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Abstract. In this paper we propose a memetic algorithm (MA) for the
partition graph coloring problem. Given a clustered graph G = (V,E),
the goal is to find a subset V ∗ ⊂ V that contains exactly one node for
each cluster and a coloring for V ∗ so that in the graph induced by V ∗,
two adjacent nodes have different colors and the total number of used
colors is minimal. In our MA we use two distinct solution representations,
one for the genetic operators and one for the local search procedure,
which are tailored for the corresponding situations, respectively. The
algorithm is evaluated on a common benchmark instances set and the
computational results show that compared to a state-of-the-art branch
and cut algorithm, our MA achieves solid results in very short run-times.

1 Introduction

The partition graph coloring problem (PGCP) belongs to the class of problems
usually referred to as generalized network design problems (GNDPs). This class
of problems is obtained by generalizing in a natural way many network design
problems by considering a related problem on a clustered graph, where the orig-
inal problem’s feasibility constraints are expressed in terms of the clusters, i.e.,
node sets instead of individual nodes.

In the literature, several GNDPs have already been considered such as the
generalized minimum spanning tree problem, the generalized traveling salesman
problem, the generalized vehicle routing problem, the generalized (subset) as-
signment problem, the generalized fixed-charge network design problem, etc. All
such problems belong to the class of NP-complete problems, are typically harder
to solve in practice than their original counterparts and nowadays are intensively
studied due to their interesting properties and important real-world applications
in telecommunication, network design, resource allocation, transportation prob-
lems, etc. Nevertheless, many practitioners are still reluctant to use these models



for modeling and solving practical problems because of the complexity of finding
optimal or near-optimal solutions.

The PGCP was introduced by Li and Simha [10] motivated by the wave-
length routing and assignment problem in wavelength division multiplexing op-
tical network. The authors proved that the problem is NP-complete. In this
context several approaches for solving the problem have been proposed: heuris-
tic algorithms [10], a branch-and-price algorithm [9], and a tabu search algo-
rithm [15]. Demange et al. [3, 4] considered this type of graph coloring problem
in the framework of GNDPs and named it selective graph coloring problem. They
investigated some special classes of graphs and determined the complexity status
of the PGCP in these classes. Extending our previous work [17], we propose a
memetic algorithm (MA) which uses two different solution representations for
the genetic operators and for the local search procedure.

2 Definition of the Partition Graph Coloring Problem

Formally, the partition graph coloring problem is defined on an undirected graph
G = (V,E) with the set of nodes V and the set of edges E. The set of nodes is par-
titioned into p mutually exclusive nonempty subsets, called clusters, V1, . . . , Vp

with V1 ∪ . . . ∪ Vp = V and Vi ∩ Vj = ∅ for all i, j ∈ {1, . . . , p} and i 6= j.
The PGCP consists of finding a set V ∗ ⊂ V such that |V ∗ ∩ Vi| = 1, i.e., V ∗

contains exactly one node from each cluster Vi for all i ∈ {1, . . . , p}, and the
graph induced by V ∗ is k-colorable where k is minimal. The PGCP reduces to
the classical graph coloring problem when all the clusters are singletons.

An illustration of the PGCP and an optimal solution with two colors is shown
in Figure 1. In this example the graph G = (V,E) has 10 nodes partitioned into
5 clusters. The optimal solution makes use of two colors: the first is used to color
the nodes 3, 5 and 10 and the second for the nodes 2 and 8.
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Fig. 1. a) An instance of PGCP and b) an optimal solution with two colors.



