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Abstract. In this work, we focus on the reconstruction of strip shred-
ded text documents (RSSTD) which is of great interest in investigative
sciences and forensics. After presenting a formal model for RSSTD, we
suggest two solution approaches: On the one hand, RSSTD can be re-
formulated as a (standard) traveling salesman problem and solved by
well-known algorithms such as the chained Lin Kernighan heuristic. On
the other hand, we present a specific variable neighborhood search ap-
proach. Both methods are able to outperform a previous algorithm from
literature, but nevertheless have practical limits due to the necessarily
imperfect objective function. We therefore turn to a semi-automatic sys-
tem which also integrates user interactions in the optimization process.
Practical results of this hybrid approach are excellent; difficult instances
can be quickly resolved with only few user interactions.

1 Introduction

In the fields of forensics and investigative sciences it is often required to recon-
struct the information hidden on destructed paper documents. Usually, paper
is destroyed by ripping up the sheets or—more professionally—by using appro-
priate shredding devices either producing thin strips or even small rectangles
or other geometric shapes like hexagons. In this work we focus on the topic of
reconstructing strip shredded text documents.

Depending on the shape, size, and the number of remnants the process of
reconstructing an original document in order to restore the lost information can
be very time consuming or practically almost impossible for a human. There-
fore, an automatic reconstruction process is desirable. Any such approach has
to acquire the strips in a first step by scanning the remnants using a (high end)
scanner. Pattern recognition and image processing tasks are applied to identify
the bounding boxes and orientations of the scanned strips and to gather infor-
mation about features like background/paper color, text color, and other helpful
features. In a second step, these attributes can be used to derive clusters of strips
potentially belonging to the same original document page(s) [1]. Unfortunately
any such system suffers from two drawbacks: Firstly, after the clustering process
no information is directly available on how the strips have to be concatenated to
form the original page(s). Secondly, any clustering approach can only marginally
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reduce the problem size or even fails if many pages containing the same or sim-
ilar features are shredded; examples are forms, tables, and any other regularly
structured document.

Motivated by these two drawbacks, we propose a new approach to the re-
construction of strip shredded text documents (RSSTD) by firstly specifying the
problem as a combinatorial optimization problem and secondly reformulating it
as the well known traveling salesman problem (TSP). Furthermore, to overcome
problems implied by the special structure of the resulting TSP and unavoidable
inaccuracies introduced by the general modeling, a new variable neighborhood
search (VNS) that is embedded in a system allowing user interaction is pre-
sented. Our practical results show that this approach combines and leverages
machine power and human experience, knowledge, and intuition in an effective
way, enabling the resolution of larger and/or more difficult RSSTD instances.

This article is structured as follows: In the next section an overview on pre-
vious and related work is given. Afterwards, our problem is formally specified.
In Section 4 the transformation to the TSP is described, and Section 5 discusses
possible definitions of the cost function related to the formulation as combina-
torial optimization problem. Then two approaches for solving the given problem
are presented—one based on the well known Lin Kernighan heuristics for the
TSP and one based on a VNS and a system for integrating human interaction.
Section 7 discusses results obtained by using our methods. Conclusions are drawn
in Section 8.

2 Related and Previous Work

Although RSSTD is of great interest not only for intelligence agencies or forensics
but also for different scientific communities, there exists not much work covering
exactly this topic. A related but at the same time very different challenge is
the automated solving of jigsaw puzzles. The major difference is the fact that
for jigsaw puzzles each piece has a mostly unique shape and therefore the pure
geometric information of an element can be exploited well in the reconstruction
process. Furthermore and in contrast to most text documents, the image and
color information on the puzzle pieces can be utilized efficiently [2].

Another related topic is the reconstruction of manually torn paper documents.
There, shape information can also be exploited to some degree but may also be
misleading due to shearing effects. The first of three major approaches was pre-
sented by Justino et al. [3]. They extract characteristics of the edges of snippets
and then try to cling them together by iteratively matching the extracted fea-
tures [3]. They state in their work that the application of the proposed method
is limited to small instances of up to 15 snippets from one page.

In his master thesis, Schüller [4] proposed to use integer linear programming
based methods for exactly reconstructing manually torn documents. The tech-
niques presented in this work rely only on geometric information extracted from
the remnants and solely focus on the borders of pages to be reconstructed since



Combining Forces to Reconstruct Strip Shredded Text Documents 3

border pieces provide more reliable information and are easier to handle. Again,
the application of the algorithms is limited to small instances.

De Smet [5] tries to exploit information implied by the relative order of
snippets in a stack of recovered remnants. The proposed methods are limited to
scenarios without missing snippets as well as a perfect snippet order. No details
on how to adapt the solution process to non perfect situations are given.

