
Meta-Heuristics for
Reconstructing Cross Cut Shredded Text Documents

Matthias Prandtstetter
prandtstetter@ads.tuwien.ac.at

Günther R. Raidl
raidl@ads.tuwien.ac.at

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Favoritenstraße 9–11/186-1, 1040 Vienna, Austria

ABSTRACT
In this work, we present two new approaches based on vari-
able neighborhood search (VNS) and ant colony optimiza-
tion (ACO) for the reconstruction of cross cut shredded text
documents. For quickly obtaining initial solutions, we con-
sider four different construction heuristics. While one of
them is based on the well known algorithm of Prim, another
one tries to match shreds according to the similarity of their
borders. Two further construction heuristics rely on the fact
that in most cases the left and right edges of paper docu-
ments are blank, i.e. no text is written on them. Randomized
variants of these construction heuristics are applied within
the ACO. Experimental tests reveal that regarding the so-
lution quality the proposed ACO variants perform better
than the VNS approaches in most cases, while the running
times needed are shorter for VNS. The high potential of
these approaches for reconstructing cross cut shredded text
documents is underlined by the obtained results.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; G.1.6 [Numerical Analysis]: Op-
timization—constrained optimization,integer programming ;
G.1.10 [Numerical Analysis]: Applications; I.7.m [Docu-
ment and Text Processing]: Miscellaneous

General Terms
Algorithms

Keywords
Document reconstruction, variable neighborhood search, ant
colony optimization, integer linear programming

1. INTRODUCTION
Over the last years the interest in the reconstruction of

shredded or manually ripped up paper documents has im-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09, July 8–12, 2009, Montréal Québec, Canada.
Copyright 2009 ACM 978-1-60558-325-9/09/07 ...$5.00.

mensely grown. Due to the time and effort needed for do-
ing this task manually, more and more systems evolved for
enabling an at least semi-automatic reconstruction of de-
stroyed documents. On the one hand this development is
caused by the increasing interest of investigative bureaus
for solving criminal cases and/or occurrences of industrial
espionage. On the other hand there is also a great interest
on this and related topics posed by archaeologists in recon-
structing historical documents written on papyrus or parch-
ment as well as putting together clay fragments containing
ancient texts and paintings. Unfortunately, those systems
already available lack in many different properties—mainly
regarding output quality, number of shreds to be processed
concurrently, as well as computation times. While Ukovich
et al. [12] proposed a clustering approach which can be
used as a preprocessing step for any semi-automatic sys-
tem, De Smet [3] tried to exploit typical disposal behavior
of humans after tearing paper. Prandtstetter and Raidl [7]
presented an effective framework for restoring strip shredded
documents which is based on variable neighborhood search
and includes a user-interaction component. Many modern
shredding devices, however, do not cut documents just into
stripes but a much larger number of smaller pieces by apply-
ing cross cutting. Obviously, a reconstruction then becomes
much more difficult. In this work, we concentrate on the
case where a rectangular text document is cut into a reg-
ular grid of equally-sized smaller rectangles, and call this
problem reconstruction of cross cut shredded text documents
(RCCSTD).

In the next section, we give a formal model for this prob-
lem, which also shows how candidate solutions are repre-
sented in our approach. For quickly obtaining reasonable ini-
tial solutions, different construction heuristics are described
in Sec. 4. Then, in Secs. 5 and 6 a general variable neighbor-
hood search (VNS) metaheuristic that utilizes several differ-
ent neighborhood structures within an embedded variable
neighborhood descent local improvement procedure is de-
scribed. As an alternative, Sec. 7 describes an ant colony
optimization (ACO) approach that makes use of the same
local improvement. The experimental results presented in
Sec. 8 document that the ACO usually obtains better re-
sults than the VNS at the costs of longer running times.

2. FORMAL PROBLEM DEFINITION
We assume that a set S = {1, . . . , n} of rectangular, ge-

ometrically identical shreds is given, which represent the
output of a shredding device. Let shreds 1, . . . , n − 1 be
the shreds on which (parts of) a text is printed, while all

y = 1

y = 2

y = 3

y = n− 1

x
=

n
−

1

x
=

1

x
=

2

x
=

3

x
=

4

x
=

5

x
=

6

x
=

7

x
=

8

x
=

9

x
=

10

x
=

11

x
=

12

x
=

n
−

2

Figure 1: Sketch of a solution. Any of the (n −
1) · (n− 1) available positions may be occupied (dark
shaded); all others are left free (light shaded).

blank shreds are replaced by the single special shred n for
modeling reasons. For simplicity, we assume here that the
orientation of all the shreds is known or identified during a
preprocessing step based on pattern recognition techniques,
see for example [1].

In addition, two error estimation functions (or cost func-
tions) c(i, j) ≥ 0 and c(i, j) ≥ 0 are given. They estimate
the potential error introduced when placing shred j right
next to shred i or by placing shred i on top of shred j, with
i, j ∈ S, respectively. This is achieved by counting for each
pair of aligned pixels along the edges of shreds i and j the
number of mismatches. A mismatch occurs, if the mean
gray values of the corresponding pixels as well as the two
pixels above and below differs more than a given threshold.
A perfect match of shreds i and j, i.e. if these two shreds
perfectly fit together, would then yield value 0, while larger
values indicate the unlikeliness of this neighborhood rela-
tion. For a detailed definition and discussion of this error
estimation function see [7].

The goal is to find an assignment of shreds to positions
within a solution such that the total costs induced by all
realized neighborhoods are minimized. For this purpose, we
define a solution of RCCSTD as an injection Π : S \ {n} →
D2 of shreds to positions p = (x, y) in the two-dimensional
(Euclidean) space, with x, y ∈ D = {1, . . . , n − 1}, i.e. to
each position is at most one shred assigned. Furthermore,
let

s(p) =

(
i if ∃ i ∈ S \ {n}|Π(i) = p

n otherwise
, ∀p ∈ D0

2, (1)

with D0 = {0, . . . , n}. I.e. if a shred is placed at position
p, it is returned by s(p); otherwise the position is assumed
to be filled with the special empty shred n. Let us denote
by sl(p), sr(p), st(p) and sb(p), with p = (x, y) ∈ D2, shreds
s((x − 1, y)), s((x + 1, y)), s((x, y − 1)) and s((x, y + 1)),
respectively, such that the costs of a solution, i.e. the total
potential error, can be defined as

c(Π) =
X

p∈{1,...,n}2
c(sl(p), s(p)) + c(st(p), s(p)). (2)

A sketch of a solution is shown in Fig. 1. Note that rows
and columns of the solution may contain multiple entries of
the virtual shred n, whereas all other shreds may not be
contained more than once.

