
A Variable Neighborhood Search Approach for

Solving the Car Sequencing Problem∗

Matthias Prandtstetter1, Günther R. Raidl1

1Institute of Computer Graphics and Algorithms,
Vienna University of Technology, Vienna, Austria
{prandtstetter|raidl}@ads.tuwien.ac.at

Abstract

In this paper we present a new method for solving large instances of the Car Sequencing Prob-

lem (CarSP) including constraints defined by the assembly shop and the paint shop. Especially

the latter are of greater significance, since they allow no violations. Our approach combines gen-

eral Variable Neighborhood Search with Integer Linear Programming (ILP) methods and benefits

from the advantages of both techniques. While two neighborhoods—Swapping and Inserting—are

adopted from previous work, two others are based on a new ILP formulation for CarSP, and

CPLEX is used as general purpose ILP solver for identifying best solutions within these neigh-

borhoods. The comparison with results obtained during the ROADEF Challenge 2005 shows that

this approach is promising and competitive. In particular, we were able to obtain some new, so

far unknown best solutions for some of the ROADEF instances.

Keywords: Car Sequencing Problem, Integer Linear Programming, Variable Neighborhood Search

1 Introduction

The production of cars involves several steps that are performed in sequence. Although the vehicles

are similar to each other, each car requires particular components which are assembled by different

working bays. The workload for these stations has to be smoothed. This is due to the fact that

workers with too much load get tired and make mistakes whereas underemployed workers only raise

∗This work is supported by the RTN ADONET under grant 504438 and the Austrian Science Fund (FWF) under

grant P16263-N04.

- 1 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

costs. In the Car Sequencing Problem (CarSP) a sequence is searched which takes the constraints

defined by the working bays into account. This sequence can be described as a permutation of all

cars to be produced at the current day. In addition, the number of color changes within this sequence

has to be minimized.

The production line itself consists of three stages: the body shop, the paint shop, and the assembly

shop. Each of these stages has its own set of constraints which have to be met when arranging the

cars. There are different possibilities for constraints defined by the assembly shop and body shop.

We consider those which can be expressed as “No more than lc cars are allowed to require component

c in a sequence of mc consecutive cars.” For the paint shop we consider the constraint: “At most s

cars with the same color are allowed to be arranged consecutively.” As shown in [5], this problem is

known to be NP-hard.

In this paper we propose a new Integer Linear Programming (ILP) formulation, which is used to

examine two types of large neighborhoods used within a general Variable Neighborhood Search

(VNS). Two other types of neighborhoods are adopted from previous work. Experimental results of

the new approach are presented and compared. Conclusions complete this paper.

Formalization of the Car Sequencing Problem

Given are a set of possible components C, including a set of colors F ⊆ C, and a set of requested

configurations

K = {k : k = kcomp ∪ {kcol} with kcomp ⊆ C\F ∧ kcol ∈ F} .

Each configuration is a subset of components to be installed, and exactly one color is selected in

each configuration. If configuration k contains component c, a corresponding 0-1 variable ack is set

to 1, otherwise to 0. All configurations are pairwise different, and for each k ∈ K, there is a demand

δk ≥ 1 which indicates how many vehicles with configuration k have to be produced. Exactly one

configuration is assigned to each car in the resulting arrangement. We denote the total demand of

any component c ∈ C by dc =
∑

k∈K ack · δk; n =
∑

k∈K δk is the total number of commissioned

cars. For each component c ∈ C we are given a length mc and a quota lc. Only lc cars are allowed

to require component c in any sequence of consecutive vehicles with length mc. For all colors f ∈ F ,

lf is equal to s and mf is equal to s + 1, where s is the maximum color block size allowed. We

formulate the CarSP as an optimization problem in which the number of constraint violations has

to be minimized. If xi denotes the i-th car of the sequence and conf (i) the configuration of the car

