3 4 5 6 7 8
car

blue X X X X
green X X X X

violation E E
colour change •

(a)

position 1 2 3 4 5 6 7 8
car

blue X X X X
green X X X X

violation -E E -E
colour change • ◦ •

(b)

Table 6.2: The arrangement before the insertion move was applied (a); and after-
wards (b). E indicates a violation, • is a colour change, ◦ is a removed colour change
and -E is a removed violation.

The formal description of this neighbourhood is

NI(x) = { x′ : x′ = π1· < xi > ·π2 · π3 ∧ x = π1 · π2· < xi > ·π3 }∪ (forward)

{ x′ : x′ = π1 · π2· < xi > ·π3 ∧ x = π1· < xi > ·π2 · π3 } (backward) (6.2)

If π2 =< xj >, an insertion move is equal to a swap move swapping two consecutive
cars.
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6.1.2.3 Selection by Random

A swap move rearranges only two cars and An insertion move rearranges only one car.
Especially if the current solution is close to a local optimum, the number of favourable
moves is low. This means that in general only small improvements can be achieved.

pool

Figure 6.3: Cars are set free randomly, which means that they are put into a pool.
Afterwards they are rearranged to the free positions.

Within this neighbourhood NRz all solutions with z free positions and n− z fixed posi-
tions are located. These z free positions are chosen by random (see figure 6.3). To scan
this neighbourhood, the ILP defined in section 4.2.1 is used. If position i is fixed with
configuration k, the variable pki is set to 1 and all other variables pji with j ∈ K and
j 6= k are set to 0. If the position i is set free, all variables pki with k ∈ K are set free
too. Examining this neighbourhood always leads to x∗ with f(x∗) ≤ f(x′), ∀x′ ∈ NRz if
enough computation time is available. If CPLEX consumes too much time solving the
ILP, it is stopped and I use the best solution found so far as x∗.

Within this neighbourhood, there are
(
n
z

)
different possibilities to select z positions.

Once the free positions are choosen, there are O(n!) different arrangements taking the
z free cars into account.

Below the formal description is presented:

NRz(x) =
{
x′ : x′ = π1· < xj1 > ·π2 · . . . · < xjz−1 > ·πz· < xjz > ·πz+1 ∧
∧ x = π1· < xi1 > ·π2 · . . . · < xiz−1 > ·πz· < xiz > ·πz+1

}

with {j1, . . . , jz−1, jz} = {i1, . . . , iz−1, iz} ⊆ {1, . . . , n} (6.3)

6.1.2.4 Selection by Costs

The neighbourhood NCz is equal to neighbourhood NRz except for the strategy for
selecting the free variables. In contrast to NRz , I chose the positions which cause the
most costs. Since the cars at these positions violate more constraints than the other
cars, it is promising to rearrange these cars first. If there are more than z cars causing
the maximum costs, cars at the beginning of the sequence are favoured. Altogether this
neighbourhood constists of up to n! different arrangements.
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Neighbourhood NCz is defined as

NCz(x) =
{
x′ : x′ = π1· < xj1 > ·π2 · . . . · < xjz−1 > ·πz· < xjz > ·πz+1 ∧
∧ x = π1· < xi1 > ·π2 · . . . · < xiz−1 > ·πz· < xiz > ·πz+1

}

with I = {j1, . . . , jz−1, jz} = {i1, . . . , iz−1, iz} ⊆ {1, . . . , n} (6.4)

and
∑

k∈I
cost(ik) = max

S⊂{1,...,n}∧|S|=z

{∑

k∈S
cost(ik)

}
(6.5)

6.1.2.5 Order of neighbourhoods

VND (see section 5.1) needs tmax different neighbourhoods. tmax is set to 6 for my
thesis.

First swap moves are applied to the current best solution, because Swapping is the
smallest neighboorhood of all. Then Inserting is considered. Afterwards Selection by
Random is applied with n/7 free variables followed by Selection by Costs also with n/7

free variables. Neighbourhoods 5 and 6 are Selection by Random and Selection by Costs
too, but this time with 2n/7 free variables.

To summarise:

N1 = NS N2 = NI N3 = NRn/7
N4 = NCn/7 N5 = NR2n/7

N6 = NC2n/7

6.1.3 Initial solution

There are three different heuristics for generating the initial solution used by VNS. The
first places all cars with configuration 1 to the first positions along the assembly line.
Then the cars with configuration 2 are placed follwing them and so on. This is done
until all commissioned cars are placed along the production line. I call this heuristic
Naive Arrangement.

The second heuristic—called Radnom Arrangement—places the cars along the produc-
tion line like the first heuristic. Afterwards the cars are randomly swapped. Altogether
n random swap moves are applied.

The last method for computing an initial solution simply performs Partitioning with
First Incumbent strategy (see section 6.2.3). If no solution is found until a given amount
of computation time has elapsed, the same initial solution as generated by the first
heuristic is used.

In chapter 7 test results using different heuristics for computing the start solution are
shown.
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6.2 Partitioning

In addition to the implementation of VNS, I developed Partitioning. This is a heuris-
tic which partitions the Car Sequencing Problem in two subproblems: first reducing
the violations for working bay constraints and then minimising the number of colour
changes.

