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ABSTRACT

The general aim of this doctoral thesis was to thoroughly investigate diverse hybrid optimiza-
tion strategies for certain classes ofNP-hard combinatorial optimization problems. For this
basic concepts should be refined and further developed. The ultimate goals were twofold: to
come up with highly effective, new state-of-the-art methods for solving the selected bench-
mark problems, and to gain further experience and knowledge of the specific pros and cons
in order to apply the methods more generally in meaningful ways also to other problems.
In general, such hybrids try to combine in various ways the strengths of two or more methods
from possibly different streams. It was further intended to focus in particular on combin-
ing exact and (meta-)heuristic algorithms, especially exploiting the power of mathematical
programming techniques, yielding so-called matheuristics (or model-based metaheuristics).
Although we did not decide on the problems which would be tackled right from the start—
as I was more interested in the methodical aspect—it eventually turned out that we dealt
with problems that are not only interesting from an academic perspective but highly relevant
in practical application areas, too. The first is the consensus tree problem which primarily
arises in phylogenetics and thus belongs to the domain of bioinformatics. Its objective is to
build a single solution tree out of several phylogenetic trees given as input, somehow best
representing the whole available information. All remaining problems arise in the field of
transportation and are extensions of the capacitated vehicle routing problem (CVRP) mo-
tivated by important real-world aspects. These variants are in fact generalizations, as the
CVRP can be considered a special case of each one. Following ones are considered: the pe-
riodic vehicle routing problem and the periodic vehicle routing problem with time windows,
where customers usually need to be visited multiple times in a given planning horizon, also
respecting (hard) customer time windows in case of the latter; the location-routing problem
as well as the periodic location-routing problem, which add to the CVRP the task of simulta-
neously placing some facilities at given locations (i.e. corresponding to theNP-hard facility
location problem); and finally the vehicle routing problem with compartments, considering
not a single loading area and product but several compartments and products, possibly in-
volving certain incompatibilities.
Several forms of hybridization are investigated in this work: collaboratively exchanging solu-
tions, tight integration of the concepts of a method in another one, multilevel refinement, the
guidance of a method by information gathered by another one, heuristic column generation
as well as heuristic cut separation, very large neighborhood search based on integer linear
programming and a more sophisticated variant of it also realizing an optimal merging by ex-
ploiting the information of several solutions, and finally solving subproblems to optimality.
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We show that for all considered problems a skillfull hybridization of the developed exact
and heuristic methods, or of several heuristics, leads to a significant improvement in general.
In fact, the exact add-ons for heuristics and vice versa, representing an integrative combi-
nation, give in our cases almost always a considerable performance boost to the main (or
host) method. Thereby either heuristic components are able to notably reduce the required
runtime or exact components can significantly increase the solution quality. Moreover, the
collaborative combinations clearly benefit from the diverse algorithms in use.
In addition, the role of the individual methods or the single underlying method is not to be
underestimated. In our case variants of variable neighborhood search (VNS) are the most
prominent metaheuristics applied, and for all but one problem a solution approach based
on VNS is presented for the first time. The simple elegance of VNS offers a great flexibil-
ity when it comes to extension as well as specialization, as neighborhood structures can be
added like building blocks in order to eventually assemble a powerful solution method. Es-
pecially meaningful problem-tailored neighborhood structures, which vary on the level/part
of the problem they operate, contribute a lot to the overall success. Combined with appro-
priate embedded local search components, and in some cases to also accept worse solutions
with a certain probability as well as to allow infeasible solutions, we always achieve a good
balance of exploration and intensification.
In thorough comparisons to previous solution approaches we almost always achieve at least
competitive results. In many cases they are even clearly better, hence obtaining currently
leading approaches. This is also documented by numerous new best known solutions ob-
tained. However, the improvement is not only in solution quality, but often our methods
also exhibit much better runtime behaviors and thus scalability to larger instances. As a con-
sequence of this, already competitive results can often be obtained with considerably less
runtime. Since the means to compare to other approaches are after all quite limited, we
are all the more concerned with comparing our “baseline methods” to the subsequently en-
hanced hybrid methods whenever meaningful. Overall, it turns out that our hybrid methods
almost always show statistically significant better results, in some cases for whole instance
sets; with nearly none or at most a moderate increase in runtime.
Note that each of these hybrid variants has its strengths and weaknesses, which are addressed
in this work. Not surprisingly, none clearly dominates all others and is the preferred vari-
ant for each possible problem – also for hybrid methods there is “no free lunch”. Never-
theless, our work provides additional guidelines concerning under which conditions which
hybridization schemes can be promising. For one thing, our devised matheuristics not only
seem promising in particular for other, possibly even richer variants of routing problems,
but their concept can fairly easily be applied to other classes of combinatorial optimization
problems as well. Especially the applied combination of very large neighborhood search and
optimal merging is recommendable for problems exhibiting a similar structure.
Despite all their potential benefits, hybrid methods generally also have some drawbacks
which one should be aware of: they have a higher complexity, they require more effort
for design and implementation, to combine algorithms/concepts from different streams an
appropriate knowledge of each individual stream is a prerequisite, and they are likely to be
harder to tune. However, if one copes with these issues such hybridizations might give rise
to promising solution approaches for many problems.
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KURZFASSUNG

Das allgemeine Ziel dieser Dissertation bestand in der gründlichen Untersuchung unter-
schiedlicher hybrider Optimierungsstrategien für bestimmte KlassenNP-schwieriger kom-
binatorischer Optimierungsprobleme. Dazu sollten grundlegende Konzepte verfeinert und
weiterentwickelt werden. Zweierlei Endziele wurden dabei verfolgt: mit sehr effektiven,
neuen State-of-the-Art Methoden zur Lösung der gewählten Benchmarkprobleme aufwar-
ten zu können, als auch weitere Erfahrungen und Wissen hinsichtlich der spezifischen Vor-
und Nachteile der Methoden zu erlangen, um sie generell auch sinnvoll auf andere Probleme
anzuwenden.
Grundsätzlich versuchen derartige Hybride die Stärken von zwei oder mehr Verfahren, aus
möglicherweise verschiedenen Richtungen, auf unterschiedliche Art und Weise zu kombi-
nieren. Weiters war es beabsichtigt den Fokus gezielt auf die Kombination von exakten und
(meta-)heuristischen Algorithmen zu legen, um speziell die Stärke von Methoden der ma-
thematischen Programmierung auszunutzen, was in sogenannten Matheuristiken (oder mo-
dellbasierten Metaheuristiken) resultiert. Obwohl wir die zu behandelnden Probleme nicht
von Anfang an festgelegt haben – da ich auch eher am methodischen Aspekt interessiert war
– stellte sich schließlich heraus, dass diese nicht nur von einem akademischen Standpunkt
aus interessant sind, sondern auch hinsichtlich praktischer Anwendungsbereiche eine hohe
Relevanz besitzen. Das erste ist das Konsensus-Baum Problem (Consensus Tree Problem),
welches hauptsächlich in der Phylogenetik auftritt und daher dem Bereich der Bioinformatik
angehört. Das Ziel ist einen einzelnen Lösungsbaum anhand von mehreren gegebenen phylo-
genetischen Bäumen derart zu erstellen, sodass dieser die gesamte Information bestmöglich
repräsentiert. Die restlichen Probleme entstammen dem Transportbereich und stellen alle-
samt Erweiterungen des kapazitierten Tourenplanungsproblems (Capacitated Vehicle Rou-
ting Problem (CVRP)) dar, die durch wichtige reale Aspekte motiviert sind. Genaugenom-
men handelt es sich bei diesen Varianten um Generalisierungen des CVRP, da dieses jeweils
als Spezialfall angesehen werden kann. Folgende werden betrachtet: das periodische Touren-
planungsproblem (Periodic Vehicle Routing Problem) und das periodische Tourenplanungs-
problem mit Zeitfenster (Periodic Vehicle Routing Problem with Time Windows), bei denen
Kunden üblicherweise mehrmals innerhalb eines Planungszeitraums besucht werden müs-
sen, wobei bei zweiterem auch (strikte) kundenseitige Zeitfenster zu berücksichtigen sind;
das Standort-Tourenplanungsproblem (Location-Routing Problem) als auch das periodische
Standort-Tourenplanungsproblem (Periodic Location-Routing Problem), welche das CVRP
um die Aufgabe erweitern gleichzeitig bestimmte Einrichtungen an gewissen Standorten zu
platzieren, welches dem NP-schweren Standortplanungsproblem (Facility Location Pro-
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blem) entspricht; und schlussendlich das Tourenplanungsproblem mit Ladeabteilen (Vehicle
Routing Problem with Compartments), bei dem nicht nur eine Ladefläche und ein Produkt
sondern mehrere Ladeabteile sowie Produkte berücksichtigt werden, wobei bestimmte In-
kompatibilitäten auftreten können.
Verschiedene Arten der Hybridisierung werden in dieser Arbeit betrachtet: kollaboratives
Austauschen von Lösungen, enge Integration von Konzepten einer Methode in eine ande-
re, Multilevel Refinement, das Lenken einer Methode anhand von Informationen gewon-
nen durch eine andere, heuristische Spaltengenerierung als auch heuristisches Separieren
von Schnittebenen, sehr große Nachbarschaftssuche basierend auf ganzzahliger linearer Pro-
grammierung und eine komplexere Variante davon die zusätzlich ein optimales Kombinieren
realisiert, welches die Information von mehreren Lösungen ausnutzt, und zuletzt das optima-
le Lösen von Subproblemen.
Wir zeigen, dass eine geschickte Hybridisierung der entwickelten exakten und heuristischen
Verfahren, oder unterschiedlicher Heuristiken, für alle behandelten Probleme im Allgemei-
nen zu einer signifikanten Verbesserung führt. Tatsächlich verleihen die exakten Erweiterun-
gen für Heuristiken und umgekehrt, welche eine integrative Kombination darstellen, in so gut
wie all unseren Fällen der Haupt- bzw. Host-Methode einen beträchtlichen Performancege-
winn. Dabei können entweder heuristische Komponenten erheblich die Laufzeit reduzieren
oder exakte Komponenten signifikant die Lösungsgüte erhöhen. Zudem profitieren kollabo-
rative Kombinationen deutlich von den unterschiedlichen Algorithmen in Verwendung.
Des Weiteren darf auch die Rolle der individuellen Verfahren oder des alleinigen zugrunde-
liegenden Verfahrens nicht unterschätzt werden. In unserem Fall stellen Varianten der Varia-
blen Nachbarschaftssuche (VNS) die meist verwendeten Metaheuristiken dar, und für alle
außer einem Problem wird zum ersten mal ein auf VNS basierender Lösungsansatz vor-
gestellt. Die schlichte Eleganz der VNS bietet ein hohes Maß an Flexibilität hinsichtlich
Erweiterung und Spezialisierung, da Nachbarschaftsstrukturen wie Bausteine hinzugefügt
werden können um letzten Endes ein leistungsfähiges Lösungsverfahren zusammenzustel-
len. Insbesondere sinnvolle, auf das Problem zugeschnittene Nachbarschaftsstrukturen, die
auf unterschiedlichen Leveln/Teilen des Problems operieren, tragen maßgeblich zum Ge-
samterfolg bei. Kombiniert mit geeigneten eingebetteten Komponenten zur lokalen Suche,
und zum Teil der Akzeptanz von schlechteren Lösungen mit einer gewissen Wahrscheinlich-
keit sowie dem Erlauben von ungültigen Lösungen, erreichen wir immer eine gute Balance
zwischen Exploration und Intensivierung.
In gründlichen Vergleichen zu vorherigen Lösungsansätzen erzielen wir fast immer zumin-
dest gleichwertige Ergebnisse. In vielen Fällen sind diese sogar deutlich besser, womit wir
mit derzeit führenden Ansätzen aufwarten können. Dies wird auch durch zahlreich gefunde-
ne neue beste Lösungen dokumentiert. Allerdings spiegelt sich die Verbesserung nicht nur in
der Lösungsqualität wider, sondern unsere Methoden zeigen oftmals auch ein viel besseres
Laufzeitverhalten und damit auch Skalierbarkeit gegenüber größeren Instanzen. Infolgedes-
sen können oftmals gleichwertige Ergebnisse bereits mit wesentlich weniger Laufzeit erzielt
werden. Da die Mittel sich mit anderen Ansätzen zu vergleichen doch recht begrenzt sind,
sind wir umso mehr damit befasst, wann immer sinnvoll, einen Vergleich unserer “Basisme-
thoden” mit den in weiterer Folge verbesserten hybriden Methoden anzustellen. Insgesamt
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stellt sich heraus, dass unsere Hybridverfahren fast immer statistisch signifikant bessere Lö-
sungen aufweisen, teilweise für gesamte Instanz-Sets; mit fast keinem oder allenfalls mode-
ratem Anstieg der Laufzeit.
Es ist zu beachten, dass jede dieser Hybrid-Varianten ihre Stärken und Schwächen hat, wel-
che in dieser Arbeit behandelt werden. Wenig überraschend dominiert keine alle anderen
und ist die bevorzugte Variante für alle möglichen Probleme – auch für Hybridverfahren gibt
es nichts umsonst („no free lunch“). Dennoch bietet unsere Arbeit zusätzliche Richtlinien
unter welchen Bedingungen welche Hybridisierungsschemata vielversprechend sein kön-
nen. Zum Beispiel erscheinen die erarbeiteten Matheuristiken nicht nur speziell für andere,
möglicherweise umfangreichere Varianten von Tourenplanungsproblemen vielversprechend,
sondern ihr Konzept lässt sich auch relativ leicht auf andere Klassen von kombinatorischen
Optimierungsproblemen anwenden. Vor allem die verwendete Kombination von sehr großer
Nachbarschaftssuche und dem optimalen Kombinieren empfiehlt sich für Probleme die eine
ähnliche Struktur aufweisen.
Trotz aller möglichen Vorteile haben hybride Verfahren in der Regel auch einige Nachteile,
derer man sich bewusst sein sollte: sie besitzen eine höhere Komplexität, sie erfordern mehr
Design- als auch Implementierungsaufwand, um Algorithmen/Konzepte aus unterschiedli-
chen Richtungen zu kombinieren ist ein entsprechendes Wissen jeder einzelnen Richtung
eine Voraussetzung, und sie sind sehr wahrscheinlich schwieriger einzustellen bzw. zu para-
metrisieren. Wenn man jedoch mit diesen Problemen zurechtkommt, dann können derartige
Hybridisierungen zu vielversprechenden Lösungsansätzen für viele Probleme führen.
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INTRODUCTION

Once upon a time . . . or to be more precise, in the winter term 2004, I was for
the first time effectively introduced to combinatorial optimization in the course “Heuristic
Optimization Techniques” held by Günther Raidl from the Algorithms and Data Structures
group (in the following denoted as ADS) at the Vienna University of Technology. I was im-
mediately fascinated by this field: it offers problems that are often easy to state yet very hard
to solve, and there exist many diverse solution methods. In fact the problems are mostlyNP-
hard, meaning that no polynomial-time and hence efficient algorithm is known for solving
them so far, and it is unlikely that one will be found someday (unless P = NP). In the men-
tioned course we considered and applied, as the name suggests, primarily heuristic (mostly
metaheuristic) solution approaches. With them one can frequently obtain very good or even
(near-)optimal solutions in relatively short time, which, however, comes at the price of hav-
ing no guarantee about their quality. My interest grew during a project (Praktikum) at the
ADS in the course of my master studies in 2005. There I mostly applied an exact solution
approach to a network design problem. Such approaches are characterized by yielding the
optimal solution but taking in the worst case exponential runtime to do so. Despite a lot of
research and engineering efforts they are generally only applicable to instances of limited
size (though this size definitely increased over the years). In contrast, the performance of
heuristics usually scales better with the instance size, making them especially attractive to be
applied in practice. Exact and heuristic methods are therefore somewhat diametric and one
cannot have optimality and, say, broad applicability at the same time. An adequate quote
from [237] on this circumstance:

An old engineering slogan says, “Fast. Cheap. Reliable. Choose two.” Simi-
larly, if P 6= NP , we can’t simultaneously have algorithms that (1) find opti-
mal solutions (2) in polynomial time (3) for any instance. At least one of these
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Figure 1.1: Four input trees and a resulting consensus tree.

requirements must be relaxed in any approach to dealing with an NP-hard op-
timization problem.

