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Abstract

In this paper we present two integer linear programming formulations for the reconstruction of strip shredded text
documents. While the first formulation is based on well known cycle elimination constraints the second one is compact.
Bounds are then computed by a linear programming relaxation as well as a Lagrangian relaxation approach. In addition
a Lagrangian heuristic is introduced providing primal feasible solutions to the problem. Experimental results document
the convincing performance of the proposed methods.
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1. Introduction

In the last years the reconstruction of strip shredded
text documents (RSSTD) became more and more impor-
tant—especially in the fields of investigative sciences and
forensics. At the same time the machines used for destruct-
ing paper documents—so called shredders—were improved
and the strips produced by them got thinner and thinner.
Therefore, it is nearly impossible for humans to recon-
struct strip shredded documents without computational
assistance, which leads to a noticeably increased need for
(semi-)automatic reconstruction systems.

Unfortunately, only a few approaches are published
in literature concerning the automated reconstruction of
shredded paper documents. De Smet et al. [1] propose
methods for extracting features which are in the follow-
ing used for matching two or more strips with each other.
They mainly focus on methods derived from the large field
of image processing and pattern recognition.

In contrast to this, Ukovich et al. [2] used a clustering
algorithm on the given set of strips for identifying those
strips forming one page. Unfortunately, no concrete se-
quence of strips is generated by this method.

In [3] we formulated RSSTD as a combinatorial op-
timization problem and proved that it is NP-hard via
a reduction to the generalized traveling salesman prob-
lem which is then further transformed into the symmetric
traveling salesman problem for obtaining (heuristic) solu-
tions to RSSTD. In this work, we also presented a hybrid
method combining a variable neighborhood search (VNS)
based approach with a system for integrating user actions
into the search procedure.
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Although all three of these methods differ in their ba-
sic concepts, none of these indicates how to evaluate the
improvement potential in the quality of solutions provided
by a computer, i.e., no lower bounds are given.

2. Problem Definition

Let us now introduce a formal problem definition of
RSSTD: Given is a set S = {1, . . . , n− 1} of rectangu-
lar paper remnants i ∈ S—so called strips—obtained as
output of a shredding device. Each of the strips has the
same height and written text or other valuable information
printed on its front. We assume that the back of the strips
is blank. As explained in [3] an additional blank strip n is
added to S such that the cardinality of S is equal to n.

Any permutation of the strips in S such that the ar-
tificial strip n is placed at position n together with a bi-
nary vector indicating the orientations of the strips forms
a feasible solution to RSSTD. We adopt the cost function
c2(i, j, ωi, ωj) as presented in [3] for estimating the like-
lihood that strips i, j ∈ S did not appear side by side
under orientations ωi, ωj ∈ O, where O represents the set
{d,u} of possible orientations, with d denoting “down”
and u denoting “up”. An entire solution is evaluated by
the total costs of the realized neighborhood relations. For
short we write in the following c(i, j, ω), with ω ∈ O2, i.e.,
ω ∈ {(d,d), (d,u), (u,d), (u,u)}, instead of c2(i, j, ωi, ωj).
The goal of RSSTD is to reconstruct the original docu-
ment pages, which were cut into the given set S of strips,
i.e., to find a permutation of the strips and an associate
orientation vector of minimum costs.
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3. Integer Linear Programming Model

In this section, we present two different integer linear
programming (ILP) models for RSSTD. Let us assume that
variable sω

jj′ ∈ {0, 1}, with 1 ≤ j, j′ ≤ n and ω ∈ O2,
is equal to 1 iff strip j′ is the right neighbor of strip j
and both are oriented according to ω. For the artificial
strip n we define snj′ = 1, iff strip j′ is placed at position
1, i.e., the artificial strip is considered to be followed by
the first strip. Using this variable definition the following
model can be expressed, which provides a basis for the
later proposed ILP formulations:

min
X
j∈S

X
j′∈S

X
ω∈O2

sω
jj′ · c(j, j′, ω) (1.1)