Although these two subproblems are very similar, they differ in some situations. As
explained in section 2.3.2 the demands defined by the paint shop and the constraints de-
fined by the working bay can be expressed as l

m
. But the domains for l differ significantly.

For paint shop constraints l has to be equal to m−1, whereas for working bay constraints
l can consist of values from 1 to m−1. Furthermore paint shop constraintsin general are
longer than constraints defined by the working bays, i.e. s + 1 > maxc∈C\F {mc}. Last
but not least paint shop constraints are hard constraints, thus no violations are allowed
for these constraints.

To achieve good results the solutions to both above mentioned subproblems must satisfy
following requirements:

Condition 1 Unnecessary violations of the currently considered constraints have to be
prevented.

Condition 2 Although only a part of the constraints are used for evaluating the objective
function, the solution found must be feasible to the entire problem.

Especially condition 6.2 is of particular importance, because if the currently available
solution is not feasible to the entire problem, the second part of Partitioning probably
cannot find any solution at all.

I combined this strategy with the ILP presented in section 4.2.1. I decided to reduce
the number of violations of the assembly line constraints first, because the constraints
defined by the paint shop are harder to solve using ILPs. After the first step, one colour
is assigned to each position. In the second step, the components already assigned to the
positions along the production line are considered. This makes the problem of placing
the colours more complicated, as some combinations of components along the assembly
line do not get along with certain colours. With this strategy, the general problem
becomes easier, because we do not have to consider all constraints at the same time.
Algorithm 6.2 shows the basic principle of Partitioning written in pseudocode.

Algorithm 6.2: Partitioning()

Data: x current solution
Output: an arrangement along the assembly line

x← solve CarSP using the ILP in respect to constraints defined by the working bays1

solve CarSP using the ILP with components fixed regarding to x2

38



6 Combination of exact methods and metaheuristics

For the combination I had to adapt the ILP formulation twice: for part one neglecting
the colour changes and for part two setting variables to previously computed values,
respectively.

6.2.1 ILP for part one

For the first part, i.e. reducing the number of violations of the working bay constraints,
constraints (4.33) to (4.35) have to be removed. In addition, the objective function (4.18)
must be reformulated to

min
∑

c∈C\F

(
costc ∗

n−1∑

i=0

gci

)
(6.6)

Now the ILP is solved producing a solution with a minimum objective subject to the
constraints defined by the working bays. Since constraint (4.31) and (4.32) are still
considered, the provided solution conforms condition 6.2. Furthermore the output of
this part meets condition 6.2 too.

6.2.2 ILP for part two

For the second part of Partitioning, i.e. minimising the number of colour changes, the
ILP presented in section 4.2.1 has to be adapted once again. This time additional
constraints are added to the original formulation. These constraints make sure that the
distribution of components computed so far remains unchanged in the final solution.
Therefore matrix B′ is introduced, which is the final output of part one. The entries b′ci
are binary varibles with

b′ci =

{
1 if car at position i contains component c

0 otherwise
(6.7)

Now the additional constraints can be defined as

pki ≤ ack ∗ b′ci + (1− ack) ∗ (1− b′ci) ∀c ∈ C\F, ∀k ∈ K, ∀i ∈ {0, . . . , n− 1} (6.8)

As a result of this formulation, the output of this extended ILP forms a valid solution to
the entire problem. Because of the additional constraints defined by the inequation (6.8),
this part meets requirement 6.2. Furthermore the ILP leads to an optimum in respect
to the previously computed preconditions which is consistent with condition 6.2.
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6 Combination of exact methods and metaheuristics

6.2.3 First Incumbent strategy

Since solving the ILPs for part one and part two on their own can consume much time,
a next improvement strategy can be applied. In contrary to solving the ILPs exact,
this strategy only delivers the first feasible solution to the subproblems. Although this
approach reduces the runtime of each part, it is possible that no solution can be found
in a given amount of time.

This strategy is used for computing initial solutions for the VNS algorithm (see chap-
ter 5).
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In this chapter, I will present the results of my programs in comparison to other solutions,
which can be found in literature. All results were computed on a Intel Pentium 4 with 2
GB RAM and 2.8 GHz. All programs are written in C++ using the library EALib 2.0,
which is written in C++ too and is actively developed by the Institute of Computer
Graphics and Algorithms at the Vienna University of Technology, Austria. For solving
ILPs the commercial general purpose solver CPLEX 9.0 by Ilog, Inc., is used.

For testing I used instances defined by Renault for the ROADEF Challenge 2005 [1]
and instances of CSPlib [5] provided by Lee et al. and Gent et al. While the instances
from Renault contain up to 1300 cars to be arranged in respect to constraints defined
by the working bays and the paint shop, instances in the CSPlib consist of up to 200
cars without any paint shop constraints.

As stated in section 2.3.1 there are differences in counting the number of violations
between ROADEF and CSPlib. I decided to use the method defined by ROADEF.

7.1 Results on CSPlib instances

CSPlib [5] itself is a library of instances and usefull tools for problems modeled with
constraints. Beside problems derived from the area of bioinformatics, bin packing, com-
binatorial mathematics, etc., there are also problems from the field of scheduling in-
cluded. The instances for the Car Sequencing Problem in CSPlib are divided in two
sets. The first set was proposed by Lee et al. [12] and consists of 70 instances with 200
cars. There are 5 components and 17 to 30 configurations. For all of the instances at
least one solution without any violations is prooven to exist. The utilisation rate, i.e. the
percentage of cars requiring a component in regard to all cars of the instance, is 60 to 90.
The instances are named <utile-rate>-<problem-number>, e.g. 60-01 indicates instance
number one with utilisation rate 60%. There are 10 instances for each utilisation rate.
I refer to them as <utile-rate>-*.