Equipped with some knowledge of both “solving worlds” and with even more enthusiasm
I decided to write my master’s thesis at the ADS, too, under supervision by Günther Raidl
and Jakob Puchinger. I tackled the same network design problem as in the project before,
this time with different methods, and it turned out that an appropriate combination of them
yielded the best results [156, 168]. In this case it was even possible to yield for most in-
stances proven optimal solutions in short time and clearly improve upon previous solution
methods. In general, such hybrid methods try to combine the strengths of two or more
methods—possibly from different streams—in various ways such as to come up with solu-
tion approaches outperforming the individual algorithms and showing an overall favorable
performance; for more details see Section 2.5. After finishing my master’s thesis I was more
than ever interested in combinatorial optimization in general, and especially in hybrid algo-
rithms involving exact and (meta-)heuristic parts (which in case the exact method is based
on mathematical programming are also referred to as matheuristics), such that it was “in-
evitable” to start my doctorate (PhD) studies at the ADS. The following chapters document
my pursuit of more thoroughly investigating and devising such hybrid solution methods, with
a focus on combining exact and heuristic algorithms where this appeared promising.

Although this thesis’ work is basically rather method-driven it was naturally based on several
problems which were chosen as “testbed” for different reasons (explained at the beginning
of each corresponding chapter). The first problem we tackle is the consensus tree problem
(CTP). It arises in bioinformatics, a domain where computer science and information tech-
nology is applied to the field of biology and medicine. The CTP is related to the inference
of phylogenetic trees, which is one of the most important and challenging tasks in system-
atic biology. From molecular sequence data or another form of dissimilarity information,
trees are sought that represent the evolutionary history of a collection of biological entities.
The estimation of this evolutionary history is highly useful for many tasks such as multi-
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depot

customer

Figure 1.2: Exemplary solution (not likely to be optimal) to a small VRP.

ple sequence alignment, protein structure prediction, or molecular epidemiological studies
of viruses. Unfortunately, this inference problem can be shown to be hard under many dif-
ferent formulations. Based on the available data and the used metric, the methods to build
phylogenetic trees can roughly be divided into three classes, namely maximum likelihood,
distance, and maximum parsimony methods. Different approaches to compute the desired
tree exist for each of these classes. Most of them are heuristics due to the complexity of
the problem. The different approaches to compute phylogenetic trees in general lead to a
collection of different solutions for a specific instance with no information which of these
trees is the really correct one from the biological point of view. Hence the objective of the
CTP is to build a single solution tree out of several input trees somehow “best” representing
the whole available information; see Figure 1.1.

All remaining problems considered in this thesis arise in the field of transportation. In gen-
eral, transportation problems appear in many practically highly relevant areas of our daily
life. They usually include the assignment of produced goods to customers and decisions on
how and at which times the goods are picked up and delivered. Improvements in solutions
often have a direct and substantial impact on costs and on other important factors like cus-
tomer satisfaction. Because of the many facets and decisions to be made, such transportation
problems are often complex combinations of assignment, scheduling, and routing problems.

The basis for all of them is the NP-hard vehicle routing problem (VRP), which is arguably
one of the most important, and well-studied, combinatorial optimization problems. It can
be considered a generalization of the NP-hard traveling salesman problem (TSP), which is
perhaps the most prominent combinatorial optimization problem. The VRP variant where
the vehicles have a certain capacity, the capacitated VRP (CVRP), was already introduced
in 1959 by Dantzig and Ramsen [54] under the term “truck dispatching problem”, where
they deal with an optimum routing of a fleet of gasoline delivery trucks between a bulk
terminal (depot) and a large number of service stations (customers) supplied by the terminal;
see Figure 1.2 for a simple example. There exists a rich literature on the VRP and its many
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variants, and a lot of heuristic and exact solution approaches as well as several hybrid variants
were proposed. An overview on selected topics is given in a book by Toth and Vigo [220].
More recent works are e.g. a survey paper by Laporte [127] and a book on latest advances
and new challenges by Golden et al. [98].
The transportation problems in this work are all extensions of the CVRP motivated by im-
portant real-world aspects. These variants are in fact generalizations, as the CVRP can be
considered a special case of each one. Following ones are considered here: the periodic ve-
hicle routing problem (PVRP) (and the periodic TSP (PTSP) as a special case of it) and the
periodic vehicle routing problem with time windows (PVRPTW) where customers usually
need to be visited multiple times in a given planning horizon, also respecting (hard) cus-
tomer time windows in case of the PVRPTW, the location-routing problem (LRP) as well as
the periodic location-routing problem (PLRP) which adds to the CVRP the task of simulta-
neously placing some facilities at given locations (i.e. corresponding to theNP-hard facility
location problem), and finally the vehicle routing with compartments (VRPC) where there
is not a single loading area and product but several compartments and products, possibly
involving certain incompatibilities. Of course more details are given in the corresponding
chapters.
Note that two possibilities were suggested in [54] to actually solve VRPs: “The calculations
may be readily performed by hand or by an automatic digital computing machine.” Though
to be fair, we should mention that they were faced with a problem involving four vehicles
and twelve customers. Anyway, after a careful consideration we chose the latter option,
otherwise we would surely have . . . calculated happily ever after.

1.1 Outline of the Thesis

The remainder of this thesis is organized as follows. In the next chapter we give a short
introduction to the types of problems we are facing, i.e. mainly combinatorial optimization
problems as well as to a lesser extent constraint satisfaction problems, and to computational
complexity. Next we review prominent exact and (meta-)heuristic solution approaches, with
a focus on those that are actually applied in this work. Finally we also describe the motiva-
tions and benefits of devising hybrid methods, concentrating on several use cases.
In general, each chapter on a specific problem gives a proper introduction, also stating our
previously presented and published work, discusses previous and related work, details our
contributions, introduces available as well as often also newly generated instances, reports on
the results and findings of thorough computational tests (probably at more than one place),
and finishes with conclusions and ideas for potential future work. In the following we will
therefore only outline our contributions in short. Note that all newly generated test in-
stances are publicly available at https://www.ads.tuwien.ac.at/w/Research/
Problem_Instances.

The CTP is topic of Chapter 3. The major part deals with several metaheuristics and appro-
priate combinations of them to maximize a fine-grained non-linear similarity measure. For
this we introduce several meaningful tree neighborhood structures with incremental update

4
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1.1. Outline of the Thesis

schemes which are subsequently utilized to extend an existing evolutionary algorithm (EA)
to yield a memetic algorithm (MA). We further propose a variable neighborhood descent
(VND) and a variable neighborhood search (VNS) also based on them, probably embedding
the VND inside the VNS, obtaining a so-called general VNS. Sequential and intertwined
collaborative combinations of the EA/MA and the VND/VNS to yield hybrid metaheuris-
tics are presented next. We also propose to examine the moves defined by a neighborhood
structure in the order of their improvement potential according to a measure related to the
objective function, hence realizing guided neighborhoods. In a second line of work we in-
vestigate two integer linear programming (ILP) formulations based on other, linear objective
functions. Also the heuristic generation of variables (heuristic column generation), so-called
lazy constraints to speed up the solving process, and the combination with the developed
metaheuristics are considered. For testing we generate additional instances according to a
developed scheme.

Chapter 4 is about the PVRPTW. Due to presenting results after most individual method
sections and not only at the end, all test instances used, including newly generated ones,
are described before the algorithms. We introduce a VNS for the problem, which is itself
a hybrid variant as it integrates the concept of simulated annealing to better escape local
optima. Next we realize a cooperative multistart search via multiple cooperating VNS in-
stances performed in an intertwined way, which we denote as multiple VNS (mVNS). Right
after describing an EA to be hybridized later, we introduce a set-covering ILP formulation
for the PVRPTW which gives rise to a column generation (CG) approach. An exact labeling
algorithm based on dynamic programming using different dominance rules (in a cascade)
and several (meta-)heuristics to solve the NP-hard pricing subproblem are presented. This
CG approach is then extended by a branching scheme to yield a branch-and-price approach,
which is subsequently extended to branch-and-cut-and-price. For the latter we adapt the 2-
path cuts to the problem at hand as well as apply the subset-row cuts. The separation of
the 2-path cuts involves a heuristic component similar to VND. Finally coming to the core
of this chapter, the different matheuristics: VNS and mVNS are each hybridized with the
set-covering ILP, realizing combined variants of very large neighborhood search and optimal
merging, the CG approach is combined with the EA, where information of the former guides
the latter, and the concepts of two other variants are described as well. A straightforward
column generation based heuristic is further devised to compare to (beside the individual
algorithms). Extensive computational results for a diverse set of instances are reported.

In Chapter 5 we tackle the PVRP and the PTSP. We merge a VNS, which is conceptually
similar to those of the PVRPTW, with the idea of the multilevel refinement strategy. To
arrive at what we call a multilevel VNS we introduce a suitable coarsening scheme based
on segments, incorporating the periodic aspect, as well as a corresponding solution-based
recoarsening scheme. Contrary to existing approaches the multilevel refinement is smoothly
integrated into the VNS. Subsequently we also propose an according multilevel VND, which
utilizes the multilevel refinement in a more standard way. For evaluation we created larger
instances than previously available, as multilevel refinement is especially suitable to large
instances in general.

5
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Chapter 6 is dedicated to hybrid solution approaches for the LRP and the PLRP. Again we de-
sign a similar (hybrid) VNS than before using problem-specific neighborhood structures for
shaking and, building upon previous experience, similar well-performing local improvement
methods. It can more or less be readily applied to both problem variants. Later we devise two
conceptually different ILP-based very large neighborhood searches. One is rather high-level
and operates on the routes as well as on the depots (facilities), whereas the other is lower-
level and operates on customers, i.e. on route sequences. For the first search two variants
are proposed, a simpler one using information from a single incumbent solution only and a
more sophisticated one which can utilize the information of a set of solutions. In case of the
PLRP the periodic aspect needs to be dealt with accordingly. Finally the VNS is combined
with several combinations of these searches, realizing integrative combinations.
The research conducted on the last problem considered in this thesis, the VRPC, is docu-
mented in Chapter 7. After introducing possible problem scenarios which are considered
later on we directly deal with the core of the problem: the packing subproblem, which we
denote as the compartment assignment problem (CAP). In contrast to previous work we de-
voted quite some effort for tackling it: The investigated solution methods range from simple
construction heuristics over heuristic improvement methods, made possible via introduc-
ing a suitable density measure, to exact solution approaches based on ILP techniques and
on constraint programming. Next also for the VRPC a solution method based on VNS is
proposed, which is in contrast to the other VRP variants a “pure” VNS here, as it only ac-
cepts improved solutions. We more concentrate on devising meaningful problem-specific
neighborhood structures for shaking. For re-insertion of customers we propose a greedy in-
sertion as well as a regret-k insertion. Building upon the VNS components we also derive an
adaptive large neighborhood search. To better test all our extensions we eventually generate
additional instances exhibiting a harder packing problem, as the available ones turned out to
be too “easy” with regard to this.

Overall conclusions are drawn in Chapter 8.
In Appendix A we provide supplementary material of the CTP and the VRPC, while Ap-
pendix B closes the thesis with my curriculum vitae.
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2
METHODOLOGIES

In this chapter we will present concepts and general solution approaches which essentially
build the basis for the upcoming chapters. However, it is not our intention to present all
methodologies in detail here, which is clearly not the purpose of this work and would also
go beyond its scope. Moreover, there are a lot of good books and articles available which
specifically provide an in-depth coverage. Hence we will give a short overview, cite classi-
cal as well as recent works, and rather highlight the main concepts. We further especially
concentrate on methods which are applied in the remainder of this work. Some parts of this
chapter have been published in similar form in our previous work [187].
Available techniques for solving hard combinatorial optimization problems can roughly be
classified into two main categories: exact and heuristic algorithms. Exact algorithms are
guaranteed to find an optimal solution and prove its optimality. Their run-time, however,
often increases dramatically with a problem instance’s size, and frequently only small or
moderately-sized instances can be practically solved to proven optimality. For larger in-
stances the only possibility usually is to turn to heuristic algorithms that trade optimality
for run-time, i.e., they are designed to obtain good but not necessarily optimal solutions in
reasonable time.

2.1 Problem Variants

Before coming to the different solution approaches, we characterize the actual types of prob-
lems that are considered. Note that a problem is a general class, and when we are given
specific input values, we say this is an instance of the problem; i.e. a problem is a set of in-
stances. A more formal definition, unifying those presented in [22, 23, 154], is the following:

7
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Definition 1 An instance I of a problem P is a quadruple (X,D,C, f) with

• a finite tuple of variables X = (x1, . . . , xn),

• corresponding variable domainsD1, . . . , Dn, yielding the overall domain as the Carte-
sian product D = D1 × . . .×Dn,

• constraints C among variables, each defined on a subset of D,

• and an objective function f to be minimized or maximized (depending on the problem),
where f : D → R+.

The set of all possible assignments S, not necessarily respecting the constraints, is the search
(or solution) space or the set of candidate solutions. Every s ∈ S is assigned an objective
value f(s). Naturally, we are more interested in the set of feasible solutions:

Sf = {s = {(x1, v1), . . . , (xn, vn)} | vi ∈ Di, s satisfies all the constraints C} .

