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Abstract. Within this work, we focus on the optimization of storage lo-
cation assignments arising in warehouses with storage locations applying
a last-in, first-out throughput policy. The sequence of goods to be stored
is, however, not entirely known such that for each item the currently best
storage location has to be identified almost immediately. Caused by this
imperfect data and by stock removals concurrently performed it is neces-
sary to apply relocation operations from time to time, which might range
from a few operations to relocations lasting a working day depending on
the workload of the warehousemen. For this purpose we propose an ad
hoc stocking strategy as well as a storage relocation strategy based on
variable neighborhood descent. Supported by experimental tests we com-
pare variants of our approaches with each other and with formerly used
stocking strategies showing that the number of conflicts could be signif-
icantly reduced by the proposed approach. Furthermore, an application
of the relocation strategy can significantly improve warehouse states ob-
tained due to imperfect stocking strategies, concurrently performed stock
removals and insufficient information on production sequences.

1 Introduction

Nowadays, warehouse management is beside supply chain management one of the
most important tasks in production environments. On the one hand it has to be
assured that all components needed during the production process are available
but on the other hand the costs induced by storage capacity, i.e., storage space,
should be minimized. Furthermore, the access times to individual items located
in the storage should be kept as low as possible in order to optimally serve
customers. For collecting ordered items, it is of interest to minimize the access
times by computing short routes through the warehouse [1, 2]. Yet, these tours
are strongly dependent on the layout structure of the warehouse. Therefore,
a reorganization of the storage exploiting properties of the goods to be stored
and typical customer behavior [3] may be in some situations more convenient.

Anyhow, about 33 percent of money invested in logistics can be attributed to
the costs arising in inventory management [4]. Therefore, a proper investigation
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of savings that might be achieved within this part of supply chains is necessary
and in many cases profitable, see [4] for a literature review of the work on this
topic over the last 30 years.

One of the main factors in the organization of warehouses is the throughput
policy to be used within the storage [5]. The best known strategies are last-
in, first-out (LIFO) and first-in, first-out (FIFO) policies. There are also other
policies especially developed for different kinds of goods to be stored, e.g., first-
produced, first-out (FPDO) or first-expire, first-out and first-deliver, first-out
(FDFO). FPDO and FDFO mainly find application in lines of businesses coping
with products having best-before dates assigned [5]. While these main inventory
decisions have to be made when building warehouses, it often has to be decided
on a daily or even shorter basis, which articles to be placed at which locations.

In this work, we focus on such a storage location problem arising in paper
industry. To optimize the production efficiency (e.g., minimize cutting loss) it is
common to temporarily store the just produced paper rolls in an intermediate
store until the customers pick up their orders. Obviously it is desired that this
process should be performed as fast as possible. Therefore, it is highly preferable
that all paper rolls of currently served customers are directly accessible. If this is
not the case the according rolls should be reinserted into the storage at the best
possible location. Especially at the end of a working day there might be time
left for reordering the complete warehouse such that all orders to be processed
during the next day are optimally accessible.

In the next two sections a detailed description of the underlying problem
and a more formal definition including an evaluation function for estimating the
likelihood of additional paper roll relocations during stock removal are given.
Based on this evaluation function a stocking strategy is presented in Section 4,
and Section 5 includes the description of relocation strategies utilizing variable
neighborhood descent and greedy methods. Both approaches are evaluated on
different warehouse states in Section 6. Conclusions including future work are
finally drawn in Section 7.

2 Production Process

In paper industry it is common to apply a three stage production process: At
first paper roll blanks are produced which are cut into paper rolls of individual
lengths in the second stage. At last the produced rolls are shipped.

In our case, the first two steps of the production process are optimized such
that all ordered rolls of same paper type and grammage are consecutively pro-
duced and that the offcut of each blank is as small as possible. Due to this the
production order of rolls is not sorted according to any attribute which is rel-
evant for shipping. After cutting the paper rolls are transported on a conveyor
belt into the warehouse.

The warehouse itself is organized as follows: The storage consists of parallel
aisles and each aisle contains to its left and right side storage locations for storing
rolls, also called strips (see Fig. 1a). Although, there is no structural separation
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Fig. 1: (a) Schematic plan of the warehouse and (b) extract of the storage.

between the strips they are always accessed from the corresponding aisle. In each
strip the first roll is placed at the end of it and all further rolls are put in according
to the last-in, first-out throughput policy, see Fig. 1b for an extract of two strips
with rolls stored at them. The strips are all physically identical except with
respect to their capacities. But there are some strips dedicated to the storage of
rolls of short length, i.e., rolls with less than 1250 mm. Such rolls can be loaded in
a more space saving way and thus they should be stored together at theses special
locations. There are three workers (one is responsible for placing the rolls from
production and two are assigned for picking up outgoing rolls) who are equipped
with forklift trucks for transporting the rolls, mobile terminals displaying various
information (e.g., where the roll should be stored) and mobile bar code scanners
to communicate each operation (removal and placing of rolls) to a centralized
database. Therefore, the current state of the warehouse including the advance
in the loading of paper rolls is known at any time.

While the assignment of rolls to storage locations is done in a greedy manner
it often occurs that rolls have to be rearranged to provide direct access to those
rolls for shipping. This leads to increased removal times. Therefore, it is impor-
tant that the removal sequence of the rolls is considered at the time of storage.
The most important criteria therefore are the shipping dates of the rolls. Be-
sides this there are also other attributes: It is desired that the rolls are grouped
by customers, i.e., all rolls for one customer should be at the same location. In
addition, each customer has a preferred type of shipment (by lorry or freight
car) and therefore the rolls should be placed in those strips which are near the
according exit, see also Fig. 1a. For a complete list of constraints and different
aims regarded in this work and their influence on an evaluation function used
for our optimization approach, see Section 3.

Unfortunately, it is in our case not possible—neither for the worker nor for
any computer aided decision system—to gather the exact production sequence.
This is mainly caused by frequently breakdowns or failures of certain machines
needed for special types of paper such that for a short term other paper types
are produced or express orders of customers which have to be fulfilled almost
immediately. Thus it has to be mentioned that the investigated storage location
assignment problem is an online problem [6]. A further reason for not globally
planning a fixed storage location for each roll is that customers frequently pick
up their order lately or even too early.
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Therefore, the depositer has to estimate the best available storage location
for each roll to be stored. In literature there exists some work for the related
storage location assignment problem [7–10], which has been shown to be NP-
hard [8]. Anyhow, according to the classification used in [7] the storage location
assignment problem examined within this work uses class-based storage as stock
location assignment strategy, i.e., each roll is assigned to a certain class accord-
ing to its attributes and then (arbitrarily) stored at a location dedicated to that
class of paper rolls. To overcome this arbitrariness in selecting the best available
storage location for each paper roll, we propose a more fine grained evaluation
function within this work that assigns to each (possible) warehouse state a pos-
itive value approximately indicating the likelihood of occurring conflicts, i.e.,
paper roll reallocations, during stock removals. The most promising paper roll
assignments are suggested to the warehousemen via a mobile terminal.