The second set of nine instances was presented by Gent et al. [5]. They consist of
only 100 cars, again 5 components and 19 to 26 different configurations. Although
these parameters indicate easier instances, they are harder to solve than the first set.
For four of these instances, it is known that there is at least one solution without any
violation. Four other instances were proved to be unsolvable which means that at least

41



7 Tests and results

60-* 65-* 70-* 75-* 80-* 85-* 90-*

C-ILP 7.98 10.93 10.74 20.86 29.63 29.84 54.13
K-ILP 15.92 15.48 25.30 36.07 50.63 59.65 99.34

GRAVEL 5.74 12.43 21.48 27.80 47.70 68.42 127.78

Table 7.1: Average times for solving the first set of CSPlib instances to optimality in
seconds.

60-* 65-* 70-* 75-* 80-* 85-* 90-*

C-ILP 9.2 9.06 2.78 11.8 15.71 13.62 24.24
K-ILP 9.5 7.72 5.57 19.93 18.09 22.32 42.5

GRAVEL 4.17 6.58 10.05 13.04 27.22 37.47 65.22

Table 7.2: The standard deviation from the average times presented in table 7.1.

one violation is unavoidable. For the ninth instance there is no optimal solution known.
No new results have been achieved during my test runs for this set of instances.

7.1.1 ILPs

Since the ILP formulation proposed by Gravel et al. in [7] counts the number of positions
but not the amount of violations, I adopted their ILP, see appendix B for the modified
formulation. This adoption also takes the day before into account. Although this is not
necessary for instances of the CSPlib, this allows comparison using other instances (see
section 7.3).

Table 7.1 and 7.2displays the runtime results obtained solving the first set of the CSPlib
instances. All instances with the same utilisation rates are grouped for compensation
of outliers. C-ILP indicates the ILP defined in section 4.1. K-ILP stands for the
formulation presented in section 4.2. GRAVEL indicates the adopted ILP proposed by
Gravel et al. Since at least one solution without any violation exists for this set of
instances and each of the ILP delivers the optimal solution in acceptable time, I present
the average time over all instances to one utilisation rate for finding optimal solutions
and proving their optimality.

The formulation by Gravel et al. yields the best results for the group of instances with
utilisation rate 60. For all other groups of instances my approach is the fastest one. For
groups 85-* and 90-*, even the enhanced formulation is better than the approach by
Gravel et al.
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60-* 65-* 70-* 75-* 80-* 85-* 90-*

best solution 0.77 0.86 0.9 1.07 1.38 56.31 2.01
deviation 0.1 0.1 0.08 0.28 0.36 163.94 0.34
optimality 10 10 10 9 7 3 1

Table 7.3: The average time and the standard deviation for finding the best obtained
solution.

7.1.2 VNS

Although the CSPlib instances can be solved by the ILP formulations in acceptable
time, I tested VNS on them too. VNS did not always yield the optimal solution, which
is 0 for the CSPlib instances. Therefore table 7.3 shows the average time for finding
the best achieved solution. Further it presents the number of instances for which the
optimal solution was found.

7.1.3 Partitioning

Since Partitioning is developed for instances with working bay and paint shop con-
straints, it makes no sense to test Partitioning on the CSPlib instances. Partitioning
would yield the same results as K-ILP.

7.2 Results on ROADEF instances

ROADEF published three sets of test instances: set A, set B and set X [1]. The last
set was used for the final evaluation procedure and ranking. I performed tests with all
three sets for comparison with the results obtained by the ROADEF Challenge.

Set A consists of 16 instances with 334 to 1314 cars, 11 to 24 colours, 6 to 22 components
and 36 to 287 configurations. Set B provides a wide range of 45 instances with 65 to
1270 cars, 4 to 20 colours, 4 to 25 components and 11 to 339 configurations. There are
19 instances with 65 to 1319 cars, 5 to 20 colours, 5 to 26 components and 10 to 328
configurations in set X.

For all ROADEF instances with more than 500 cars, no useable results could be ob-
tained using the ILP formulations. Therefore I developed the VNS approach with six
different setups. I tested three different heuristics for providing an initial solution: Naive
Arrangement, Random Arrangement, Partitioning with First Incumbent strategy.

Naive Arrangement simply places the configurations along the production line without
any additional computation. Therefore this method is very fast and the most computa-
tion time is used for examining the different neighbourhoods.
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Random Arrangement places the cars along the production line like the first method.
Afterwards, it applies n random swap moves to the arrangement.

The last method uses Partitioning with First Incumbent strategy as start heuristic, but
the computation time is limited. If there is no solution found after 300 seconds, the
initial solution computed by the first method is used.

det best . . . Naive Arrangement in combination with best improvement
det next . . . Naive Arrangement in combination with next improvement

part best . . . Partitioning in combination with best improvement
part next . . . Partitioning in combination with next improvement
rand best . . . Random Arrangement in combination with best improvement
rand next . . . Random Arrangement in combination with next improvement

Table 7.4: Denotation of names to the six different setups.

