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Solving the Two-Stage Fixed-Charge Transportation
Problem with a Hybrid Genetic Algorithm
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ABSTRACT. This article considers the two-stage fixed-charge transportation problem which models an im-
portant transportation application in a supply chain, from manufacturers to customers through distribution
centers. For solving this optimization problem we describe a hybrid algorithm that combines a steady-state
genetic algorithm with a local search procedure. The computational results for an often used collection of ben-
chmark instances show that our proposed hybrid method delivers results that are competitive to those of other
state-of-the-art algorithms for solving the two-stage fixed-charge transportation problem.

1. INTRODUCTION

Supply chains (SCs) are worldwide networks between a company and its suppliers,
involving the following entities: suppliers, manufacturers, distribution centers, retailers,
and customers. A classic SC executes the functions of procurement of raw materials, con-
verting of those into intermediate and finished products, and finally the distribution of
these products to customers, for more information we refer to [9, 15]. The main objective
of a SC optimization problem is to satisfy the customer demands, while fulfilling the con-
straints imposed to the other actors of the SC: capacity restrictions that include manufac-
turers, distributions and transportation resources.

Supply chain management (SCM) is an important and central process, because an op-
timized supply chain will result in lower costs and faster production cycles. Network
design plays a crucial role in achieving an efficient and effective management of SC sy-
stems. Typically, a SC can be represented as a form of multi-stage based structure, the
optimal design of which has been recognized as an NP-hard problem [1].

In this work, we are focusing on a particular supply chain network design, namely
the capacitated fixed-cost transportation problem (FCTP) in a two-stage supply chain net-
work. We focus on identifying and selecting the manufacturers and the distribution cen-
ters fulfilling the demands of the customers under minimal costs.

The two-stage transportation problems have been introduced by Geoffrion and Graves
[4]. Since then several versions of the problem have been considered and various solution
approaches based on exact and heuristic algorithms have been proposed, see for example
[10, 16].

One of these versions involves just one manufacturer and was introduced by Molla-
Alizadeh-Zavardehi et al. [6]. They provided a mathematical model based on integer
programming for the problem and as well developed a spanning tree-based genetic algo-
rithm and an artificial immune algorithm for solving it. Some comments regarding the
mathematical model of the problem were published by El-Sherniny [3] and Pintea et al.
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[7] proposed some hybrid classical approaches for solving the problem. Recently, Pintea
et al. [9] described an improved hybrid algorithm combining the Nearest Neighbor search
heuristic with a local search procedure and Pop et al. [12] proposed novel hybrid heuristic
approach obtained by combining a genetic algorithm based on a hash table coding of the
individuals with a powerful local search procedure.

Another version of the two-stage transportation problem considers its impact on the
environment by limiting the greenhouse gas emissions and was proposed by Santibanez-
Gonzalez et al. [2]. For this variant of the problem, Pintea et al. [8] provided some classical
hybrid heuristic approaches and Pop et al. [11] an efficient reverse distribution system for
solving it.

In the form considered in our paper, the problem was introduced by Jawahar and Balaji
[5]. They described a genetic algorithm (GA) with a specific coding scheme suitable for
two-stage problems. The same authors introduced benchmark instances and their results
have been compared to lower bounds and approximate solutions obtained from a relax-
ation. Raj and Rajendran [13] developed a two-stage genetic algorithm (TSGA) in order
to solve a two-stage transportation problem with two different scenarios, where one sce-
nario represents the FCTP that we consider in this work. They also proposed a solution
representation that allows a single-stage genetic algorithm (SSGA) [14] to solve it. The
major feature of these methods is a compact representation of a chromosome based on a
permutation.

Our paper is organized as follows: In Section 2 we define the capacitated fixed-cost
transportation problem in a two-stage supply chain network. Section 3 describes the de-
veloped hybrid genetic algorithm for solving this problem. The proposed algorithm is
applied on the benchmark instances from Jawahar and Balaji [5] in Section 4, where the
obtained results are presented and analyzed. Finally, in the last section, we summarize
the obtained results in this paper and present future research directions.

2. THE TWO-STAGE FIXED-CHARGE TRANSPORTATION PROBLEM

The capacitated fixed-cost transportation problem in a two-stage supply chain network
is defined as follows. Given are a set of p manufacturers, a set of q distribution centers
(DC’s) and a set of r customers with the following properties:

• Each manufacturer can ship to any distribution center at a transportation cost Cij

per unit from manufacturer i ∈ {1, ..., p} to DC j ∈ {1, ..., q}, plus a fixed cost Fij

for operating the route.
• Each DC can ship to any customer at a transportation cost Cjk per unit from DC
j ∈ {1, ..., q} to customer k ∈ {1, ..., r}, plus a fixed-cost Fjk for operating the
route.
• Each manufacturer i ∈ {1, ..., p} has Si units of supply, each DC j ∈ {1, ..., q} has
SCj units of stocking capacity and each customer k ∈ {1, ..., r} has a demand Dk.

the aim of the two-stage capacitated fixed-cost transportation problem is to determine the
routes to be opened and corresponding shipment quantities on these routes, such that
the customer demands are fulfilled, all shipment constraints are satisfied, and the total
distribution costs are minimized.