Although this approach works quite well, it must not be disregarded that due
to stock removals there might arise the situation that an explicit rearrangement
of paper rolls significantly improves the warehouse situation, i.e., reduces the
number of conflicts in future stock removals. Therefore, we additionally use a
variable neighborhood descent [11] based approach for computing rearrangement
operations that can be performed by warehousemen currently not busy. Again,
there are some requirements which have to be regarded when implementing
such a method. Mainly, it has to be assured that after each single rearrange-
ment operation, the warehouse state is reasonable good such that in case the
rearrangements have to be suspended the stock removal operations can still be
efficiently performed. Due to the fact that rearrangement operations are only
performed when no other jobs are to be completed it is not possible to count on
these reallocations during storage location assignment. In addition, the number
of times one roll is moved should be kept low.

3 Problem Definition

Within this section we provide a more formal definition of the introduced prob-
lem. In addition we present an evaluation function which will in the further
context be used for approximately indicating the likelihood of conflicts, i.e., nec-
essary paper roll reallocations, arising during stock removal operations.

We are given a warehouse W and a set of nr paper rolls R = {1, . . . , nr},
which includes all rolls in the system. The warehouse itself consists of n storage
locations i ∈ W = {1, . . . , n}, which are organized according to a last-in, first-
out throughput policy. Therefore, we can define a tuple Si = (si,1, . . . , si,fi

) for
each strip i ∈ W indicating that roll si,l has been assigned to i before si,l+1,
with 1 ≤ l < fi and fi ∈ N0 indicating the fill level of strip i, i.e., the number of
rolls stored in storage location i ∈ W . While each strip i ∈ W has a maximum
capacity ci, each paper roll j ∈ R has a given weight wj . Obviously, at each
time

∑
j∈Si

wj ≤ ci holds. Further we are given a set of no orders O stated
by costumers, where each order K ∈ O is a set K ⊆ R of paper rolls and
define the set Ω(i) = {K ∈ O | ∃ l : si,l ∈ K} as the set of all orders having at
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least one paper roll l ∈ R stored in strip i ∈ W . In addition, we define set
DK = {i ∈W | Si ∩K 6= ∅} as the set of storage locations containing at least
one roll of an order K ∈ O. As already mentioned the exact shipping date is
not known, but an expected shipping date dK as well as the preferred shipping
mode mK are given for each order K ∈ O.

Each paper roll j ∈ R has a certain positive length, and those rolls with a
length shorter than 1250 mm are called small goods. Constants w small

i ∈ {0, 1}
indicate which storage locations i ∈W are dedicated to storing small goods; for
these locations w small

i is one and for all others zero. Similarly, constants w truck
i ∈

[0, 1] and w train
i ∈ [0, 1] define with which preference paper rolls shipped by

truck or train should be stored at locations i ∈ W , respectively. Note that
w truck
i + w train

i = 1 does not necessarily hold. Finally, we define a (current)
warehouse state W as a snapshot of the current situation in the warehouse.

Evaluation Function

To present a method for either finding the best storage location(s) for a given
paper roll to be stored or moving operations for improving the situation in the
warehouse within this work, it is necessary to develop an evaluation function that
approximately indicates the likelihood of conflicts, i.e., paper roll reallocations,
during stock removals for a given warehouse state W. The basic concept of this
evaluation function E(W) is as follows: In case E(W) = 0 holds it is very likely
that during stock removals no additional reallocations of paper rolls are neces-
sary. With increasing value of E(W) this likelihood decreases, i.e., the likelihood
of reallocations increases. In addition, not only the likelihood increases but also
the expected number of occurring conflicts, i.e., more reallocations will become
necessary during each stock removal step. Therefore the value of E(W) is not
(strongly) bounded from above, since it is almost always possible to generate a
worse warehouse state by adding an additional roll to the storage that generates
additional conflicts. The evaluation process, however, is based on restrictions im-
plied by observations stated by the warehouse manager of our paper production
company.

The evaluation of a current warehouse state W is done in two steps: firstly
all possible conflicts arising in single strips i ∈W are computed and secondly a
rating regarding the complete warehouse is done. Both values are then appro-
priately weighted and the sum represents the objective value of the warehouse
state. The most important reason for conflicts is the expected shipping date dK
of the orders K ∈ O. Therefore, we introduce function date(i) ≥ 0 counting the
number of conflicts in strip i ∈ W occurring with respect to the shipping dates
associated with the rolls stored in i. A conflict occurs for two paper rolls si,l
and si,l′ , with si,l, si,l′ ∈ Si, iff l < l′ and dK < dK′ , with si,l ∈ K, si,l′ ∈ K ′,
respectively, and K,K ′ ∈ O, i.e.,

date(i) =
fi−1∑
l=1

fi∑
l′=l+1

χd(si,l, si,l′), ∀i ∈W, (1)
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with χd(j, j′) = 1 iff roll j is going to be shipped before j′; otherwise χd(j, j′) = 0,
with j, j′ ∈ R.

Another important reason for conflicts is the mix-up of different orders within
one strip. Therefore function order(i) counts the number of different orders stored
at location i ∈ W ; in addition the inhomogeneity of orders stored in the same
strip is considered, yielding the following definition:

order(i) = |Ω(i)|+
fi−1∑
l=1

χo(si,l, si,l+1), ∀i ∈W, (2)

with χo(j, j′) = 1 iff the orders of rolls j, j′ ∈ R are different; otherwise
χo(j, j′) = 0. Next, the number of strips used for storing all rolls of an order K ∈
O is computed. Function distr(W) sums up these distribution values of all orders:

distr(W) =
∑
K∈O

DK . (3)

Since the orders of customers are known, it can be decided if there are still
some paper rolls in production or not. Of course, it should be emphasized that
each order is stored at few locations (the best case is if only one strip is needed
for each order). Therefore, it is meaningful to reserve space in the storage for
each uncompleted order. This is done by using function cap(W) which computes
the number of paper rolls not yet stocked and which cannot be assigned to the
same storage location as the other paper rolls of the same order:

cap(W) =
∑
K∈O

max

min
i∈W


∣∣∣∣∣K \ ⋃

i′∈W
Si′

∣∣∣∣∣−
ci −

∑
j∈Si

wj

 , 0

 (4)

In addition, function compl(W) counts the number of orders that are not yet
completely stocked and have at least one stocked roll blocked by another one
of another order. Thus, blocking of not yet completely stocked orders is also
penalized.