Solving an optimization problem amounts to finding a best solution, defined as a globally
optimal solution or global optimum.

Definition 2 A solution s∗ ∈ Sf is said to be globally optimal if, assuming a minimization
problem, ∀s ∈ Sf : f(s∗) ≤ f(s).

Following this there can be multiple globally optimal solutions. Note that in the remainder
of this chapter we assume without loss of generality a minimization problem, since a maxi-
mization problem can be easily transformed into its corresponding minimization variant by
taking −f . We can basically differentiate between problems having real-valued or discrete
variable domains, being subject to continuous or discrete optimization, respectively. In this
work we are mainly interested in solving discrete optimization problems, which are due to
their nature also denoted as combinatorial optimization problems (COPs). An additional
rather informal definition of COPs according to [154] is to look for an object from a given
basic set (either finite or countably infinite), usually being an integer number, a subset, a
permutation or a graph structure.
Somewhat related are constraint satisfaction problems (CSPs), where the focus entirely lies
on the feasibility aspect and feasible solutions are not distinguished. CSPs could be regarded
as COPs having a constant objective function. In fact, there is also the notion of constraint
optimization problems which are CSPs together with an objective function, hence closing the
circle.

2.2 Computational Complexity

In this section we will glimpse into the subject of computational complexity theory, which
primarily deals with complexity classes in general as well as to identify the hardness of
specific problems and their membership in one of these classes. For in-depth information we
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refer to [154, 126], dealing among others with this topic, and to [89, 211, 212, 99] especially
focusing on it. Note that in these investigations corresponding decision variants (yielding a
“yes” or “no” answer) of optimization problems are considered, i.e. asking whether a solution
having an objective value less than a requested value exists. Furthermore, the algorithms are
assumed be executed on a common fictitious machine, the Turing machine, an abstraction of
a real computer. This does, however, not impair the general findings, as the Church-Turing
thesis suggests that this abstract device and all other (reasonable) computational models are
equally powerful.

Definition 1 The time complexity function of an algorithm expresses its time requirement by
giving, for each possible input length, the largest amount of time needed by the algorithm to
solve a problem instance of that size.

Definition 2 Big Oh. A function f(n) isO(g(n)) whenever there exist constants c > 0, n0 ∈
N such that 0 ≤ f(n) ≤ c · g(n) for all values of n ≥ n0. Thus c · g(n) is an (asymptotic)
upper bound for f(n).

Definition 3 An algorithm runs in polynomial time (or is a polynomial time algorithm) if its
time complexity function is O(p(n)), where p is some polynomial function and n is the size
of the instance (or its input length). If k is the largest exponent of such a polynomial in n,
the corresponding problem is said to be solvable in O(nk).

Definition 4 If an algorithm’s time complexity function cannot be bounded by a polynomial
in n, the algorithm is called an exponential time algorithm.

Definition 5 An optimization or constraint satisfaction problem is efficiently solvable if
there exists a polynomial time algorithm for solving it. The problem is then considered
“well-solved”.

Definition 6 The class of problems that are efficiently solvable is denoted by P (standing
for polynomial time).

There are other algorithms which are in practice (i.e. for most practical instances) frequently
considered efficient enough: the pseudo-polynomial algorithms. For them the time com-
plexity function is polynomial in the size of the instances but also depends on actual instance
input numbers. This refinement is made because when only considering the instance size
n then parameters might be contained whose size is exponential in n, although for many
problems the magnitudes are implicitly bounded by a polynomial in n. Hence a pseudo-
polynomial algorithm runs in polynomial time when all input numbers are represented in
unary (in base 1, i.e., as a sum of 1s), but in exponential time when all input numbers are
represented in binary.
Unfortunately many (important) COPs do not seem to lie inside P since no polynomial
time algorithms are known to solve them in general, but only solution approaches taking
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exponential time in the worst case. This at most exponential effort originates from the fact
that theoretically all possible solutions could be investigated, which is to some respect the
“fallback strategy” which will be mentioned in the next section. However, for these problems
it is at least possible to efficiently check the validity of a given solution. Otherwise we would
even not be able to efficiently recognize a solution, yet preventing the heuristic solution
approaches mentioned later. Such “intractable” problems belong to the class NP , where
it holds that P ⊆ NP . Yet despite tremendous research efforts it is up to date not known
whether NP ⊆ P and hence P = NP (being one of the great unsolved problems of
mathematics1), though it is conjectured that P 6= NP . Letting theory aside, also intuition
suggests the latter, since solving would demand the same effort than checking/recognizing
otherwise. A statement by Scott Aaronson also highlights this2:

If P = NP , then the world would be a profoundly different place than we
usually assume it to be. There would be no special value in “creative leaps”,
no fundamental gap between solving a problem and recognizing the solution
once it’s found. Everyone who could appreciate a symphony would be Mozart;
everyone who could follow a step-by-step argument would be Gauss; everyone
who could recognize a good investment strategy would be Warren Buffett. . . .

Inside NP exist so-called NP-complete problems which are considered as the “hardest”
among them. The ancestor of all such problems is the Boolean satisfiability problem (SAT),
which Cook proved to be NP-complete [36] (known as Cook’s theorem or Cook-Levin
theorem).

Definition 7 A (decision) problem isNP-complete if it is inNP and every problem inNP
is reducible to it in polynomial time.

Showing that two problems are related is done by “reducing” one to the other.

Definition 8 A reduction from problem A to B is a (polynomial time) constructive trans-
formation that maps any instance of A into an equivalent instance of B. These are further
called many-one reductions, and are denoted as A ≤m B.

Hence A ≤m B implies that any algorithm that solves B is also able to solve A, where a
polynomial Since then many other problems where also shown to beNP-complete, starting
with the list of 21 problems by Karp [120]. This means that solving one of them efficiently
would imply that all of them can be solved in an efficient way. Given the fact that for many
problems specifically dedicated solution algorithms were devised, yet not “efficient” ones as
denoted above, suggests even more thatP 6= NP . There is further the notion of anNP-hard
problem to which every NP-complete problem is reducible to, yet it does not necessarily
lie in NP itself. They are therefore at least as hard as NP-complete problems. Finally,
if there exists a pseudo-polynomial algorithm for an NP-complete or NP-hard problem,

1see at http://www.claymath.org/millennium/P_vs_NP/
2see “The Philosophical Argument” at http://www.scottaaronson.com/blog/?p=122
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2.3. Exact Solution Approaches

then it is denoted as weakly NP-complete and weakly NP-hard, respectively. Contrary,
if representing the input numbers of a problem in unary still does not permit to solve it in
polynomial time it is denoted as strongly NP-complete or strongly NP-hard. In fact, the
question is whether we deal with a number problem:

Definition 9 A problem is a number problem when the magnitudes are not polynomially
bounded by the instance size.

Under the assumption P 6= NP onlyNP-complete problems that are number problems are
potential candidates for being solved by pseudo-polynomial time algorithms.

Note that the theoretical definition of “efficiently solvable” not necessarily correlates with an
efficient solvability in practice. Often instances of NP-hard problems can be solved well,
whereas solving instances of problems in P to optimality might require too much effort.

2.3 Exact Solution Approaches

Perhaps from a methodical point of view the simplest exact approach would be a complete
enumeration of all possible assignments S (also referred to as exhaustive or brute-force
search). Due to the inherent combinatorial explosion with respect to the size of the search
space for hard COPs in general, this approach is only viable for very small instances. There-
fore all practical exact solution approaches try to consider as much of the search space as
possible only implicitly, hence ruling out regions where it is guaranteed that no better feasi-
ble solution can be found than a previously found one. Often these methods are based on a
tree search, where the search space is recursively partitioned in a divide-and-conquer manner
(see Section 2.3.2) into mutually disjoint subspaces by fixing certain variables or imposing
additional constraints. Ruling out regions then amounts to (substantially) pruning the search
tree. The scalability of a tree search thus depends essentially on the efficiency of this pruning
mechanism. In branch-and-bound (B&B), upper and lower bounds are determined for the
objective values of solutions, and subspaces for which the lower bounds exceed the upper
bounds are discarded.
Next we will have a look at prominent exact solution approaches which will be used to
differing extent in later chapters.

2.3.1 Integer Programming Techniques

This section introduces some basic notations and gives a short introduction into prominent
integer programming techniques. For an in-depth coverage of the subject we refer to books
on linear optimization [17, 55, 56, 223] as well as on combinatorial and integer optimiza-
tion [149, 239, 18]. Further some important classical articles as well as works on current top-
ics regarding IP are given in the book 50 Years of Integer Programming: 1958–2008 [115].
We also recommend a more informal paper about linear programming (also clarifying the
“programming”) by Dantzig [52].
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A linear program (LP) is an optimization problem with a linear objective function subject to
a set of constraints expressed as linear (in)equalities. A linear program where all the variables
are required to be integers is an integer (linear) program (IP). We consider IP problems of
the form

zIP = min{cx | Ax ≥ b, x ≥ 0, x ∈ Zn}, (2.1)

where x is an n-dimensional integer variable vector in column form and c ∈ Qn an n-
dimensional row vector. Their dot-product cx is the objective function that should be min-
imized. Matrix A ∈ Qm×n and the m-dimensional column vector b ∈ Qm together define
m inequality constraints. A mixed integer program (MIP) would involve a combination of
integer and real-valued variables and can be written similarly as:

zMIP = min{cx+ fy | Ax+By ≥ d, x, y ≥ 0, x ∈ Zn}, (2.2)

Maximization problems can be transformed into minimization problems by simply changing
the sign of c. Less-than constraints are similarly brought into greater-than-or-equal form by
changing the sign of the corresponding coefficients, and equalities can be translated to pairs
of inequalities. Thus, we can handle all kinds of linear constraints by appropriate transfor-
mations. Without loss of generality, we may therefore restrict our following considerations
to minimization problems of this standard form.

Relaxations and Duality

One of the most important concepts in integer programming are relaxations, where some
or all constraints of a problem are loosened or omitted. Relaxations are mostly used to
obtain related, simpler problems that can be solved efficiently yielding bounds and approxi-
mate (not necessarily feasible) solutions for the original problem. Embedded within a B&B
framework, these techniques may lead to effective exact solution techniques.
The linear programming (LP) relaxation of the IP (2.1) is obtained by relaxing the integrality
constraints, yielding

zLP = min{cx | Ax ≥ b, x ≥ 0, x ∈ Rn}. (2.3)

Large instances of such LPs can be efficiently solved using simplex-based [55] or interior-
point [119] algorithms. Although there exist scenarios where the simplex algorithm shows
an exponential runtime (see the Klee-Minty cubes [124]), its average runtime is rather poly-
nomial and it is known to be highly effective in practice. Therefore, it is today the most
frequently used “workhorse” when it comes to solving LPs. Contrary, the interior-point
algorithm has a guaranteed polynomial worst case runtime, and is usually also present in
leading solver packages. The ellipsoid algorithm [121], despite also having a polynomial
runtime, is more interesting from a theoretical perspective.
The solution to the LP relaxation provides a lower bound for the original minimization prob-
lem, i.e. zIP ≥ zLP, since the search space of the IP is contained within the one of the LP
and the objective function remains the same.
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We can further associate a dual problem to an LP (2.3), which is defined by

wLP = max{ub | uA ≤ c, u ≥ 0, u ∈ Rm} (2.4)

with u being the m-dimensional dual variable row vector. The dual of the dual LP is the
original (primal) LP again. Important relations between the primal problem and its dual are
known as weak and strong duality theorems, respectively:

Weak duality theorem: The value of every finite feasible solution to the dual problem is a
lower bound for the primal problem, and each value of a finite feasible solution to the
primal problem is an upper bound for the dual problem. As a consequence, if the dual
is unbounded, the primal is infeasible and vice versa.

Strong duality theorem: If the primal has a finite optimal solution with value z∗LP, than its
dual has the same optimal solution value w∗LP = z∗LP and vice versa.

The complementary slackness conditions follow from the strong duality theorem: Suppose
x and u are feasible solutions for (2.3) and (2.4), respectively; then they are optimal if and
only if the following conditions hold:

u(Ax− b) = 0 and (2.5)

x(c− uA) = 0. (2.6)

In case of an IP we have to distinguish between weak and strong duals: A weak dual of an
IP (2.1) is any maximization problem w = max{w(u) | u ∈ SD} such that w(u) ≤ cx for
all x ∈ {Ax ≥ b, x ≥ 0, x ∈ Zn}. An obvious weak dual of (2.1) is the dual (2.4) of its LP
relaxation (2.3). A strong dual is a weak dual that further has an optimal solution u∗ such
that w(u∗) = cx∗ for an optimal solution x∗ of (2.1). For solving IPs, weak duals which are
iteratively strengthened during the course of the optimization process are often utilized.

LP-Based Branch-and-Bound

By solving the LP relaxation of an IP we obtain a lower bound on the optimal IP solution
value and the solution will in general contain fractional variable values. (If all variable val-
ues would be integer, we already would have solved the IP.) The standard way to continue
towards an optimal integer solution is the already mentioned B&B. Branching usually takes
place over some variable xi with a fractional LP-value x∗i , defining as first subproblem the
IP with the additional inequality xi ≤ bx∗i c and as second subproblem the IP with inequality
xi ≥ dx∗i e. For these subproblems with the additional branching constraints, the LP re-
laxations are resolved leading to increased lower bounds and eventually solutions where all
integer variables have integral values. As mentioned in the introduction, primal heuristics
are usually also applied to each subproblem in order to find improved feasible solutions and
corresponding global upper bounds, enabling a stronger pruning of the search tree.
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Cutting Plane Algorithm and Branch-and-Cut

When modeling COPs as IPs an important goal is to find a strong formulation, for which
the solution value of the LP relaxation in general provides a tight bound. For many COPs
it is possible to strengthen an existing IP formulation significantly by including further in-
equalities, which would actually be redundant w.r.t. the integer optimum. In general it is
even possible to strengthen a model such that the LP relaxation already yields an integer
optimum; however, the number of required constraints often grows exponentially with the
problem size. Naively solving such an LP by standard techniques might quickly become too
costly in practice.

Dantzig et al. [53] proposed the cutting plane algorithm for this purpose, which usually
only considers a fraction of all constraints explicitly but is nevertheless able to determine an
optimal solution to the whole LP.

The cutting plane approach starts by solving a reduced LP consisting of a small subset of
initial inequalities only. It then tries to find inequalities that are violated by the obtained
solution but are valid for the original problem (i.e. contained in the full LP). These valid
inequalities are called cuts or cutting planes, and they are added to the current reduced LP,
which is then resolved. The whole process is iterated until no further cutting planes can be
determined. If the algorithm computing the cuts provides a proof that no further violated
inequality exists, the final solution is optimal for the original full LP. The subproblem of
identifying cuts is called separation problem. In practice it is crucial to have an efficient
method for separating cuts as usually a significant number of valid inequalities must be
derived until the cutting plane algorithm terminates.