In contrast to the above mentioned methods, Skeoch [6] focuses on the recon-
struction of strip shredded documents but mainly discusses the scanning process
and related properties of paper strips. Further, she presents a genetic algorithm
including crossover and mutation operators as well as heuristics for generating
initial solutions to restore shredded images. In contrast to text documents, a
large amount of different colors usually exists in images and soft color transi-
tions dominate. This aspect can be efficiently exploited.

Ukovich et al. [7] tried not to reconstruct the original document pages but
to build clusters of strips belonging to the same sheet of paper by using MPEG-
7 descriptors for this task. In [1], they introduced among others features like
background and text color, line spacing and number of lines to be extracted
from documents and discussed the potential of clustering methods.

Lately, Morandell [8] formulated the RSSTD as a combinatorial optimization
problem related to the TSP. He also presents basic ideas on how to solve this new
formulation by means of metaheuristics including variable neighborhood search,
iterated local search, and simulated annealing. The results presented within this
thesis are promising and encouraged us to pursue this approach in more detail.

3 Formal Problem Specification

In this section, we present a formal problem description of RSSTD as a combi-
natorial optimization problem.

We are given a finite set S of n rectangular shaped and (almost) equally sized
paper snippets—so called strips—which have been produced by shredding one
ore more sheet(s) of paper. In this work the widths of the strips are not further
investigated since no information exploited in our approach can be extracted
from them. Furthermore, the heights of all strips are assumed to be the same.
If this is not the case, then a preprocessing step using clustering methods as
proposed in [1] can be performed. Each set of strips having the same heights in
the resulting partitioning can be used as input for our approach to RSSTD.

Although many printers are capable of duplex printing nowadays, most docu-
ments—especially in offices, one of the main application areas of shredders—are
still blank on the back face. Motivated by this observation and for simplicity our
presented model only regards the front face of the scanned strips. However, an
extension to handle two-sided documents is possible in a straightforward way.
Further, we neglect all strips of any input instance with no useful information
on them. That is, all completely blank strips as well as strips with blank borders
but non-empty inner regions are eliminated. Applying such a blank strip elimi-
nation procedure has two advantages. Firstly, symmetries implied by arbitrarily
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swapping blank strips are removed, and secondly—and more importantly—the
search space is significantly reduced.

A solution x = 〈π, o〉 to RSSTD consists of a permutation π : S → {1, . . . , n}
of the elements in set S as well as a vector o = 〈o1, . . . on〉 ∈ {up, down}n which
assigns an orientation to each strip s ∈ S:

os =

{
up if strip s is to be placed in its original orientation,

down if strip s is rotated by 180◦.
(1)

While πi denotes the strip at position i, i = 1, . . . , n, we denote the position of
a given strip s ∈ S by ps ∈ {1, . . . , n}; i.e. πi = s ↔ ps = i. By σ = 〈sj , . . . , sk〉,
with 1 ≤ j, k ≤ n, we denote a possibly empty (sub-)sequence of strips in a given
solution. Two sequences are concatenated by the · operator.

In the following we make use of a cost function c(s, s′, os, os′) ≥ 0 to be
explained later in detail, which shall provide an approximate measure for the
likelihood that two strips s and s′ appear side-by-side and oriented according
to os and os′ in the original document, i.e. correct solution. A value of zero
indicates that the contacting borders match perfectly; the larger the cost value,
the more different are these borders. The overall objective is to find a solution,
i.e. permutation and corresponding orientation vector, such that the following
total costs are minimized:

obj(x) = objl +
n−1∑
i=1

c(πi, πi+1, oi, oi+1) + objr (2)

objl = c(β, π1, oβ , o1) (3)
objr = c(πn, β, on, oβ) (4)

Hereby β denotes an additional (artificial) blank strip which is inserted at the
beginning and the end of the page(s) to be reconstructed. This is motivated
by the fact, that in most cases—especially if all strips of the original sheets of
paper have been recovered—the left and right document margins are blank. As
the costs of matching two blank borders are zero, omitting the additional terms
objl and objr would most likely lead to a solution where the first and last strips
of a correct solution are placed side-by-side. Since strip β is blank, its orientation
oβ does not have any impact.

One crucial part in solving RSSTD as stated above is a proper definition of
the cost function c(s, s′, os, os′). A detailed discussion on this topic is given in
Section 5. In any case, a cost function used for RSSTD has to have the so called
skew-symmetry property which states that the costs for placing strip s′ right to
strip s have to be the same as for rotating both strips by 180◦ and placing strip
s right to strip s′.

Before considering approaches for solving RSSTD, we show the following
complexity result.
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Fig. 1: In (a) a subgraph representing two strips s and s′ in an AGTSP instance
is depicted while in (b) the same subgraph after performing the transformation
to TSP is shown. The bold lines indicate two corresponding tours.