Although this solution representation might look unhandy
and many positions p ∈ D2 are empty, i.e. s(p) = n, this rep-
resentation allows that well matching sequences of shreds are
not frequently forced to be wrapped at the end of a row or
column due to a limited number of rows or columns. Any-
how, an efficient implementation must always bear in mind
that there are large regions of the potential solution space D2

containing no assigned shreds in S. If the dimensions of the
original document are known, the solution space may be de-
fined smaller. Here, however, we want to stay more general.

3. RELATED WORK
Many analogies can be drawn between RCCSTD and other

problems found in literature like the reconstruction of strip
shredded (text) documents [7, 10, 11], the restoration of
ripped up and manually destructed paper work [3, 6, 9] and
the solving of jigsaw puzzles [2].

Beside obvious relationships there are also essential dif-
ferences. For example, methods for solving jigsaw puzzles
mainly rely on the fact that the shapes of the pieces are
unique. Even more, the smooth color transitions typically
contained in depicted motives can be efficiently exploited [2],
which is not true for text documents.

When reconstructing strip shredded text documents, dif-
ferent strategies can be used. Among others, Ukovich et
al. [11] tried to find matching strips using MPEG-7 descrip-
tors. In contrast, Skeoch [10] applied a genetic algorithm
while Prandtstetter and Raidl [7] used a variable neigh-
borhood search approach combined with user interactions.
In [7] the authors showed that the reconstruction of strip
shredded text documents is NP-hard, which states a spe-
cial case of RCCSTD.

For the reconstruction of manually torn paper feature
matching methods [6] were applied. Further, heuristics ba-
sed on the observation that ripped up documents are typi-
cally disposed as a stack of remnants are introduced in [3].
On the exact side, methods for reconstructing the border of
torn documents based on integer linear programming tech-
niques are presented in [9].

Finally, methods were proposed which can be applied to
most of the above problems and which can be utilized during
preprocessing steps for generating smaller instances that can
then be handled more efficiently. Among these methods the
approaches of Ukovich et al. [12] should be mentioned where
clustering methods are used for identifying sets of shreds be-
ing part of the same original document page with the utmost
probability.

4. CONSTRUCTION HEURISTICS
For quickly creating reasonable initial solutions used by

the VNS as well as the ACO, we propose four different con-
struction heuristics based on different ideas and observa-
tions. They mainly try to achieve good neighborhood re-
lationships according to function c(i, j) only, with i, j ∈ S,
since function c(i, j) is merely conditionally meaningful due
to the observation that the width of a shred is in comparison
to its height typically relatively small in practice, see also
Fig. 1.

4.1 Greedy Matching Heuristic
In the greedy matching heuristic (GMH) a first intermedi-

ate solution is generated by grouping the shreds into pairs.

manThe
Figure 2: An example for a cutting such that a blank
edge and a non-blank edge have to be matched in a
perfect solution.

In each iteration, the pair of shreds that is most likely placed
side by side in horizontal direction, i.e. the pair (i, j) that
minimizes function c(i, j), with i, j ∈ S, is chosen. These
two shreds are then removed from further consideration and
the search for pairs is continued until all shreds got assigned
partners. In the case of an odd number of snippets, one is
not matched. Now, the whole process is iterated, trying to
find best matchings of larger and larger sequences, until one
long sequence of shreds is obtained. Finally, this single se-
quence is broken apart into multiple lines such that the end
of each row except the last one, which contains all remaining
shreds, is a shred having a blank right edge.

Instead of greedily identifying likely pairs of shreds, an
initial solution could also be generated by iteratively com-
puting (nearly) perfect matchings. This variant of GMH is
called perfect matching heuristic (PMH).

4.2 Row Building Heuristic
The row building heuristic (RBH) is based on the obser-

vation that in a perfect solution (under the assumption that
all shreds are available) each reconstructed row of shreds
starts with a shred having a blank left edge and ends with
a shred having a blank right edge. Therefore, RBH places
a randomly chosen blank-left-edge snippet at the first po-
sition of the current row and continues by placing the best
fitting shred with respect to c(i, j) next to it. This greedy
best fit procedure is repeated until a snippet is reached with
a blank right edge, which constitutes the end of the current
row. Unfortunately, two special cases can occur: Firstly, it
may happen that not all shreds are utilized when construct-
ing a solution according to this procedure. In this case, the
remaining shreds are purely randomly placed at the bottom
of the constructed solution. Secondly, the number of shreds
having a blank left edge needs not to be equal to the num-
ber of shreds having a blank right edge; for an example see
Fig. 2. Additionally, more than one shred having a blank left
edge might be used during the construction of the current
row. If no more blank-left-edge shreds are available, the sit-
uation results in the first case. If no more blank-right-edge
shreds are available, all other shreds have been used (includ-
ing all left edge blank shreds). Therefore, no further actions
have to be performed and the resulting solution is returned.

4.3 Multiple Paths Heuristic
Based on the same idea as RBH, the multiple paths heuris-

tic (MPH) tries to find a set of rows to be aligned with each
other such that the original document is reconstructed. In
contrast to RBH, the rows are not built greedily but a solu-
tion is searched which is globally optimal with respect to cost
function c(i, j). In addition, it is assured that each available
shred is assigned to exactly one row, i.e. there are no shreds
to be positioned randomly in the last row. For this purpose,
the following integer linear programming (ILP) formulation
is used:

Figure 3: Prim iteration. Potential placements
(dark shaded) of the next shred for expanding the
current solution (light shaded).

min

nX
i=1

nX
j=1

c(i, j) · xij (3)

subject to

nX
j=1

xij = 1, ∀i ∈ S \ {n} (4)

nX
i=1

xij = 1, ∀j ∈ S \ {n} (5)

xii = 0, ∀i ∈ S (6)

xij + xji ≤ 1, ∀i, j ∈ S \ {n} (7)

n−1X
j=1

xnj ≥ 1 (8)

n−1X
i=1

xin ≥ 1 (9)X
i∈S′

X
j∈S′

xij ≤ |S′| − 1, ∀S′ ⊆ S \ {n} (10)

xij ∈ {0, 1} , ∀i, j ∈ S (11)

Within this model, the binary variable xij , with i, j ∈ S, is
set to one iff the right edge of shred i is matched with the left
edge of shred j. While the objective (3) is to minimize the
(potential) error introduced by these matchings, a solution
is searched such that each shred except the special shred n
has exactly one shred assigned to its left and exactly one to
its right edge (Eqs. (4) and (5)). By constraints (6) and (7)
it is assured that no loops and cycles of length two occur,
respectively. Equations (8) and (9) ensure that at least one
row is built. Finally, expression (10) avoids arbitrary length
cycles not including the virtual shred n.