Since the process of loading the rolls on lorries or freight cars should be
finished as fast as possible (by minimizing the lengths of the paths the ware-
housemen have to move the rolls). Therefore, we store paper rolls preferably
close to the exit presumably later used during stock removal. This is done ac-
cording to function ship(i), with i ∈ W , under the assumption that vt

j is equal
to one iff roll j ∈ R should be shipped with trucks; otherwise vt

j = 0 holds:

ship(i) =
∑
j∈Si

(
vt
j ·
(
1− w truck

i

)
+
(
1− vt

j

)
·
(
1− w train

i

))
, ∀i ∈W. (5)

Analogously, function small(i), with i ∈ W , increases when long paper rolls
are stored in strips dedicated to small goods or when short paper rolls are stored
in strips not dedicated to small goods. Under the assumption that vs

j = 1 for
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paper rolls j ∈ R with a length shorter than 1250 mm (and vs
j = 0 in other

cases), small(i) can be defined as:

small(i) =
∑
j∈Si

∣∣vs
j − w small

i

∣∣ , ∀i ∈W. (6)

Empty strips are the most valuable ones because virtually all paper rolls or
even orders can be stored in them while increasing the objective function only
minimally, if at all. Therefore, it should be well considered at which time empty
strips will be started to be used. For this, we define a function empty(i) increasing
the objective function by a small amount if strip i ∈W is not empty, i.e.,

empty(i) =

{
0 if strip i is empty
1 otherwise

(7)

Finally, it is possible to define the evaluation function E(W) which combines
all previously defined functions. Each of the sub-functions is weighted using an
appropriate coefficient in order to balance the influence of the different compo-
nents among each other:

E(W) =
∑
i∈W

(
γd · date(i) + γo · order(i) +

γs · ship(i) + γe · empty(i) + γσ · small(i)
)

+

γδ · distr(W) + γκ · cap(W) + γc · compl(W)

(8)

Though objective function (8) covers the most important aspects during stocking
operations in our particular paper industry application, there are further special
cases that can be considered. For a more detailed approach we refer to [12].

4 Stocking Strategy

Based on function (8) it is easy to develop a straight forward greedy stocking
strategy. For this purpose, one simply needs to compute the changes in E(W)
when adding a roll to the storage. After doing this for all strips that one resulting
in the best warehouse state is chosen. For pseudocode of this procedure see Alg. 1.

Influence of the Weighting Coefficients

As already mentioned above each of the sub-functions of the objective func-
tion (8) is weighted by a factor for controlling its influence on the evaluation
of a given warehouse state. Unfortunately, it is not trivial to find a parameter
setup being valid for any production setting. Even more, there exists no gen-
erally good weighting factor adjustment. Although this might be disappointing
for warehouse operators, this circumstance holds a crucial advantage: By tuning
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Algorithm 1: Stocking Strategy
Input: W: current warehouse state, j ∈ R: paper roll
Data: bestStrip: so far best strip for paper roll j,

bestEval : value of best so far found warehouse state
Output: strip i ∈W roll j should be assigned to

bestStrip ← null ; bestEval ←∞;
foreach i ∈W \ {i′} do
W ′ ←W after adding paper roll j to strip i;
if E(W ′) < bestEval then

bestStrip ← i;
bestEval ← E(W ′);

return bestStrip;

these parameters and adapting the relations it is possible to implement different
stocking strategies. For example it might be promising to ensure for certain cus-
tomers that paper rolls ordered by them are directly accessible all the time. In
this case one will increase the weighting factor γo such that a mix up of orders
becomes very unlikely. Nevertheless, this behavior might not be appropriate for
all customers. In such a case the weighting factors may even be differently in-
stantiated in dependence of the customers which finally leads to a more complex
but also significantly more flexible objective function.

In this work, we use the following fixed weighting factors which was deter-
mined after consulting the warehouse manager of our case company: γd = 150,
γo = 5, γs = 1, γe = 20, γσ = 40, γδ = 25, γκ = 20, γc = 50.

5 Relocation Strategy

Due to the online aspect of our problem, even the best stocking strategy finally
results in suboptimal storage situations, which means that reallocations are
necessary during shipment. Additionally, empirical data provided by our case
company implies that the filling level of the storage usually is about 70–80%,
i.e., the stocking opportunities are rather limited. When applying the above
presented stocking strategy over a longer time, it is only able to prevent major
immediate conflicts to a certain degree any more. For generally improving the
warehouse state and to bypass idle times of warehousemen it is possible to per-
form relocations of paper rolls. Of course, the aim of this is to reduce the number
of conflicts occurring during stock removals and improve the warehouse situation.

There are different types of possible relocations: The first class of realloca-
tions is automatically to be performed during stock removal operations when
one or more paper rolls are blocking rolls to be shipped. The second and more
laborious type is performed during idle times of warehousemen. Dependent on
the available time various movements can be done. To be flexible in this point the
system has to accept inputs from the workers indicating the number of rolls to
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Algorithm 2: GreedyRelocationProcedure(W, nm)
Input: W: current warehouse state, nm: number of available relocation moves
Data: W ′, W ′′: intermediate warehouse states
Output: L: list of moves to be performed

repeat
j ← arg min

j′∈
S

i′∈W


si′,f

i′
∈Si′

ff {E(W ′) | W ′ =W after removing roll j′};

W ′ ←W after removing j;
i← arg mini′∈W {E(W ′′) | W ′′ =W ′ after storing roll j at location i′};
W ′′ ←W ′ after moving j to strip i;
if E(W ′′) < E(W) then
W ←W ′′;
add appropriate movement instructions to L;
cnt ← cnt + 1;

until cnt ≥ nm or no further improvement could be achieved ;
return L;

be reallocated resulting in a list of movements improving the current warehouse
state.