From a theoretical point of view it is possible to solve any IP using a pure cutting plane
approach with appropriate classes of cuts. There exist generic types of cuts, such as the
Chvatal-Gomory cuts [239], which guarantee such a result. In practice, however, it may take
far too long for such a cutting plane approach to converge to the optimum, partly because it
is often a hard subproblem to separate effective cuts and partly because of the large number
of needed cuts.

The combination of B&B with cutting plane methods yields the highly effective class of
branch-and-cut algorithms which are widely used. Specialized branch-and-cut approaches
have been described for many applications and are known for their effectiveness. Cut separa-
tion is usually applied at each node of the B&B tree to tighten the bounds of the LP relaxation
and to exclude infeasible solutions as far as possible.

For cutting plane separation effective heuristic methods come into play once again: For
strengthening the LP relaxations it is often sufficient to generate cuts heuristically since the
correctness of the final solution does not depend on the generated cuts as long as they are
valid. Almost all modern mixed integer programming (MIP) solvers include sophisticated
generic cut separation heuristics, and they play a major role in the success of these solvers.
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Column Generation and Branch-and-Price

Often it is possible to model COPs via strong formulations involving a huge number of
variables. Dantzig-Wolfe decomposition [57] is a technique for obtaining such models from
compact formulations in a systematic way. It replaces the original problem variables by
linear combinations of the extreme points and extreme rays of the original search space,
yielding a potentially exponential number of new variables. The obtained models can result
in much stronger relaxations than their compact counterparts.
Despite the many variables, the LP relaxations of such formulations can often be efficiently
calculated. The column generation approach starts with only a small subset of all variables
(corresponding to columns in the matrix notation of the IP) and solves the respective re-
stricted LP relaxation. It is then tried to identify one or more so far ignored variables whose
inclusion may lead to an improved solution. This subproblem is called pricing problem. For
a minimization problem a variable can eventually improve the current LP solution if it has
negative reduced costs. After adding such a new variable to the restricted LP, it is resolved
and the process iterated until no further variables with negative reduced costs exist. The final
solution is an optimal solution for the complete LP.
Column generation can be seen as dual to the cutting plane approach, since inequalities cor-
respond to variables in the dual LP. For a recent review on column generation see [131] as
well as the book [61]. The cutting stock problem is an early example for the successful ap-
plication of column generation based methods [94]. The task is to cut some one-dimensional
blanks of fixed size into several pieces to satisfy customer demands. Instead of directly de-
ciding on which blank a particular piece is to be cut from, one might consider the cutting of
blanks according to some pattern. Hence every possible cutting pattern is represented by a
variable and the pricing problem corresponds to the classical 0–1 knapsack problem, which
can be solved efficiently in pseudo-polynomial time.
As the column generation algorithm only solves the LP relaxation, it must in general also be
embedded in a B&B in order to obtain optimal integer solutions. When column generation
is performed for each node of the B&B tree, the approach is called branch-and-price. One
of the main difficulties in the implementation of such methods frequently lies in the develop-
ment of appropriate branching rules as branching on the set of dynamically generated vari-
ables would typically split the search space in a very skewed and ineffective way. Further-
more, the individual LPs may sometimes be degenerated, or newly added columns may only
improve the solutions marginally leading to many iterations until convergence. In the latter
cases, stabilization techniques as discussed in [67] often improve the situation. A more recent
treatment of stabilization for constrained tree problems is provided by Leitner et al.[129].
Similarly as cutting plane separation may be performed by effective heuristics, one can also
heuristically solve the pricing problem in column generation. Care must be taken that in the
final iteration it is necessary to prove that no further columns with negative reduced costs
exist so that the obtained solution value is guaranteed to be a lower bound for the original IP.

Finally, it occasionally makes sense to combine a cutting plane approach with column gen-
eration and embed both in B&B. Such methods, called branch-and-cut-and-price, are some-
times extremely successful but are typically also rather complex and highly specialized.
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2.3.2 Dynamic Programming

Dynamic programming (DP), proposed by Richard Bellman [14], basically incorporates the
divide-and-conquer principle and is a powerful paradigm for algorithm design in general.
The name was chosen such that “it was something not even a Congressman could object
to” [66]. Also see Chapter 15 of [44] for an introduction.
For “pure” divide-and-conquer the recursively solved subproblems are disjoint and there is
a unique way to combine them to eventually yield an overall optimal solution to the prob-
lem. DP is typically applied to optimization problems and following conditions must hold to
successfully apply it: (parts of) the subproblems are overlapping, and recursively solving the
overall problem in a bottom-up fashion amounts to choosing the right subproblem solutions
(i.e. the problem exhibits an optimal substructure). Perhaps the most crucial part is that the
subproblems are not disjoint or independent anymore. This fact is exploited via storing their
solution’s values in some sort of table (or another systematic way) to efficiently retrieve them
at the re-occurrence of the subproblems. Hence memory is traded for computational effort.
Often the actual solution needs to be reconstructed afterwards, albeit it is usually possible to
already derive the required information during the solution process.
A well-known algorithm utilizing these ideas is the Floyd-Warshall algorithm to compute all-
pairs shortest paths in a graph with possibly negative edge weights [79, 233]. Another prime
example is the 0–1 knapsack problem (with integer numbers), where a pseudo-polynomial
algorithm based on DP can be devised [134]. Note that in [89] the authors report that all
pseudo-polynomial algorithms for NP-hard problems known to them make use of DP or
similar techniques.

2.3.3 Constraint Programming

Whereas integer linear programming is mainly applied to optimization problems, constraint
programming (CP) is primarily utilized to solve constraint satisfaction problems. In general
both concepts are somewhat complementary to each other. Also in CP the term “program-
ming” is actually related to “computer programming”, too, as besides being a (declarative)
programming paradigm, the user often needs to program the strategy to solve the problem
as well. Nevertheless, the idea still is that the user states a problem (via constraints) which
is then solved by a general purpose constraint solver. For an introduction we refer to the
book by Apt [10], a broad overview also including some more advanced topics is given in
the Handbook of CP by Rossi et al.[200], a comparison between ILP and CP is presented by
Lustig and Puget [132].
The two main basically orthogonal concepts for solving CSPs are search and inference. For
CSPs also a tree-search method is used: backtracking. It differs from exhaustive search
by checking the constraints after each branching decision and in—the simplest case—going
back to the previous node in case a violation is encountered and continue the search from
there. Hence also here subtrees are pruned. Though the search component alone would
be sufficient to solve the problem, it is usually too inefficient and would seldom be a vi-
able approach on its own (even though many improvements were proposed in the literature).
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For instance during simple backtracking it frequently happens that very similar subtrees are
unnecessarily investigated again and again, only to fail and being pruned in the end (this
behavior is denoted as thrashing). Here comes inference into play, “the real power engine
behind CP” [13], which essentially tightens the constraints, i.e. reduces the domains of the
variables that are involved, eventually eliminating parts of the search space. In practice one
might be familiar with this concept when solving Sudokus from newspapers. More precisely,
inference removes (filters) inconsistent domain values, hence is said to achieve consistency,
and since the information contained in one constraint is propagated to the neighboring con-
straints this process is sometimes also called constraint propagation. Note that several no-
tions (levels) of consistency with corresponding consistency techniques exist, demanding an
increasing computational effort to achieve/apply. We mention three common ones: The sim-
plest being node consistency (for unary constraints), followed by arc consistency (already
achieving a high degree of consistency for binary constraints), and path consistency (to re-
move more but not provably all inconsistencies which were not covered by arc consistency;
it was shown that achieving consistency on paths of length two is sufficient to achieve path
consistency in general). Since every CSP can be transformed to an equivalent CSP using
only binary constraints, much research effort was put into efficient algorithms to obtain arc
consistency. Practical CSP solution approaches usually rely on incomplete consistency tech-
niques combined with a non-deterministic search to yield a complete method. COPs can be
solved too, in that case one applies a tree-search based on branch-and-bound.
There also exist global constraints (e.g. sum, alldifferent, cumulative etc.) that
are on the one hand shorthands for frequently recurring patterns, which makes programming
easier, and on the other hand facilitate the work of the constraint solver by providing it with
a better view of the structure of the problem. For so-called over-constrained problems where
it is unlikely or impossible that all constraints can be fulfilled, one can use soft constraints
(as opposed to the usual hard constraints). They are suited to formalize desired properties
rather than requirements that may not be violated.
Naturally a careful basic modeling is crucial for solving CSPs or COPs, but the performance
might be further improved via: considering redundant constraints which might allow an
enhanced filtering, the usage of readily available global constraints (depending on the solver),
also consider the inclusion of the dual model (swapping the constraints for the variables and
vice versa) or an alternative view on the initial model, and avoiding symmetries via posting
corresponding constraints.
In this thesis, a subproblem in Chapter 7 will be tackled with CP.

2.4 (Meta-)Heuristic Solution Approaches

Heuristic problem solving techniques range from simple constructive techniques such as
ad-hoc greedy algorithms over local search methods to various metaheuristics [218, 91].
Especially the latter category is well-developed and has proven to be highly useful in prac-
tice. As their name suggests, metaheuristics are defined on a higher and basically problem-
independent level; note that the term “meta-heuristic” was first introduced by Fred Glover
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in the context of tabu search [95]. These “solving concepts” describe how to efficiently ex-
plore the search space by guiding lower-level or subordinate heuristics to find (near-)optimal
solutions. It is important that a metaheuristic appropriately balances diversification and in-
tensification of the search. Several taxonomies were proposed in the context of metaheuris-
tics [22, 218], which do make sense since meanwhile a lot of such solution approaches exist,
where the differences are sometimes quite fuzzy. In fact, in recent years one can observe the
appearance of an increasing number of rather “exotic” variants which are frequently inspired
by metaphors from nature, physics and life [235]. It is sometimes hard to spot new and
original ideas as often only slight variations, if at all, of established concepts are proposed.
A critical view on this is given by Weyland [235]. Coming to the taxonomies again, they
are also helpful in synthesizing (original) successful concepts and ideas among the different
variants, fostering a better understanding of vital components yielding an improved search
balance as mentioned above.

A meaningful criterion is the division into single-solution based methods (i.e. following a
single search trajectory), which are often sophisticated variants of local search either using
a single neighborhood or several ones, and population based methods (i.e. multiple search
trajectories, usually running in an intertwined way). Prominent examples of the former class
are variable neighborhood search (VNS), tabu search (TS) and simulated annealing (SA),
while the broad class of evolutionary algorithms (EAs), swarm intelligence methods such as
ant colony optimization (ACO) algorithms and particle swarm optimization (PSO), as well
as scatter search (SS) belong to the latter class. Another criterion is whether the solutions
are primarily constructed (e.g. greedy randomized adaptive search procedures or ACO) or
improved (e.g. VNS, TS, SA, EAs, PSO, SS).

Mostly in the early years of metaheuristics – but sometimes to a lesser extent even today –
certain communities strongly promoted their method of choice and seemingly rather tried
to find problems where it could be applied to with success, and hence gather more evidence
why it is the “only true” method. Yet according to the “no free lunch” theorem by Wolpert
and Macready [238] no single algorithm can dominate all others on all problems, since any
elevated performance over one class of problems is offset by performance over another class.
Hence it only makes sense to favor one algorithm over another with respect to specific prob-
lems or classes of problems.

We define some required basic notions before dealing in more detail with some heuristic
methods.

Definition 10 A neighborhood structure is a functionN : S → 2S that assigns to every s ∈
S a set of neighborsN (s) ⊆ S. N (s) is called the neighborhood of s. Often, neighborhood
structures are implicitly defined by specifying the changes that must be applied to a solution
s in order to generate all its neighbors. The application of such an operator that produces a
neighbor s ∈ N (s) of a solution s is commonly called a move.

In addition to the globally optimal solution defined in Section 2.1 we can also define a locally
optimal solution (again for a minimization problem):
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Definition 11 A locally optimal solution (or local optimum) with respect to a neighborhood
structure N is a solution s such that ∀s′ ∈ N (s) : f(s) ≤ f(s′).

2.4.1 Approximation Algorithms

The class of approximation algorithms [224, 237] are special heuristics, as in contrast to
basically all others, they also guarantee a certain quality of the approximate solution. In
the following the solution value of an (arbitrary) instance I of an optimization problem P
by algorithm A will be denoted by A(I), whereas the optimal solution value is denoted as
Opt(I).

Definition 12 An approximation algorithm A has an absolute performance guarantee (or
absolute performance ratio) k, (k > 0), if for every instance I holds that |Opt(I)−A(I)| ≤
k.

Only for a few problems such algorithms exist, more common are the next ones, giving a
relative performance guarantee:

Definition 13 An approximation algorithmA for a minimization problem has a relative per-
formance guarantee (or relative performance ratio) k, (k > 1), if for every instance I holds
that A(I) ≤ k ·Opt(I).

Algorithm A is then also called a k-approximation algorithm. We might also consider the
relative deviation:

A(I)−Opt(I)

Opt(I)
≤ ε⇔ A(I) ≤ (1 + ε)Opt(I) .

An approximation algorithm A for a minimization problem with relative deviation ε is a
(1 + ε)-approximation algorithm. The case for a maximization problem is analogue, and we
end up with a (1 − ε)-approximation algorithm. There is also the notion of an asymptotic
performance guarantee k, by adding a constant term d: A(I) ≤ k ·Opt(I) + d, which is for
dealing with small integer valued solution values.
A richer class of algorithms, in fact sets of algorithms, is when we consider the deviation
itself as an input:

Definition 14 An approximation scheme A is a family of algorithms {Aε}, where there
is an algorithm for each ε > 0, such that Aε is a (1 + ε)-approximation algorithm (for
minimization problems) or a (1− ε)-approximation algorithm (for maximization problems).

We can distinguish the approximation schemes according to their runtime:

Definition 15 An approximation scheme A is a polynomial-time approximation scheme
(PTAS) when the runtime of A is polynomial in the size of the instance.
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Definition 16 An approximation schemeA is a fully polynomial-time approximation scheme
(FPTAS) when the runtime of A is polynomial in the size of the instance and in 1/ε.

Assuming that Opt(I) is polynomially bounded by the instance size and the magnitudes of
the numbers then (i) if there exists a PTAS for problem P , then there exists also a pseudo-
polynomial algorithm for it, and (ii) if P is stronglyNP-complete it cannot have an FPTAS
unless P = NP . If for a minimization problem P already the decision variant “Is there a
solution with value ≤ k?” is NP-complete, then there exists no polynomial approximation
algorithm with a performance guarantee smaller than 1 + 1/k, hence there exists no PTAS.
Note that unfortunately for most non-trivial metaheuristics no practically useful performance
guarantee can be derived.