For obtaining solutions based on this ILP formulation, we
apply the general purpose ILP solver CPLEX. Due to the
fact that the number of constraints represented by Eq. (10)
is not polynomially bounded, we add only violated con-
straints as lazy constraints during the Branch&Bound pro-
cess. When decoding the obtained solution, the rows are
randomly arranged since no information with respect to this
order is given by the above presented model.

4.4 Prim Based Heuristic
In contrast to the so far presented construction heuristics

the Prim Based Heuristic (PBH) follows the idea exploited
by the algorithm of Prim [8] for finding minimum spanning
trees. Analogously to this well known greedy algorithm,
the solution is constructed by starting with an arbitrarily
chosen shred that is placed at position p = (1, 1). During the
next steps, the intermediate solution is extended by adding

Algorithm 1: VariableNeighborhoodDescent(Π)

Input: initial solution Π
Data: neighborhood structures N1, . . . ,Nlmax

l← 1;
while l 6= lmax do

Π′ ← exploreNeighborhood Nl(Π);
if c(Π) > c(Π′) then

Π← Π′;
l← 1;

else
l← l + 1;

return Π;

one shred at a time which currently is the best matching
one, i.e. which minimizes the additional error introduced by
assigning it. Anyhow, possible positions for the next shred
to be placed are just those positions having at least one of
its four neighbors, i.e. the positions directly left, right, on
top or at bottom, occupied, see also Fig. 3. In case that the
best position for the next shred would be either p = (0, y)
or p = (x, 0), with 1 ≤ x, y ≤ n− 1, all shreds of the current
intermediate solution are shifted one position to the right or
to the bottom, respectively. Of course, the finally obtained
solution can be of arbitrary shape, i.e. any placement of
shreds can be obtained, as long as all shreds are connected
to one component.

5. LOCAL IMPROVEMENT
Variable neighborhood descent (VND) is a deterministic

local improvement (meta-)heuristic originally introduced by
Hansen and Mladenović [5]. Based on the observation that
a global optimum has always to be a local optimum with
respect to defined neighborhoods, VND mainly relies on the
proper definition of neighborhood structures to be system-
atically examined within local search iterations, see Alg. 1
for an outline in pseudocode. In each inner iteration the cur-
rent neighborhood Nl(Π) is searched according to a next im-
provement strategy. For this purpose, we specify the follow-
ing two basic move types, which will then be used to define
neighborhood structures N1 to N7 utilized within our VND:

SwapMove(i, j): When applying a swap move, two shreds
i and j, with i, j ∈ S are swapped with each other.

ShiftMove(p, w, h, d, a): In a first step, a rectangular re-
gion of snippets to be moved is defined. Parameter
p = (x, y) ∈ D2 corresponds to the position of the top-
left shred to be moved. The integer values w ≥ 1 and
h ≥ 1 define the number of shreds along the x-axis and
along the y-axis to be shifted. The direction, i.e. hor-
izontally or vertically, is declared by d and the shift
amount is given by a ≥ 1. Therefore, after the ap-
plication of the shift move all shreds contained within
the specified region are moved according to d and a.
Previously adjacent shreds are suitably shifted.

N1: Within this neighborhood structure one single swap
move is applied to the current solution.

N2: NeighborhoodN2(Π) of a solution Π consists of all solu-
tions obtained from Π by arbitrarily shifting one single
shred in either x or y direction.

Algorithm 2: GeneralVariableNeighborhoodSearch

Data: neighborhood structures N1, . . . ,Nkmax

Π← generate initial solution;
k ← 1;
while k 6= kmax do

Π′ ← randomly choose one solution in Nk(Π);
Π′ ← VariableNeighborhoodDescent(Π′);
if c(Π) > c(Π′) then

Π← Π′;
k ← 1;

else
k ← k + 1;

N3: All solutions generated by applying a shift move with
at least one of the parameters w and h set to one are
part of this neighborhood structure.

N4: Within neighborhood structure N4 one shift move is
applied, whereas the width and the height of the rect-
angular region of shreds to be shifted can be chosen
arbitrarily.

N5: Two consecutive moves are applied to a single shred,
whereas the first move shifts along the x-axis and the
second one shifts along the y-axis.

N6: Neighborhood N6(Π) consists of all solutions obtained
by shifting a given rectangle of either width or height
one first along the x-axis and then along the y-axis.

N7: This last neighborhood structure is defined analogously
to N6, but this time the width and the height of the
rectangular region can be both arbitrarily chosen.

As can be easily seen, neighborhood structure Ni contains
Ni−1 for i = 2, 3, 4, 6, 7. Thus, the number of candidate
solutions within Ni(Π) is in general greater than the num-
ber of solutions contained in Ni−1(Π) for a given solution Π.
Therefore, it is obvious to order the neighborhood structures
according to their increasing size such that the smallest one
is examined first.

To efficiently implement this VND, the following two prac-
tical improvements are made: Firstly, all neighbors are eval-
uated using an incremental update function, i.e. only the
changes in function (2) are computed. Secondly, and more
importantly, two properties have to be fulfilled for a feasible
move to be part of a neighborhood structure: at least one
position p ∈ D2 with a shred assigned to p, i.e. s(p) 6= n, has
to be affected by this move and in case of shift moves the
dimensions of the rectangle to be shifted as well as the shift
amount (and direction) have to be chosen such that each
row and column of the region to be shifted is not empty,
i.e. at least one non-empty shred is part of the row/column,
and s((x + w + a − 1, y)) 6= n holds, if a horizontal shift is
performed; otherwise s((x, y + h+ a− 1)) 6= n must hold.