- 2 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

xi, we search a permutation X = (x1, . . . , xn) : {1, . . . , n} → {1, . . . , n} of the commissioned cars

which minimizes the objective function obj (X):

obj (X) =
n∑

i=1

costs(i)

costs(i) = change(i) +
|C\F |∑

c=1

viol(i, c) · costc ∀i ∈ {1, . . . , n}

change(i) =





costf if a colour change occurred at position i

0 otherwise
∀i ∈ {1, . . . , n}

viol(i, c) =





max(0,
∑i

j=i−mc+1 ac,conf (i) − lc) if i ≥ mc

max(0,
∑i

j=1 ac,conf (i) +
∑mc−i

j=1 ecj − lc) otherwise
∀i ∈ {1, . . . , n} , ∀c ∈ C \ F

The number of violations at position i by component c is computed as the sum of cars requiring

component c within the last mc cars (including xi) minus the quota lc. If this difference is less

than 0, the number of violations is set to 0. costc is a penalization factor of violations occurring for

component c. If i is less than mc, the production of the last day has to be borne in mind. Additional

constants eci, c ∈ C, i = 1, . . . , mc − 1, are used for this purpose: eci is set to 1 iff the i-th last car

of the previous day required component c. To give constraints defined by the paint shop precedence,

they are penalized by the factor n ·maxc∈C {costc}.

2 Previous Work

There were several attempts to solve the CarSP. Few of them used exact methods [5, 3] based on

ILP. However, due to the complexity of the problem, the application of them is limited to relatively

small instances. For larger instances methods based on metaheuristics were particularly successful.

Gottlieb et al. [2] proposed greedy heuristics using different decision strategies. Some of these

decision functions take the currently available cars and the already existing sequence into account.

Much more attempts use local search. Puchta et al. [10, 2] defined six different moves including swap

moves, insert moves, transposition moves, and random moves. The type of move and the affected

positions are chosen at random. Jaszkiewicz et al. [6] use similar neighborhoods, but determine in

a first step the initial positions the moves are applied to using greedy heuristics, the second step of

the moves follows a best-neighbor strategy. Perron et al. [7] define similar moves, but they apply

them to subsequences. Swap moves are redefined as swapping two sequences of cars, and block insert

- 3 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

moves shift a sequence of cars to another position.

Gravel et al. [3] and Gottlieb et al. [2] presented algorithms using Ant Colony Optimization with

different heuristics to select the car that is considered next.

3 An Exact Approach Based on Integer Linear Programming

We improved the ILP formulation proposed by Hu [5] by grouping cars with the same configurations.

Figure 1 shows the resulting formulation.

Here, we give a rough overview only. A detailed discussion can be found in [9]. Variable gci represents

the number of constraint violations at position i with respect to component c, whereas variable

wfi indicates a possible color change. The binary variable pki is 1 if the car at position i requires

configuration k. The value of rci indicates how often component c is required for the cars at positions

1 to i. Variable bfi represents the color for the car at position i. The objective function (1) tries

to seek a minimum of color changes and constraint violations. Constraints (2)–(5) ensure that at

each position along the production line exactly one car is manufactured. Constraints (6)–(11) are

responsible for counting the number of violations. Constraints (13)–(15) make sure that no violations

of the paint shop constraints can occur. Finally, constraints (16)–(18) count the number of color

changes. When solving this ILP using a general purpose solver like CPLEX, instances up to 65 cars

and about 10 components plus four colors can be handled well.

4 A Combination of VNS and the ILP Approach

Since today’s exact methods are not applicable to large instances of the Car Sequencing Problem in

practice, all methods with acceptable run times are of heuristic nature [2, 3, 6, 7, 8, 10]. We developed

an algorithm based on a combination of general VNS [4] and the ILP approach introduced in the

previous section. This hybridization combines advantages of both approaches.