One obvious approach for achieving this is a greedy method presented in
the next section selecting always the next best paper roll for relocations. In
addition, we present a variable neighborhood descent based approach generating
movement lists to be processed by the warehouse workers.

5.1 Greedy Reallocation

The greedy reallocation procedure (GRP) removes a roll j ∈ R which is directly
accessible and causes conflicts during removal operations with highest probabil-
ity, i.e., under the assumption that W denotes the current warehouse state

j = arg minj′∈Si∈W{si,fi
∈Si} {E(W ′) | W ′ =W after removing roll j′} . (9)

Afterwards this roll is reinserted into the storage at the best strip i ∈W , i.e.,

i = arg min
i′∈W

{E(W ′′) | W ′′ =W ′ after storing roll j at location i′} , (10)

where W ′ denotes the warehouse state after removing paper roll j from its cur-
rent strip. This procedure is repeated until either the number of available moves
nm is reached or there is no further improvement achievable, i.e., roll j is best
stored at its original storage location. An outline of the pseudocode is given in
Alg. 2. For experimental results obtained using GRP we refer to Section 6.

5.2 Variable Neighborhood Descent Based Approach

Obviously, the main disadvantage of GRP lies within the fact that moves are se-
lected on a purely greedy basis disregarding the improvement potential of moves
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to be investigated in further steps. Thus, it is not possible or at least very unlikely
to resolve conflicts arising in connection with paper rolls not directly accessible.
We propose an approach based on variable neighborhood descent (VND) [11].

VND itself basically exploits the observation that any global optimum is also
locally optimal with respect to any given neighborhood. Therefore, a successful
application of VND mainly relies on appropriately defined neighborhood struc-
tures systematically examined. For this purpose, the first neighborhood structure
is searched through until no further improvement can be achieved. Then, the next
neighborhood structure is examined, but as soon as an improvement could be
achieved the search is continued using the first neighborhood structure again.
This is repeated until a solution is found that is locally optimal with respect to
all previously defined neighborhood structures.

This implies that two criteria must be regarded when following a VND based
approach: on the one hand the proper definition of neighborhood structures to be
used and on the other hand an appropriate order for examining these neighbor-
hood structures. Both aspects will be discussed in more detail in the following.

Neighborhood Structures The main idea of the neighborhood structures
used in this work is to resolve conflicts with respect to the sub-functions of (8)
step by step. The neighborhood structures are defined as follows:

N1: Within this first neighborhood structure the above presented greedy real-
location procedure is applied to a given warehouse state W, i.e., in each
iteration that roll is moved which increases E(W) the most.

N2: A new warehouse state W ′ ∈ N2(W) of a given warehouse state W is ob-
tained from W by first removing all rolls from a strip i ∈ W such that no
conflicts with respect to the shipping dates occur in strip i, see Eq. (1). After-
wards the removed rolls are assigned immediately to other strips i′ ∈W \{i} .

N3: When examining a neighborhood based on this neighborhood structure
only the last assigned rolls j ∈ Si of a strip i ∈ W are removed such that
all of these rolls are contained in the same order K ∈ O and the first not
removed roll is not part of that order.

N4: With this neighborhood structure it is tried to merge one order K ∈ O
distributed over more than one strip into one strip holding at least one paper
roll j ∈ K. Anyhow, only rolls directly accessible are considered for moving.

N5: To eliminate conflicts according to Eq. (2), we introduce this neighborhood
structure which removes (and immediately reassigns) all rolls of a strip
i ∈ W except for the first to i assigned rolls, all contained in the same
order, i.e., after removing the rolls Si ⊆ K ∈ O holds. Further, it is tried to
completely empty a strip containing two or more mixed up orders.

N6: This neighborhood structure is defined for resolving conflicts caused by
rolls placed deep inside of any strip, i.e., rolls which were assigned to this
storage location relatively early. Therefore, all paper rolls of a strip i ∈ W
are removed and then assigned to other strips i′ ∈ W \ {i} in the same
order they were removed. Obviously, each solution contained within a
neighborhood based on N6 contains at least one strip which is totally empty.
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While the size of N1 is in O(1), the sizes of all other neighborhoods is in O(|W |).
The time needed for examining N1 is bounded from above by O(|W |2). Neigh-
borhood structure N3 can be searched in O(|W | ·max

K∈O
{|K|}). The examination

time for all other neighborhood structures is in O(|W | ·max
i∈W
{|Si|}). In order to

efficiently examine each neighborhood, an incremental update of the evaluation
function is implemented and the following two step functions are used:

Worst Neighbor: This step function selects among all solutions in a certain
neighborhood N(W) that one which rearranges those rolls causing the most
conflicts with respect to E(W). Although very similar, preliminary tests
revealed that a best improvement strategy is not as promising as this worst
neighbor step function. Anyhow, in case of ties the first found is selected.

Random Neighbor: When using this step function for examining a neighbor-
hood N(W) one of the candidate solutions contained in N(W) is chosen
randomly. The probability for choosing one solution is proportional to the
contribution of the moved rolls to the objective function (8), i.e., a roulette
wheel selection is applied. Therefore, it is very likely to relocate rolls causing
conflicts with high probability. At the same time, not so promising candidate
solutions might also contribute to a finally computed list of relocation moves.

Neighborhood Order Beside the definition of neighborhood structures the
sequence to be followed when examining them is of crucial importance for VND
based approaches. Although there exist rules of thumb for ordering the neighbor-
hoods [11], empirical tests in [13, 14, 2] revealed that dynamically chosen neigh-
borhood orderings significantly improve the finally obtained solutions for some
applications. Therefore, we investigated four neighborhood ordering strategies:

Ordered: This is the classical neighborhood ordering strategy as described
in [11], i.e., the neighborhoods are arranged according to increasing size
and/or examination times. Although the asymptotic examination times are
similar to each other in the worst case, the actual examination times experi-
enced in practice are on average increasing for N1 to N6. Therefore, when us-
ing this neighborhood ordering, Ni is examined before Ni+1 for i = 1, . . . , 5.
All neighborhoods are examined according to a worst neighbor strategy.

Reversely Ordered: The contribution of neighborhoods with small indices is
limited to resolving conflicts occurring for paper rolls quite recently assigned
to storage locations. Since the available time for reallocations is rather short,
it is very likely that conflicts for paper rolls assigned early will not be resolved
during relocation phases. In addition, by first applying more time expensive
rearrangements, it is possible to eliminate these conflicts. Therefore, this
neighborhood ordering first examines neighborhood structure N6 and con-
tinues with N5, N4, N3, N2 and N1, respectively. Again, all neighborhoods
are searched using the worst neighbor step function.