2.4.2 Construction Heuristics

Construction heuristics iteratively build a solution from scratch. Although we are not aware
of a taxonomy of such methods, probably because they are mostly designed ad-hoc, we
mention some concepts which often occur. During construction they either add still miss-
ing solution elements one after another in some way “unconnected” elements are merged.
Usually they rely on some greedy criterion to select the next element or move, e.g. near-
est neighbor or cheapest insertion costs. Though also randomization might be involved to
be able to generate more than one solution, which, if selecting the best solution out of the
generated, might lead to a more robust performance. Also one could always select the next
element at random and insert it in a greedy way again, or probably create a solution purely
at random. The solutions produced are not necessarily feasible, which might sometimes be
even intended, or simply required due to facing complicating constraints. As the obtained
solution quality is usually quite limited (in case a feasible solution can be derived at all) it is
common to apply a subsequent improvement method; in each of the following chapters we
will encounter construction heuristics for this use case. The GRASP metaheuristic extends a
randomized solution construction via guiding the construction process, see Section 2.4.6.

2.4.3 Local Search

Algorithm 1: Basic Local Search
Input: starting solution s
Result: possibly improved solution s after local search
repeat1

select s′ ∈ N (s)2

if f(s′) < f(s) then3

s = s′4

until termination condition5
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Local search, depicted in Algorithm 1, belongs to the class of improvement heuristics which
are applied on a solution at hand (feasible or not). It usually performs rather small local
changes (moves), and further only accepts improving solutions. Therefore local search de-
pends on the neighborhood structure N , how it is processed (select s′ ∈ N (s)) and a given
starting solution s. Regarding the processing of N (s) and accepting a new solution, the
most common variants are: (1) best improvement scans the whole neighborhood and selects
the local optimum, (2) first improvement scans the neighborhood in a predefined order and
takes the first solution s′ with f(s′) < f(s) and (3) random improvement selects a solution
s′ ∈ N (s) at random and accepts it if f(s′) < f(s).
The termination condition(s) might be based on a duration limit (either time or overall it-
erations), on how many iterations have passed without an improvement, or whether a local
optimum has been reached. Such a basic local search is usually easy to implement and quite
fast, but a major drawback is the inability to overcome local optima. Nevertheless, for almost
all more sophisticated improvement methods local search is usually the backbone.

2.4.4 Variable Neighborhood Search

Variable neighborhood search (VNS) [103], introduced in [141] by Mladenović and Hansen,
is built around the concept to utilize several neighborhood structures for a given problem and
switch between them in a systematic way. It further relies on the following observations:

• A local optimum with respect to one neighborhood structure is not necessarily a local
optimum to another one.

• A global optimum is a local optimum with respect to all possible neighborhood struc-
tures.

• For many problems, local optima with respect to different neighborhood structures are
relatively close to each other.

These facts can be exploited in a deterministic and/or stochastic way. An approach realizing
a deterministic usage is called variable neighborhood descent (VND), shown in Algorithm 2.
VND basically extends simple local search via using multiple neighborhood structures, typ-
ically ordered according to increasing size or evaluation cost, but also some sort of adap-
tive ordering can be used [110]. Usually the best neighbor solution is selected for a given
neighborhood, i.e. applying best improvement. If no improving solution is found within one
neighborhood, the next neighborhood is considered; else the search is re-centered at the new
incumbent and restarts with the first neighborhood structure. Naturally, VND terminates (at
the latest) when all neighborhood structures have been considered.
While VND utilizes multiple neighborhoods for an improved intensification, VNS is doing
so in an analogue way for diversification; depicted in Algorithm 3. This is accomplished by
applying shaking, i.e. random moves (“jumps”) in systematically increasing neighborhoods,
yet even for the largest neighborhoods VNS is not meant to turn to a multi-start heuristic.
Depending on the local search component (see line 5 of Algorithm 3) several flavors of VNS
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Algorithm 2: Variable Neighborhood Descent (s)
Input: initial solution s; neighborhoods N1,N2, . . . ,Nlmax

Output: (probably) improved solution s

l← 11

repeat2

s′ ← arg mins′′∈Nl(s) f(s′′) // find best neighbor in Nl(s)3

if f(s′) better than f(s) then4

s← s′5

l← 16

else7

l← l + 18

until l = lmax9

return s10

Algorithm 3: Variable Neighborhood Search (s)
Input: initial solution s; neighborhoods N1,N2, . . . ,Nkmax

Output: (probably) improved solution s

repeat1

k ← 12

repeat3

randomly select s′ ∈ Nk(s) // shaking4

probably apply some local search on s′ ∈ Nl(s)5

if f(s′) better than f(s) then6

s← s′7

k ← 18

else9

k ← k + 110

until k = kmax11

until termination criterion12

return s13

exist: if no local improvement is applied at all, hence only relying on shaking and thus
stochasticity, it is denoted as reduced VNS, if some best or first improvement based (simple)
local search is applied, it is denoted as basic VNS, and finally, if VND is applied inside VNS
(probably using different neighborhood structures), it is denoted as general VNS.
Despite reduced VNS, one has to ensure that the solution obtained via shaking is not imme-
diately reverted to the initial solution due to the local search component. The most common
criterion to choose the order of the neighborhood structures is the size of the correspond-
ing neighborhoods, but as for VND there might also be applied a non-static order as well.
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Algorithm 4: Simulated Annealing
Input: initial solution s; cooling scheme
Output: (probably) improved solution s

k ← 01

Tk ← initial temperature value2

repeat3

randomly select s′ ∈ N (s)4

if f(s′) better than f(s) then5

s← s′6

else if accept (s′,s,Tk) then7

s← s′8

k ← k + 19

cooling (Tk,k)10

until some termination criterion is met11

return s12

For information on other variants, such as the skewed VNS or the variable neighborhood
decomposition search, we refer again to [103]. We can conclude that VNS requires few to
none parameters in general, making it easy to deploy with respect to this. The challenge,
of course, is to derive adequate neighborhood structures, and decide on their order. Yet this
concept allows on the one hand to assess the performance of the crucial parts, the neighbor-
hood structures, in a straightforward way and on the other hand a fairly simple extension just
by adding additional neighborhood structures.
As it turns out, VNS is the most prominent metaheuristic throughout this work, applying it
to each problem tackled in the subsequent chapters. We will see that often well-designed,
problem specific neighborhood structures give rise to an excellent performance.

2.4.5 Simulated Annealing

Simulated annealing (SA) is commonly referred to as the first heuristic that conceptually
qualified as a metaheuristic, since it was the first with an explicit strategy to escape from
local optima. The key feature is to accept with a certain probability also worse solutions
than the current one, i.e. allowing uphill or hill-climbing moves. This idea is inspired by
the annealing process of metal and glass, which assume a low energy configuration when
first heated up and then cooled down sufficiently slowly, making SA a nature-inspired meta-
heuristic. An up-to-date survey is given in [151], initial works are presented by Kirkpatrick
et al. [123], and, usually not mentioned, also by Černý [225]. We discuss relevant parts of
SA on the basis of Algorithm 4, where we assume an already given initial solution, as the
construction process is not influenced by SA. First an initial temperature T0 is set, choosing
a value such that the probability for an uphill move is rather high. Then in each iteration a
neighboring solution s′ of s is usually selected at random. Note that SA does not impose
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any restrictions on this neighborhood at all, hence also multiple neighborhoods are possi-
ble. If s′ improves upon s it simply replaces it. In contrast, if s′ is an inferior solution then
most commonly the Metropolis criterion [138] is applied: s′ is accepted and replaces s with
probability e−|f(s′)−f(s)|/Tk based on the difference of objective values and the current tem-
perature. To implement SA also a cooling (or annealing) schedule has to be defined in order
to decrease the temperature in a systematic way; they can be static or adaptive. Common
static schedules are the geometric schedule, i.e. Tnew = Told ·α, α < 1, or a linear schedule,
i.e. Tnew = Told − β, β > 0. Usually several iterations are performed for a temperature
level, hence in Algorithm 4 we additionally used k as a parameter to the cooling method,
e.g. always applying cooling after a fixed amount of iterations. Beside the usual termination
criteria as time or iterations, SA might be halted when a certain temperature level is reached.
A possibility to continue/reapply the search without performing a complete restart is to apply
a so-called reheating, where the temperature is raised to a higher level again. SA is rather
simple to implement in general, and therefore one of the most widely used metaheuristics,
but the tuning of its parameters, especially the cooling schedule, might be difficult. To al-
leviate this to some extent also adaptive schemes were proposed (for obtaining the initial
temperature as well), leading rather to a “meta-tuning”.
Although in our work we never apply SA on its own, it is hybridized with VNS to exploit its
benefits in Chapters 4, 5, and 6.

2.4.6 Greedy Randomized Adaptive Search Procedure

The greedy randomized adaptive search procedure (GRASP) [76, 192] is a multi-start meta-
heuristic where each iteration consists basically of two phases: A construction phase building
a feasible solution, which is then refined in a subsequent local search phase, e.g. by apply-
ing VND mentioned in the previous section. In case the solution built in the first phase is
not feasible a repair procedure might be applied, though this will not be considered in the
following. The best feasible solution obtained during the execution is returned. Algorithm 5
gives an overview on GRASP.
The key principle of GRASP is to systematically randomize a greedy solution construction
procedure (lines 4 to 9) in order to generate good candidates for the subsequent local im-
provement. This is achieved by determining admissible solution elements and thus deriving
a candidate list (CL). A promising subset of these viable candidates is selected for potential
inclusion in the next step, yielding the restricted candidate list (RCL). Finally an element
is chosen from the RCL at random and the partial solution is extended in an appropriate
way. Obviously the behavior of the method can be adjusted via the process of building RCL
from CL. In general, the criterion to decide on are the incremental costs c(e) of inserting an
element e to the solution under construction. A first option is then to simply consider the k
best (cheapest) elements of CL, realizing a cardinality based selection. Alternatively a value
based selection is possible by setting a threshold parameter α ∈ [0, 1]: let cmin and cmax

be the minimal and maximal incremental costs within CL, respectively, then all elements e
satisfying c(e) ≤ cmin +α ·(cmax−cmin) are added to RCL. The two extremes are to always
select the best element in a pure greedy way (α = 0), and selecting any viable element in
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Algorithm 5: Greedy Randomized Adaptive Search Procedure
Input: instance data necessary to construct solutions
Output: best found feasible solution s∗

s∗ ← ∅1

repeat2

s← ∅3

while s is not a complete solution do4

build CL // candidate list5

derive RCL from CL // restricted candidate list6

select an element e from RCL at random7

add e to solution s8

apply some local search on s9

if f(s) better than f(s∗) then10

s∗ ← s11

until some termination criterion is met12

return s∗13

a complete random way (α = 1). Although the average solution quality decreases with an
increasing α, the variance of the generated solutions gets larger and usually the best solution
obtained after local improvement is likely to improve, too. A good balance between quality
and diversity of the constructed solutions is therefore crucial to yield an overall good perfor-
mance, requiring to (fine-)tune the parameter α. However, relying on a single value might not
be the best choice anyway, which is why schemes have been proposed to alternate α, either
via choosing it at random according to some probability distribution or realizing a self-tuning
via applying a reactive GRASP. Several other extensions and improvements were proposed,
but since we do not make use of them in our work the reader is again referred to [192].
A GRASP will be applied to tackle a subproblem in Chapter 4.

2.4.7 Evolutionary Algorithms

Evolutionary Algorithms (EAs) [11, 70] are a class of population-based metaheuristics, where
in contrast to the previously described metaheuristics a whole set of solutions (the popula-
tion) is dealt with at the same time. The idea is to gain such an adaptive behavior like
evolutionary processes occurring in nature by modeling them on the computer in a strongly
simplified way, effectively realizing some sort of in silico Darwinian principles of natural
selection. Thus the goal of the artificial evolution is to adapt to the “environment”, repre-
sented by a specific problem, and thereby evolve good solutions. Note that in the context of
EAs single solutions are often denoted as individuals or chromosomes, variables as genes,
and variable values as alleles. The objective function value is further replaced by the fitness
of an individual. Although this fitness often directly corresponds to the objective function
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value of the individual, also a cost scaling or the diversity of the individual might be incor-
porated. What also sets EAs apart from most other metaheuristics is that one distinguishes
between the representation, i.e. the genetic encoding (called the genotype), and the actual
solution (called the phenotype). Hence in case of an indirect representation (e.g. a string of
bits, integers, or real-values) the genotype is decoded to yield the phenotype. Alternatively
one can apply a direct representation, where no encoding takes place. For efficient EAs, it
is necessary either to design problem-specific representations and to use standard operators
for recombination and mutation (described later), or to develop problem-specific operators
and to use direct representations; see the book by Rothlauf [202] for more about this issue.
One further aims at obtaining a high locality, i.e. small changes in the genotype (tend to)
correspond to small changes in the phenotype and vice versa.
In the following we will specifically concentrate on genetic algorithms (GAs) [106] which
are mainly applied to solve discrete problems. The main principles, however, are common to
all EAs. The general outline of a GA is depicted in Algorithm 6. At the beginning an initial
population P is generated, usually with one or more randomized constructive heuristics, to
yield a diversified set of individuals, followed by evaluating P , i.e. determining the fitness
of the individuals. The successive steps, comprising one generation, are repeated until some
termination criterion is met (e.g. a limit on overall generations or on CPU-time).
Selection. From the current population P a subset Qs of individuals (the parents) is selected
as candidates for the subsequent recombination. Thereby individuals that are more desirable,
i.e. those having a higher fitness, are given more opportunity to “breed”. A scheme where the
probability for selection is directly proportional to the fitness is the roulette-wheel method.
As potentially several problems arise when applying such a direct scheme (e.g. negative
fitness values, the scale on which the fitness is measured, or decreasing fitness values when
doing minimization), often some sort of scaling is necessary, or a different scheme is used.
Two common alternative schemes are rank selection and tournament selection. The latter
will be used at some points in our work, where the selection for a tournament of size k works
as follows: select k individuals out of P at random and take the fittest of them. In general,
the ratio of the probability of selecting the fittest individual to the probability of selecting
an average individual is termed the selection pressure. The implicit intensification of a GA’s
search can thus be adjusted by this pressure, where finding the right setting is crucial.
Recombination or Crossover. During recombination, which is considered the primary oper-
ator, the parent individuals Qs are recombined to produce the new individuals (the offspring)
Qr. The offspring should be primarily made up of attributes (genes) of its parents, thus re-
alizing a high degree of heritability. Although the case of having two parent individuals is
most common also more are possible. The recombination operator highly depends on the
considered problem and especially the representation needs to be taken into account. If it
is inevitable or perhaps desired to generate infeasible offspring, a suitable repair operator
might be applied.
Mutation. Next, the offspring Qr is subject to a mutate operator, which is considered the
secondary operator. It corresponds to some extent to natural mutation, and is in practice
similar to a random move of a neighborhood based search. Typically with a rather small
probability each individual is randomly changed to a small extent. Mutation introduces
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Algorithm 6: Evolutionary Algorithm

P ← generate initial population1

Evaluate(P)2

repeat3

Qs ← Select(P)4

Qr ← Recombine(Qs)5

Qm ← Mutate(Qr)6

Evaluate(Qm)7

P ← Replace(P,Qm)8

until some termination criterion is met9

either new or already lost information into the population and is therefore responsible to
keep a certain amount of diversity, as GAs tend to prematurely converge otherwise. This
step results in the final offspring Qm.
Replacement. After evaluating Qm parts or even all of the old population gets replaced
by the new offspring. If the new population consists only of individuals drawn from the
offspring it is called generational replacement. When using overlapping populations then
individuals can “survive” a generation, i.e. being transferred from the old to the new popu-
lation. This can be taken even further to so-called steady-state or incremental strategies, in
which usually only one offspring is created and integrated in the population, thereby replac-
ing another ((e.g. the worst) chromosome. An elitism strategy is applied if the best solution
always survives. The replacement process generally resembles the concept of the “survival
of the fittest”.
Assuming a “well-diversified” population GAs have the advantage of conducting a rather
broad search and are thus generally less vulnerable to local optima. Note that in the standard
GA no operator or the like is responsible for systematically optimizing single individuals.
A remedy to this are hybrid GAs or memetic algorithms [145]. They are a class of GAs ex-
tended by means to (mostly) locally improve single individuals, either at the time of creation,
before and/or after mutation.
GAs and/or MAs will be utilized in Chapter 3 and 4.