4.1 Neighborhoods

As local improvement inside the VNS we use a Variable Neighborhood Descent (VND) iterating

through six different neighborhoods: Swapping, Inserting, two variations of κ-Opt with Random

Selection and two variations of κ-Opt with Greedy Selection. All but the first two neighborhoods are

- 4 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

objective function

min
∑

c∈C\F
costc ·

n−1∑

i=0

gci +
∑

f∈F

costf ·
n−1∑

i=0

wfi (1)

subject to

pki ∈ {0, 1} ∀i ∈ {0, . . . , n− 1}, ∀k ∈ K (2)
∑

k∈K

pki = 1 ∀i ∈ {0, . . . , n− 1} (3)

n−1∑

i=0

pki = δk ∀k ∈ K (4)

n−1∑

i=0

∑

k∈K

ack · pki = dc ∀c ∈ C (5)

rc0 = 0 ∀c ∈ C\F (6)

0 ≤ rci ∀c ∈ C, ∀i ∈ {1, . . . , n} (7)

rci = rc(i−1) +
∑

k∈K

(
ack · pk(i−1)

) ∀c ∈ C, ∀i ∈ {1, . . . , n} (8)

0 ≤ gci ∀c ∈ C, ∀i ∈ {0, . . . , n} (9)

gci ≥ rc(i+1) − lc +
mc−2−i∑

j=0

ecj ∀i ∈ {0, . . . ,mc − 2}, ∀c ∈ C\F (10)

gci ≥ rc(i+1) − rc(i+1−mc) − lc ∀i ∈ {mc − 1, . . . , n− 1}, ∀c ∈ C\F (11)

0 ≤ bfi ≤ 1 ∀f ∈ F, ∀i ∈ {0, . . . , n} (12)

bfi =
∑

k∈K

afk · pki ∀f ∈ F, ∀i ∈ {0, . . . , n− 1} (13)

s−i−1∑

j=0

efj +
i∑

j=0

bfj ≤ s ∀i ∈ {0, . . . , s− 1}, ∀f ∈ F (14)

i∑

j=i−s

bfj ≤ s ∀i ∈ {s, . . . , n− 1}, ∀f ∈ F (15)

0 ≤ wfi ≤ 1 ∀f ∈ F, ∀i ∈ {0, . . . , n− 1} (16)

wf0 ≥ bf0 − ef0 ∀f ∈ F (17)

wfi ≥ bfi − bf(i−1) ∀f ∈ F, ∀i ∈ {0, . . . , n− 1} (18)

Figure 1: The ILP formulation.

- 5 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

a b

Figure 2: The cars at positions a and b are swapped. All other cars stay at their positions.

a b

Figure 3: One car is shifted from position b to position a. All cars between these two positions are

moved one position backward.

examined using the ILP approach described in section 3. Although four of them are defined similarly,

they cover different subsets of all possible (integer) solutions. The neighborhoods Swapping and

Inserting utilize moves previously defined by Gottlieb et al. in [2]. In the following, we denote by

πi a subsequence of the permutation Π of arbitrary length and by 〈xi〉 the subsequence consisting

of the single car xi and “·” is the concatenation operator.

4.1.1 Swapping

The Swapping neighborhood NS(x) of a current solution x consists of all solutions generated by

swapping two cars, see Fig. 2:

NS(x) =
{

x′ : x′ = π1 · 〈xi〉 · π2 · 〈xj〉 · π3 ∧ x = π1 · 〈xj〉 · π2 · 〈xi〉 · π3

}
(19)

There exist at most n2−n
2 different neighbors within this neighborhood. To efficiently evaluate all

these moves we use an incremental method for computing the objective value with time complexity

in O(mc).

4.1.2 Inserting

In the Inserting neighborhood NI(x) one car is removed from its position and inserted elsewhere.

All cars placed between these positions are moved one position forward or backward, see Fig. 3:

NI(x) =
{

x′ : x′ = π1 · 〈xi〉 · π2 · π3 ∧ x = π1 · π2 · 〈xi〉 · π3

} ∪ (backward)

- 6 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

{
x′ : x′ = π1 · π2 · 〈xi〉 · π3 ∧ x = π1 · 〈xi〉 · π2 · π3

}
(forward) (20)

There are at most n2 − n different neighbors. An incremental evaluation of one insert move can be

implemented in time O(mc).