3 The Memetic Algorithm

Memetic algorithms have been introduced by Moscato [13] and denote a family
of metaheuristic algorithms that emphasis on the used of a population-based
approach with separate individual learning or local improvement procedures for
problem search. It is frequently also interpreted as a genetic algorithm (GA)
hybridized with a local search procedure to intensify the search in the solutions
space. GAs typically are not well suited for fine-tuning structures which are
close to optimal solutions. Therefore, incorporating local improvement as an ad-
ditional operator to the GA can be beneficial to obtain a competitive algorithm.
MAs have been recognized as a powerful algorithmic paradigm, being applied
successfully to solve many combinatorial optimization problems such as the vehi-
cle routing problem [14], the generalized traveling salesman problem [1], etc. We
use a memetic algorithm for solving the PGCP. In the following we will describe
the solution representations, genetic operators and the local search procedure.

Genetic representation: It is known that a good representation scheme is
important for the performance of the GA and it should define noteworthy genetic
operators to the problem in order to minimize the computational effort within
these procedures. In order to meet this requirement, an individual is represented
based on the color classes, i.e., U = {U1, U2, . . . , Uk} where Ui, i ∈ {1, . . . , k}
consists of all nodes assigned to color i. Obviously, U1 ∪U2 ∪ . . .∪Uk = V ∗ ⊆ V .

Initial population: In our MA we use a randomized version of the onestepLF
algorithm introduced in [10]. The basic idea of onestepLF is to choose for each
cluster the node with smallest degree to be in the solution. Then in each itera-
tion among the uncolored nodes the one with largest degree is colored with the
smallest possible color index so that no conflicts occur with its adjacent nodes.
In our case we want to reach a certain level of diversity in the population, there-
fore we do not necessarily use for each cluster the node with the smallest degree,
but choose it randomly.

Fitness evaluation: Every solution has a fitness value assigned to it, which
measures its quality. In our case, the fitness value is given by |U |, the total
number of used color classes, which corresponds to k, the number of different
colors necessary for coloring the solution graph. The aim is to find to find a
partition into color classes that minimizes k. The selection is purely based on
the fitness values and ties (i.e. solutions with equal k) are broken randomly.

Crossover: Two parents are selected from the population by the binary tour-
nament method. Consider two parent solutions represented based on the color
classes

U1 = {U1
1 , U

1
2 , . . . , U

1
k} and U2 = {U2

1 , U
2
2 , . . . , U

2
k′},

then the crossover operator is defined as follows:



1. start from parent U1 and select a color class (partition) and copy it to the
offspring;

2. delete from both parents the selected nodes and all other nodes that belong
to the same clusters as the selected ones;

3. from parent U2, select a color class, move it to the offspring and then remove
from both parents the corresponding nodes analogously to step 1;

4. we continue this process until all nodes from the parents U1 and U2 are
assigned to the offspring or removed.

An example of how the crossover operator works on the sample instance in
Figure 1 is illustrated in Table 1.

Table 1. Example for the crossover operator.

Parent 1 Parent 2 Offspring

U1
1 = {3, 5, 10} U2

1 = {2, 4, 8} {} Select U1
1 as partition with most nodes and

U1
2 = {1} U2

2 = {6} {} copy to the offspring. Delete copied nodes
U1

3 = {8} U2
3 = {9} {} and corresponding nodes from the selected

clusters from both parents.

U1
1 = {} U2

1 = {2, 8} {3, 5, 10} Select U2
1 as partition with most nodes and

U1
2 = {1} U2

2 = {} {} copy to the offspring. Delete copied nodes
U1

3 = {8} U2
3 = {} {} and corresponding nodes from the selected

clusters from both parents.

U1
1 = {} U2

1 = {} {3, 5, 10} A new solution to the PGCP making use of
U1

2 = {} U2
2 = {} {2, 8} two colors.

U1
3 = {} U2

3 = {}

During the steps 1 and 3, the choice of selecting a color class to be moved to
the offspring can be done either randomly or according to their size and preferring
the largest one. The latter strategy will likely generate offsprings with lower k,
but the diversity will be lower. Since we use a local improvement procedure for
intensification, we select the color classes randomly.