Randomized: Based on the observation that the current warehouse state is
permanently changing and therefore the type of arising conflicts is always
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in flux, a randomly chosen and constantly altering neighborhood ordering
might be promising. Additionally, a variation in the utilized step function
is performed such that there are nine different combinations of neighbor-
hood structures and step functions. The application of the random neighbor
strategy to neighborhood structures N2, N3 and N6 will be denoted by N7,
N8 and N9, respectively, in the following. The next neighborhood Ni to be
examined, with i = 1, . . . , 9, is selected on a purely random basis each time
a neighborhood examination is finished. In addition, a neighborhood struc-
ture is removed, i.e., no longer examined, if it did not yield a new improved
warehouse state within its five last consecutive examinations.

Dynamically Randomized: Analogously to the randomized ordering strat-
egy the next neighborhood Ni to be examined, with i = 1, . . . , 9, is chosen
randomly when applying this ordering strategy. Again N7 to N9 denote the
application of the random neighbor strategy to N2, N3 and N6, respectively.
The probabilities for selecting the neighborhoods, however, are adjusted each
time a selection is performed. Detailed values for the applied probabilities
will be given below. Analogously to the purely randomized ordering, neigh-
borhood structures are removed as soon as five consecutive examinations did
not provide improved warehouse states.

VND Framework Given the current warehouse state W, a number of paper
rolls to be relocated, and a preferred neighborhood ordering and examination
strategy strat , Alg. 3 can be used for computing a list of paper roll relocations
to be performed by warehousemen. After initializing all temporary variables,
the main loop of the procedure is entered and is executed until either no more
neighborhoods are left to be examined according to strat or the number of yet
available paper roll movements is equal to or less than zero. In case of either the
randomized or the dynamically randomized neighborhood ordering is chosen,
this algorithm is repeatedly executed for 50 rounds. Although any arbitrary value
could be chosen for the maximum number of rounds, 50 seems to be promising
based on the observation that computation times on a standard PC for our paper
production company are then acceptable, i.e., at most about three minutes. The
list of rearrangements resulting in the best new warehouse state is then returned
by the algorithm. The following four different variants of VND were implemented
and compared with each other (for test results see Section 6):

Ordered VND (OVND): For this variant of VND the parameter strat is set
to ordered (neighborhood order is fixed and worst neighbor strategy is used).
Since the algorithm is deterministic only one round is performed.

Reversely Ordered VND (ROVND): While the number of still available
moves nm is greater than or equal to 80, this algorithm uses a fixed reversely
ordered neighborhood ordering. As soon as nm falls below 80, the order is
reversed, i.e., the same order as for OVND is used. Analogously to OVND
only one round needs to be performed in Alg. 3.

Randomized VND (RVND): For this setting the randomized neighborhood
ordering is selected. Therefore, N1 to N6 are using a worst neighborhood
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Algorithm 3: RelocationVariableNeighborhoodDescent(W, nm, strat)
Input: W . . . current warehouse state,

nm . . . number of available paper roll movements,
strat . . . neighborhood ordering strategy and step function to be used

Data: l . . . index of currently examined neighborhood structure,
n′, n′′ . . . remaining number of available paper roll movements,
W ′,W ′′ . . . intermediate warehouse states,
bestVal . . . value of the best so far obtained warehouse state,
bestL . . . list of rearrangements for reaching the best so far obtained
warehouse state

Output: L . . . list of moves to be performed

bestL← ();
bestVal ←∞;
repeat

L← ();
W ′ ←W;
n′ ← nm;
repeat

l← index of neighborhood to be examined next according to strat ;
W ′′ ← examine neighborhood Nl(W ′) according to strat ;
if E(W ′′) < E(W ′) then

n′′ ← n′−number of roll moves needed for obtaining W ′′ from W ′;
if n′′ ≥ 0 then

add roll relocations for obtaining W ′′ from W ′ to L;
W ′ ←W ′′;
n′ ← n′′;

until no more neighborhoods left to be examined or n′ ≤ 0 ;
if E(W ′) < bestVal then

bestVal ← E(W ′);
bestL← L;

until until 1 or 50 repetitions are reached (dependent on strat) ;
return L;

strategy and N7 to N9 are searched by the random neighbor step function.
Hence, 50 rounds are performed in the algorithm and the list of relocation
moves resulting in the best warehouse state is returned.

Dynamically Randomized VND (DRVND): This variant applies dynam-
ically randomized neighborhood ordering. The concrete probability values
are shown in Table 1. Each time, the number of still available moves nm

falls below a value indicated in the column labeled nm, the probabilities for
selecting neighborhoods N1 to N9 are adjusted to the values shown in the
corresponding columns. These values were identified during preliminary tests
and were then refined by the warehouse manager of our case company.
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Table 1: Selection probabilities of the neighborhoods in DRVND in dependence on
the number of still available moves nm.

nm N1 N2 N3 N4 N5 N6 N7 N8 N9

<20 0.50 0.20 0.10 0.05 0.03 0.02 0.04 0.04 0.02
20–100 0.35 0.15 0.10 0.10 0.02 0.15 0.05 0.05 0.03

>100 0.05 0.05 0.05 0.20 0.15 0.30 0.05 0.05 0.10

6 Experimental Results

In our paper production company the stocking strategy presented in Section 4
is already applied in practice. Comparing warehouse states previously obtained
by the old stocking strategy, which was mainly based on the experience of the
warehousemen as well as the warehouse manager with warehouse states obtained
after using the here proposed stocking strategy, it can be clearly seen that the
situation in the warehouse significantly improved and therefore the time needed
for shipping is reduced by a vast amount. Unfortunately, it is not possible to
directly compare the old and the new stocking strategy with each other during
real time operations. Therefore, we decided to simulate the stocking of typically
produced paper rolls using the old and the new strategy.