4.1.3 κ-Opt with Random Selection

A swap move rearranges only two cars and an insertion move rearranges only one car and shifts

a subsequence by one position. To allow larger changes and better local optima the neighborhood

NRκ(x) is defined. It is a reduced form of a general κ-Opt neighborhood: κ positions are selected

at random and the associated cars may arbitrarily exchange their positions while the other n − κ

positions remain fixed:

NRκ(x) =
{

x′ : x′ = π1 · 〈xj1〉 · π2 · . . . · 〈xjκ−1〉 · πκ · 〈xjκ〉 · πκ+1 ∧

∧ x = π1 · 〈xi1〉 · π2 · . . . · 〈xiκ−1〉 · πκ · 〈xiκ〉 · πκ+1

}

with (j1, . . . , jκ) being a permutation of {i1, . . . , iκ} ⊆ {1, . . . , n} (21)

To examine this neighborhood, the ILP defined in Section 3 is used. If position i is fixed with car of

configuration k, the variable pki is set to 1 and all other variables pji with j ∈ K \ {k} are set to 0.

If the position i is set free, all variables pki with k ∈ K are set free, too. Since for large κ running

times for completely solving this subproblem may be too long, we limit the allowed CPU-time and

use the best solution found so far in case of an early termination. Within this neighborhood, there

are
(
n
κ

)
different possibilities to select κ positions. Once the free positions are chosen, there are O(κ!)

different arrangements.

4.1.4 κ-Opt with Greedy Selection

This neighborhood NCκ(x) is similar to neighborhood NRκ(x) except for the strategy of selecting the

free variables. In contrast to NRκ , we choose the positions which cause the most costs. Since the

cars at these positions violate more (important) constraints than the other cars, it is promising to

rearrange these cars first. If there are more than κ cars causing the maximum costs, cars at the

beginning of the sequence are favored:

NCκ(x) =
{

x′ : x′ = π1 · 〈xj1〉 · π2 · . . . · 〈xjκ−1〉 · πκ · 〈xjκ〉 · πκ+1 ∧

∧ x = π1 · 〈xi1〉 · π2 · . . . · 〈xiκ−1〉 · πκ · 〈xiκ〉 · πκ+1

}

- 7 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

with (j1, . . . , jκ) being a permutation of I = {i1, . . . , iκ} ⊆ {1, . . . , n} (22)

and
∑

k∈I

cost(ik) = max
S⊂{1,...,n}∧|S|=κ

{∑

k∈S

cost(ik)

}
(23)

Altogether this neighborhood consists of up to κ! different arrangements.

4.2 The VNS Framework for the Car Sequencing Problem

4.2.1 Initialization

Our approach uses two alternative heuristics to generate initial solutions required by VNS: Naive

Arrangement (NA) and Random Arrangement (RA). NA builds a sequence so that all cars with

configuration k1 ∈ K are placed at the beginning, followed by cars with configuration k2 ∈ K and

so on. RA randomly shuffles the sequence obtained with NA.

4.2.2 Shaking

The shaking algorithm we use is straight-forward. In the k-th shaking neighborhood, k random swap

moves are performed. If no better solution is identified, k is increased up to kmax = 3/4 · n and then

reset to 1.

4.2.3 Order of Neighborhoods

First, swap moves are applied to the current best solution, because Swapping is the smallest neigh-

borhood and its evaluation is fastest. Then, Inserting is considered. Afterwards κ-Opt with Random

Selection is applied with n/7 free variables followed by κ-Opt with Greedy Selection also with n/7 free

variables. Neighborhoods five and six are κ-Opt with Random Selection and κ-Opt with Greedy

Selection too, but this time with 2n/7 free variables.