Theorem 1. RSSTD is NP-hard.

Proof. Any (symmetric) traveling salesman problem (TSP) instance can be trans-
formed into a RSSTD instance by introducing a strip for each city and defining
the cost function c(s, s′, os, os′) in correspondence to the TSP’s distances; orien-
tations are ignored. An arbitrary city can be chosen as RSSTD’s artificial blank
strip β corresponding to the left and right margins. An optimal solution to the
RSSTD instance obtained in this way obviously will also correspond to an opti-
mal solution of the original TSP. ut

4 Reformulation as Traveling Salesman Problem

In this section, we present a polynomial time transformation from for the RSSTD
into a TSP, thus the reverse direction than in the proof above, with the moti-
vation to find RSSTD solutions via algorithms for the TSP. To achieve this, a
representation of RSSTD as an asymmetric generalized traveling salesman prob-
lem is developed first, and in a second step, we transform this problem into a
TSP.

4.1 Formulation as Asymmetric Generalized Traveling Salesman
Problem

In the asymmetric generalized traveling salesman problem (AGTSP) a directed
graph G = (V,A), with V being the set of nodes and A being the set of arcs, as
well as a partitioning of V into m disjoint, non-empty clusters Ci, i = 1, . . . ,m,
is given. Furthermore, a weight wa > 0 is associated with each a ∈ A. A feasible
solution to AGTSP is a tour T ⊆ A that visits exactly one node of each cluster
Ci while minimizing the expression

∑
a∈T wa.

The following steps have to be performed for formulating RSSTD as AGTSP:

1. Introduce a cluster Cs for each strip s ∈ S consisting of two vertices vU
s and

vD
s representing the possible orientations of the corresponding strip s.

2. Introduce a cluster Cβ for the virtual blank strip β and insert one vertex vβ

into this cluster. Since β is blank no orientation information is necessary for
this strip.
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3. Each pair (s, s′) of strips induces eight arcs representing the possible place-
ments of s and s′ in relation to each other, see also Fig. 1a. For instance,
arc (vD

s , vU
s′) represents the case that strip s′ is placed right to strip s. While

strip s is rotated by 180◦, strip s′ is positioned upright. Since strip s cannot
be placed left (or right) to itself, it is obvious that there are no arcs between
two nodes representing the same strip.

4. Additionally, vertex vβ is connected via two reversely directed arcs with each
other node representing a strip.

5. The weights of the arcs are chosen such that for any arc a = (vos
s , v

os′
s′ ), with

s, s′ ∈ S, wa = c(s, s′, os, os′). The weights for arcs leaving or entering vβ

are chosen according to c(β, s, oβ , os) or c(s, β, os, oβ), respectively.

Obviously, an optimal solution to the AGTSP instance derived in the de-
scribed way also forms a solution to the original RSSTD instance with equal
costs when starting the tour at the virtual strip represented by vβ .

Several methods for solving AGTSP already exist like exact approaches, e.g.
a branch-and-cut algorithm [9], as well as metaheuristics, e.g. a genetic algo-
rithm [10]. Beside applying one of those algorithms specifically designed for
solving AGTSP another possibility is to transform an AGTSP instance into a
classical TSP instances and solve the latter with one of the many existing meth-
ods. In the next section we concentrate on such an approach.

4.2 Further Reformulation as TSP

The classical TSP consists of finding the shortest tour in a weighted undirected
graph G = (V,E) such that each vertex in V is visited exactly once. Let we > 0
be the weight associated with each edge e ∈ E. The length of a tour in TSP is
computed as the sum of the tour’s edge weights.

Based on the presented transformation of RSSTD to AGTSP, RSSTD can
be further translated into a TSP by first applying the polynomial time transfor-
mation into a asymmetric traveling salesman problem (ATSP) proposed in [11]
and finally applying the polynomial transformation of ATSP into TSP described
in [12]. Taking a closer look at these works, two major drawbacks can be iden-
tified. On one hand, the maximum costs for edges are dramatically increased
during the transformation from AGTSP into ATSP, which might lead to prac-
tical problems when trying to solve such transformed instances. On the other
hand, the number of nodes in G is doubled during the translation from the
asymmetric TSP to the symmetric case. Fortunately, both drawbacks can be
avoided when applying a new transformation method we specifically developed
for RSSTD.

Each instance of RSSTD can be transformed into an instance of TSP when
first applying the reformulation as ATSP presented above and then executing
the following steps. For this we adopt the idea of introducing directed cycles of
zero costs within each cluster while changing the (costs of the) outgoing arcs as
suggested by Behzad et al. in [11]:
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1. We add two additional arcs—one in each direction—between nodes vD
s and

vU
s for each strip s ∈ S.