6. VARIABLE NEIGHBORHOOD SEARCH
Variable neighborhood search (VNS) [5] is a metaheuristic

which combines a local search procedure with methods for
escaping local optima. The local search part can be under-
taken by a VND and perturbation is achieved by applying
random moves within neighborhood structures of increasing
variety. An outline of general VNS scheme is shown in Alg. 2.

Algorithm 3: AntColonyOptimization

Data: m being the number of ants used

initialize pheromone matrix;
while termination condition not met do

construct m candidate solutions based on
pheromone and heuristic information;

apply local search; // optional

update pheromone matrix;

For our purpose, we define the neighborhood structures
Ni, with 1 ≤ i ≤ 5 used within VNS as follows: in the i-th
neighborhood structure i2 randomly chosen shift moves of
single shreds are performed. Computational results obtained
by applying our VNS for reconstructing cross cut shredded
text documents are presented in Sec. 8.

7. ANT COLONY OPTIMIZATION
Inspired by the behavior of natural ants, an ant colony

optimization metaheuristic (ACO) [4] tries to guide mul-
tiple independent agents for constructing good solutions.
This is mainly done by subsequently incorporating informa-
tion based on solutions and their qualities achieved during
elapsed iterations. In nature, this is achieved by so called
pheromone trails, which are laid by ants when walking along
paths between food locations and their home. Other ants
follow these trails with a given probability in dependence on
the amount of pheromone accumulated along these paths.
In most computer systems based on this natural behavior,
additional locally available knowledge is also incorporated
into the solution construction process. An outline of the ant
colony optimization principle is given in Alg. 3.

For our ACO, two pheromone matrices τ and τ exist,
whereas values τij and τ ij correspond to the amount of
pheromone laid for placing shred j right next to shred i and
placing shred i on top of shred j, respectively. Both ma-
trices are initialized within two steps, whereas during the
first step five solutions Π1, . . . ,Π5 are computed with the
construction heuristics presented in Sec. 4, i.e. GMH, PMH,
RBH, MPH and PBH. Based on the best obtained solution
within this first step, an initial value τ0 is computed by

τ0 =
m

mini=1,...,5 c(Πi)
, (12)

whereas m denotes the number of ants being used within the
ACO. Subsequently, all values τij and τ ij , with i, j ∈ S, are
set to τ0. In the second step, a regular pheromone update
(see Sect. 7.2) is performed using initial solutions Π1 to Π5.

7.1 Solution Construction
New candidate solutions are constructed within the ACO

by one of the following alternative methods, which are based
on the construction heuristics GMH, RBH, and PBH pre-
sented in Sec. 4. Each candidate solution created in such a
way is then also locally improved by applying a restricted
version of the above presented VND using only neighbor-
hood structures N1 to N3 with a CPU-time limit of 500ms.

7.1.1 Randomized Greedy Matching Heuristic
Analogously to GMH, the randomized greedy matching

heuristic (RGMH) greedily matches shreds such that finally
one long sequence of snippets is produced, which is then split

into multiple rows. But instead of always fixing that pair
of shreds which matches best within each iteration, we now
perform this selection in a probabilistic way in dependence
of pheromone values and the cost function c(i, j). The prob-
ability pij of a match for pair (i, j), with i, j ∈ S ′, whereas
S ′ denotes the set of shreds not yet matched, is equal to

pij =
ταij ·

“
1

c(i,j)

”β
P
k∈S′

P
k′∈S′ ταkk′ ·

“
1

c(k,k′)

”β . (13)

In case of c(i, j) ≤ ε = 0.25 for any i, j ∈ S ′, c(i, j) is
assumed to be ε. As usual within an ACO, parameters α
and β are controlling the influence of pheromones versus the
influence of heuristic information.

7.1.2 Randomized Row Building Heuristic
The randomized version of RBH—called randomized row

building heuristic (RRBH)—tries to reconstruct a set of rows
based on the following probability distribution:

pij =
ταij ·

“
1

c(i,j)

”β
P
k∈S′ ταik ·

“
1

c(i,k)

”β (14)

Again, set S ′ is defined as the set of all shreds not used
within the current intermediate solution.

7.1.3 Randomized Prim Based Heuristic
The Randomized Prim based heuristic (RPBH) is the non-

deterministic variant of PBH. The decision at which position
the next (randomly chosen) shred is placed is based on the
following definition of probability values pip for placing shred
i ∈ S ′ to position p, with set S ′ being the set of shreds not
yet used:

pip =
δ(i, p)P

p′∈D02

P
k∈S′ δ(k, p′)

,
∀i ∈ S ′

∀p ∈ D0
2 (15)

Function δ(i, p), with i ∈ S ′, p ∈ D0
2 computes the addi-

tionally introduced error when placing shred i to position
p. The value of δ(i, p) is equal to zero if p is either already
used by another shred k ∈ S \ S ′ or all neighbor positions
of p are free, i.e. no shred k ∈ S \ S ′ is positioned on them
(see also Fig. 3). Analogously to PBH, all shreds are shifted
one position to the right or to the bottom if the next shred
should be assigned to any position outside of D2.

7.2 Pheromone Update
The pheromone update is done according to the following

expressions, whereas we assume that k, with 1 ≤ k ≤ m,
refers to the solution obtained by ant k during the last it-
eration of ACO and Π0 represents the best so far found
solution:

τij = (1− ρ) · τij +

mX
k=1

∆k
ij + ∆0

ij , ∀i, j ∈ S, i 6= j (16)

τ ij = (1− ρ) · τ ij +

mX
k=1

∆
k
ij + ∆

0
ij , ∀i, j ∈ S, i 6= j (17)

∆k
ij =

8>><>>:
1

c(Πk)

if j is placed
right next to i in
the k-th solution

0 otherwise

,
∀i, j ∈ S
∀k = 0, . . . ,m

(18)

∆
k
ij =

8>><>>:
1

c(Πk)

if i is placed on
top of i in the k-
th solution

0 otherwise

,
∀i, j ∈ S
∀k = 0, . . . ,m

(19)

The idea behind these definitions is that the placing of two
shreds next to each other should be emphasized when the
costs of this placement are low.