X
j′∈S

X
ω∈O2

sω
jj′ = 1, ∀ j ∈ S (1.2)
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ω∈O2
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jj′ = 1, ∀ j′ ∈ S (1.3)
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j′j + s
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j′j , ∀ j ∈ S (1.4)

X
j′∈S

s
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jj′ + s
(u,u)

jj′ =
X
j′∈S

s
(d,u)

j′j + s
(u,u)

j′j , ∀ j ∈ S (1.5)

X
ω∈O

sω
jj′ +

X
ω∈O

sω
j′j ≤ 1, ∀ j, j′ ∈ S (1.6)

sω
jj = 0, ∀ j ∈ S, ω ∈ O2 (1.7)

sω
jj′ ∈ {0, 1}, ∀ ω ∈ O2, j, j′ ∈ S (1.8)

While the total costs for an assignment of strips to each
other should be minimized according to expression (1.1),
constraints (1.2) and (1.3) state that each strip j, with
1 ≤ j ≤ n, has to be followed and preceded by exactly
one strip, i.e., exactly one strip has to be assigned to the
position right to strip j and one left to j. If a strip j
precedes strip j′ it is obvious that strip j follows another
strip. Anyhow, the orientation of strip j has to be the
same for both relations, see Eq. (1.4) and (1.5). As soon
as one strip j is preceding another strip j′ strip j cannot
be placed right next to j′, cf. Eq. (1.6).

Due to the strong relationship of RSSTD to (A)TSP
it is obvious that optimal solutions with respect to formu-
lation (1) can in general contain subtours, which are not
valid for RSSTD. Therefore, we decided to implement and
compare two different approaches for preventing subtours.
The first one is based on cycle elimination constraints,
which can be expressed as follows:X

k∈C

X
ω∈O2

sω
kk+1 ≤ |C| − 1, ∀ ∅ 6= C ⊂ S, (2)

whereas C corresponds to cycles of length less than |S| and
k+1 denotes the strip placed right to strip k on this cycles.

Since the number of constraints specified by expres-
sion (2) is exponential in the number of strips, an efficient
separation of these constraints is necessary for computing
practical results. This is done by first building a com-
plete graph G(V,E) whose nodes v ∈ V correspond to
strips. The weights of the edges (i, j) ∈ E are computed

as
∑

ω∈O2 sω
ij , whereas the concrete values of variables sω

ij

correspond to the current LP values. A new cut is found
as soon as a circle is identified whose length is less than or
equal to one.

The second approach for eliminating cycles is based
on the introduction of additional variables pij ∈ {0, 1},
with 1 ≤ i, j ≤ n, whereas pij is equal to 1 iff strip j is
assigned to position i and otherwise 0. Then the following
constraints can be defined:

nX
i=1

pij = 1, ∀ j ∈ S (3.1)X
j∈S

pij = 1, ∀ i = 1, . . . , n (3.2)

p1j′ =
X

ω∈O2

sω
nj′ , ∀ j′ ∈ S (3.3)

pn−1j =
X

ω∈O2

sω
jn, ∀ j ∈ S (3.4)

pij + pi+1j′ − 1 ≤
X

ω∈O2

sω
jj′ , ∀

(
i = 1, . . . , n− 2,

j, j′ ∈ S
(3.5)

pnn = 1 (3.6)

pij ∈ {0, 1}, ∀ i = 1, . . . , n, j ∈ S (3.7)

Due to constraints (3.1) and (3.2) it is assured that each
strip is assigned to exactly one position and vice versa.
Anyhow, a connection between variables p and s has to
be established. This is done by Eq. (3.3), (3.4) and (3.5).
If strip j is assigned to position i and strip j′ to position
i+ 1 then the according variables sω

jj′ , with ω ∈ O2, have
to be set to one. Finally, constraint (3.6) ensure that the
artificial strip is assigned to position n.