2. The weights of these new arcs are all set to zero.
3. In a next step, we swap the weights for (vD

s , vD
s′) and (vU

s , vD
s′) as well as

(vD
s , vU

s′) and (vU
s , vU

s′). After swapping two arcs we add a constant M to the
associated arc weights.

4. Since the cluster Cβ consists of only one node, no transformation needs to
be done for this cluster.

In Figure 1b the adjacency matrix of a subgraph of an AGTSP instance for
RSSTD is presented. Figure 1c depicts the adjacency of this subgraph after
applying the transformation to TSP. It can be easily checked that the resulting
graph is undirected.

Theorem 2. Any weight-minimal Hamiltonian tour on a graph obtained by the
presented transformation from RSSTD can be re-transformed into an optimal
placement of strips with respect to objective function (2).

Proof. Due to the fact, that the costs for arcs connecting the nodes within a
cluster are zero, any optimal tour will visit both nodes in a cluster consecutively.
Assuming that there is one cluster Ci whose nodes are not visited consecutively,
the tour has to enter cluster Ci at least two times. Since the costs for all arcs
except for those within a cluster are equal to or greater than M , the costs of such
a tour have to be greater than (m+1) ·M , with m being the number of clusters.
Therefore, if M is chosen large enough, any tour, entering each cluster only once
is cheaper. An appropriate value for M is 1 + m · max(s,s′)∈S×S c(s, s′, oS , o′S).
Since each cluster is entered only once, we can decode the Hamiltonian tour
as a permutation of the clusters which are representing the strips in RSSTD.
Cluster Cr marks the beginning and the end of the strips’ permutation. The
orientation of each strip is set according to the node the cluster is entered by. If
the first node visited in a cluster corresponds to the orientation up then the strip
is oriented up in the corresponding solution. Analogously, orientation down is
decoded. Further, any optimal permutation Π of strips can be transformed into
an optimal tour T using the relationship described above. Assuming that there
exists a tour T ′ with lower costs than T , we can transform T ′ into a permutation
Π ′ with lower costs than Π, which is a contradiction to the assumption that Π
is minimal. ut

5 Definition of a Cost Function

One crucial point in RSSTD is the definition of an appropriate cost function
c(s, s′, os, os′) for judging the likelihood, that two strips s and s′ match under
their given orientations os and os′ . There are several different ways on how this
can be done (see also [8] on this topic), and none will be perfect in any possible
situation. In this section, we discuss some important aspects on how to design a
meaningful cost function for RSSTD.
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(a) (b)

Fig. 2: Both solutions might be correct, but (a) is more likely.

As already mentioned above, any cost function for RSSTD needs to have
the skew-symmetry property, i.e. placing strip s′ right to strip s has to be as
expensive as placing strip s right to strip s′ but both rotated by 180◦. To sim-
plify the process of computing (good) lower bounds on RSSTD, we demand
c(s, s′, os, os′) ≥ 0 always holds.

Since it is unlikely that the images of two strips with the same physical height
and scanned with the same resolution significantly differ in the number of pixels
along the vertical edges, we assume for this work, that the number of pixels hs

along the y-axis is the same for all strips.
To simplify the next definitions, we consider eventual rotations of strips in

the following as already performed; i.e. when speaking about the left side of a
strip s for which oS = down, we actually refer to its original right side. The
pixels on the left or right edge are those pixels which form the left or right
border, respectively.

Since the majority of text documents are composed of black text on (almost)
white background and we mainly focus on the reconstruction of text documents,
we only consider black-and-white image data as input here. In fact, preliminary
tests have shown that the usage of finer grained color or gray-scale information
does not increase the quality of the solutions obtained by our approaches signifi-
cantly. We remark, however, that in cases where documents contain a significant
amount of different colors or gray values, an extension of our model might be
meaningful and can be achieved in a more or less straightforward way.

Let vl(s, y, os), vr(s, y, os) ∈ {0, 1} be the black-and-white values of the y-th
pixel at the left and right borders of strip s under orientation os, respectively.

The first and most straightforward approach for defining a cost function
c1(s, s′, os, os′) is by simply iterating over all pixels on the right border of strip
s and compare it to the corresponding pixel on the left border of strip s′. Since
we defined RSSTD as a minimization problem the value of c1(s, s′, os, os′) is
increased by one if two corresponding pixels do not have the same values:

c1(s, s′, os, os′) =
hs∑

y=1

|vr(s, y, os) − vl(s′, y, os′)| (5)