8. EXPERIMENTAL RESULTS
Within this section a comparison of the proposed con-

struction heuristics, different ACO settings and the pre-
sented VNS is done. For this purpose, we implemented all
approaches in Java and performed several test runs on a sin-
gle core of a Dual Opteron with 2.6GHz and 4GB of RAM.

We scanned five different pages of a text document con-
taining a table of contents, a table with numbers and text
as well as plain, formatted text. All document pages were
transformed into gray scale images and then shredded into
9 instances with 9×9 to 15×15 snippets each, which results
in a total of 45 different input instances to be reconstructed.
For the definition of the used cost function (2) we refer to [7].

Table 1 shows the results obtained using RBH, PBH, GMH
and MPH for all of these instances. Since preliminary tests
revealed that PMH performs in most cases worse than GMH
and in all cases worse than any other construction heuristic,
no detailed results are presented for this method.

The first three columns (x and y) indicate characteristics
of the corresponding instance, i.e. the page and the num-
ber of shreds along the x- and y-axis, respectively. The
fourth column shows the objective value of the perfectly re-
constructed document page, i.e. the original sheet of paper.
In the following columns the mean percentage gaps over 20
runs with respect to the objective value of the original doc-
ument page as well as the standard deviations in parenthe-
ses are presented for each construction heuristic. We can
observe that MPH often yields the best (lowest) objective
value. Wilcoxon rank sum tests have been performed to
check in which cases MPH actually yields statistically bet-
ter solutions than RBH, PBH and GMH, respectively. The
results are given in the corresponding columns labeled p,
whereas an entry of > indicates that MPH is significantly
better with an error level of 5% and < states that the cor-
responding heuristic performed better. If none of these two
cases holds, then ≈ is shown in the corresponding field.

Regarding the mean values—the best obtained are printed
bold—MPH yielded 30 times the best average value while
PBH obtained only seven times the best result. GMH and
RBH achieved the best value in five and two cases, respec-
tively. Nevertheless, the page could never be perfectly recon-
structed. MPH obtained for 32, 30 and 28 instances statisti-
cally better results than GMH, RBH and PBH, respectively.

Since GMH is completely deterministic, the standard de-
viations are zero. Since the standard deviations seem to be
rather high for the other three construction heuristics, it has
to be mentioned that according to the cost function used,
even the swapping of two shreds can significantly increase
(or decrease) the objective function. Therefore, these high
values have to be relativized. Nevertheless, they show that
certain fluctuations are existent.

For testing our VNS approach we performed four inde-
pendent tests, each one initializing VNS using another con-
struction heuristic and consisting of 20 runs. Due to space

limitations only the better results for the runs of VNS initial-
ized with PBH and MPH (indicated by VNS-PBH and VNS-
MPH) are shown in Tab. 2. In addition, the results obtained
by applying our ACO approach to RCCSTD are presented,
whereas the following settings for ACO were used: RPBH,
RRBH and RGMH have been alternatively used with m =
18 ants. The results obtained for these settings are presented
in the columns labeled ACO-RPBH, ACO-RRBH and ACO-
RGMH, respectively. A fourth ACO setting was tested using
again m = 18 ants but six of them applied RPBH, six RRBH
and six RGMH. The value of parameter m was chosen based
on preliminary tests, which also revealed that the fixing of
α and β to 1 and 5 is promising for our ACO variants. The
results of these test runs are listed in the columns labeled
ACO. Again, the conclusions of selected Wilcoxon tests are
presented in columns labeled with p, whereas VNS-PBH was
compared to VNS-MPH and VNS-MPH, ACO, ACO-RPBH
and ACO-RGMH were compared to ACO-RRBH. The cor-
responding p columns indicate again whether the first (<) or
the second heuristic (>) yielded statistically better results
on an error level of 5%. If none of these two cases occur, a
≈ sign is printed in the according field.

The values presented in Tab. 2 are again mean percentage
gaps over 20 runs. When comparing VNS-PBH and VNS-
MPH we cannot observe a general advantage for one of them.
While VNS-PBH obtained for 25 instances the better mean
gaps and VNS-MPH only for 19 instances, VNS-MPH was
10 times significantly better than VNS-PBH which was only
8 times significantly better. The best mean gaps of these
two VNS variants are again printed bold. In addition the
best mean values of the four ACO variants is emphasized.

For the ACO variants a clearer conclusion can be drawn:
ACO-RRBH performs best on the used test sets. Therefore,
we decided to compare VNS-MPH with ACO-RRBH and
observed that the results obtained by the latter one were
for 28 instances significantly better. When comparing VNS
and ACO in general, the two VNS variants achieved best
mean results only on 11 instances whereas the ACO variant
reached 35 times the best mean value (29 times this value
was provided by ACO-RRBH).

Again, for each of these settings of VNS and ACO, mean
values over 20 runs and standard deviations are listed. If
ACO-RRBH was significantly better on an error level of 5%
than another ACO setting the entry in the corresponding
column labeled p is set to >; < indicates that the corre-
sponding ACO setting obtained significantly better results.
If no conclusion could be drawn ≈ is given. The results com-
paring the two VNS settings with each other are presented in
the column labeled p for VNS-PBH (< indicates that VNS-
PBH was statistically better on an error level of 5%). The re-
sults of the comparison of VNS-MPH and ACO-RRBH with
each other, are presented in the p column of VNS-MPH.

Taking a closer look at the values in Tab. 2 it can be
seen that for instance p001 with 9 × 9 shreds ACO-RRBH
could always reconstruct the original document page. For
some runs, the percentage gap is even negative, which can
be easily explained by the fact that for any error estima-
tion function it is not assured that the original document is
evaluated best.

Regarding running times, we can summarize that the con-
struction heuristics performed within hundreds of millisec-
onds. The VNS approaches needed between one and 100
seconds computation time until termination and the com-

Table 1: Average percentage gaps and corresponding standard deviations for the four construction heuristics
are listed. Results of Wilcoxon rank sum tests for the hypothesis that MPH performs better than each of
the other construction heuristics are given in columns p (using a 5% error level).