In the further context, we will denote the two above
presented formulations by cycle elimination based formu-
lation (CEF) and position assignment based formulation
(PAF), whereas CEF corresponds to the core formula-
tion (1) amended by constraints (2) and PAF contain for-
mulation (1) together with expressions (3). For practical
results regarding the direct solution of these two formula-
tions by using CPLEX we refer to Sec. 6.

4. Lagrangian Relaxation for RSSTD

Preliminary tests revealed that the application of exact
approaches to RSSTD, e.g., a direct solution of CEF and
PAF using general purpose ILP solvers, is limited to rel-
atively small instances. Therefore, heuristic methods are
of great importance when trying to solve real-world in-
stances. Anyhow, one main drawback of many heuristics
is the lack of providing (tight) bounds on the solution qual-
ity. To overcome this problem one could solve the linear
programming (LP) relaxation of CEF or PAF; see Sec. 6
for computational results. In addition, we developed a La-
grangian relaxation (LR) [4] approach based on PAF. The
main idea of LR is to substitute complicating constraints
by corresponding penalty terms in the objective function.
For this purpose, each relaxed constraint is associated with
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a so called Lagrangian multiplier. Subsequently, one tries
to find a set of multipliers that maximizes the associated
lower bound for the original minimization problem.

For this purpose we relax the linking constraints (3.3)–
(3.5) of PAF resulting in the following new objective func-
tion:

min
X
j∈S

X
j′∈S

X
ω∈O2

sω
jj′ · c(j, j′, ω)+

X
j′∈S

λ1
j′ ·

0@p1j′ −
X

ω∈O2

sω
nj′

1A+

X
j∈S

λ2
j ·

0@pn−1j −
X

ω∈O2

sω
jn

1A+

n−2X
i=1

X
j∈S

X
j′∈S

λ3
i,j,j′ ·

0@pij + pi+1j′ − 1−
X

ω∈O2

sω
jj′

1A

(4)

After applying some basic transformations and substi-
tuting (constant) expressions by (newly introduced) coef-
ficients ρij , σω

jj′ and δ, with 1 ≤ i, j, j′ ≤ n and ω ∈ O2,
the LR approach can be formulated as follows:

min
X
j∈S

n−1X
i=1

(πij · pij)| {z }
SP I

+
X
j∈S

X
j′∈S

X
ω∈O2

`
σω

jj′ · sω
jj′
´

| {z }
SP II

+ δ (5)

subject to Eq. (1.2)–(1.8), (3.1), (3.2), (3.6), and (3.7)

with
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σω
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σω
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n − λ2
n −
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i,n,n, ∀ ω ∈ O2 (12)

δ = −
X
j∈S

X
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n−2X
i=1

λ3
i,j,j′ (13)

Based on the fact, that the coefficients π, σ and δ are com-
posed of linear combinations of λ1, λ2, λ3 and the cost
function c, see Eq. (6)–(13), it can be observed that the
above formulation decomposes into two independent sub-
problems only linked by the objective function (5). The

first subproblem SP I formulated via variables pij , with
1 ≤ i ≤ n − 1 and j ∈ S, corresponds to a linear assign-
ment problem. It is well known that this problem can be
efficiently solved. The second subproblem SP II formu-
lated via variables sω

jj′ , with j, j′ ∈ S and ω ∈ O2, cor-
responds to a generalized traveling salesman problem [5]
allowing subtours of arbitrary lengths. Although the non-
generalized version of this subproblem, i.e., the classical
traveling salesman problem allowing subtours, could be
easily solved using bipartite matching algorithms, it can
be easily shown that the integrality property does not hold
for SP II, which implies that bounds provided by our LR
approach might be better than those provided by an LP
relaxation of PAF [4].