The evaluation of this cost function can be performed efficiently, but there are
some situations in which it returns misleading information. For an example see
the cases depicted in Figs. 2a and 2b. Of course, it is not possible to automatically
decide which of the two alignments always is the correct one. Nevertheless, the
situation in Fig. 2a is intuitively much more likely. Therefore, we want this
alignment to receive a better evaluation than the arrangement of Fig. 2b. Hence,
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we adopt the idea presented in [13] to additionally consider the values of two
pixels above and two pixels below to the currently evaluated position:

c2(s, s′, os, os′) =
hs−2∑
y=3

p(s, s′, os, os′ , y) (6)

p(s, s′, os, os′ , i) =

{
1 if p′(s, s′, os, os′ , i) ≥ τ

0 otherwise
(7)

p′(s, s′, os, os′ , i) = |0.7 · vr(s, os, i) − 0.7 · vl(s′, os′ , i)
+ 0.1 · (vr(s, os, i + 1) − vl(s′, os′ , i + 1))
+ 0.1 · (vr(s, os, i − 1) + vl(s′, os′ , i − 1))
+ 0.05 · (vr(s, os, i + 2) + vl(s′, os′ , i + 2))
+0.05 · (vr(s, os, i − 2) + vr(s′, os′ , i − 2))| (8)

The threshold value τ used in the definition of p(s, s′, os, os′ , i) has to be chosen
carefully. A good value, in particular also for handling the special case depicted
in Fig. 2, is 0.1.

6 Solving RSSTD

In this section we present our concrete solution approaches for RSSTD.

6.1 Solving RSSTD via its Reformulation as a TSP

Using the transformation of RSSTD to TSP as presented in Section 4.2 and cost
function c2(s, s′, os, os′) defined in Section 5 it is obvious to apply approaches
developed for the TSP on RSSTD. Since the number of nodes in the graph un-
derlying the TSP is always twice the number of strips in the original RSSTD
instance and this number can be quite large exact algorithms might not be appli-
cable for real world instances. Therefore, we decided to use the implementation
of Applegate et al. [14] of the Chained Lin-Kernighan heuristic [15] for solving
the transformed RSSTD. Detailed results are presented in Section 7.

6.2 Solving RSSTD via VNS and Human Interaction

Even the “most precise” cost function and an exact solution of our RSSTD
model will not always yield a correct arrangement fully representing the original
document before destruction. The reason is that the cost function only is an
(approximate) measure for the likelihood of two strips appearing next to each
other. However, documents also may contain unlikely scenarios. Furthermore,
text may be arranged in columns with empty parts in between. It is then im-
possible to find the correct order of the separated text blocks without having
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more specific knowledge of the documents content. Additionally applying heav-
ier pattern recognition and knowledge extraction techniques might be feasible
for certain applications but will also dramatically increase running times.

Instead, we leverage here the power of human knowledge, experience, and in-
tuition in combination with a variable neighborhood search metaheuristic. When
confronted with a candidate solution, a human often can decide quite easily which
parts are most likely correctly arranged, which strips should definitely not be
placed side-by-side, or which parts have a wrong orientation.

The idea of systematically integrating human interaction in an optimization
process is not new. Klau et al. [16, 17] give a survey on such approaches and
present a framework called Human Guided Search (HuGS). The implementation
is primarily based on tabu search, and the success of this human/metaheuristic
integration is demonstrated on several applications.

Variable Neighborhood Search in HuGS Since preliminary tests for solving
RSSTD with tabu search as implemented in HuGS did not convince, we con-
sidered also other metaheuristics and finally decided to use a (general) variable
neighborhood search (VNS) [18] with embedded variable neighborhood descent
(VND) for local improvement. VNS is a metaheuristic based on the general
observation that the global optimum always has to be a local optimum with re-
spect to any possible neighborhood. The key-idea is to perform a local search and
switch between multiple neighborhood structures in a well-defined way, whenever
a local optimum has been reached. For more details on the general algorithm we
refer to [18].

In our approach, a solution to RSSTD is represented by three arrays corre-
sponding to the strips permutation π, the vector p storing the position for each
strip, and the orientation vector o. Note that π and p are redundant, but the
evaluation of the neighborhoods can be more efficiently implemented when both
are available.

Neighborhoods for VNS and VND Several different move types are used
within VND and VNS. The most intuitive move is called shifting (SH) and
simply shifts one strip by a given amount to the right or left. More formally it
can be written as

SH(σ1 · 〈si〉 · σ2 · 〈sj〉 · σ3, i, j) = σ1 · 〈sj〉 · 〈si〉 · σ2 · σ3 (9)
or

SH(σ1 · 〈sj〉 · σ2 · 〈si〉 · σ3, i, j) = σ1 · σ2 · 〈si〉 · 〈sj〉 · σ3 (10)

with 1 ≤ i, j ≤ n. In this context σk denotes a possibly empty subsequence
of strips. A second move, called swapping (SW), is defined by swapping two
arbitrary elements with each other. In a formal matter, this can be written as