RBH PBH GMH MPH
x y orig mean dev p mean dev p mean dev p mean dev
9 9 2977 147.7% (27.9) ≈ 172.2% (9.0) > 201.6% (0.0) > 131.9% (31.6)
9 12 4051 152.3% (15.0) ≈ 142.3% (10.6) ≈ 149.3% (0.0) ≈ 151.1% (28.2)
9 15 4215 169.0% (29.0) > 160.8% (8.0) > 194.9% (0.0) > 147.2% (22.4)

12 9 4125 115.6% (18.1) ≈ 140.2% (9.8) > 123.2% (0.0) > 109.1% (25.1)
12 12 4937 145.4% (13.0) > 123.6% (8.1) ≈ 155.4% (0.0) > 129.8% (19.5)
12 15 5147 172.8% (17.4) ≈ 130.7% (8.0) < 167.7% (0.0) < 179.7% (20.5)
15 9 4099 166.9% (21.1) > 161.1% (8.7) > 113.1% (0.0) > 101.2% (24.2)
15 12 4922 150.2% (20.0) > 142.6% (8.6) > 156.9% (0.0) > 113.3% (15.2)in

st
a
n
c
e

p
0
0
1

15 15 5142 150.5% (17.6) > 135.7% (6.6) ≈ 158.9% (0.0) > 138.0% (14.2)
9 9 1786 229.2% (15.5) > 186.6% (28.1) > 159.8% (0.0) > 141.7% (11.2)
9 12 1538 335.2% (22.3) > 235.6% (32.6) > 191.4% (0.0) > 190.0% (15.7)
9 15 2462 249.4% (10.6) > 144.6% (21.5) ≈ 132.0% (0.0) < 145.6% (12.3)

12 9 1757 175.2% (24.5) > 228.3% (38.5) > 173.6% (0.0) > 132.8% (14.8)
12 12 1568 251.2% (15.7) > 273.5% (28.6) > 199.0% (0.0) > 181.3% (7.4)
12 15 2398 200.6% (12.5) > 168.3% (18.8) > 123.4% (0.0) < 134.2% (11.9)
15 9 2116 129.5% (11.1) > 243.7% (22.6) > 139.1% (0.0) > 109.6% (24.8)
15 12 2075 150.8% (11.1) > 255.5% (18.6) > 150.7% (0.0) > 129.0% (12.4)in

st
a
n
c
e

p
0
0
2

15 15 2864 118.2% (13.8) > 183.4% (13.1) > 123.9% (0.0) > 108.9% (9.5)
9 9 3245 128.9% (17.3) ≈ 130.6% (13.4) ≈ 172.4% (0.0) > 123.3% (25.4)
9 12 3398 164.6% (18.0) ≈ 153.0% (12.3) < 175.3% (0.0) ≈ 169.2% (34.3)
9 15 3294 169.9% (25.0) ≈ 171.5% (16.4) ≈ 153.9% (0.0) ≈ 159.2% (36.7)

12 9 4049 96.8% (15.8) ≈ 137.3% (9.6) > 129.7% (0.0) > 105.7% (18.7)
12 12 4330 146.7% (16.7) ≈ 129.8% (13.0) < 135.1% (0.0) < 147.5% (15.9)
12 15 4264 143.3% (16.4) > 136.2% (10.4) ≈ 142.3% (0.0) > 129.4% (20.1)
15 9 4195 120.4% (16.6) > 140.0% (7.9) > 102.6% (0.0) > 89.1% (24.1)
15 12 4242 200.5% (10.3) > 149.5% (11.6) ≈ 110.9% (0.0) < 142.0% (15.5)in

st
a
n
c
e

p
0
0
3

15 15 4270 182.5% (11.3) > 140.1% (11.7) ≈ 142.1% (0.0) ≈ 138.6% (16.7)
9 9 1411 184.4% (39.5) ≈ 207.6% (21.0) > 229.6% (0.0) > 182.7% (24.3)
9 12 1892 221.9% (27.3) > 176.9% (19.9) ≈ 220.7% (0.0) > 184.5% (26.5)
9 15 1979 157.8% (19.4) > 150.9% (20.8) ≈ 171.0% (0.0) > 142.7% (18.2)

12 9 2037 188.6% (23.2) > 194.0% (16.2) > 152.8% (0.0) ≈ 149.4% (16.7)
12 12 2689 139.1% (14.5) > 143.5% (14.1) > 159.1% (0.0) > 121.8% (17.1)
12 15 2734 119.2% (9.8) > 122.9% (10.0) > 122.9% (0.0) > 107.2% (3.4)
15 9 2193 164.3% (12.5) > 206.5% (19.1) > 140.4% (0.0) > 113.7% (23.9)
15 12 2481 135.3% (13.9) ≈ 184.9% (13.8) > 145.7% (0.0) ≈ 144.3% (24.4)in

st
a
n
c
e

p
0
0
4

15 15 2719 106.2% (18.6) ≈ 138.6% (14.3) > 122.8% (0.0) > 107.6% (17.3)
9 9 923 211.0% (36.3) ≈ 343.0% (50.7) > 245.3% (0.0) > 197.3% (38.0)
9 12 1293 325.6% (40.5) ≈ 302.6% (34.6) ≈ 333.9% (0.0) > 316.8% (33.5)
9 15 2123 264.7% (19.8) > 245.8% (16.9) ≈ 265.7% (0.0) > 243.4% (27.6)

12 9 1365 177.8% (15.8) > 251.8% (28.4) > 171.5% (0.0) > 154.4% (17.6)
12 12 1841 236.7% (30.0) > 258.7% (21.1) > 222.9% (0.0) > 204.8% (26.7)
12 15 2588 219.8% (15.0) ≈ 204.1% (15.0) < 214.5% (0.0) < 216.6% (17.1)
15 9 1317 175.6% (21.1) > 304.5% (41.1) > 193.5% (0.0) > 117.0% (27.8)
15 12 1634 304.6% (21.6) > 299.0% (24.6) > 260.4% (0.0) > 233.5% (34.9)in

st
a
n
c
e

p
0
0
5

15 15 2460 253.3% (14.1) > 225.7% (17.8) > 197.1% (0.0) < 205.1% (13.0)

putation times for ACO lie between approximately 100 sec-
onds and 800 seconds. It can be concluded that although
the results obtained by ACO are better in most cases, the
computation times needed are significantly higher.

In general further improvements are necessary to address
large practical instances especially also involving multiple
pages. However, considering the complexity of the problem,
the achieved results on small and medium sized instances are
remarkable. Especially for those pages containing mainly
text, large parts of the documents could be reconstructed.