Mutation: Mutation is another important feature of genetic algorithms since
it diversifies the search directions and avoids convergence to local optima. In our
algorithm we randomly choose between these two procedures:

– Pick a random color class and try to move each of its nodes to another color
class so that no conflicts occur. If this is not possible, the node stays in its
original color class.

– Remove a randomly selected node from the color class where it is assigned to
and insert it to a different color class so that no conflicts occur. If necessary,
a new color class is created.

While the first method is generally able to modify the solution to a greater
extent, it does not create new color classes, so the solution never gets worse.



Due to this restriction, in some situations this method is not able to cause any
modifications. The second method changes the color assignment of one node
only, but it is possible that a new color class is created. In our experiments these
two mutation methods complement each other well.

Local improvement procedure: By solely relying on the genetic operators,
experiments have shown that the algorithm converges too slowly and there is no
guarantee that the final solution is even a local optimum. Therefore we apply
a local improvement procedure on an offspring after it has been created by the
genetic operators with certain probability.

For this purpose we consider the solution in a more compact representation
than the genetic representation in order to reduce the search space. We only use
the selection of nodes without specifying the coloring information here, i.e., so-
lution V ∗ = {v1, . . . , vp}, vi ∈ Vi, i ∈ {1, . . . , p}. This is a common approach for
representing solutions in GNDPs [16]. The problem here is that evaluating the
solution, i.e., computing the necessary number of colors by solving the classical
graph coloring problem, is NP-hard. Therefore we use the DANGER construc-
tion heuristic proposed by Glover et al. [7]. The central idea is to color one node
in each iteration that has the highest node-danger value (which indicates how
danger it is to keep it for later) with a color that has the lowest color-danger
value. In a previous version we used the DSATUR heuristic [2] which is faster
since it uses simpler node and color evaluations, but the results of the DAN-
GER heuristic are clearly better. There certainly are lots of options to choose
from when it comes to solving the classical graph coloring problem. Using exact
approaches such as mixed integer programming or constraint programming [8,
12] or even metaheuristics [11] would consume too much time since this process
has to be done a multitude of times during local search when evaluating neigh-
bor solutions. For this reason we chose the current evaluation algorithm that is
focused on fast run-times.

A common drawback of an one-sided evaluation criterion is that there is
always a large amount of solutions with equal k, i.e., they have the same number
of colors. Therefore, we use an additional criterion that is commonly used in
graph coloring problems: the number of conflicts. The idea is that if two solutions
can be colored with k colors, we apply a modified version of DANGER heuristic
that attempts to color these solutions with k−1 colors and minimizes the number
of conflicts. Then the solution with less conflicts is considered the better one and
will be used in the algorithm. However, we keep the original coloring information
that uses k colors in order to avoid infeasible solutions being generated.

For local search we use a standard node exchange neighborhood structure,
i.e., the neighborhood of a solution V ∗ = {v1, . . . , vp} consists of all node vectors
in which for precisely one cluster Vi the node vi is replaced by a different node
v′i of the same cluster. In preliminary tests we also tried changing nodes of two
clusters, but the size of the neighborhood becomes too large and the run-time
increases too drastically. We follow a best improvement strategy since solutions
are distinguishable accurately due to the finely granulated evaluation.



4 Experimental Results

Our experiments were run as single threads on a Intel Core i7 PC with 3.4 GHz
and 16 GB memory. We use the Rand-set of instances [5] that was also used in
[6]. It contains randomized instances with 20 to 120 nodes partitioned into 10
to 60 clusters, respectively. We performed 30 independent runs for each instance
and determined the average and standard deviations of the final objective values.
Each run was terminated after generating 2000 solutions without improvements.
The probability for local improvement was set to 30%. We compare two MA
variants: one that only uses the number of colors as evaluation criterion (MA1)
and one that uses number of colors and the number of conflicts for evaluation
(MA2). Table 2 contains experimental results on instances with 20 – 120 nodes
and an edge density of 0.5 while Table 3 contains results on instances with
90 nodes and an edge density of 0.1 – 0.9. Each line corresponds to a set of
5 different instances. Both tables show the instance characteristics, the lower
and upper bounds obtained by the branch and cut (B&C) approach [6] within
two hours run-time, followed by the average objective values of the final best
solutions, their standard deviations, and the run-time in seconds for the MA
variants.