SW(σ1 · 〈si〉 · σ2 · 〈sj〉 · σ3, i, j) = σ1 · 〈sj〉 · σ2 · 〈si〉 · σ3 (11)
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Table 1: Neighborhood structures defined for VND

.
neighborhood structure N1 N2 N3 N4 N5

move type R SW SH BR BS
number of candidates O(n) O(n2) O(n2) O(n2) O(n4)

with 1 ≤ i < j ≤ n. Both moves, shifting and swapping, can be extended to
block moves. In the latter case, called block swapping (BS), this results in a move
swapping two arbitrarily long, non-overlapping subsequences of strips with each
other. The other block move, namely block shifting, is equivalent to swapping
two adjacent blocks with each other. Therefore, it is not explicitly defined in our
environment. A block swap move can be formally written as

BS(σ1 · 〈si, .., si+k〉 · σ2 · 〈sj , .., sj+k′〉 · σ3, i, j, k, k′) =
σ1 · 〈sj , .., sj+k′〉 · σ2 · 〈si, .., si+k〉 · σ3 (12)

with 1 ≤ i < i + k < j < j + k′ ≤ n. In addition to this four move types related
to the assignment of strips to positions, two further moves for changing the
orientation of a strip or a block of strips, called rotating (R) and block rotating
(BR) respectively, are defined. Rotating simply rotates one strip by 180◦, while
block rotating executed on positions i to j first rotates all strips in this interval
and in a second step swaps strips at positions i and j, i+1 and j−1, and so on.
Using incremental evaluation schemes, each presented move can be evaluated in
constant time.

In our VND, the five neighborhood structures induced by our moves are
considered in the order shown in Table 1, thus, sorted by their sizes. As step
function best improvement as well as next improvement have been implemented.
For shaking in VNS, i random swap moves, with 1 ≤ i ≤ 4, are performed. As
initial solution a random solution is used.

6.3 User Interactions

For the integration of user interaction into the optimization process a set of valid
user moves has to be defined. All previously described move types are contained
in this set of allowed user actions. Additionally, the user can

– forbid “wrong” neighborhood relations between pairs of strips;
– lock “correct” subsequences of strips, which are concatenated and in the

further optimization process considered as atomic meta-strips;
– lock the orientation of strips.

All of these actions also can be reverted, should the user reconsider his earlier
made decisions. Our extensions of the HuGS framework provide an easy and in-
tuitive way to visualize candidate solutions, perform the mentioned user actions,
or to let VNS or the Lin Kernighan based approach continue for a while.

A main advantage of integrating human power into the search procedure is in
fact that with each additional lock of strips or forbidden neighborhood relation
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the solution space is pruned. For example, by fixing the relative order of two
strips, the number of valid solutions in the search space is divided by n.

An usual approach for a semi-automatic reconstruction of strip shredded
text documents would be to first execute the TSP solver to obtain a good initial
solution. Then, assuming that this solution is not already perfect, either some
user moves are applied or, if there is no obvious correct subsequence of strips to
be concatenated or wrongly rotated strips, VNS would be executed. Afterwards,
a human inspection combined with user moves is performed. The last two steps
will be repeated until either no improvement can be achieved or a solution of
desired quality is obtained.

7 Experimental Results

In this section we present computational results comparing both introduced ob-
jective functions c1 and c2 and the different approaches. All experiments were
performed on a Dual Core AMD Opteron 2214 with 4GB RAM. Both the HuGS
framework and our VNS approach were implemented in Java. The Concorde
TSP solver implemented by Applegate1 was used and integrated into the Java
evironment by using the Java Native Interface. The test instances were gener-
ated by virtually shredding paper documents, i.e. by either using scanned images
or images extracted from PDF-files and cutting them into a defined number of
equally sized strips. We remark that a real cutting and scanning process may
loose some information or introduce errors, but neglect such effects in this work.

Quality of Solutions As we want to find out which objective function intro-
duced before is better suited for reconstructing strip shredded text documents,
we define the quality of a solution as the number of correctly reconstructed subse-
quences of strips w.r.t. the original document. Note that the length of a correctly
identified subsequence, i.e. the number of its strips, has no effect on our quality
measure. This is motivated by the empiric observation that the text contained
on reconstructed pages up to quality five usually can be read relatively easily.
For any solutions with quality values larger than six it is typically very hard or
almost impossible to the read the contained text. Further, this rating method
enables us to compare results obtained for different strip widths and/or number
of strips for one document.