Once an initial solution is found, VNS gets started using either best or next improvement
strategy. Table 7.4 shows the denotation of the six different setups and their names used
in further tables and figures. ROADEF best and ROADEF worst refere to the best and
worst solutions among all candidates obtained during the ROADEF Challenge. These
two values are indicated in diagrams using dashed lines. If only one line is visible in
a diagram, these two solution values are very close to each other. Furthermore bold
values indicate the best solution value for the corresponding instance. For rand best
and rand next the values present the average over 11 runs. The values in brackets
indicate the standard deviation.

I limited the runtime of VNS to 600 seconds for all instances published by ROADEF.
This is the same time limit as used at the ROADEF Challenge.

7.2.1 Set A

Tables 7.5 and 7.6 show the absolute values of the objective function obtained for a few
instances contained in set A. Figure 7.1 presents a graphic representation. As we can see,
the best improvement strategy is generally worse than the next improvement strategy.
This is because the neighbourhoods Swapping and Inserting consist of too many possible
solutions. Therefore VND is not able to complete the search in these neighbourhoods
using best improvement. Furthermore we see that VNS using a random initial solution
is usually worse than using one of the other two heuristics.
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det best part best rand best ROADEF worst

(1) 97159817 93106632 102989604 (9688221) 71118491
(2) 81372363 72365174 104255096 (5752215) 63376290
(3) 113070558 114070587 129986772 (9309780) 82165438
(4) 128399127 128399161 131554928 (9287529) 75477143
(5) 31102368 27102368 31632003 (3914997) 27135374
(6) 23207713 24200774 30585611 (2867805) 27202853

Table 7.5: Results obtained using set A with best improvement.

det next part next rand next ROADEF best

(1) 69078468 66083470 67613095 (7686433) 4000302
(2) 72365174 72365174 62207252 (6080618) 4000302
(3) 67082428 67082428 95618711 (10163553) 4034309
(4) 49411121 49411121 95683561 (7160459) 4280079
(5) 25085363 26082354 29989630 (2642313) 61290
(6) 25209729 25209729 27027781 (1403191) 174612

Table 7.6: Results obtained using set A with next improvement.

Figure 7.1: Results for the instances: 024 38 3 EP ENP RAF (1),
024 38 3 EP RAF ENP (2), 024 38 5 EP ENP RAF (3), 024 38 5 EP RAF ENP
(4), 048 39 1 EP ENP RAF (5) and 048 39 1 EP RAF ENP (6).
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7.2.2 Set B

The results obtained for set B are shown in tables 7.7 and 7.8 and figures 7.2 and 7.3. For
instances (1)–(5) VNS was better than the best solution obtained during the ROADEF
Challenge. Furthermore it is interesting that there is little difference between the various
strategies used for solving these instances. For instances (6)–(9) there is more variance
between the methods I proposed, but the results are acceptable for all instances.

det best part best rand best ROADEF worst

(1) 1327780 1327776 1197090 (28414) 4096795
(2) 53073107 53057109 53611015 (503403) 72687159
(3) 53074155 53074155 53350130 (446628) 54078415
(4) 61057057 61057057 61694513 (771196) 67061061
(5) 62047063 62047063 61410339 (643172) 67053060
(6) 207182 207182 270651(6636) 234094
(7) 222389 220356 236544 (5264) 233461
(8) 319422 319407 347203 (5498) 317852
(9) 222389 209315 351764 (7152) 211317

Table 7.7: Results obtained using set B with best improvement.

det next part next rand next ROADEF best

(1) 1104672 1103671 1161685 (42187) 3912479
(2) 53068109 53061107 5324683 (386487) 54003076
(3) 53082133 53082133 53077040 (2540) 54049124
(4) 61057061 61057061 61875421 (574385) 67052049
(5) 61044067 61044067 62137973 (513909) 67036061
(6) 219112 207128 242901 (7391) 130187
(7) 229299 207300 225166 (5646) 161378
(8) 304837 304836 326311 (5642) 172180
(9) 220189 220189 294703 (8640) 189103

Table 7.8: Results obtained using set B with next improvement.
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Figure 7.2: Results for the instances 025 EP ENP RAF S22 J3 (1),
028 ch1 EP ENP RAF S22 J2 (2), 028 ch1 EP RAF ENP S22 J2 (3),
035 ch1 EP ENP RAF S22 J3 (4) and 035 ch1 EP RAF ENP S22 J3 (5).

Figure 7.3: Results for the instances 064 ch1 EP RAF ENP S22 J3 (6),
048 ch1 EP RAF ENP S22 J3 (7), 025 EP RAF ENP S22 J3 (8) and
039 ch3 EP RAF ENP S22 J4 (9).
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7.2.3 Set X

This set was used by ROADEF to calculate the final ranking for the Challenge. Ta-
bles 7.9 and 7.10 show the results obtained by my implementation of VNS. In figures 7.4
and 7.5 diagrams of these values are presented. Again, the next improvement strategy
outperforms best improvement for several instances. For instance (7), I was able to find
a new best solution. In general, VNS produces acceptable results which compete well
with other results obtained during the ROADEF Challenge.