9. CONCLUSIONS
In this work, we presented several approaches based on

ACO as well as VNS for reconstructing cross cut shredded
text documents. All of them could significantly improve ini-
tial solutions obtained by construction heuristics. While the
ACO variants needed more computation time than the VNS,
the former also obtained better results on 34 of 45 instances.

Although the optimal “correct” solutions was only reached
once by the proposed approaches, the results obtained are
promising. For document pages with much written text on

them, we were able to reconstruct large parts of the origi-
nal document. A further investigation of either additional
neighborhood structures to be used within VND or addi-
tional or more problem dependent construction heuristics
incorporated into ACO seems to be promising.

10. REFERENCES
[1] P. Bose, J.-D. Caron, and K. Ghoudi. Detection of

text-line orientation. In Proceedings of the 10th
Canadian Conference on Computational Geometry
(CCCG’98), 1998. (online ressource).

[2] M. G. Chung, M. Fleck, and D. Forsyth. Jigsaw puzzle
solver using shape and color. In Fourth International
Conference on Signal Processing 1998, ICSP ’98,
volume 2, pages 877–880, 1998.

[3] P. De Smet. Reconstruction of ripped-up documents
using fragment stack analysis procedures. Forensic
Science International, 176(2):124–136, 2008.

[4] M. Dorigo and T. Stützle. Ant Colony Optimization.
MIT Press, 2004.

Table 2: Results obtained by VNS and ACO. The mean percentage gaps over 20 runs and standard deviations
are presented for two independent test sets of VNS initialized using PBH and MPH as well as the mean gaps
(over 20 runs) and standard deviations of 4 different ACO variants incorporating RPBH, RGMH, RRBH
and all three of them, respectively. Values in columns p correspond to the results of Wilcoxon rank sum tests
using a 5% error level.

VNS-PBH VNS-MPH ACO ACO-RPBH ACO-RGMH ACO-RRBH
x y orig. mean dev p mean dev p mean dev p mean dev p mean dev p mean dev
9 9 2977 40.8% (12.5) > 10.0% (12.7) > 4.0% (5.9) > 23.8% (8.1) > 29.1% (9.5) > 0.0% (0.0)
9 12 4051 28.7% (11.6) > 20.8% (8.8) ≈ 14.6% (5.1) > 27.0% (4.9) > 27.8% (3.7) > 21.0% (4.8)
9 15 4215 34.7% (8.0) > 28.6% (7.7) ≈ 31.7% (3.6) > 34.8% (2.8) > 35.6% (2.7) > 30.7% (2.1)

12 9 4125 26.4% (5.9) ≈ 28.4% (9.3) > 27.6% (3.3) > 27.2% (4.0) > 27.0% (3.0) > 25.2% (3.2)
12 12 4937 26.5% (6.1) ≈ 24.8% (5.9) ≈ 29.6% (2.2) > 34.5% (4.0) > 30.9% (3.0) > 27.5% (2.9)
12 15 5147 30.4% (6.6) ≈ 31.0% (10.6) ≈ 34.0% (2.7) ≈ 33.1% (2.9) ≈ 34.7% (2.8) > 32.7% (3.2)
15 9 4099 37.5% (11.2) > 30.1% (7.8) ≈ 32.8% (3.7) > 32.8% (4.7) > 33.7% (3.6) > 29.1% (4.1)
15 12 4922 32.0% (5.8) > 28.2% (7.6) < 31.9% (3.6) ≈ 34.9% (2.7) > 31.4% (3.1) ≈ 32.5% (2.6)in

st
a
n
c
e

p
0
0
1

15 15 5142 32.3% (5.2) ≈ 32.3% (5.8) ≈ 35.3% (3.1) > 36.5% (2.3) > 36.6% (3.9) > 33.2% (3.2)
9 9 1786 2.1% (9.0) ≈ 3.2% (12.5) ≈ 0.2% (3.7) < -4.1% (5.7) < -2.5% (5.1) < 4.8% (4.6)
9 12 1538 23.0% (9.6) < 34.6% (14.1) ≈ 17.0% (3.7) < 16.9% (4.5) < 17.6% (3.9) < 35.3% (5.1)
9 15 2462 8.4% (4.4) < 15.6% (6.2) < 8.0% (2.5) < 6.9% (2.6) < 14.0% (2.5) < 21.7% (3.6)

12 9 1757 6.0% (9.7) ≈ 9.6% (11.1) ≈ 9.0% (6.3) < 3.3% (6.3) < 11.3% (7.1) ≈ 13.4% (4.2)
12 12 1568 22.6% (9.1) < 29.4% (9.8) ≈ 24.8% (4.7) < 21.9% (4.1) < 25.7% (4.1) ≈ 27.7% (5.0)
12 15 2398 9.4% (6.0) < 19.0% (10.9) ≈ 14.4% (3.1) < 12.4% (2.4) < 20.4% (3.1) ≈ 19.7% (3.5)
15 9 2116 19.8% (10.1) > 14.0% (10.7) ≈ 16.3% (3.5) > 25.6% (3.4) > 16.8% (3.6) ≈ 13.8% (4.0)
15 12 2075 27.3% (11.4) ≈ 24.6% (9.0) > 17.2% (3.4) < 34.3% (5.4) > 15.9% (3.8) < 19.8% (3.3)in

st
a
n
c
e

p
0
0
2

15 15 2864 16.2% (5.0) ≈ 17.5% (8.1) > 13.8% (1.9) > 22.2% (2.8) > 17.1% (2.9) > 12.6% (1.7)
9 9 3245 25.2% (8.2) > 21.3% (8.0) > 11.5% (4.3) > 18.9% (3.4) > 18.5% (4.0) > 6.7% (4.8)
9 12 3398 34.1% (4.1) ≈ 34.4% (11.0) > 29.9% (3.6) ≈ 37.4% (3.5) > 32.0% (4.5) ≈ 30.0% (3.6)
9 15 3294 25.4% (14.3) > 11.6% (6.7) < 21.7% (5.3) > 31.1% (6.4) > 24.3% (2.2) > 18.0% (2.6)