Comparison of Results For the results shown here we used six test instances
that were shredded using different numbers of strip widths. While instances p1
to p5 consist of single text pages possessing different features (p1 and p3 are
composed of continuous text only, instance p2 contains an image of a table, p4
offers a listing, and p5 shows a table with horizontal and vertical lines), instance
p6 is the instance presented in [1] and consists of 10 pages with both printed
and handwritten text. After virtually shredding the pages, a preprocessing step
is performed on all instances, such that blank strips are eliminated.
1 Code available at www.tsp.gatech.edu/concorde/.
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Table 2: Average qualities of final solutions from the TSP solver comparing cost
functions c1 and c2. Standard deviations are given in parentheses.

page p1 p2 p3 p4 p5 p6
time 5 s. 50 s. 5 s. 50 s. 5 s. 50 s. 5 s. 50 s. 5 s. 50 s. 5 s. 50 s.

30
st

ri
ps c 1

1.4 2.0 2.4 4.0 1.5 1.0 1.5 2.0 1.3 2.0 1.6 2.0
(0.5) (0.0) (1.4) (0.0) (0.5) (0.0) (0.5) (0.0) (0.5) (0.0) (0.5) (0.0)

c 2
1.4 1.0 1.5 2.0 1.6 2.0 1.7 2.0 1.5 1.0 1.6 2.0

(0.5) (0.0) (0.5) (0.0) (0.5) (0.0) (0.5) (0.0) (0.5) (0.0) (0.5) (0.0)

50
st

ri
ps c 1

1.6 2.0 9.4 9.0 1.6 1.0 5.4 5.0 9.4 10.0 1.3 2.0
(0.5) (0.0) (0.7) (0.0) (0.5) (0.0) (0.5) (0.0) (0.5) (0.0) (0.5) (0.0)

c 2

1.4 2.0 4.1 5.0 1.5 2.0 1.4 1.0 1.4 2.0 1.5 2.0
(0.5) (0.0) (0.7) (0.0) (0.5) (0.0) (0.5) (0.0) (0.5) (0.0) (0.5) (0.0)

10
0

st
ri

ps c 1

4.6 2.0 18.2 18.0 1.5 1.0 20.4 17.0 15.4 15.0 1.3 1.4
(0.5) (0.0) (0.8) (0.0) (0.5) (0.0) (0.5) (0.0) (0.5) (0.0) (0.4) (0.5)

c 2

1.5 2.0 11.8 13.0 1.4 1.0 3.8 5.0 5.5 6.0 1.4 2.0
(0.5) (0.0) (1.2) (0.0) (0.5) (0.0) (1.6) (0.0) (0.5) (0.0) (0.5) (0.0)

15
0

st
ri

ps c 1

5.5 7.0 31.9 34.0 1.5 2.0 27.2 29.0 37.7 34.5 14.8 4.6
(0.6) (0.0) (0.7) (0.0) (0.5) (0.0) (1.0) (0.9) (0.5) (0.5) (0.8) (0.5)

c 2

1.5 2.0 26.5 25.0 1.5 1.0 16.7 16.0 9.4 6.0 4.5 5.0
(0.5) (0.0) (0.5) (0.0) (0.5) (0.0) (0.9) (0.0) (0.5) (0.0) (0.5) (0.0)

30
0

st
ri

ps c 1

38.6 27.6 108.1 103.3 7.5 8.0 67.5 65.3 93.3 83.8 107.1 15.7
(0.7) (0.5) (0.8) (1.1) (0.5) (0.0) (0.6) (0.9) (1.1) (0.7) (1.6) (1.0)

c 2

1.6 2.0 78.3 73.0 1.5 1.0 41.5 43.0 27.4 27.0 14.3 14.0
(0.5) (0.0) (0.6) (0.0) (0.5) (0.0) (0.5) (0.0) (0.5) (0.0) (0.7) (0.0)

Table 2 lists results obtained by applying the TSP solver on instances p1
to p6. We solved the instances using objective function c1 as well as objective
function c2 and limited the CPU-time to 5 and 50 seconds, respectively. All
values are average qualities over 30 runs. It can be observed that—especially
for instances p2, p4 and p6—the qualities obtained by using function c2 are
remarkable better than those obtained by using c1. Even for the short runs the
standard deviations are very small and the improvement on the quality is not
notable if the time limit is raised to 50 seconds. Log files show that in most
cases the final solution was found after 0.5 seconds. In particular for the 10-page
instance p6, the results are remarkably good. For 150 strips and cost function c2

only 3 or 4 of the 10 pages were solved to quality 2; all others have quality 1. For
300 strips only 2 pages were always solved to quality 1 but for comparison with
the results presented in [1] we performed also tests with 340 strips on instance
p6. This time 16 out 30 runs were solved to optimality for all other only one page
was solved to quality 2 while all other were completely reconstructed. Especially
when considering the time limit of 5 seconds, our methods clearly outperform
those from Ukovich et al. [1].