det best part best rand best ROADEF worst

(1) 170025 171022 235093 (7537) 181023.8
(2) 134351 134351 364176 (12340) 88237
(3) 263336 265336 362807 (6871) 285101
(4) 229000 229000 246625 (4086) 360000
(5) 54000 61000 70454 (2871) 72400
(6) 39000 40000 41636 (3891) 53000
(7) 7101047 7101047 7106951 (1703740) 12103052
(8) 42395095 42407101 44623736 (1850263) 44567925.8
(9) 39119011 39119011 36587453 (2020568) 34951538
(10) 87253070 87249077 67862427 (2903141) 67263119.6

Table 7.9: Results obtained using set X with best improvement.

det next part next rand next ROADEF best

(1) 198013 203024 220911 (9661) 110298.4
(2) 115320 115319 297602 (10788) 69239
(3) 269046 269048 331863 (7613) 231030
(4) 239988 240980 242442 (4327) 197005.6
(5) 59000 54000 69636 (3796) 37000
(6) 41000 41000 38636 (4959) 30000
(7) 8101040 8101040 6374408 (2415365) 8087035.8
(8) 42409110 44420100 44155644 (2801445) 36341495.4
(9) 36113968 39121957 35673470 (2677826) 31077916.2
(10) 65275050 67273056 64286508 (2130224) 61187229.8

Table 7.10: Results obtained using set X with next improvement.
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Figure 7.4: Results for the instances 029 EP RAF ENP S49 J5 (1),
039 CH1 EP RAF ENP S49 J1 (2), 039 CH3 EP RAF ENP S49 J1 (3),
048 CH1 EP RAF ENP S50 J4 (4), 064 CH2 EP RAF ENP S49 J4 (5) and
655 CH1 EP RAF ENP S51 J2 J3 J4 (6).

Figure 7.5: Results for the instances 034 VU EP RAF ENP S51 J1 J2 J3 (7),
028 CH1 EP ENP RAF S50 J4 (8), 048 CH2 EP RAF ENP S49 J5 (9) and
064 CH1 EP RAF ENP S49 J1 (10).
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7.3 Results on new instances

To compare the three ILPs discussed in my thesis in more depth, I created new instances.
These instances include constraints defined by the working bays, constraints defined by
the paint shop and the production of day N − 1. They consist of about 70 cars with
ca. 10 different configurations with up to 10 components and 5 colours. The instances
were produced by dividing ROADEF instances into smaller instances. In appendix C
two of these instances are presented. Figure 7.6 shows the typical behaviour of the three
different ILP approaches. The enhanced ILP reaches optimality relatively fast. The
other two approaches need much more time to find the optimal solution, although all
three approaches find good solutions in acceptable time, if the size of the instances is held
small (about 70 cars including constraints by the paint shop and the assembly shop). In
addition, much time is spend on proving the optimality of an obtained solution. Again,
figure 7.7 shows the typical behaviour of these three approaches.

Figure 7.6: Solution process for instance 1 using the ILPs.
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Figure 7.7: The relation between the time needed to reach an optimum and the time to
prove it for instance 2.

51



8 Conclusion and future work

8.1 Conclusion

The tests showed that solving the Car Sequencing Problem exact using ILP approaches
works fine for small instances with up to 70 cars including paint shop and assembly shop
constraints. I was able to half the required computation time for some instances of the
CSPlib. Test runs using ILPs on ROADEF instances did not yield any useable results
so far, since these instances consist in general of 500 cars and more. The ROADEF
instances are harder to solve than the instances in the CSPlib, since there are much
more cars and constraints in these instances.

To handle larger instances including paint shop constraints, I defined different neigh-
bourhoods to be used in a Variable Neighbourhood Search approach. Two of these
neighbourhoods were proposed by Gottlieb et al. The other neighbourhoods are ILP
based, trying to combine exact methods with the metaheuristic. For 6 instances defined
by ROADEF, I was able to achieve better results than the best obtained solution dur-
ing the ROADEF Challenge. Although the Variable Neighbourhood Search performs
well, some additional work should be done for achieving even better output. The defi-
nition and implementation of the neighbourhoods should be improved especially, since
for some test instances the program did not find a local optimum in respect to the first
two neighbourhoods.

I also proposed a heuristic called Partitioning, which tries to solve this problem by
reducing the search space. Since many of the instances defined by ROADEF consist
of more than 300 cars and more than 10 constraints for components only, solving this
reduced problem in acceptable time is too hard for my ILP based approaches.

8.2 Future work

To achieve better results, especially on instances including paint shop constraints, some
additional improvements should be applied to the methods discussed in this thesis.
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8.2.1 Reimplementing Swapping and Inserting

The test runs revealed that VNS is not able to find a local optimum in respect to
the neighbourhoods Swapping and Inserting especially for large instances. This is partly
due the fact, that the evaluation of these neighbourhoods consumes too much computing
time. Therefore the evaluation function has to be reimplemented. At this time for each
potential move the change in the objective function is recalculated. Maybe the evaluation
is faster, if only the differences between two possible moves are evaluated. Furthermore
it should be examined if some moves can be excluded from the set of potential promising
moves.

8.2.2 Combination of best and next improvement

For some instances the next improvement strategy yields much better results than best
improvement. On the other hand, if the number of promising moves within a neigh-
bourhood is much smaller than the number of all imaginable moves, best improvement
strategies can lead to better performances. Therefore I think it is promising to combine
these two methods.