Using this simulation based data it is possible to compare the efficiency and
contributions of the relocation strategies proposed within this paper. In fact,
the main parameter of a typical warehouse state is the number of rolls stored
within the warehouse. In our case at most 4400 paper rolls can be stored in the
warehouse. Expert knowledge indicates that a filling level of 80% constitutes the
critical level for which any further stocked paper rolls will almost always cause
conflicts—even in case of optimal placement. Therefore we tested our relocation
approaches on warehouse states with 2500, 3000 and 3500 paper rolls stocked. All
computations were performed on a single core of a Dual Opteron processor with
2.4GHz and 4GB of RAM. As underlying database storing all production and
order relevant data an Oracle 10i database was used. Although, the number of
rolls to be relocated, can be chosen arbitrarily, we tested our algorithm for 10, 20,
50, 100, 300, 500 and 700 relocation moves, which corresponds to approximately
10, 25 and 60 minutes as well as 2, 6, 8 and 12 hours of working time. Although
it is relatively rare that one worker might relocate all day long this might occur
on weekends when only few new paper rolls are produced and the driving of
trucks on highways is prohibited, which is law in some European countries.

For testing purposes we have chosen six exemplary production data sets called
w 1 to w 6 which were provided by our paper production company. The limiting
factor for our stocking strategy as well as the VND approach are the number of
paper rolls to be stored in the warehouse as preliminary tests revealed. While
warehouses w 1 and w 2 contain 2500 paper rolls to be stored, warehouses w 3
and w 4 consist of 3000 paper rolls. Finally, w 5 and w 6 contain 3500 rolls.

For evaluating the performance of the stocking strategy we compared three
different stocking approaches. The first one corresponds to a simulation of the
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Table 2: Absolute values of E(W) for six different test instances. The values represent
the objective values for the warehouse states obtained by a simulated human stocking
strategy and our stocking strategy proposed in Section 4. In the last column a lower
bound on the objective value for the warehouse states is given.

simulated stocking stocking strategy sorted stocking

avg. std

w 1 102635.0 12819.9 339.1 11807.0
w 2 130856.0 14683.0 413.0 13778.0
w 3 186835.0 23047.1 1101.4 18244.0
w 4 135203.0 17290.2 1098.9 14012.0
w 5 300881.0 49481.0 3018.7 35850.0
w 6 181877.0 64687.3 2525.2 33080.0

stocking strategy used in our paper production company during the last years.
This strategy is mainly based on the experience of the warehouse operator and
does not provide any type of forecast—neither with respect to the shipping
dates nor regarding paper rolls to be produced in future. The corresponding
objective values with respect to Eq. (8) are given in the first data column of
Table 2. The second column of this table lists the mean results over 20 runs using
slightly different production sequences of paper rolls obtained by our stocking
strategy including standard deviations. The final column lists values obtained
by first sorting all ordered rolls according to their shipping date and customer
order and then stocking them using our stocking strategy. It can be clearly seen,
that our stocking strategy outperforms the formerly used strategy. It has to be
emphasized that an optimal warehouse state will almost never be reached in this
real world application as long as a last-in, first-out throughput policy is applied
and the production process is optimized disregarding the storage structure.

Anyhow, it is still necessary to perform relocations from time to time since
the shipping dates are often not met by the customers. These conflicts cannot
be foreseen even by the best stocking strategy. While Table 3 represents values
obtained for applying the relocation strategies on warehouse states generated by
the formerly used stocking strategy, the values presented in Table 4 correspond
to results obtained by reassigning paper rolls in warehouses obtained by our
stocking strategy. A value of 98% indicates that an improvement of two percent
could be achieved, i.e., the estimated probability of conflicts during removal
operations with respect to Eq. (8) could be reduced by 2%.

The following trend can be recognized: the more available time is dedicated
to relocation operations the better the obtained warehouse states become. In
addition the performance of GRP seems to be poorer for a larger number of
available moves than those of the different VND variants. Although the former
tendency is obvious, GRP could not improve further with more than 100 moves
for warehouse states considered in Table 3. It is most interesting that this behav-
ior seems to be independent of the number of rolls stored in the warehouse. To
confirm this observation, we performed additional tests investigating especially
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Table 3: For different number of relocation moves the relative values of the finally
obtained warehouse states based on those obtained via the formerly used stocking
strategy are presented. Mean values are averages over 20 runs (with standard deviations
in parentheses). The last column presents p-values of Wilcoxon rank sum tests for the
hypothesis that the mean values of DRVND are better than those of RVND.

GRP OVND ROVND RVND DRVND p-val

best mean std best mean std

n
m

=
1
0

w 1 97.2% 97.2% 97.2% 97.3% 97.7% (0.3%) 97.1% 97.2% (0.0%) <0.01
w 2 96.2% 96.2% 96.2% 96.2% 96.6% (0.3%) 96.2% 96.2% (0.0%) <0.01
w 3 98.9% 98.9% 98.9% 98.9% 99.0% (0.1%) 98.6% 98.7% (0.1%) <0.01
w 4 98.8% 98.8% 98.8% 98.6% 98.9% (0.1%) 98.6% 98.8% (0.0%) <0.01
w 5 97.7% 97.7% 97.7% 99.2% 99.4% (0.2%) 97.7% 97.7% (0.0%) <0.01
w 6 98.8% 98.8% 98.9% 98.8% 99.0% (0.2%) 98.7% 98.8% (0.0%) <0.01

n
m

=
2
0

w 1 95.0% 95.0% 95.0% 95.8% 96.3% (0.3%) 94.7% 95.0% (0.2%) <0.01
w 2 92.9% 92.9% 92.9% 94.3% 94.7% (0.2%) 92.9% 92.9% (0.1%) <0.01
w 3 97.9% 97.9% 97.9% 97.5% 98.2% (0.2%) 97.6% 97.8% (0.1%) <0.01
w 4 98.4% 98.4% 98.4% 97.8% 98.1% (0.2%) 97.6% 97.8% (0.1%) <0.01
w 5 96.7% 96.7% 96.7% 97.5% 98.4% (0.3%) 96.3% 96.7% (0.2%) <0.01
w 6 98.0% 98.0% 98.1% 97.5% 98.2% (0.3%) 97.0% 97.8% (0.3%) <0.01

n
m

=
5
0

w 1 89.6% 89.6% 89.6% 92.0% 92.3% (0.1%) 89.4% 90.0% (0.5%) <0.01
w 2 87.6% 87.6% 87.6% 89.4% 89.9% (0.3%) 86.5% 87.6% (0.7%) <0.01
w 3 94.7% 94.7% 94.7% 95.1% 96.1% (0.4%) 94.2% 94.7% (0.3%) <0.01
w 4 97.1% 97.1% 97.1% 95.0% 96.5% (0.6%) 94.4% 95.8% (0.8%) <0.01
w 5 93.5% 93.5% 93.5% 94.4% 96.0% (0.4%) 92.7% 93.5% (0.7%) <0.01
w 6 97.6% 96.2% 95.8% 95.6% 95.8% (0.2%) 94.9% 95.3% (0.3%) <0.01