4.2.4 Examining the Neighborhoods

For examining the neighborhoods Swapping and Inserting, we use two alternative strategies: best

improvement and next improvement. In the case of the ILP-based neighborhoods, we define a limited

next improvement and a limited best improvement strategy. Using limited next improvement the

evaluation process terminates as soon as a better integer feasible solution was found or a time limit

- 8 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

inst. #comp

#cars #col NA-best NA-next RA-best RA-next ROADEF

(1) 16 obj 1476069 (14643) 1083690 (0) 1278579 (44647) 1087460 (18945) 3912479

1161 19 time 600.59 (0.37) 600.84 (0.6) 600.7 (0.3) 601.12 (0.94) 4096795

(2) 16 obj 310009 (18) 313226 (0) 352265 (4628) 312917.8 (9938) 172180

1161 19 time 600.67 (0.36) 600.58 (0.68) 600.71 (0.32) 602.05 (2.85) 317852

(3) 20 obj 53972412 (300711) 53656104 (435090) 53066483 (11069) 53261107 (394380) 54003076

365 20 time 558.93 (125.13) 525.26 (120.1) 546.91 (82.09) 495.43 (138.65) 72687159

(4) 20 obj 53070948 (300711) 53976425 (299744) 53188023 (314732) 57601641 (29631439) 54049124

365 20 time 388.34 (123.08) 326.66 (161.78) 328.75 (187.72) 360.48 (211.53) 54078415

(5) 4 obj 61057057 (0) 62056061 (0) 61857959 (599801) 62057357 (631982) 67052049

128 7 time 1.36 (0.01) 1.24 (0.03) 1.37 (0.08) 1.24 (0.1) 67061061

(6) 4 obj 62047063 (0) 61046065 (0) 61448566 (490924) 61747565 (640549) 67036061

128 7 time 1.32 (0.01) 1.21 (0.01) 1.39 (0.09) 1.19 (0.07) 67053060

(7) 11 obj 208922 (1198) 216566 (2970) 334637 (11350) 293388 (10900) 189103

1000 17 time 601.18 (0.72) 529.86 (50.82) 601.39 (1.63) 514.87 (95.93) 211317

(8) 25 obj 201417 (1418) 212096 (2457) 228550 (4890) 221359 (6261) 161378

591 14 time 545.98 (43.52) 451.94 (101.8) 589.14 (23.54) 491.97 (115.8) 233461

(9) 14 obj 204455 (902) 213500 (6516) 261083 (8162) 233987 (11471) 130187

825 14 time 602.69 (4.66) 521.5 (80.94) 601.16 (1.18) 558.84 (53.35) 234094

Table 1: Results for some instances defined by ROADEF. 025 EP ENP RAF S22 J3 (1),

025 EP RAF ENP S22 J3 (2), 028 ch1 EP ENP RAF S22 J2 (3), 028 ch1 EP RAF ENP S22 J2 (4),

035 ch1 EP ENP RAF S22 J3 (5), 035 ch1 EP RAF ENP S22 J3 (6), 039 ch3 EP RAF ENP S22 J4 (7),

048 ch1 EP RAF ENP S22 J3 (8), and 064 ch1 EP RAF ENP S22 J3 (9).

has been reached. Limited best improvement tries to find the best improvement within the given

time limit. If this is not possible, the best so far found solution is returned.

5 Tests and Results

For comparison with other methods, we decided to use instances proposed by the French Operations

Research Society ROADEF and the automobile manufacturer Renault for the ROADEF Challenge

2005 [1]. These 80 instances include constraints defined by the assembly line and the paint shop.

They consist of up to 1319 cars, 4 to 24 colors, 4 to 26 components, and up to 339 different

configurations.

All experiments were performed on a Pentium 4 2.40 GHz PC with 1 GB RAM. Our algorithm has

been implemented in C++. For solving the ILPs the general purpose ILP solver CPLEX 9.0 by

- 9 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

ILOG, Inc., is used. Table 1 summarizes some of the obtained results. On the one hand, we decided

to display results for instances we obtained new, so far unknown solutions. On the other hand,

we chose to present typical performance of our algorithm. We used 4 different setups: NA-best,

NA-next, RA-best, and RA-next. NA and RA refer to the method providing the initial solution.

best and next indicate (limited) best improvement and limited next improvement strategies for

examining the neighborhoods, respectively. The results shown in the table are the average over 10

runs. The values in parentheses indicate corresponding standard deviations. The column labeled

with ROADEF shows the best and worst results obtained among the candidates of the ROADEF

Challenge 2005. Additional to the objective value, we provide the time until the best solution was

found. All test runs were limited to 600 seconds CPU-time—the same time as allowed by ROADEF.