The basic principle is presented in algorithm 8.1. The idea is to reduce the size of the
neighbourhood N (x), if there are many good moves in the neighbourhood. A good move
is a move decreasing the objective function if a minimum is searched. If the number of
such promising moves decreases, the neighbourhood N (x) is searched more exhaustively,
until no better solution can be found.

NRed(x) denotes the reduced neighbourhood of the current best solution. N C
Red(x) con-

tains all solutions from N (x) which are not within NRed(x). In other words

NRed(x) ∪N C
Red(x) = N (x)

and
NRed(x) ∩N C

Red(x) = {}
p denotes the relative size of NRed(x) in respect to N (x):

p =
|NRed(x)|
|N (x)|

The two functions ADV(p) and RED(p) advance and reduce the parameter p, respec-
tively.

ADV(p) : p← |NRed(x)|+ yb
|N (x)|

RED(p) : p← max

{
z,
|NRed(x)| − yg
|N (x)|

}
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Algorithm 8.1: NextBestImprovement(x)

Input: x denotes the initial solution
Data: x∗ indicates the current best solution; z indicates a threshold for minimum size

of NRed(x)
Initialisation: set z to any value ∈ [0, 1]
Output: finds a local optimum in respect to the neighbourhood N (x)

x∗ ← x1

repeat2

x∗ ← best improvement within NRed(x)3

yg ← number of good moves within NRed(x)4

if f(x∗) = f(x) then5

x∗ ← next improvement within N C
Red(x)6

yb ← number of tried moves within N C
Red(x)7

ADV(p)8

else9

RED(p)10

until no improvement was achieved and p/n ≥ 111

return x∗12

yb denotes the number of moves which are tried out until an improvement was found
when examining N C

Red(x), whereas yg is the number of good moves in NRed(x).

8.2.3 Additional neighbourhoods

At the moment there are six different neighbourhoods examined by VNS. Especially the
strategy of setting cars free in neighbourhoods N3–N6 should be reconsidered. Choosing
to randomly rearrange a given amount of cars possibly unties good sequences. On the
other hand, choosing cars with many violations favours cars with difficult configurations.
Therefore a rearrangement results in very similar solutions. Some new methods for
setting cars free need to be thought of.

At present, there are only very large neighbourhoods. Using moves which take only
similar cars into account would add some new smaller neighbourhoods. A new type
of swap moves can be thought of, which only considers cars which differ in one or two
components. Another fast move would be shifting one car only two or three positions,
since the violations for only few positions have to be recalculated.

Instead of rearranging single cars only, it might be promising to move complete sequences
of cars. These block moves have been used by Perron et al. [15] and Hu [10]. There are
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two variants: swap block moves and shift block moves. Similar to moves affecting single
cars, these moves swap to sequences of cars or shift one sequence forward or backward.

8.2.4 Modified Variable Neighbourhood Search

VNS, as described in chapter 5, tries to find a local optimum in respect to all defined
neighbourshoods by examining the first neighbourhood until no further improvements
can be achieved. Afterwards VNS iterates over the second neighbourhood. As soon as an
improvement could be found, VNS restarts with examining the first neighbourhood.

This strategy can be changed into examining the current neighbourhood until no further
improvements can be achieved in this neighbourhood. Afterwards, the search process
restartes at neighbourhood one if at least one better solution was found. If no new local
optimum was reached, the search continues with the next neighbourhood. Although this
strategy differs only in detail from the VNS as described above, it might uncover new
solutions.

Another approach is to change the strategy for finding a local optimum completely. The
method used by either best improvement or next improvement only uses one solution
within the current neighbourhood for a step towards the (local) optimum. Many other
interim solutions are disregarded.

To take advantage of all neighbours within the current neighbourhood one could apply
Depth First Search (DFS) or Breadth First Search (BFS). Since there are potentially
thousands of promising neighbours, DFS should be adapted. Algorithm 8.2 shows a
modified version of DFS using a best improvement strategy for searching the neighbour-
hood N (x). This approach returns the best achievable solution using the defined moves.

Algorithm 8.2: DFSForCSP(x, d)

Input: x denotes the initial solution; d denotes the current depth
Data: x∗ indicates the current best solution
Initialisation: set z to any value > 1
Output: finds a local optimum in respect to the neighbourhood N (x)

x∗ ← x1

if d ≥ z then2

return x∗3

forall x′ ∈ NG(x) do4

xr ← DFSforCSP (x, d+ 1)5

if xr is better than x∗ then6

x∗ ← xr7

return x∗8
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NG(x) denotes all neighbours of x which can be obtained when applying a good move.
To expand the search space, NG(x) can be replaced with N (x), for example. In contrast
to commonly used DFS, this approach stops after a given depth is reached. As the case
may be, z is set to smaller values for larger instances and vice versa.

8.2.5 Expansion of Partitioning

Partitioning, as proposed in this thesis, arranges the cars in respect to the working bay
constraints first. After this, Partitioning takes the paint shop constraints into account.
Hu showed in his master thesis that arranging the cars in respect to the paint shop
constraints only can be done in polynomial time [10]. Therefore it might be interesting
to arrange the cars along the production line in respect to the paint shop constraints
first. In a second step, an adapted version of the ILP proposed in section 6.2.1 produces
an output which minimises working bay constraints in respect to the result of step one.