For computing lower bounds by means of LR, we imple-
mented a standard subgradient method as described in [4]
by initializing all Lagrangian multipliers to 0 and setting
the strategic parameter π = 2. The value of π is halved
as soon as 30 subgradient iterations without improvement
on the lower bound were performed. In contrast, π is dou-
bled when an improvement could be achieved and π ≤ 1
holds. This iterative process is terminated once π falls
below 0.001 or the lower bound provided by this method
corresponds to the best known upper bound, which is it-
eratively updated based on the solutions generated by the
Lagrangian heuristic presented within the next section.
For solving subproblems SP I and SP II we directly ap-
plied the general purpose ILP solver CPLEX 11.2. We
refer to Sec. 6 for detailed results including a comparison
of bounds obtained via LP relaxations and those obtained
by using LR.

5. A Lagrangian Heuristic

Based on the LR presented in the previous section, we
developed a Lagrangian heuristic (LH) which provides fea-
sible solutions to the original problem based on the values
of the relaxed ILP. The main idea is to decode the neigh-
borhood relations and orientations of strips such that a
feasible solution is generated. Since the absolute posi-
tions of strips, i.e., the values of variables pij , are not
necessarily consistent with the relative positions, i.e., the
values of variables sω

jj′ , we decided to neglect the infor-
mation about the absolute position within this decoding
step and derive a feasible solution from the relative posi-
tions only, which also primarily contribute to the objective
function. Since the virtual strip n is placed at the last po-
sition (see Eq. (3.6)), we start the decoding by placing this
strip at position n. According to the values of sω

jn, with
1 ≤ j ≤ n − 1 and ω ∈ O2, we place that strip j at posi-
tion n− 1 which has a corresponding variable sω

jn
equal to

1. Of course, the orientation of the strip is also regarded.
This method is applied iteratively as long as not already
positioned strips are concerned. In the case of a cycle, we
restart the method by placing a randomly chosen and so
far not positioned strip at the last yet free position.
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Since any permutation of strips with the artificial strip
placed at the last position forms a valid solution, this
method always provides feasible solutions. Further, by
using appropriate datastructures the runtime of this ap-
proach is in O(n2) as for each position at most 4n variables
have to be evaluated.

6. Experimental Results

To evaluate the performances and the contributions of
the above presented approaches, we applied them to real-
world instances of RSSTD. For generating instances, we
used those documents introduced by Ukovich et al. in [2],
which were then converted into grayscale images and were
(virtually) cut into 80 to 135 strips, each. These settings
correspond to strip widths of 2.6mm to 1.5mm. The test
results presented within this section were obtained on a
single core of an Intel QuadCore 5150 with 2.8GHz and
8GB RAM and ILOG CPLEX 11.2 has been used as gen-
eral purpose (I)LP solver.

For computing lower bounds by means of LR we im-
plemented the standard subgradient method, whereas the
upper bound is updated based on the solutions provided
by the proposed LH. The Lagrangian multipliers were all
initialized to 0. Obviously, the execution of the subgra-
dient method is aborted as soon as the lower and upper
bound are identical. We analyzed the bounds provided by
LR and the LP relaxation of CEF on 560 instances in total
and the main result is that in most cases, i.e., in 517 out of
560, the obtained bounds are equal. Only for 43 instances
of which all where generated based on the first document
page of the test set introduced by Ukovich et al. a differ-
ence in the quality of the bounds could be identified. The
corresponding results are shown in Tab. 1, whereas the
first column indicates the number of strips the page was
cut into and the second column lists the absolute objec-
tive values of the original document pages. The remaining
numbers should be interpreted as follows: the columns la-
beled with LR present the (relative) bounds obtained using
our LR approach in relation to the objective of the origi-
nal document page as well as the number of iterations until
the LR was terminated. In case the number of iterations
is equal to one the solution derived by our LH approach
by setting all Lagrangian multipliers to zero, i.e., solving
the core formulation (1) solely, is proven optimal. The last
column of Tab. 1 lists the (relative) bounds provided by
directly solving the LP relaxation of CEF.