An illustration of the investigated two-stage fixed-charge transportation problem is
presented in the next figure.

3. HYBRID GENETIC ALGORITHM

In the following we describe the main features of the proposed hybrid genetic algo-
rithm. Our approach consists of a steady-state genetic algorithm (GA) and an embedded
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FIGURE 1. Illustration of the two-stage fixed-charge transportation problem

local search. It is based on an incomplete solution representation as only the transported
amounts of good from the customers to the DCs are stored and optimized by the GA,
while the amount transported from the manufacturers to the DCs are always implicitly
derived in a second stage.

The objective function can be stated as

minZ = Z1 + Z2

with

Z1 =

q∑
j=1

r∑
k=1

(CjkYjk + Fjkγjk) and Z2 =

p∑
i=1

q∑
j=1

(CijXij + Fijδij),

where the variables Xij represent the quantities shipped from each manufacturer i =
1, . . . , p to each DC j = 1, . . . , q, variables Yjk represent the quantities shipped from each
DC j = 1, . . . , q to each customer k = 1, . . . , r, and the binary variables δij ∈ {0, 1} and
γjk ∈ {0, 1} indicate whether or not a non-zero quantity is shipped from manufacturer i
to DC j and DC j to customer k, respectively.

In order to represent candidate solutions, we only use the Yjk variables. The values for
the Xij variables, which give us the second part of the cost function Z2, are derived in a
second-stage by using a greedy construction heuristic combined with a subsequent local
search. This solution evaluation algorithm is described in Section 3.5.

3.1. Initial Solutions. For the initial population the following randomized greedy heu-
ristic is employed. All of DC’s supplies are iteratively assigned to customers in a locally
best way. In each iteration, a not yet processed DC j is chosen randomly and the demand
of customers is assigned to j until there is no supply left or all customer demands are
satisfied. All not yet fully served customers are considered hereby in ascending order
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according to Fjk + UjkCjk, ∀k = 1, . . . , r, where Ujk = min{Dk, SCj −
∑r

l=1,l 6=kX
′
jl} is

the amount of demand that can be satisfied by DC j with X ′
jl is the amount of demand of

customer l already assigned to DC j.

3.2. Mutation. The mutation operator changes the set of used DCs, which we denote by
O. First, it chooses a DC, l ∈ O which supplies at least one customer with a non-zero
amount leaving us with a set P = O \ {l} of prioritized DCs. Then, the assignments
are deleted and the demand is reassigned by using an algorithm similarly to the greedy
construction heuristic but instead of choosing the DCs randomly a random location from
P is considered first until this set is empty.

3.3. Crossover. With the crossover operator the GA derives one new solution from two
parent solutions. As we aim for building an offspring solution mostly from the properties,
i.e., customer-DC assignments, appearing in its parents, an adapted uniform crossover is
applied. Starting with an offspring that does initially not contain any assignments, the
algorithm iterates over the parent solutions’ assignments in a random order. When the
assignment of either parent solution can be adopted in the offspring without violating
feasibility with respect to the available capacity of the corresponding DC, one of them is
selected uniformly at random. If only one assignment is feasible then that assignment is
adopted, and if none is feasible the assignment of the remaining demand of the customer
is postponed.

If all customer demands are satisfied the crossover operator is finished. Otherwise, the
postponed customers are handled in random order as follows. The remaining demand of
a postponed customer is assigned to one randomly chosen DC that can satisfy the whole
remaining demand. If no such DC exists, as many DCs as necessary are iteratively selected
at random until the customer’s remaining demand is fulfilled.

3.4. Local Search. Both, the mutation and the crossover operator, can open new DCs so
the purpose of the employed local search is to intensify the search for a fixed set of DCs.
Therefore, each satisfied demand of each customer is tried to be moved to another opened
DC that has enough supply left. As step function best improvement is chosen and the
procedure is iterated until no further improvements regarding the objective value can be
achieved.