12 9 4049 23.4% (7.3) > 16.4% (6.1) > 14.7% (2.0) > 23.6% (3.1) > 17.4% (2.6) > 11.6% (2.9)
12 12 4330 25.1% (4.6) > 19.9% (6.1) < 24.5% (3.3) > 39.1% (3.4) > 25.7% (3.3) > 23.3% (2.5)
12 15 4264 20.9% (6.9) ≈ 23.2% (6.2) > 17.4% (2.4) > 33.0% (4.9) > 18.5% (2.5) > 16.3% (2.1)
15 9 4195 20.6% (6.2) ≈ 21.8% (10.0) > 16.1% (3.1) > 31.1% (5.0) > 24.2% (2.2) > 13.6% (2.3)
15 12 4242 33.1% (6.4) ≈ 35.7% (8.1) ≈ 37.5% (3.2) ≈ 55.7% (5.2) > 38.9% (3.5) > 36.3% (2.1)in

st
a
n
c
e

p
0
0
3

15 15 4270 27.3% (4.7) ≈ 30.0% (5.1) > 26.3% (2.2) ≈ 35.8% (4.0) > 25.7% (2.4) < 27.0% (1.4)
9 9 1411 28.7% (16.5) ≈ 35.8% (11.5) > 21.5% (6.4) ≈ 18.3% (7.8) ≈ 20.7% (9.4) ≈ 18.4% (7.2)
9 12 1892 21.7% (9.9) < 28.0% (10.1) > 15.0% (4.8) ≈ 14.5% (5.0) ≈ 14.2% (3.4) ≈ 15.6% (4.5)
9 15 1979 9.4% (8.5) < 16.0% (6.3) > 3.9% (3.8) ≈ 2.4% (3.3) ≈ 5.8% (2.8) > 3.8% (3.3)

12 9 2037 36.6% (10.4) ≈ 38.3% (11.0) > 29.1% (4.5) > 35.7% (6.8) < 38.4% (5.8) > 26.3% (5.3)
12 12 2689 20.8% (5.1) < 28.5% (5.0) > 19.2% (2.4) < 15.9% (2.6) < 21.9% (2.4) ≈ 20.6% (1.9)
12 15 2734 6.1% (3.6) < 12.2% (5.7) > 6.8% (2.8) ≈ 7.1% (1.6) ≈ 10.4% (1.7) > 7.6% (1.8)
15 9 2193 41.4% (13.4) > 26.6% (12.8) > 18.2% (3.5) > 43.5% (5.2) > 26.0% (3.5) > 12.5% (4.1)
15 12 2481 36.9% (10.5) ≈ 38.0% (9.7) > 29.4% (2.7) > 41.7% (5.0) > 30.7% (3.4) > 27.0% (2.6)in

st
a
n
c
e

p
0
0
4

15 15 2719 15.7% (6.6) ≈ 14.4% (5.4) > 5.1% (2.6) > 20.8% (3.7) > 6.3% (1.8) > 3.9% (1.6)
9 9 923 57.1% (20.6) ≈ 54.7% (23.6) > 21.1% (8.9) > 66.7% (11.2) > 36.5% (12.0) > 13.6% (8.2)
9 12 1293 82.0% (20.3) ≈ 82.1% (21.9) > 70.4% (9.5) ≈ 72.5% (6.9) ≈ 78.9% (8.7) > 69.0% (7.4)
9 15 2123 48.4% (9.1) ≈ 51.8% (8.7) > 39.3% (6.6) ≈ 45.8% (4.6) > 44.2% (5.1) > 36.2% (4.5)

12 9 1365 43.5% (8.7) ≈ 42.4% (16.3) > 27.5% (4.2) > 75.4% (8.1) > 29.7% (3.7) > 23.4% (4.5)
12 12 1841 47.1% (14.4) ≈ 51.4% (13.6) > 40.0% (5.1) > 54.3% (7.6) > 44.5% (5.7) > 36.6% (3.1)
12 15 2588 45.9% (6.0) ≈ 44.1% (7.9) > 35.9% (3.1) > 45.4% (2.9) > 37.6% (3.6) > 34.5% (2.6)
15 9 1317 35.5% (29.9) > 12.8% (15.0) > -4.3% (4.2) > 43.7% (13.2) > -1.2% (3.2) > -9.4% (1.4)
15 12 1634 53.9% (11.0) ≈ 58.7% (15.9) > 55.4% (4.7) > 67.6% (7.1) > 59.0% (5.2) > 51.5% (3.9)in

st
a
n
c
e

p
0
0
5

15 15 2460 42.2% (6.4) ≈ 42.9% (8.3) > 39.5% (3.4) ≈ 44.9% (4.7) > 41.0% (3.5) > 38.5% (3.7)

[5] P. Hansen and N. Mladenović. Variable neighborhood
search. In Glover and Kochenberger, editors,
Handbook of Metaheuristics, pages 145–184. Kluwer
Academic Publisher, New York, 2003.

[6] E. Justino, L. S. Oliveira, and C. Freitas.
Reconstructing shredded documents through feature
matching. Forensic Science International,
160(2–3):140–147, 2006.

[7] M. Prandtstetter and G. R. Raidl. Combining forces
to reconstruct strip shredded text documents. In M. J.
Blesa et al., editors, Hybrid Metaheuristics, volume
5296 of LNCS, pages 175–189. Springer, 2008.

[8] R. C. Prim. Shortest connection networks and some
generalizations. The Bell System Technical Journal,
3:1389–1401, 1957.

[9] P. Schüller. Reconstructing borders of manually torn
paper sheets using integer linear programming.

Master’s thesis, Vienna University of Technology,
Austria, 2008.

[10] A. Skeoch. An Investigation into Automated Shredded
Document Reconstruction using Heuristic Search
Algorithms. PhD thesis, University of Bath, UK, 2006.

[11] A. Ukovich, G. Ramponi, H. Doulaverakis,
Y. Kompatsiaris, and M. Strintzis. Shredded
document reconstruction using MPEG-7 standard
descriptors. Proceedings of the Fourth IEEE
International Symposium on Signal Processing and
Information Technology, 2004, pages 334–337, 2004.

[12] A. Ukovich, A. Zacchigna, G. Ramponi, and
G. Schoier. Using clustering for document
reconstruction. In E. R. Dougherty et al., editors,
Image Processing: Algorithms and Systems, Neural
Networks, and Machine Learning, volume 6064 of
Proceedings of SPIE, pages 168–179. International
Society for Optical Engineering, 2006.