The following two observations can be made based on
the test results: first of all the bounds obtained by our LR
approach are equal or better than the bounds provided by
an LP formulation using subcycle elimination constraints.
We assume, however, that this behavior is mainly based
on the objective function used for estimating the likelihood
of placing two strips next to each other. Furthermore we
expect to emphasize this positive property of our cost func-
tion when considering more problem specific information

by calculating the concrete cost values, e.g., by consider-
ing the character orientations, applying optical character
recognition (OCR), or incorporating the likelihood that
two patterns identified on the corresponding strip edges
match with each other. In that case we assume that the
error made by the cost function is even further minimized.

Table 1: Results comparing the bounds obtained by the proposed LR
and the LP relaxation of CEF in relation to the original document
page (orig.). In addition the number of LR iterations until LR was
terminated are provided.

LR
strips orig. bound iter. CEF

80 29408 99.8232 % (1) 99.5103%
81 29408 99.8232 % (1) 99.5103%
86 31494 99.6444 % (1) 99.4253%
87 31494 99.6444 % (1) 99.4253%
88 31494 99.6444 % (1) 99.4253%
89 32774 99.8047 % (1) 99.6400%
90 32774 99.8047 % (1) 99.6400%
91 32440 100.0000% (1) 99.8243%
92 32440 100.0000% (1) 99.8243%
93 32440 100.0000% (1) 99.8243%
96 36256 100.0000% (1) 99.7849%
97 36256 100.0000% (1) 99.7849%
98 36256 100.0000% (1) 99.7849%

106 37122 99.9407 % (1) 99.9003 %
107 37122 99.9407 % (1) 99.9003 %
108 37122 99.9407 % (1) 99.9003 %
109 38694 99.8346 % (331) 99.8217%
110 38694 99.8346 % (331) 99.8217%
111 38694 99.8346 % (331) 99.8217%
112 38694 99.8346 % (331) 99.8217%
113 39836 99.9699 % (1) 99.8519 %
114 39836 99.9699 % (1) 99.8519 %
115 39836 99.9699 % (1) 99.8519 %
116 39836 99.9699 % (1) 99.8519 %
117 39926 99.8397 % (331) 99.8197%
118 39926 99.8397 % (331) 99.8197%
119 39926 99.8397 % (331) 99.8197%
120 39962 99.8398 % (331) 99.8123%
121 42422 99.7737 % (1) 99.6818 %
122 42422 99.7737 % (1) 99.6818 %
123 42422 99.7737 % (1) 99.6818 %
124 42422 99.7737 % (1) 99.6818 %
125 42454 99.7739 % (1) 99.6773 %
126 44682 99.8836 % (1) 99.8590 %
127 44682 99.8836 % (1) 99.8590 %
128 44682 99.8836 % (1) 99.8590 %
129 44728 99.8837 % (2) 99.8748 %
130 44728 99.8837 % (2) 99.8748 %
131 45698 99.9912 % (1) 99.8534 %
132 45698 99.9912 % (1) 99.8534 %
133 45698 99.9912 % (1) 99.8534 %
134 45698 99.9912 % (1) 99.8534 %
135 45698 99.9912 % (1) 99.8534 %

The second conclusion which can be drawn from the
results is that the number of iterations until our LR ap-
proach terminates is typically low. In most cases there is
even only one iteration. For some instances, however, it
was not possible to improve the bound obtained during
the first iteration of LR, but at the same time LH was not
able to provide a primal feasible solution with identical
objective value. Again, we expect to improve on this issue
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Table 2: Comparison of computation times and solution qualities of PAF and CEF when directly solved using CPLEX 11.2. Numbers
without parentheses indicate running times in seconds until the optimal solution was obtained (including optimality proof) whereas numbers
in parentheses indicate the relative gap of current best integer and best dual bounds after 1200 seconds of computation time.