n
m

=
1
0
0

w 1 82.7% 82.7% 86.5% 86.6% 88.1% (0.7%) 82.4% 83.3% (0.8%) <0.01
w 2 84.9% 82.4% 83.1% 82.8% 84.4% (0.8%) 81.1% 82.5% (0.9%) <0.01
w 3 92.7% 92.3% 93.7% 91.8% 92.2% (0.3%) 91.1% 92.0% (0.3%) 0.03
w 4 97.0% 95.8% 91.9% 89.8% 90.7% (0.4%) 89.8% 90.2% (0.3%) <0.01
w 5 90.4% 90.4% 91.7% 90.2% 90.7% (0.2%) 89.5% 90.3% (0.3%) <0.01
w 6 97.6% 93.4% 94.5% 92.7% 93.6% (0.4%) 92.0% 92.5% (0.5%) <0.01

n
m

=
3
0
0

w 1 77.3% 67.7% 69.1% 71.0% 73.4% (1.4%) 64.0% 68.6% (3.1%) <0.01
w 2 84.9% 68.4% 66.4% 67.1% 68.9% (1.0%) 65.0% 66.6% (1.0%) <0.01
w 3 92.7% 85.6% 83.8% 83.3% 84.2% (0.9%) 80.2% 82.5% (1.3%) <0.01
w 4 97.0% 95.8% 84.5% 76.9% 79.9% (1.5%) 73.2% 78.3% (3.0%) 0.01
w 5 90.4% 85.4% 81.0% 77.7% 78.9% (0.7%) 77.7% 78.8% (0.8%) 0.31
w 6 97.6% 92.0% 95.5% 83.8% 84.9% (0.7%) 83.4% 84.7% (1.0%) 0.21

n
m

=
5
0
0

w 1 77.3% 63.5% 61.2% 63.0% 65.7% (1.7%) 57.3% 59.8% (2.1%) <0.01
w 2 84.9% 52.7% 51.5% 53.5% 55.3% (1.9%) 50.4% 52.0% (1.4%) <0.01
w 3 92.7% 79.1% 76.7% 74.8% 76.3% (1.0%) 71.6% 73.6% (1.3%) <0.01
w 4 97.0% 96.5% 65.7% 66.4% 67.8% (1.3%) 64.0% 66.1% (1.6%) <0.01
w 5 90.4% 77.7% 72.8% 68.9% 70.7% (1.2%) 68.3% 70.4% (1.2%) 0.10
w 6 97.6% 93.4% 96.0% 76.1% 79.0% (2.1%) 74.7% 77.2% (1.6%) <0.01

n
m

=
7
0
0

w 1 77.3% 59.1% 50.6% 55.3% 57.7% (1.9%) 50.0% 51.2% (1.3%) <0.01
w 2 84.9% 42.0% 43.0% 41.4% 44.0% (2.2%) 40.4% 42.0% (2.3%) <0.01
w 3 92.7% 74.8% 66.8% 64.4% 66.4% (1.5%) 60.3% 63.2% (2.1%) <0.01
w 4 97.0% 95.8% 60.0% 57.6% 58.9% (0.9%) 53.5% 56.5% (2.0%) <0.01
w 5 90.4% 76.2% 72.9% 62.5% 64.8% (1.5%) 62.5% 64.1% (1.4%) 0.01
w 6 97.6% 92.8% 96.0% 68.8% 72.7% (3.0%) 68.5% 71.2% (1.9%) <0.01
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Table 4: For different number of relocation moves the relative values of the finally
obtained warehouse states obtained via the proposed stocking strategy are presented.
Mean values are averages over 40 runs (with standard deviations in parentheses). The
last column presents p-values of Wilcoxon rank sum tests for the hypothesis that the
mean values of DRVND are better than those of RVND.

GRP OVND ROVND RVND DRVND p-val

best mean std best mean std

n
m

=
1
0

w 1 100.0% 99.5% 99.4% 97.9% 98.7% (0.2%) 97.8% 98.3% (0.1%) <0.01
w 2 100.0% 99.8% 99.8% 98.2% 99.2% (0.1%) 97.7% 98.8% (0.1%) <0.01
w 3 100.0% 99.4% 99.3% 97.8% 98.8% (0.1%) 97.8% 98.6% (0.1%) 0.11
w 4 99.9% 99.8% 99.8% 98.0% 98.7% (0.1%) 97.9% 98.5% (0.1%) <0.01
w 5 99.8% 99.6% 99.6% 98.1% 99.2% (0.1%) 98.2% 99.2% (0.1%) 0.48
w 6 99.9% 99.5% 99.5% 98.3% 98.8% (0.1%) 97.8% 99.0% (0.2%) 0.93

n
m

=
2
0

w 1 100.0% 99.4% 99.3% 97.3% 98.2% (0.1%) 97.2% 97.8% (0.1%) <0.01
w 2 100.0% 99.7% 99.6% 98.0% 98.8% (0.1%) 97.7% 98.4% (0.1%) <0.01
w 3 100.0% 99.1% 99.0% 96.3% 98.4% (0.1%) 97.0% 98.1% (0.1%) 0.04
w 4 99.9% 99.8% 99.8% 95.5% 98.1% (0.3%) 61.9% 96.3% (1.2%) <0.01
w 5 99.8% 99.4% 99.3% 96.6% 97.8% (0.3%) 96.4% 97.9% (0.2%) 0.67
w 6 99.9% 99.5% 99.5% 96.5% 97.9% (0.1%) 96.7% 98.2% (0.2%) 1.00

n
m

=
5
0

w 1 100.0% 98.9% 98.7% 95.2% 96.9% (0.1%) 95.0% 96.2% (0.1%) <0.01
w 2 100.0% 98.5% 98.5% 96.0% 97.0% (0.1%) 95.6% 96.7% (0.1%) <0.01
w 3 100.0% 99.1% 99.1% 95.3% 97.9% (0.2%) 93.9% 97.1% (0.3%) <0.01
w 4 99.9% 99.8% 99.8% 92.7% 96.8% (0.2%) 68.8% 93.3% (1.2%) <0.01
w 5 99.8% 99.3% 99.3% 92.5% 94.9% (0.3%) 93.3% 95.3% (0.3%) 0.99
w 6 99.9% 99.1% 99.2% 93.5% 96.0% (0.3%) 93.5% 96.2% (0.4%) 0.85