We used 60 seconds as time limit for the examination of one neighborhood.

The solutions obtained indicate that our approach is promising and competitive. Although RA

provides the best so far found solution for instance 3, NA performs in general better. There is no

wide difference between best and next, except for large instances. For these, VNS was not able to

provide a local optimum even in respect to the first two neighborhoods Swapping and Inserting. In

this case, next outperforms best.

6 Conclusion and Future Work

We combined a newly developed ILP formulation with VNS to benefit from the advantages of both

techniques. Our approach consists of six different neighborhoods. Two of them—Swapping and

Inserting—are defined using swap and insert moves, respectively. The remaining neighborhoods

are special cases of κ-Opt: one with Random Selection and one with Greedy Selection. They are

examined using the ILP formulation and CPLEX as general purpose solver.

Test revealed that this hybridization performs well on real world instances provided by the car

manufacturer Renault for the ROADEF Challenge 2005. In general, we achieved results comparable

to the results obtained during the ROADEF Challenge 2005, and for some instances we even found

so far unknown best solutions.

Future work will focus on the incorporation of additional neighborhoods and a more intelligent,

dynamic strategy for switching between them. In addition, it would be interesting, if a better

initial solution improve the overall performance of our VNS. Therefore, new heuristics for quickly

generating initial solutions will be added to the framework.

- 10 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

References

[1] Roadef challenge 2005. http://www.prism.uvsq.fr/˜vdc/roadef/challenges/2005/. last verified

on 31st of August 2005.

[2] J. Gottlieb, M. Puchta, and C. Solnon. A study of greedy, local search, and ant colony opti-

mization approaches for car sequencing problems. In G. R. Raidl et al., editors, Proceedings

of the Applications of Evolutionary Computing on EvoWorkshops 2003, volume 2611 of Lecture

Notes in Computer Science, pages 246–257. Springer, 2003.

[3] M. Gravel, C. Gagné, and W. L. Price. Review and comparison of three methods for the solution

of the car sequencing problem. Journal of the Operational Research Society, to appear.

[4] P. Hansen and N. Mladenović. A tutorial on variable neighborhood search. Technical Report

G-2003-46, Les Cahiers du GERAD, HEC Montréal and GERAD, Canada, 2003.

[5] B. Hu. Interaktive Reihenfolgeplanung für die Automobilindustrie. Master’s thesis, Vienna

University of Technology, Vienna, Austria, 2004.

[6] A. Jaszkiewicz, P. Kominek, and M. Kubiak. Adaptation of the genetic local search algorithm

to a car sequencing problem. 7th National Conference on Evolutionary Algorithms and Global

Optimization, Kazimierz Dolny, Poland, pages 67–74, 2004.

[7] L. Perron and P. Shaw. Combining forces to solve the car sequencing problem. In J.-C. Régin

and M. Rueher, editors, CPAIOR, volume 3011 of Lecture Notes in Computer Science, pages

225–239. Springer, 2004.

[8] L. Perron, P. Shaw, and V. Furnon. Propagation guided large neighborhood search. In M. Wal-

lace, editor, CP, volume 3258 of Lecture Notes in Computer Science, pages 468–481. Springer,

2004.

[9] M. Prandtstetter. Exact and heuristic methods for solving the Car Sequencing Problem. Mas-

ter’s thesis, Vienna University of Technology, Vienna, Austria, 2005.

[10] M. Puchta and J. Gottlieb. Solving car sequencing problems by local optimization. In Pro-

ceedings of the Applications of Evolutionary Computing on EvoWorkshops 2002, volume 2279

of Lecture Notes in Computer Science, pages 132–142, London, UK, 2002. Springer-Verlag.

- 11 -