2.5 Hybrid Solution Approaches

Looking at the assets and drawbacks of the various exact and heuristic techniques, the ap-
proaches can to some degree be seen as complementary, and therefore it appears natural to
either combine concepts from the different streams or to combine different methods within
a common stream. In case the resulting method is of heuristic nature the potential benefit
of such a synergy is an increase in solution quality and/or obtaining the same quality in less
time (usually corresponding to less computational effort, letting parallel approaches aside).
Here hybridization offers means for the “eternal struggle” of diversification (exploration)
versus intensification (exploitation). Contrary, if the resulting method is exact might allow
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to “push forward” the limit in the size of instances that can be solved to proven optimality
within a reasonable time.
Although this idea is not new, such hybrid optimization techniques have become especially
popular over the last years. Hundreds of publications reporting on such approaches and dedi-
cated scientific events such as the Workshops on Hybrid Metaheuristics since 2004, the Work-
shops on Matheuristics since 2006, and the conferences on Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR)
since 1999, as well as dedicated tracks and sessions on wider scope conferences, document
the popularity, success, and importance of this specific line of research.
For the majority of more prominent problems some kind of hybrid approach belongs to the
currently best known (leading) methods, entirely “pure” methods are seldom as success-
ful. This is also because there occurred a shift from algorithm oriented to problem oriented
research and it is (in a positive sense) inevitable to use an appropriate “mix” of solution
concepts. In fact, devising such hybrids can be considered a quite creative task in general.
Although such hybrid approaches might basically consist of any possible combination, most
common methods deal with the “integration of a metaheuristic related concept with some
other techniques (possibly another metaheuristic)” [23] and are termed hybrid metaheuris-
tics (or metaheuristic hybrids). For recent surveys see e.g. the book by Blum et al. [21] and
the article by Raidl et al. [190], taxonomies are proposed in [71, 188]. In the latter work the
main criteria to classify hybridizations are: (i) which kind of algorithms are involved, (ii)
the level of hybridization (high or low level), (iii) the order of execution (sequential, inter-
twined, or parallel), and (iv) the control strategy (integrative or collaborative). While criteria
(i) and (iii) should need no further explanation, we will describe (ii), the level (or strength) in
more detail: High-level combinations generally retain the individual identities of the original
algorithms and cooperate over a relatively well defined interface. There is no direct, strong
relationship of the internal workings of the algorithms, hence obtaining a weak coupling. In
contrast, algorithms in low-level combinations strongly depend on each other as individual
components or functions are exchanged, resulting in a strong coupling. Finally, the meaning
of (iv) will be clarified in the following.
A special yet prominent class are hybrid approaches where metaheuristic and exact algo-
rithms are combined. Puchinger and Raidl [183] give a useful classification scheme and
many examples for such hybrids, distinguishing between the following two main categories
(defining the control strategy): collaborative (cooperative) combination, where the two
methods exchange information, but are not part of each other, thereby running in sequential
order or being executed in a parallel or intertwined way, and integrative (coercive) combi-
nation, with a distinguished master and at least one integrated slave algorithm, where exact
algorithms are incorporated in (i.e. are subordinates of) metaheuristics and vice versa. In a
subsequent work [189] the same authors especially focus on hybrids between metaheuristics
and (integer) linear programming techniques. More recently such hybrids, exploiting in a
suitable way the mathematical model of the problem, are often called matheuristics [133],
or due to their nature model-based metaheuristics.
For a comprehensive collection of articles mainly concerned with hybridizations involv-
ing constraint programming we refer to the book “Hybrid Optimization: The Ten Years of
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CPAIOR” edited by Milano and van Hentenryck [140].
Also worth mentioning is the book by Hooker [108], which deals with an integrated solving
approach combining prominent concepts, primarily focusing on the unification of mathemat-
ical programming and constraint programming.
In the remainder of this section we list several use cases of hybridizations as in [190], also
giving successful examples for each. Although a grouping according to some classification
scheme would have been possible too, we deem the chosen approach more appropriate to
highlight the possibilities and benefits.

2.5.1 Finding Initial or Improved Solutions

Perhaps the most often occurring hybridization among metaheuristics is to use some im-
provement method inside another, different method. A scenario could be a method that con-
structs good initial solutions which are subsequently improved by another one, e.g. applying
GRASP with an embedded VND (although already pure GRASP is an example for this, as is
the general VNS). Another fruitful combination is to combine a population-based approach
with an improvement method, such that both, the rather explorative nature of the former and
the strong intensification capabilities of the latter, are exploited. We already mentioned the
class of memetic algorithms [144, 145] before, but e.g. also ant colony optimization [64] is
usually enhanced by an improvement method to yield better solutions. We apply such kind of
hybridization in Chapter 3 via realizing several combinations of an EA/MA with VND/VNS.
Note that here the methods involved retain their characteristics and are thus a collaborative
combination.
Remember that branch-and-bound relies on tight primal bounds that are most commonly ob-
tained from feasible solutions. Obviously, heuristics and metaheuristics can be applied to the
original problem before starting the B&B process, providing initial solutions, as well as be
repeatedly applied throughout the whole tree search, providing possibly improved solutions.
This results in providing feasible solutions at an early stage of the optimization process and
the possibility to essentially speed up the overall optimization.
Note that beside such “manual” approaches current (commercial) generic MIP solvers also
include very strong heuristics for finding initial feasible solutions, see e.g. the feasibility
pump [77].

2.5.2 Multi-Stage Approaches

In multi-stage approaches the optimization process is divided into several stages or levels,
which are usually iteratively tackled, possibly applying different methods. For some prob-
lems such an approach might be natural to apply, due to practical reasons (e.g. size of the
problem), however, it might simply be inevitable. An example is a preprocessing step, where
the problem instance is reduced, usually removing parts of it that are guaranteed not to be
included in the best solution or any feasible solution. Another strategy is multilevel refine-
ment [231], applying a (meta-)heuristic on several levels of the same problem. For this the
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problem is initially coarsened and then iteratively solved and refined again. For more de-
tails as well as an application of it we refer to Chapter 5. Another possibility is to apply
variable fixing, where e.g. some heuristic criterion decides which variables to fix to a certain
value. The core concept applied to knapsack problems is an example for this, see the work
by Puchinger and Raidl [186].

2.5.3 Decoder-Based Approaches

For the previously presented GAs it is often the case that actual solutions are represented in
an indirect or incomplete way, applying a decoder to derive the phenotype from the genotype.
If this transformation is not straightforward but involves a non-trivial optimization problem
itself, then the overall performance is obviously strongly dependent on the quality and the
speed of the decoder. Hu and Raidl [111] tackle the generalized traveling salesman prob-
lem with a VNS and use two different representations for their candidate solutions. Since
both do not encode a complete solution they apply dynamic programming as well as the
Lin-Kernighan heuristic as intelligent decoder. In [20] Blum and Blesa use dynamic pro-
gramming to derive the best k-cardinality trees out of l-cardinality trees, l > k, built by an
ant colony optimization algorithm.

2.5.4 Solution Merging

In solution merging new, possibly better solutions are created from attributes appearing in
two or more promising heuristic solutions. Such an approach is based on the assumption
that high-quality solutions often share many attributes. The recombination operator used
by genetic algorithms can be seen as a classical solution merging approach. However, the
offspring is usually derived by simple random inheritance of parental attributes and it is
not tried to optimize this offspring, which therefore often is worse than its parents. The
improvement is due to repeating these computationally cheap operations many times.
Alternatively, one can put more effort into the derivation of such offspring. A sometimes
effective technique is path relinking (PR) [96] which is often applied together with scatter
search [193]. PR traces a path in the search space from one parent to a second by repeatedly
exchanging a single attribute only (or more generally by performing a series of moves in a
simple neighborhood structure). The overall best solution lying on this path is finally taken
as offspring.
This idea can further be extended by considering not just solutions on a single path between
two parents, but the whole subspace of solutions induced by the joined attributes appearing
in a set of two or more input solutions. An optimal merging operation returns a best solution
from this subspace, i.e. it identifies a best possible combination of the parents’ attributes.
Depending on the underlying problem, identifying such an optimal offspring is often a hard
optimization problem on its own, but due to the usually quite limited number of different
attributes appearing in the parents, it can often be solved in reasonable time in practice.
For mixed integer programming, Rothberg [201] suggests a tight integration of an EA includ-
ing optimal merging in a branch-and-cut based MIP solver. Experimental results indicate that
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this hybrid often is able to find significantly better solutions than other heuristic methods for
several very difficult MIPs. Similarly, the benefits of embedding branch-and-bound in EAs
is shown by Cotta and Troya [49]. This concept is by far not limited to EAs only, e.g. in
Section 4.9.2 we apply it to solutions of several VNS instances which are merged by solving
an ILP.

2.5.5 Strategic Guidance of a Method by Another

A successful and hence often reported scheme for hybridization is to apply some means to
guide the search process of an optimization method. This can be realized either via having
an (independent) algorithm providing the information used for guidance, being collaborative,
or the functionality of a method is directly enhanced with algorithmic components/concepts
originating from other techniques, possibly from other streams, being integrative in nature.
This definition is rather broad, as in principle, any metaheuristic that provides incumbent
solutions to a B&B-based approach might already be considered to fall into this class of ap-
proaches, as often some sort of indirect guidance occurs. Often the method used to gather
the information solves a relaxation of the problem. This might be the LP relaxation, which
is solved in [185] for several neighborhoods of a VND embedded in a VNS to determine a
favorable ordering, this concept is denoted as relaxation guided VNS. In Section 4.9.3 we
derive a combination of a column generation approach and an EA where the latter exploits
information gathered by the former. Alternatively a Lagrangian relaxation or decomposition
(LD) might be solved and subsequently exploit the information. In [168] Pirkwieser et al.
apply such a concept to better solve the knapsack constrained maximum spanning tree prob-
lem. It is possible to shrink the graph by only considering edges also appearing in heuristic
solutions of LD, Lagrangian dual variables are exploited by using final reduced costs for
biasing the selection of edges in the EA’s operators, and the best solution obtained from LD
is provided to the EA as seed in the initial population.
Intertwined and parallel combinations allow for mutual guidance, i.e., all participating meth-
ods may exploit information from each other. Talukdar et al. [219] describe a very general
agent-based model for such systems, called asynchronous teams (A-Teams). This problem
solving architecture consists of a collection of agents and memories connected in a strongly
cyclic directed way, and each optimization agent works on the target problem, a relaxation,
or a subclass of the original problem. Denzinger and Offerman [59] describe a similar frame-
work called TECHS (TEams for Cooperative Heterogeneous Search). It consists of teams
of one or more agents using the same search paradigm. Communication between the agents
is controlled by so-called send- and receive-referees. Gallardo, Cotta, and Fernández [86]
present a EA/B&B hybrid evaluated on the multidimensional knapsack problem. The algo-
rithms are executed in an intertwined way and are cooperating by exchanging information.
The EA provides bounds for B&B, while B&B provides best and partial solutions to the EA.
In [87], the same authors described a refined variant of their approach, which uses beam
search as truncated B&B.
Next, we will give some examples realizing an integrated approach. Blum [19] hybridizes the
solution construction mechanism of an ACO with a heuristic derivative of breadth-first B&B,
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beam search, which restricts the search to a certain number of nodes based on bounding
information instead of implicitly considering all nodes. Some loose and tight couplings of
an ACO and CP are investigated by Meyer [139]. Especially a tight coupling where CP helps
the ACO to handle (hard) constraints and results in a strengthened construction phase in the
ACO appeared promising. Finally, in [214] Solnon also proposes to combine the expressive
power of CP languages and the solving power of ACO.
In [105] the concepts of VNS and SA are “merged” into a single method, i.e. basically build-
ing upon the systematic neighborhood change, but with a certain possibility also accepting
worse solutions like SA. Hence the ability of VNS to escape local optima is improved. This
promising hybrid is also applied by us in Chapters 4–6.
Several extensions of generic branch-and-cut based MIP solvers exist that, conform to the
concept of integration, do not directly make use of some heuristic, but are derived follow-
ing the spirit of them in order to produce good heuristic solutions early during the exact
tree search. An early representative is local branching by Fischetti and Lodi [78] introduces
the spirit of classical k-opt local search in B&B by modifying the branching rule and the
strategy for choosing the next tree node to process: based on a given incumbent solution a
neighborhood is defined where at most k of some variables are allowed to change relative to
this solution (adding a second node with the inverse constraint), this sub-MIP is then solved
next. In case an improved solution is found the process is repeated using this new solution, k
is increased up to some fixed value and this larger neighborhood based on the initial solution
is searched otherwise. Danna et al. [51] suggest a different approach called relaxation in-
duced neighborhood search (RINS) for exploring the neighborhoods of incumbent solutions
more intensively. The central idea is to occasionally devise a sub-MIP at a node of the B&B
tree that corresponds to a special neighborhood of an incumbent solution: Variables having
the same values in the incumbent and in the current solution of the LP relaxation are fixed,
and an objective cutoff is set based on the objective value of the incumbent. A sub-MIP is
solved on the remaining variables with a given time limit. If a better solution can be found it
is passed to the global MIP-search, which is resumed after the sub-MIP’s termination.