Average results obtained when applying VNS without human interaction are
presented in Table 3. For examining the neighborhoods we tested with both next
as well as best improvement strategies, and no iteration or time limit was given.
Again, the values presented are from 30 runs. We used the order of neighborhoods
as presented in Section 6.2 but omitted the examination of the block swapping
neighborhood N5 for instances with more than 100 strips as the size of this
neighborhood is in O(n4). We can observe that the results obtained for objective
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Table 3: Average qualities of final solutions when applying VNS comparing cost
functions c1 and c2. Standard deviations are given in parentheses.

page p1 p2 p3 p4 p5 p6
impr next best next best next best next best next best next best

30
st

ri
ps c 1

2.0 2.0 2.8 3.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0
(0.0) (0.0) (1.3) (1.4) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

c 2
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

50
st

ri
ps c 1

4.0 4.0 11.6 11.6 2.0 2.0 4.3 4.7 10.2 10.1 1.0 1.0
(0.0) (0.0) (1.4) (1.6) (0.0) (0.0) (1.2) (1.7) (0.4) (0.5) (0.0) (0.0)

c 2

2.0 2.0 4.7 5.8 2.0 2.0 3.2 3.3 2.1 2.2 1.0 1.0
(0.0) (0.0) (1.2) (2.3) (0.0) (0.0) (0.4) (0.5) (0.4) (0.9) (0.0) (0.0)

10
0

st
ri

ps c 1

2.5 3.0 20.5 20.7 2.1 2.4 13.2 14.0 17.8 19.0 1.0 1.0
(1.5) (2.1) (2.2) (2.2) (0.7) (1.2) (3.3) (2.8) (2.8) (3.0) (0.0) (0.2)

c 2

2.0 2.0 14.8 15.5 2.0 2.0 7.1 6.6 6.2 6.5 1.0 1.0
(0.0) (0.0) (2.5) (3.1) (0.0) (0.0) (1.7) (1.8) (0.6) (0.9) (0.0) (0.0)

15
0

st
ri

ps c 1

27.7 26.8 37.3 38.9 25.6 27.8 27.8 28.7 41.4 45.6 4.8 4.9
(6.7) (8.4) (2.0) (2.4) (7.6) (9.6) (2.2) (3.1) (7.3) (7.4) (1.5) (1.4)

c 2

19.5 22.4 26.0 27.2 16.8 16.7 18.7 18.7 19.6 23.8 5.6 4.4
(7.1) (6.6) (1.8) (1.7) (6.8) (9.6) (2.5) (1.9) (7.6) (9.6) (1.4) (0.8)

c2 are in general better than or equal to the results obtained for c1, but no
conclusions can be drawn which step function performs better for RSSTD. Based
on the poorer performance of VNS on instances with more than 100 strips we
conclude that neighborhood N5 substantially contributes to the success of VNS.

Finally we tested out semi-automatic system as it would be used in practice
for reconstructing strip shredded text documents. With only few user interac-
tions we were able to quickly restore all original documents by exploiting the
benefits of the hybridization of machine and human power.

8 Conclusions

In this work, we presented a polynomial time transformation of the RSSTD to
the symmetric TSP. We applied a chained Lin Kernighan heuristic as well as a
newly introduced VNS for solving the RSSTD and showed that both methods are
competitive with each other. In particular they clearly outperform the previous
method from Ukovich et al.

Anyway, both approaches suffer from the necessarily imperfect objective func-
tion, which is only based on estimations of the likelihoods that strips shall be
placed side-by-side under given orientations. Therefore, we embedded the al-
gorithms in the HuGS-framework and gave the user the possibility to interact
with the optimization in flexible ways. This turned out to work excellently. In
this semi-automatic way, all test instances could be completely restored in very
short time with only few user interactions. We consider the reconstruction of
strip shredded text documents therefore as a superior example, where neither
metaheuristics (and other other automated optimization techniques) nor human
are able to produce satisfactory results, but a hybrid approach performs very
well due to the combination of the different strengths.
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14. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Finding tours in the TSP.
Technical Report Number 99885, Research Institute for Discrete Mathematics,
Universität Bonn (1999)

15. Applegate, D., Cook, W., Rohe, A.: Chained lin-kernighan for large traveling
salesman problems. INFORMS Journal on Computing 15(1) (2003) 82–92

16. Klau, G.W., Lesh, N., Marks, J., Mitzenmacher, M., Schafer, G.T.: The HuGS
platform: A toolkit for interactive optimization. In: Proc. Advanced Visual Inter-
faces, AVI, ACM Press (2002) 324–330

17. Klau, G.W., Lesh, N., Marks, J., Mitzenmacher, M.: Human-guided search: Survey
and recent results. Technical Report TR2003-07, Mitsubishi Electric Research
Laboratories, Cambridge, MA, USA (2003) Submitted to Journal of Heuristics.
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