3.5. Solution Evaluation. As already mentioned, we use an incomplete solution repre-
sentation and the assignments of the DCs to the manufacturers is part of the solution
evaluation. We solve this second-stage problem heuristically by using a similar rando-
mized greedy heuristic and subsequent local search algorithm as for the customer-to-DC
assignment problem. The initial solution construction heuristic is the same as for the origi-
nal problem but we randomly open manufacturers and assign the DCs having a demand
of

∑r
k=1Xjk, ∀j = 1, . . . , q to them. After this step a local search is performed on the

resulting solution which is based on an exchange neighborhood structure: each satisfied
demand of each DC is tried to be satisfied by each other manufacturer. Note that due to
the limited supply of the manufacturers infeasible assignments can be obtained. These
infeasibilities are repaired in a second step. If a manufacturer i supplies too many DCs
by being assigned the demand of DC j from manufacturer i′ then it is tried to move each
demand of each other assigned DC j′ 6= j back to the manufacturer i′ until the assignment
becomes feasible. As the original solution before the move was feasible this repair method
always results in a feasible solution.
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4. COMPUTATIONAL RESULTS

In order to asses the effectiveness of our proposed hybrid genetic algorithm, we con-
ducted computational experiments on a set of 20 benchmark instances introduced by Ja-
wahar and Balaji [5]. We performed 30 independent runs for each instance on a single
core of an Intel Xeon processor with 2.54 GHz. Based on preliminary experiments, we
have used the following parameter settings in our GA: population size 300, crossover rate
100%, mutation rate 10%, local search rate 10%, termination criterion 10,000 iterations wit-
hout improvement or 30 seconds of run-time. Furthermore, the proposed algorithm uses
a tournament selection of size 2, replaces in each iteration the solution candidate with the
worst objective value, and does not allow duplicate solutions in the same population.

Table 1 shows the computational results of the proposed method (HGA) in comparison
to those of the GA described by Jawahar and Balaji [5], called JRGA, and the two GAs
by Raj and Rajendran [13], called TSGA and SSGA. The average objective values are gi-
ven in the column obj along with the standard deviations sd. The values in the columns
#eval correspond to the rounded average numbers of solution evaluations needed to find
the best solution. Values in bold indicate the best existing solution with respect to that
problem instance.

TABLE 1. Computational results of the proposed HGA compared to ex-
isting approaches.

JRGA [5] TSGA[13] SSGA[13] HGA

obj #eval obj obj #eval obj sd #eval

2 x 2 x 3 112600 1444 112600 112600 637 112600 0 2
2 x 2 x 4 237750 1924 237750 237750 857 237750 0 2
2 x 2 x 5 180450 2404 180450 180450 1214 180450 0 319
2 x 2 x 6 165650 2884 165650 165650 1354 165650 0 324
2 x 2 x 7 162490 3364 162490 162490 1889 162490 0 335
2 x 3 x 3 59500 2164 59500 59500 1503 59500 0 317
2 x 3 x 4 32150 2884 32150 32150 1859 32150 0 339
2 x 3 x 6 69970 4324 67380 65945 2577 65945 0 356
2 x 3 x 8 263000 5764 258730 258730 5235 258730 0 546
2 x 4 x 8 80400 7684 84600 77400 5246 78550 0 1039
2 x 5 x 6 94565 7204 80865 75065 3574 80865 0 430
3 x 2 x 4 47140 2884 47140 47140 1429 47140 0 321
3 x 2 x 5 178950 3604 178950 175350 2061 178950 0 320
3 x 3 x 4 57100 4324 61000 57100 3060 57100 0 354
3 x 3 x 5 152800 5404 156900 152800 4555 152800 0 335
3 x 3 x 6 132890 6484 132890 132890 2981 132890 0 3

3 x 3 x 7 (a) 104115 7564 106745 99095 7095 103815 0 1330
3 x 3 x 7 (b) 287360 7564 295060 281100 7011 281100 0 380

3 x 4 x 6 77250 8644 81700 76900 7105 77250 0 373
4 x 3 x 5 118450 7204 118450 118450 4227 118450 0 394

Analyzing the computational results reported in Table 1, we can observe that our ap-
proach compares favorably to JRGA [5] and TSGA [13]. Compared to the SSGA [13],
our algorithm delivered the same solution in 15 out of the 20 considered instances. We
would like to emphasize the fact that the number of solution evaluations, including the
evaluations within the local search, in order to obtain the best solutions by our proposed
hybrid algorithm is significantly lower compared to the number of solutions enumerated
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to obtain the corresponding solutions by the other approaches. Also, the median run-time
is less than three seconds on all instances. The observation that the HGA finds the same
solution in each run of an instance confirms the robustness of the proposed approach.

5. CONCLUSIONS

This paper considers the two-stage fixed-charge transportation problem which models
an important transportation application in a supply chain, from manufacturers to custo-
mers through distribution centers. For solving this optimization problem we developed
a hybrid algorithm which combines a steady-state genetic algorithm with an incomplete
solution representation and a heuristic second-stage decoder with local search. Compu-
tational results show that our hybrid genetic algorithm is robust and compares favorably
to existing approaches. The new algorithm yields high-quality solutions in run-times of
just a few seconds.

In future, we plan to asses the generality and scalability of the proposed hybrid heu-
ristic approach by testing it on larger instances. It would also be promising to investigate
advanced techniques for solving the second-stage problem, in particular also exact solu-
tion methods for example integer linear programming.
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