Table 2. Experimental results on instances with different size.

Instance set B&C MA1 MA2

nodes density LB UB obj sd time obj sd time

20 0.5 3 3 3.00 0.00 0.02s 3.00 0.00 0.14s
40 0.5 4 4 4.50 0.51 0.10s 4.00 0.00 0.60s
60 0.5 5 5 5.96 0.20 0.31s 5.63 0.49 2.00s
70 0.5 6 6 6.86 0.40 0.53s 6.06 0.24 3.33s
80 0.5 6 6 7.66 0.48 0.80s 6.94 0.29 4.90s
90 0.5 6 7 8.22 0.42 1.21s 7.55 0.50 7.49s
100 0.5 6 7 8.90 0.30 1.74s 7.93 0.30 11.04s
120 0.5 7 8 10.26 0.44 3.41s 9.22 0.43 21.05s

Table 3. Experimental results on instances with different density.

Instance set B&C MA1 MA2

nodes density LB UB obj sd time obj sd time

90 0.1 2 3 3.13 0.33 0.22s 3.09 0.29 1.37s
90 0.2 3 4 4.71 0.45 0.52s 4.41 0.49 3.24s
90 0.3 4 5 6.06 0.24 0.78s 5.52 0.56 4.90s
90 0.4 5 6 7.59 0.49 1.07s 6.79 0.83 6.54s
90 0.5 6 7 8.22 0.42 1.21s 7.55 0.50 7.49s
90 0.6 8 8 10.98 0.34 1.88s 10.50 0.87 11.95s
90 0.7 10 10 12.93 0.38 2.37s 12.39 1.12 14.83s
90 0.8 12 12 15.55 0.51 3.38s 15.18 0.80 20.98s
90 0.9 16 16 17.69 0.86 7.38s 17.27 0.98 45.75s



We observe that while MA2 consumes more time than MA1, the results are
significantly better, particularly on larger instances the difference is approxi-
mately one color. This underlines that using the number of colors alone as eval-
uation criterion is insufficient because the search process circles around plateau
regions that contain equally good solutions. When we additionally aim at min-
imizing the number of conflicts, the MA gets valuable information of what it
should focus on. Compared to B&C, MA2 is worse in terms of solution quality.
However, we have to take into account that B&C has a time limit of two hours
while MA2 finishes in less than one minute. Therefore, MA2 is a practical ap-
proach when it comes to time-critical applications and/or large instances due to
its excellent scalability.

5 Conclusions and Future Work

We proposed a memetic algorithm (MA) for the partition graph coloring problem
that uses two distinct solution representations. For maintaining a diverse popula-
tion and to keep the computational effort for genetic operators low, we use a full
solution representation for crossover and mutation. In contrast, we use a more
compact and incomplete solution representation during local search. Both repre-
sentations work well in combination in the MA. During local search, we observed
that minimizing the number of colors results in many solutions of equal quality.
Therefore, we use a second evaluation criterion based on the number of conflicts
when using one color less. Computational experiments on common benchmark
instances sets show that although the MA is not always able to find the optimal
solutions, it produces solid results with very low run-times and therefore has
excellent scalability when it comes to large instances.

For future work, we want to consider a further incomplete solution represen-
tation which is based on characterizing the colors of the clusters. The challenge
will be to develop efficient algorithms for choosing the nodes in the clusters that
are compatible with the color assignments. We also want to consider further eval-
uation criteria besides color and conflicts so that more fine-tuned measurements
depending on specific situations are possible.
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