8.2.6 Relative vs. absolute

Many approaches including the strategies proposed in this thesis place cars or configura-
tions at absolute positions along the production line. Although this absolute placement
is necessary in the last step of the scheduling process, it might be promising to pay
more attention to the relative position of a car in regard to its preceding and succeeding
vehicles.
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A Original ILP formulation by Hu

This formulation uses the symbols defined in table 4.1. For a detailed description, I refer
to [10].

objective

min
∑

i∈C\F

n∑

j=mi

vij +
∑

i∈F

n∑

j=2

wij (A.1)

subject to

n∑

i=1

xij = 1 ∀j ∈ {1, . . . , n} (A.2)

n∑

j=1

xij = 1 ∀i ∈ {1, . . . , n} (A.3)

pi0 = 0 ∀i ∈ C\F (A.4)

pik = pik−1 +
n∑

j=1

bji · xjk ∀i ∈ C\F, ∀k ∈ {1, . . . , n} (A.5)

vij ≥ 0 ∀i ∈ C\F, ∀j ∈ {mi, . . . , n} (A.6)

vij ≥ pij − pij−mi − li ∀i ∈ C\F, ∀j ∈ {mi, . . . , n} (A.7)

qik =

n∑

j=1

bji · xjk ∀i ∈ F, ∀k ∈ {1, . . . , n} (A.8)

s∑

j=0

qik+j ≤ s ∀i ∈ F, ∀k ∈ {1, . . . , n− s} (A.9)

wij ≥ 0 ∀i ∈ F, ∀j ∈ {2, . . . , n} (A.10)

wij ≥ qij − qij−1 ∀i ∈ F, ∀j ∈ {2, . . . , n} (A.11)
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B Modified ILP by Gravel et al.

This formulation uses the symbols defined in table 4.1. Again, matrix A, vector D and
matrix E are defined as in section 4.1.

ack =

{
1 config k contains component c

0 otherwise
∀c ∈ C, ∀k ∈ K

dc =
∑

k∈K
(ack · δk) ∀c ∈ C

eci =

{
1 if the last but i car required c

0 otherwise
∀c ∈ C, ∀i ∈ {0, . . . ,max

c∈C
{mc} − 1}

Following matrices are used in this formulation too:

xki =

{
1 if car at pos i recieves configuration k

0 otherwise

yci = number of violations at position i for component c

hj =

{
1 if a colour change occured

0 otherwise

objective

costf ·
n−1∑

i=0

(hi) +
∑

c∈C

(
costc ·

n−1∑

i=0

(yci)

)
(B.1)

subject to

n−1∑

j=0

xkj = δk ∀k ∈ K

(B.2)

58



B Modified ILP by Gravel et al.

∑

k∈K
xkj = 1 ∀j ∈ {0, . . . , n− 1}

(B.3)

∑

k∈K

(
j∑

i=0

(ack · xki)
)

+

mc−j−2∑

i=0

eci ≤ lc + ycj ∀c ∈ C\F, ∀j ∈ {0, . . . , mc − 2}

(B.4)

∑

k∈K

(
j∑

i=j−mc+1

(ack · xki)
)
≤ lc + ycj ∀c ∈ C\F, ∀j ∈ {mc − 1, . . . , n− 1}

(B.5)

∑

k∈K

(
j∑

i=0

(afk · xki)
)

+

s−j−1∑

i=0

efi ≤ s ∀f ∈ F, ∀j ∈ {0, . . . , s− 1}

(B.6)

∑

k∈K

(
j∑

i=j−s
(afk · xki)

)
≤ s ∀f ∈ F, ∀j ∈ {0, . . . , s− 1}

(B.7)

h0 ≥
∑

k∈K
(afk · xk0)− ef0 ∀f ∈ F

(B.8)

hj ≥
∑

k∈K
(afk · xkj)−

∑

k∈K

(
afk · xk(j−1)

)
∀j ∈ {1, . . . , n− 1} , ∀f ∈ F

(B.9)
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C New test instances

For testing the different ILP approaches, I defined several new instances. Two of them
are presented in this section.

C.1 Instance 1

This instance consists of 65 cars. The maximum colour block is set to 20. The weights
for the violations are 1000000 for colour changes, 1000 for important constraints and 1
for less important constraints. The first component of each car (c1) has an important
constraint. Table C.2 shows the production of day N − 1. In table C.1 the ratios of the
constraints and the demand for the configurations can be seen.

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 ratio

c1 0 0 1 0 0 0 0 0 0 1 1 1/6

c2 0 0 0 0 0 0 0 0 1 0 0 1/5

c3 1 1 1 1 1 1 1 1 1 1 1 1/2

c4 0 1 0 0 0 0 0 1 0 0 0 1/2

c5 0 1 0 1 0 0 1 0 1 0 1 1/4

c6 0 0 0 0 0 0 0 0 0 0 0 1/5

c7 0 1 0 0 0 1 0 0 0 0 0 1/3

c8 0 0 0 0 0 0 0 0 0 0 0 2/3

c9 0 0 0 0 0 0 0 0 1 0 0 1/28

colour 1 1 1 2 3 3 3 3 3 3 3 20/21

demand 1 1 1 2 32 1 11 7 2 6 1

Table C.1: The configurations for the current day and their demand.
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C New test instances