strips 20 30 40 50 60 70 80 90 100

inst. PAF/CEF PAF/CEF PAF/ CEF PAF/ CEF PAF/ CEF PAF/ CEF PAF/ CEF PAF/CEF PAF/ CEF

p01 0.3/ 0.3 2.0/ 0.6 (0.04)/(0.07) (0.50)/(0.02) (0.01)/(0.10) (0.80)/(0.01) (0.80)/(0.01) 1200.2/ 42.5 (0.81)/ 68.2
p02 0.5/ 0.1 7.9/ 0.3 311.1/ 0.7 (0.52)/ 1.2 (0.83)/ 7.8 (0.84)/ 4.0 (0.84)/ 6.8 (0.83)/ 19.8 (0.83)/ 149.1
p03 0.2/ 0.1 72.2/ 0.6 1.3/ 0.3 30.7/ 0.6 (0.44)/ 1.1 (0.77)/ 2.4 102.6/ 2.7 (0.80)/ 4.1 (0.80)/ 4.2
p04 0.1/ 0.1 7.3/ 0.2 18.7/ 0.2 117.5/ 0.6 (0.77)/ 1.3 (0.12)/ 0.9 (0.16)/ 2.8 (0.11)/ 28.1 (0.80)/ 5.6
p05 0.1/ 0.1 0.5/ 0.1 1.2/ 0.5 101.8/ 0.2 (0.18)/ 2.4 249.9/ 1.2 290.4/ 0.7 (0.56)/ 7.1 (0.71)/(0.06)
p06 1.1/ 0.0 67.0/ 0.2 1.1/ 0.4 (0.18)/ 0.7 (0.29)/ 0.7 (0.09)/ 1.9 148.9/ 5.2 813.1/ 23.2 720.5/ 4.7
p07 0.1/ 0.1 0.4/ 0.1 4.0/ 0.5 281.9/ 0.2 (0.34)/ 1.8 (0.20)/ 1.1 (0.41)/ 0.8 (0.69)/ 2.4 (0.77)/ 17.3
p08 0.2/ 0.1 0.8/ 0.1 108.4/ 0.8 7.7/ 0.2 (0.42)/ 0.8 (0.20)/ 1.0 (0.75)/ 0.8 (0.76)/ 4.4 174.1/ 2.5
p09 0.2/ 0.1 0.8/ 0.3 147.3/ 0.7 (0.24)/ 1.0 (0.21)/ 0.9 676.7/ 0.5 (0.64)/ 1.6 150.8/ 2.5 (0.76)/ 2.5
p10 0.5/ 0.1 1.8/ 0.3 306.6/ 0.3 (0.78)/ 1.1 637.1/ 2.0 (0.78)/ 2.6 (0.79)/ 4.7 (0.78)/ 14.4 (0.78)/ 6.2

Figure 1: If this “document” is torn along the dashed lines, not all
Lagrangian multipliers are set to zero in the set of optimal multipliers
when using the LR approach.

by adapting the cost function as already indicated above.
Based on this observation the initialization of the La-

grangian multipliers to zero seems not only to be valuable
but to be the only reasonable approach for providing good
bounds as well as solving RSSTD. Nevertheless, not for all
instances all Lagrangian multipliers are set to zero in the
optimal set of multipliers. See for example the document
shown in Fig. 1. When tearing this page along the dashed
lines some multipliers have to be set to values not equal
to zero for eliminating the cycles implied by the first two
strips as well as the third and the fourth strip.

In addition to the experiments listed in Tab. 1 we tested
to directly solve the ILP formulations presented in Sec. 3
via CPLEX. The corresponding results are listed in Tab. 2.
For this test setting we used again the document pages
introduced by Ukovich et al. This time, however, they were
cut into 20 to at most 100 strips each, since preliminary
tests revealed that the direct application of the general
purpose ILP solver CPLEX to the above presented ILP
formulations can be very time-consuming and for more
than 110 strips the computation times did in most cases
exceed a given time limit of 1200 seconds.

The numbers presented in Tab. 2 should be interpreted
as follows. We present for each document page (p01–
p10) and number of strips (20–80) the time (in seconds)
until the optimal solution was found (and its optimality
was proven). In case the optimal solution was either not
reached or was not proven to be optimal within 1200 sec-
onds of available computation time we present the relative

gap of the so far best found integer solution and the dual
bound computed by CPLEX in parentheses.