2.5.6 Solving Large Neighborhoods or Subproblems

The general idea of very large(-scale) neighborhood search (VLNS) [5] is to apply a more
sophisticated procedure than naive enumeration to search for a best (or better) solution within
a larger but restricted part of the whole search space induced by an incumbent solution. Var-
ious techniques especially including (mixed) integer programming methods, dynamic pro-
gramming (e.g. Dynasearch [34]), and constraint programming have been successfully used
in VLNS as embedded optimization procedures. Hu et al. [109] fully explore some neighbor-
hoods of a VND via dynamic programming and ILP techniques for the generalized minimum
spanning tree problem. In this vein in [174] Prandtstetter and Raidl several different MIP-
based neighborhoods are searched within a VNS framework for a car sequencing problem.
Similar ideas, also utilizing ILP techniques, are applied in Section 4.9 and 6.4, though sev-
eral of our approaches are somewhat a mixture of large neighborhood search and optimal
solution merging.

32



2.5. Hybrid Solution Approaches

As already pointed out in Section 2.3.1, in cut and column generation based integer program-
ming methods the dynamic separation of cutting planes and the pricing of columns can be
done by means of (meta-)heuristics in order to speed up the optimization process, especially
when facing difficult subproblems. An example is the branch-and-cut algorithm by Gruber
and Raidl [101] for the bounded diameter minimum spanning tree problem. The diameter
bound is ensured via an exponentially large number of so-called jump inequalities. A se-
quence of methods is used for their separation, starting from a greedy construction technique
over a local search procedure to a tabu search algorithm. In Section 4.8 we apply a heuris-
tic multi-start method, basically similar to a VND, to find violated 2-path cuts for a routing
problem in a B&C&P approach.
Puchinger and Raidl [184] describe an exact branch-and-price algorithm for the three-stage
two-dimensional bin packing problem. The pricing problem occurring in this application is
a three-stage two-dimensional knapsack packing problem. Fast column generation is per-
formed by applying the following sequence: a greedy heuristic, an evolutionary algorithm,
solving a restricted, simpler IP-model of the pricing problem using a MIP solver within a cer-
tain time-limit, and finally solving a complete IP-model by the MIP solver. The algorithms
coming later in this sequence are only executed if the previous ones did not find columns
with negative reduced costs. In Section 4.7.2 we also apply several methods of increasing
computational effort to solve anNP-hard pricing problem. Sometimes also CP is applied to
generate colums [102].
Speaking of which, in CP a subproblem is to filter the inconsistent values of variable do-
mains. Richter et al. [195] propose the SomeDifferent constraint and heuristic filtering
algorithms, whereas in [85] Galinier et al. present a tabu search to handle this filtering.
Finally we note that sometimes a naturally occurring subproblem might be solved by means
of an exact technique to improve the performance of the main heuristic approach. For exam-
ple Fuellerer et al. [84] solve a two-dimensional loading problem via B&B for a combined
vehicle routing and loading problem. Similar to generating columns as before, the exact
method is only applied in case some heuristics failed to find a solution. We apply a simi-
lar scheme for a routing problem involving several compartments to be filled in Chapter 7,
whereas we finally rely on CP.
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CONSENSUS TREE PROBLEM

3.1 Introduction

The consensus tree problem (CTP) has been first motivated and described in [3] alongside
with a solution method. Although it most frequently appears in the domain of phyloge-
netics [107], it has potential applications in other clustering domains as well. But to start
with, the reason for dealing with this interesting problem was the joint project entitled Hy-
bridizing Branch-and-Bound with Metaheuristics for Solving Tree-Structured Combinatorial
Optimization Problems supported by the Austrian exchange service (ÖAD) within the WTZ
program (scientific and technological cooperation), where cooperations with partners from
Spain were facilitated in the call “Acciones Integradas 2006–2007”. Our partners were Car-
los Cotta, Antonio José Fernández and Jose Enrique Gallardo from the University of Malaga.
Among others one of the main aspects of the project was to develop new methods to espe-
cially deal with the inference of phylogenetic trees. For this we agreed on a two phase
approach: our Spanish colleagues aimed at deriving high quality trees, and our task was to
consolidate these trees into one final output tree, hence solving the CTP.

In Section 3.2 we report on previous as well as related work. The tree similarity measures
utilized in our work are defined in Section 3.3. Meaningful tree neighborhood structures for
local search based approaches are presented in Section 3.4. They are applied in a variable
neighborhood search (VNS) with an embedded variable neighborhood descent (VND) as
described in Section 3.7. The neighborhoods are further utilized in Section 3.6 to extend an
existing evolutionary algorithm (EA) by local search to a memetic algorithm (MA). Finally,
in Section 3.8 we consider sequential and intertwined combinations of the EA (MA) and
VNS (VND). Experimental results on real and artificially generated CTP instances are given
in Section 3.11, followed by concluding remarks in Section 3.12.
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Figure 3.1: Exemplary rooted and unrooted evolutionary trees.

Parts of this work were presented at the Austrian Workshop on Metaheuristics 5 in 2007
(AWM 5 ’07), at the 2nd International Conference on Bioinformatics Research and Develop-
ment in 2008 (BIRD’08) [169] (also see our poster in the appendix in Section A.1), and at the
10th Annual Conference on Genetic and Evolutionary Computation in 2008 (GECCO’08) [157].

3.1.1 Phylogenetics

To motivate the CTP we give a short and by no means complete survey on phylogenetic tree
reconstruction. A phylogenetic tree is composed of nodes and branches (arcs) and models
the evolutionary relationship between a set L of related objects called taxa.
These taxa are the labeled leaf nodes or operational taxonomic units of the tree, whereas
unlabeled inner nodes represent probably extinct ancestors, also denoted as hypothetical tax-
onomic units. Exemplary evolutionary trees are depicted in Figure 3.1.
In the course of the project we decided to restrict our work on rooted unweighted binary trees,
i.e. there exists a single distinguished root node denoting the common ancestor of all taxa,
the relations represented by the tree are not weighted by any means (hence not representing
a timeline), and each inner node always has exactly two direct descendants.
Next, we will introduce some definitions which will be of use in this chapter; some are taken
from [30].

Definition 3 A rooted (phylogenetic) tree is a rooted tree which has every leaf identified with
a unique taxon and every node that is not a leaf (i.e. inner node) has at least two children.

Definition 4 A rooted tree is binary if every inner node has exactly two children.
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3.1. Introduction

Definition 5 A group is a subset of the set of taxa.

Definition 6 A cluster of a tree T is a group which contains all the descendants of its most
recent common ancestor.

Definition 7 Two clustersA andB are compatible iffA is contained inB, orB is contained
in A, or A and B are disjoint.

Definition 8 A cluster is compatible with a tree T if it is compatible with every cluster of T .

Definition 9 A rooted tree T refines another rooted tree T ′ on the same set of taxa if every
cluster of T ′ is a cluster of T .

Definition 10 A rooted triple ab|c denotes a grouping of a and b relative to c. ab|c is said
to be a rooted triple of tree T if the least common ancestor of a and b is a descendant of the
least common ancestor of a, b and c. The set of all rooted triples of T is denoted as r(T ).

Definition 11 A set of rooted triples R is compatible if there exists a rooted tree T such that
R ⊆ r(T ).

The phylogeny problem is to infer the intermediate ancestors and branches, thus to derive
the evolutionary relationships, from given species data. The latter is commonly given as
biomolecular sequences, i.e. DNA, RNA or amino acid sequences. Often morphological
features are used in addition, too. For inferring the tree a multitude of conceptually dif-
ferent inference methods exists, each having individual advantages and drawbacks [122].
On the one hand are approaches directly dealing with the sequences, e.g. maximum parsi-
mony, where the “cheapest” tree is sought via minimizing the Hamming distance between
connected sequences, and maximum likelihood, which uses a stochastic model of evolution,
whereas on the other hand the sequences are used to obtain certain “distances” among the
taxa and these approaches subsequently work on the derived distance matrix, seeking for
a tree best resembling these distances. The distance based approaches can be regarded an
intermediate strategy between maximum parsimony and maximum likelihood.
Stated as optimization problems, the maximum parsimony approach resembles a Steiner
tree problem [81], and is thus NP-complete. Since maximum likelihood approaches were
recently shown to be connected to the former ones [196], the corresponding problem isNP-
complete, too. Unfortunately also distance based approaches, e.g. the least-squares-fit and
the f statistic belong to the class of NP-complete problems. Due to this it is quite common
to apply heuristics, often relying on rather simple hill-climbing algorithms. Nevertheless,
heuristically tackling distance based approaches is regarded to rather quickly yield reason-
able phylogenies.
The difficulty of finding the (near-)optimal tree becomes even more evident, when looking
at the possible number of trees for a given amount of species n. The number of possible
unrooted trees is given by

(2n− 5)!! =
(2n− 5)!

2n−3(n− 3)!
forn ≥ 3 ,
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3. CONSENSUS TREE PROBLEM

Table 3.1: The rapid growth of the amount of possible rooted trees.

|L| #rooted trees

2 1
4 15
6 945
8 135135
10 3.44 · 107

12 1.37 · 1010

14 7.90 · 1012

16 6.19 · 1015

18 6.33 · 1018

20 8.20 · 1021

whereas the rooted case allows even more freedom – because of placing the root node – and
therefore amounts to

(2n− 3)!! =
(2n− 3)!

2n−2(n− 2)!
forn ≥ 2 .

The extreme growth of the number of rooted trees, in which we are subsequently interested
in, is demonstrated in Table 3.1.
The mentioned inference methods are utilized to derive phylogenetic trees. Unfortunately,
it is likely that biologists end up with several different trees for one and the same taxa set L
due to

• having multiple data sets available,
• inferring with different methods, or
• repeated runs of the same non-deterministic method.

This is where the consensus tree comes into play, which will be detailed in the next section.
A long-term goal in phylogenetics is to successively build up a vast evolutionary tree (or
collections thereof), and eventually come as close as possible to the so-called tree of life. Two
examples where many people collaborate on this task is the Tree Of Life Web Project [221]
and Wikispecies [236].
Our journey into the domain of phylogenetics is finished with a quote of Charles Darwin of
1859 and his first drawing of an evolutionary tree shown in Figure 3.2.

"The affinities of all the beings of the same class have sometimes been rep-
resented by a great tree... As buds give rise by growth to fresh buds, and these
if vigorous, branch out and overtop on all sides many a feebler branch, so by
generation I believe it has been with the great Tree of Life, which fills with its
dead and broken branches the crust of the earth, and covers the surface with its
ever branching and beautiful ramifications."
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3.1. Introduction

Figure 3.2: Darwin’s first evolutionary tree in his “B” notebook on Transmutation of
Species, 1837.

3.1.2 Consensus Tree Problem

The starting point is the question on how to take advantage of several probably high-quality
but different and partly contradictory trees beside manually comparing and merging them. A
possible solution is to look for a single tree over L “best” representing the given collection
T . This non-trivial task is known as the consensus tree problem. Notably, one assumes
that independently derived trees are unlikely to have wrong or unreliable tree structures in
common.
On the one hand the meaning of “best” depends on the desired information to retain in the
consensus tree and on the other hand the possible consensus tree is literally restricted by the
degree of strictness of the applied method as well as the granularity of the tree metric used;
see Section 3.2 for more about this. Figure 3.3 shows a schematic representation of this
circumstance. Generally, a strict method and a coarse-grained metric rather lead to poorly
resolved trees with few inner nodes having high degrees, and a substantial portion of the
information contained in the input trees is lost. In contrast, we aim at deriving fully resolved
(thus, binary) high-quality consensus trees inheriting as much information as possible. Our
approaches are therefore based on maximizing rather specific fine-grained measures, the so-
called TreeRank score (and the contained UpDown distance) as well as the Weighted Triple
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Figure 3.3: Consensus tree depending on method and metric.

score. Note that the actual complexity of the CTP when applying these measures as opti-
mization criterion is not yet known.
Two related problems are the maximum subtree and consensus supertree problems, where
the final tree does not contain all taxa and the input trees have different taxa sets, respectively.

3.2 Previous and Related Work

Several consensus tree methods have already been proposed in the literature. The work of
Bryant [30] presents a good overview and comparison among the methods. Unfortunately,
most methods have the drawback of being relatively strict, e.g. restricting the consensus tree
to common substructures, and that the used tree metric is often coarse-grained, leading to
quite poorly resolved or less intuitive solution trees. However, it is to be noted that using
strict(er) methods can also be an advantage, since they are more cautious and thus implic-
itly reduce the chance of providing ungrounded information. In the following we will again
mainly focus on methods for rooted trees. Prominent examples of classical consensus meth-
ods are the strict, majority, and loose consensus methods operating on clusters. The strict
consensus method only retains clusters common to all input trees and the majority consen-
sus method those appearing in more than half of them. The latter method can be regarded
as a median method minimizing the number of non-common clusters, i.e. minimizing with
respect to the symmetric distance metric:

d(T, T ) = min
∑

T ′∈T
d(T, T ′) , (3.1)

with the symmetric difference distance d(T1, T2) denoting the number of clusters appear-
ing in one tree but not the other. Finally, the loose consensus tree contains exactly those
clusters that are compatible with every tree in the input collection. It thus refines the strict
consensus tree. Such state-of-the-art methods producing rather unresolved output trees can
be efficiently implemented in polynomial time. Further to mention is that the classical meth-
ods do not make use of any sophisticated search procedures and rely, if at all, on simple
greedy approaches: e.g. the greedy consensus tree method available in PHYLIP [75], which
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basically adds additional clusters to the majority consensus tree, considers these clusters in
decreasing order of frequency.

Phillips and Warnow [155] proposed the usage of the asymmetric median tree (AMT), which
is an extension of the median tree. They presented a polynomial time algorithm in case of
having two initial trees as well as showing the NP-hardness when dealing with more than
two trees. An approximation algorithm for the latter case yields trees which are at least as
informative (refined) as median trees or strict consensus trees.

So far all mentioned consensus methods operate on clusters. An obvious drawback of this
coarse metric is the case of having two trees sharing not a single cluster. A possible remedy
is to base the metric on a more fine-grained tree structure: rooted triples. Hence the set
of common rooted triples is often far more informative than those of common clusters. A
classical method utilizing the triples is the local consensus tree algorithm [30]. It is based
on the set R of triples appearing in each input tree, i.e. R = ∩T∈T r(T ), hence R being
compatible. The local consensus tree is then built with the supertree algorithm of Aho et
al. [4]. For the derived tree holds that R ⊆ r(T ). Another method is the R∗ (R star)
consensus tree, which complements the latter method. One determines the set Rmaj of triples
ab|c that appear more frequently in the input collection than their conflicting triples ac|b or
bc|a. A maximum refined rooted tree T can be obtained via using the strong cluster algorithm
of Berry and Bryant [15], such that r(T ) ⊆ Rmaj.