pos c1 c2 c3 c4 c5 c6 c7 c8 c9 colour

n− 26 0 0 1 0 1 0 0 0 0 4
n− 25 1 0 1 0 0 0 0 0 0 4
n− 24 0 0 1 0 0 0 0 0 0 4
n− 23 0 0 1 0 1 0 0 0 0 4
n− 22 0 0 1 0 0 0 0 0 0 4
n− 21 0 0 1 1 0 0 0 0 0 4
n− 20 0 0 1 0 1 0 0 0 0 4
n− 19 0 0 1 0 1 0 0 0 0 4
n− 18 0 0 1 0 0 0 0 0 0 4
n− 17 1 0 1 0 0 0 0 0 0 4
n− 16 0 0 1 0 1 0 0 0 0 4
n− 15 0 0 1 0 0 0 0 0 0 4
n− 14 0 0 1 0 0 0 0 0 0 4
n− 13 0 0 1 0 1 0 0 0 0 4
n− 12 0 0 1 0 0 0 0 0 0 4
n− 11 0 0 1 0 1 0 0 0 0 4
n− 10 0 1 1 0 0 0 0 0 1 4
n− 9 1 0 1 1 0 0 0 0 0 4
n− 8 0 0 1 0 1 0 0 0 0 4
n− 7 0 0 1 0 1 0 0 0 0 4
n− 6 0 0 1 0 0 0 0 0 0 4
n− 5 0 0 1 1 0 0 0 0 0 4
n− 4 0 0 1 0 1 0 0 0 0 4
n− 3 0 0 1 0 0 0 0 0 0 4
n− 2 0 0 1 1 0 0 0 0 0 4
n− 1 0 0 1 0 1 0 0 0 0 4
n 0 0 1 0 1 0 0 0 0 3

Table C.2: The production of day N − 1 for instance 1.
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C New test instances

C.2 Instance 2

This instance contains 65 cars and the maximum colour block is set to 13. This time
colour changes only raise 1 costs. The weights for low priority constraints are 1000 and
for high priority constraints are 1000000. Again, the first component (c1) has a high
priority constraint. Tables C.3 and C.4 show all relevant informations.

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 ratio

c1 0 0 0 0 0 0 0 0 1 1 1/6

c2 0 0 0 0 0 0 0 1 0 0 1/5

c3 1 0 0 0 0 0 1 0 0 1 1/2

c4 0 0 0 0 0 1 0 0 0 0 1/5

c5 0 0 0 0 1 0 0 0 0 0 1/3

c6 0 0 0 0 0 0 0 1 0 0 1/14

colour 1 2 3 4 4 4 4 4 4 4 13/14

demand 1 1 2 36 7 1 4 4 7 2

Table C.3: The configurations for the current day and their demand.

pos c1 c2 c3 c4 c5 c6 colour

n− 12 0 0 0 0 1 0 5
n− 11 0 0 1 0 0 0 5
n− 10 0 0 0 0 0 0 5
n− 9 0 0 0 0 0 0 5
n− 8 0 0 0 0 0 0 5
n− 7 0 1 0 0 0 1 5
n− 6 1 0 0 0 0 0 5
n− 5 0 0 1 0 0 0 5
n− 4 0 0 0 0 1 0 5
n− 3 0 0 0 0 0 0 5
n− 2 0 0 0 0 0 0 5
n− 1 0 0 0 0 0 0 5
n 1 0 1 0 0 0 4

Table C.4: The production of day N − 1 for instance 2.
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D Curriculum Vitae

Personal Information

18th of Sept. 1980 • Born in Vienna, Austria

Nationality • Austria

Languages • German (native), English (fluent), French (basics)

1987 – 1995 • Piano lessons

since 1987 • Competitive sports (Swimming)

Education

since Oct. 2000 • Student of Computer Science at the Vienna Uni-
versity of Technology, Austria

Oct. 1999 –Oct. 2000 • Civilian Service in Vienna, Austria

Sept. 1991 – Sept. 1999 • Comprehensive School in Stockerau, Austria

Sept. 1987 – Sept. 1991 • Primary School in Korneuburg, Austria
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D Curriculum Vitae

Work Experience

since July 2005 • Employed in the FWF project Combining
Memetic Algorithms with Branch and Cut and
Price for Some Network Design Problem under
grant P16263-N04, Algorithms and Data Struc-
tures Group, Institute of Computer Graphics
and Algorithms, Vienna University of Technology,
Austria

Mar. 2002 – June 2005 • Student assistant, Algorithms and Data Structures
Group, Institute of Computer Graphics and Algo-
rithms, Vienna University of Technology, Austria

August 2001 • Employed as intern, SCHINNER
Vermögenstreuhand- und Versicherungsber-
atungsges.m.b.H.

Software Projects

July 2004 – July 2005 • Redesign of code fragments and implementation of
a distributed framework for MOST; coded in Java

May 2004 – June 2005 • Reimplementing the compiler GaJa for the
GANIMAL-framework; coded in Java

Jan. 2004 – June 2004 • Improvement and reimplementation of code frag-
ments for MOST (Microvariability and Oscilla-
tions of Stars); coded in C

Feb. 2004 – May 2004 • Implementing additional functionality for the
GANIMAL-framework; coded in Java
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