n
m

=
1
0
0

w 1 100.0% 98.3% 98.1% 92.7% 96.0% (0.3%) 68.0% 92.3% (1.9%) <0.01
w 2 100.0% 99.7% 99.7% 93.4% 96.6% (0.3%) 93.2% 95.6% (0.2%) <0.01
w 3 100.0% 99.1% 99.1% 92.3% 97.5% (0.4%) 92.4% 96.1% (0.5%) <0.01
w 4 99.9% 99.8% 99.9% 92.5% 96.9% (0.4%) 69.2% 93.5% (1.3%) <0.01
w 5 99.8% 99.3% 98.3% 87.6% 92.0% (0.7%) 86.7% 91.9% (0.7%) 0.46
w 6 99.9% 99.0% 99.1% 89.1% 94.4% (1.3%) 90.1% 93.7% (0.5%) 0.25

n
m

=
3
0
0

w 1 100.0% 99.2% 99.2% 93.7% 96.2% (0.3%) 84.8% 93.1% (0.7%) <0.01
w 2 100.0% 99.7% 99.7% 93.6% 97.0% (0.3%) 91.8% 95.3% (0.5%) <0.01
w 3 100.0% 99.1% 99.1% 92.8% 97.3% (0.4%) 90.9% 96.0% (0.5%) <0.01
w 4 99.9% 99.8% 99.9% 91.3% 96.9% (0.4%) 86.8% 93.8% (0.7%) <0.01
w 5 99.8% 99.2% 97.8% 82.5% 91.1% (0.9%) 81.3% 88.7% (0.6%) <0.01
w 6 99.9% 99.0% 98.4% 81.7% 91.2% (1.9%) 73.8% 86.4% (2.3%) <0.01

n
m

=
5
0
0

w 1 100.0% 99.2% 99.2% 93.3% 96.2% (0.3%) 85.1% 92.9% (0.7%) <0.01
w 2 100.0% 99.7% 99.7% 93.9% 97.0% (0.3%) 92.5% 95.3% (0.5%) <0.01
w 3 100.0% 99.1% 99.1% 92.5% 97.6% (0.3%) 92.1% 95.9% (0.3%) <0.01
w 4 99.9% 99.8% 99.9% 93.5% 97.0% (0.5%) 70.4% 93.8% (1.2%) <0.01
w 5 99.8% 99.2% 97.8% 83.2% 90.7% (1.0%) 80.1% 88.4% (0.8%) <0.01
w 6 99.9% 99.0% 98.4% 73.2% 90.6% (1.9%) 66.4% 83.3% (3.2%) <0.01

n
m

=
7
0
0

w 1 100.0% 99.2% 99.2% 93.2% 96.0% (0.3%) 86.9% 92.8% (0.5%) <0.01
w 2 100.0% 99.7% 99.7% 93.4% 96.8% (0.2%) 91.2% 95.2% (0.4%) <0.01
w 3 100.0% 99.1% 99.1% 94.2% 97.7% (0.2%) 90.4% 95.8% (0.3%) <0.01
w 4 99.9% 99.8% 99.9% 93.4% 97.1% (0.4%) 73.1% 93.7% (0.9%) <0.01
w 5 99.8% 99.2% 97.8% 82.6% 91.1% (0.7%) 78.3% 88.4% (1.1%) <0.01
w 6 99.9% 99.0% 98.4% 76.7% 91.2% (2.1%) 68.6% 83.5% (4.0%) <0.01
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this fact. A possible explanation for this could be that within our warehouse only
175 strips exist, such that only a few conflicts can be resolved when considering
always the paper rolls at the front of each strip only. A limitation of GRP to
at most 100 moves seems, however, reasonable for an application in our paper
production company. When applying GRP on warehouse states obtained via our
stocking strategy, the improvement potential is rather limited.

Regarding the performances of our VND variants it turned out that DRVND
seems to be the best VND setting for relocations consisting of many paper roll
movements. If the available time is rather limited the performances of RVND,
OVND and ROVND are similar. RVND, however, is outperformed almost al-
ways by DRVND. To validate this hypothesis we performed Wilcoxon rank sum
tests. The resulting p-values are for nearly all tested instances below 0.01, which
indicates that the assumption is in most cases correct with an error probability
of at most one percent. For those warehouse states obtained via our stocking
strategy an improvement could still be achieved using the VND variants which
implies that conflicts induced by improper production sequences have an impact
on the stocking strategy. Anyhow, it is important to assign the rolls to good
storage locations from the beginning on, since the results obtained by the new
stocking strategy could not be reached by the relocation procedure applied to
warehouse states resulting from the formerly used stocking strategy.

With respect to runtime, GRP is the fastest approach with runtimes of at
most 5 seconds. DRVND, which is the slowest VND variant, needs for computing
700 paper roll movements about 3,5 minutes, which is reasonable according the
the warehouse manager of our paper production company.

Finally, we investigated the number of times one paper roll is relocated during
storage reassignments. We observed that even for the test runs including 700
moves, multiple moves of individual paper rolls seldom occur.

7 Conclusions and Future Work

Within this work, we presented a stocking and two relocation strategies for a stor-
age location assignment problem arising in a paper production company, whereas
the number of conflicts, i.e., additional reallocation moves of paper rolls, during
shipment should be minimized. Each individual storage location of the underly-
ing warehouse applies a last-in, first-out throughput strategy. Experimental tests
as well as feedback given by the warehousemen and warehouse manager revealed
that using the proposed stocking strategy the warehouse states could be signifi-
cantly improved. In addition, the developed relocation strategy based on variable
neighborhood descent can be used to reduce the likelihood of conflicts occurring
during stock removal. Anyhow, these reallocation operations are only executed
during idle times of warehousemen dedicated to shipment, why the reliable stock-
ing strategy proposed in Section 4 is crucial for efficient warehouse operations.

Although the results obtained by our methods are promising and improved
the warehouse management of our paper production company substantially, the
further improvement potential is high. For example, future work should con-
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centrate on the parallel optimization of the paper production process and stor-
age management. The production sequence of paper rolls should be adapted
such that the storage locations could be better utilized without raising conflicts
during stock removals. For this purpose, a deeper investigation of the ordering
process might be necessary such that the data administration is enhanced and
shipping dates are more reliable in the future since the most conflicts emerge
due to customers picking their orders too late (or too early).
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