As can be seen, the numbers in Tab. 2 show that by
directly applying CPLEX to the two ILP formulations,
CEF leads to far better results than PAF. In concrete,
for almost all instances with 50 or more strips optimal
solutions could be obtained via CEF in some seconds of
computation time. For only a few instances of that sizes
even CEF could not lead to proven optimal solutions. Fur-
thermore, for those instances with less than 50 strips, CEF
provided more often the optimal solution and even in case
both formulations could achieve optimality the computa-
tion times for the approach based on CEF where in most
cases shorter.

Although Tab. 2 implies that solving a model based
on CEF via CPLEX is much more efficient, the bounds
obtained via the LR/LH approach are a little bit more
promising than the results computed by the LP relax-
ation of CEF. Since the runtimes until the bounds were
achieved did relatively strongly vary for both approaches
no clear statement can be given which of the two different
approaches for computing dual bounds is in the given case
faster. Nevertheless, both the LR/LH approach and the
computations of LP relaxations provide a good toolkit for
producing valuable (lower) bounds. Furthermore, the LH
often provides the optimal solution within a few iterations
of the LR/LH approach.

7. Conclusions and Future Work

In this paper we presented two different ILP formu-
lations strongly related to formulations for the traveling
salesman problem. Whereas the first formulations called
position assignment based formulation (PAF) has a poly-
nomially bounded number of constraints and variables the
second formulation called cycle elimination based formu-
lation (CEF) relies on well known cycle elimination con-
straints. For providing lower bounds, we introduced a La-
grangian relaxation (LR) approach based on PAF includ-
ing a Lagrangian heuristic (LH) providing primal feasible
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solutions based on the values computed by our LR ap-
proach.

Experimental results showed that the approaches for
computing lower bounds were really successful and often
provided the best obtainable lower bound. Further, the LH
frequently generates optimal solutions based on the lower
bounds presented by the LR method. We also showed that
the bounds provided by LR are in some cases better than
those obtained via a linear programming (LP) relaxation
of CEF, although in most cases both approaches achieved
the same bound. We could, however, not decide which
approach for computing lower bounds is in general faster
since the runtimes strongly vary for both approaches.

With respect to the solution of RSSTD CEF seems to
be much better when directly solved using CPLEX 11.2.
The size of the instances, i.e., the number of strips, which
can be solved using this exact approach is, however, lim-
ited to relatively small instances.

Our tests for computing lower bounds were limited on
instances with up to 135 strips which is due to the fact that
in general the computation times grow fast as well as the
memory consumption exceeds the limits of currently avail-
able standard hardware when trying to provide bounds on
larger instances. Therefore it is necessary to further in-
vestigate subproblem SP II of our LR approach such that
solutions to this problem could be computed even for large
instances of RSSTD.

In addition, the numbers presented in Tab. 1 reveal
that in most cases the optimal solution with respect to
objective function (1.1) does not correspond with the orig-
inal document page, i.e., the LR approach terminated by
obtaining a primal solution via LH with an objective value
identical to the bound computed by LR. We assume, how-
ever, that by using a more sophisticated function for esti-
mating the likelihood of a positive match of two strips it

is possible to overcome this problem, e.g., line spacings on
two (possibly) matched strips could be incorporated into
the objective function.

Finally, it has to be emphasized that any objective
function will suffer from the fact that the final decision
whether or not two strips match has to be done by hu-
mans and for each likelihood estimation a counter example
forming the worst case, i.e., a false positive or false nega-
tive match, can be created. Therefore, as already shown
in [3], it is essential that any automatic method for re-
constructing strip shredded text documents is combined
with a user interface integrating human interactions. Of
course, this needs also to be incorporated when computing
bounds on RSSTD why we will further examine different
ways for sharing information between automatic systems
for reconstructing documents and human operators.
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