The maximum consensus tree from rooted triples (MCTT) problem is subject of the work
by Wu [240]. Having a set of triples the existence of an exact consensus tree as well as the
tree itself can efficiently be determined (again) by Aho et al.’s algorithm [4], where an exact
consensus tree satisfies all given triples. The author tackles the case when no such exact
consensus tree can be derived, hence instead resorting to satisfy as many given triples as
possible. This amounts to solving the MCTT, which is shown to be NP-hard by reduction
from the Feedback Arc Set problem. An exact algorithm based on dynamic programming
for smaller instances and a heuristic especially suitable for larger instances are presented.

A somewhat related problem appears when trying to obtain an unrooted tree from a set of
quartets, which is the analogue construct to rooted triples, but being defined on four taxa.
In [234] the authors for the first time present an integer linear programming model for the
problem, maximizing the overall confidence of a tree’s quartets.

Coming to the majority or median consensus tree again, its objective was to minimize its dif-
ference to the set of input trees utilizing the symmetric distance or partition metric (3.1). To
alleviate the drawbacks of its coarseness one could use other distance metrics as objectives,
too. Possible metrics would be the nearest neighbor interchange, subtree prune and regraft,
as well as tree bisection and reconnection, which are described in [8]. Unfortunately, their
applicability is hampered due to their either proven or assumed NP-hardness.

Finally, the first metaheuristic approaches, based on evolutionary algorithms, applied to the
consensus tree problem have been described by Cotta [45]. Therein the fine-grained TreeR-
ank measure was used for the first time as an optimization criterion, which runs in polynomial
time. More on this work is especially reported in Section 3.5.

While we are not aware of other metaheuristics to identify consensus trees, there already
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exists a lot of such approaches for phylogenetic inference: Several EAs similar to the afore-
mentioned are described in [47, 142]. In [48] an EA has been extended to a MA utilizing a
local search based on subtree rotations. A more general survey of evolutionary computation
in phylogenetics is given in [80]. Of further interest are applied metaheuristics apart from
EAs like a greedy randomized adaptive search procedure (GRASP) and a VNS with em-
bedded VND utilizing NNI, Step, and SPR neighborhood structures [9]; see Section 3.4. A
GRASP/VND hybrid using a multiple SPR neighborhood (i.e. a composition of successive
SPR moves) was introduced in [194]. In this work we adopt some of these well working
strategies originally proposed for phylogenetic inference to also solve the consensus tree
problem in better ways.

3.3 Applied Tree Similarity Measures

For our subsequently presented methods we basically apply two different similarity mea-
sures. The first one is the already mentioned TreeRank measure [232], which is the subject
of the next section, followed by the so-called Weighted Triple score in Section 3.3.2.

3.3.1 TreeRank Score

A recently proposed tree (dis-)similarity measure, the TreeRank measure [232], originally
introduced to handle database queries for similar trees in TreeBASE [222], allows for more
sophisticated consensus tree procedures due to its fine granularity. This measure utilizes
the quadratic Up matrix U which states for each pair of taxa (a, b) the number U [a, b] of
necessary up-traversals to reach from taxon a the least common ancestor of both taxa; see
Figure 3.4 for an example. It can be derived in O(|L|2) [232]. The authors also defined the
Down matrix D in an analogous way, but since U = DT it is redundant and the Up matrix is
also called UpDown matrix. Having this matrix for two trees T1 and T2 and assuming equal
taxa sets, one can calculate the UpDown distance between them by

UpDownDist(T1, T2) =
∑

u,v∈L
|UT1 [u, v]− UT2 [u, v]| . (3.2)

This distance is finally the basis for the TreeRank score between two trees:

TreeRank(T1, T2) =

(
1− UpDownDist(T1, T2)∑

u,v∈L UT1 [u, v]

)
· 100% . (3.3)

For the more general case of having different taxa sets in T1 and T2 see [232]; we will
only need the stated definitions. The TreeRank score is thus a measure of the topological
relationships in T1 that are found to be the same or similar in T2. It is bounded above by
100% but has no lower bound, which can be shown by comparing perfectly balanced and
maximal unbalanced trees.
An alternative measure (to be minimized) is to solely use the previously introduced UpDown
distance. Probably not as sophisticated as the TreeRank measure, it has the advantage of
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Figure 3.4: Exemplary tree and its Up matrix.

being a linear function on the values of the UpDown matrix, and it is symmetric. We will
use the UpDown distance in our ILP-based exact methods later on.

3.3.2 Weighted Triple Score

In this section we propose to define a measure which is based on the rooted triples which
are realized in a given tree, which can, as already mentioned, be regarded a fine-grained
measure. For binary (fully resolved) trees with n leaves this set of triples always has the
same size, since for every triple of taxa {a, b, c} ⊂ L exactly one of the three possible rooted
triples ab|c, ac|b, or bc|a is realized:

|R(T )| =
(
n
3

)

3
= n ·

(
n− 1

2

)
. (3.4)

Following this, we seek a consensus tree T maximizing the number of common rooted triples
in the whole input tree collection T , hence the Weighted Triple (WT) measure is defined by:

WT (T, T ) =
∑

T ′∈T
|R(T ) ∩R(T ′)| =

∑

tab|c: ab|c∈R(T )

wTab|ctab|c , (3.5)

where the coefficients wTab|c are defined as the number of input trees in which triple ab|c is
present, and variables tab|c denote whether triple ab|c is present (i.e. realized) in tree T . In
the style of the quartet puzzling problem [234] we might also term an optimization based
on maximizing this score as the triple puzzling problem. However, in the former work they
were already given a set of specific quartets, whereas we assume to have a collection of input
trees from which we extract the information for optimizing the resulting tree.
The WT measure is linear and easy to calculate. Moreover, additional weights can be eas-
ily assigned to the input tree collection representing the confidence on each phylogenetic
inference method used, which is especially interesting from a practical point of view.

3.3.3 Comparing the TreeRank Measure to a Triple-based Score

To investigate the relatedness of the TreeRank measure to the score which is based on the
triples, we additionally define following slightly extended version of the previously defined
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WT score:

WT%(T1, T2) =
|R(T1) ∩R(T2)|
|R(T1)| · 100% . (3.6)

The number of common triples is simply divided by the (constant) number of realized triples
(see previous section) and multiplied by 100 to also yield a measure in percent. Since the
TreeRank measure is not symmetric we use following average measure:

TreeRank(T1, T2) + TreeRank(T2, T1)

2
. (3.7)

The correlation is shown in Figure 3.5, where for increasing sets of taxa either all (for n = 4
and n = 5) or a random sample of all possible trees is used. As can be seen the correlation
coefficient decreases for increasing size of taxa sets. Also considering that we only inves-
tigated trees of up to 10 taxa, it is to be expected that optimizing one of the measures does
not automatically yield high quality trees for the other measure as well. This result is of
importance w.r.t. the exact methods to be developed.

3.4 Neighborhood Structures

In this section the applied neighborhood structures Step, Swap, Rotate, and SPRr are de-
scribed, which are subsequently applied to improve the performance of the EA as well as
to derive a VNS with an embedded VND. For the unrooted case, a good overview of Step,
Rotate, and the general SPR is given in [9]. At first we consider the neighborhoods dealing
with single taxa.
A Step move consists of removing a taxon with its predecessor node and reinserting them
at some other branch in the tree or as new root, see Figure 3.6 for an example. In a tree
containing n taxa, there are always n − 2 inner branches (i.e., arcs not directly leading to
a taxon) and n leaf branches plus the position as new root. Hence after removing a single
taxon with its leaf branch there are ((n − 2 − 1) + (n − 1) + 1) − 1 = 2n − 4 possible
new insertion positions, yielding n(2n − 4) neighbors for a given tree reachable via one
Step move. A Step move constitutes the smallest possible topology change of a tree. We
search this neighborhood as well as the others following a deterministic first improvement
strategy by utilizing the given pre-order traversal of the tree. In more detail, we go through
the pre-order representation, consider each encountered taxon for removal and perform for it
a nested tree traversal for enumerating all possible reinsertion points.
Our second neighborhood structure is defined by two related Step moves that exchange two
taxa but keep the tree structure otherwise unchanged; thus, a Swap move is performed.
Each pair of taxa can be swapped, resulting in n(n − 1)/2 neighbors, whereof at most
n(n− 1)/2− 1 are distinct because there exists at least one sibling pair. This neighborhood
variant has not been used before; an example is given in Figure 3.7. When searching this
neighborhood the possible Swap moves are deterministically enumerated similarly as the
Step moves by two nested pre-order tree traversals.

The next two neighborhoods more generally operate on whole subtrees. The nearest neighbor
interchange (NNI) move for the unrooted case from [9] can be interpreted as a rotation within
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Figure 3.5: Plots showing the correlation of averaged TreeRank and Weighted Triple
score in percent with a linear regression line for increasing taxa.
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Figure 3.6: Exemplary Step moves of taxon C (a) to the leaf branch of F and (b) to an
inner branch.
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Figure 3.7: Exemplary Swap move of taxa C and F.
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Figure 3.8: Schematic right rotations.

the tree for the rooted case; thus, we call it a Rotate move. There are four possible rotations
distinguishable, two right rotations (see Figure 3.8) and two left rotations in an analogous
way. The two variants per direction result from the possibilities of connecting either the left
or the right inner subtree directly to the (sub-)tree’s root. For every inner branch there are
two rotations possible, thus there are 2(n − 2) = 2n − 4 Rotate neighbors. Hence it is a
relatively small neighborhood. We search it by performing a pre-order traversal to enumerate
all inner branches, trying for each one all valid rotations, and taking a best one in case several
rotations lead to an improvement.

The last neighborhood we use is a restricted form of the subtree prune and re-graft (SPR)
neighborhood, excluding the movement of single taxa, thus denoted by SPRr. A SPRr move
selects a non-trivial subtree, prunes it from the tree, and re-grafts it at some other branch.
There exist O(n2) neighbors; the actual number depends on the current tree topology and
is investigated for SPR in more detail in [216]. Two exemplary moves are presented in
Figure 3.9. The SPRr neighborhood is searched similarly as Step, i.e. we traverse the tree in
pre-order to enumerate all non-trivial subtrees for pruning and perform for each a nested tree
traversal to determine all branches for re-grafting.
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Figure 3.9: Exemplary SPRr moves of subtree (-1, B, C) (a) to the leaf branch of F and
(b) to an inner branch.

3.4.1 Improvements

In order not to waste time on calculating the UpDown matrix always from scratch when eval-
uating a neighbor solution, we derived incremental update schemes for all the neighborhood
structures. Only possibly affected parts of the UpDown matrix are efficiently updated, basi-
cally reducing the effort for obtaining the actual UpDown matrix from O(L2) to O(L). E.g.
when swapping two taxa the corresponding columns of the UpDown matrix only need to be
swapped, too. This strategy greatly improves the overall run-time. Unfortunately, it does
not seem to be possible to follow this idea further by also calculating the UpDown distance
and the TreeRank score itself in a significantly more efficient incremental way. Thus, these
calculations are always completely performed.
A second improvement we consider is to avoid unnecessary moves that would result in the
original tree again: swapping two adjacent taxa or moving a taxon or subtree to the same
relative position. In this way some calculations of the TreeRank score can be saved.

3.5 Evolutionary Algorithm

In the work of Cotta [45] several evolutionary algorithms are presented differing in the way
of whether applying mutation or crossover and the adopted evolution model. Tests on real-
world instances indicate that solely applying the well-known prune-delete-graft (PDG) re-
combination operator [142] in combination with a steady-state model performs best. This
recombination operator selects a subtree of the first parent at random, removes its leaves in
the second parent and grafts the subtree therein at a random position. Considering subtrees
as building blocks, they are well preserved, inherited, and mixed by this operator. Although
this operator was shown to be more destructive to one parent than to the other [210], it is the
de facto standard when dealing with phylogenetic trees in evolutionary algorithms in general.
The variants utilizing only mutation by scrambling subtrees or swapping taxa turned out to
be inferior. It is further important to include the given input tree collection T in the initial
population, otherwise the results are significantly worse. As fitness function the average
TreeRank score of a candidate solution to the set of input trees is used:

TreeRank(T, T ) =

∑
T ′∈T TreeRank(T, T ′)

|T | . (3.8)
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Algorithm 7: Memetic Algorithm for the CTP

Initialize population1

while stopping condition is not met do2

Select parents xa and xb via binary tournaments3

xc ← Apply PDG recombination on xa and xb4

if new best solution xc found then5

Apply local search on xc6

Insert xc in population when there is no other solution with the same TreeRank7

score, replacing the worst solution

A solution tree is encoded in a pre-order traversal always stating the middle node followed
by the nodes of the left and the right subtrees in a recursive way, yielding for the tree in
Figure 3.4 (-1, -1, -1, A, B, C, D), with inner nodes being represented by -1. It is to be noted
that although Cotta also proposed greedy heuristics, we do not consider them here due to
their unsatisfying performance.
We re-implemented the EA variant that has been found to perform best in [45] as a basis,
i.e. always applying PDG recombination and no mutation. The EA selects parents via binary
tournaments with replacement and works in a steady-state fashion, i.e. in each iteration one
offspring is derived, and it always replaces the worst solution in the population with one
exception: To avoid duplicates and enforce a minimum diversity, new solutions having the
same TreeRank score as solutions in the population are immediately discarded. The initial
population consists of a copy of the input tree collection T and otherwise randomly created
trees on L without any bias. In addition to [45] we also tried to use recombination and
mutation together, though according to preliminary tests the performance was usually worse,
hence solely recombination was finally used, too. The EA terminates when a given time or
iteration limit is reached.
This EA also forms the basis for our extension to a memetic algorithm and for the combina-
tion with the VND/VNS, reported in Section 3.6 and 3.8, respectively.

3.6 Memetic Algorithm

In the EA described in the previous section we embedded different variants of local search
utilizing the neighborhoods described in Section 3.4. SPRr was omitted as it yielded poorer
results in preliminary tests, presumably because of the similarity to PDG recombination.
Each of the variants uses a single neighborhood structure and applies a random neighbor step
function; i.e. a random move is performed and the new solution is accepted if it is better than
the original one. Improved trees are re-encoded in the chromosome in a Lamarckian manner.
A local search phase terminates after a certain number of consecutive non-improving moves.
We further developed a simple progressive search (SPS) roughly following the idea in [97].
In this original work, the algorithm starts with the large SPR neighborhood and progressively
reduces it by limiting the distance between the removal and insertion positions of a subtree
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until the neighborhood converges to NNI having a distance limit of one. In contrast, we
use several different neighborhoods without this smooth transition though maintaining the
idea to reduce the size of the applied neighborhood: In the first third of the MA—either
w.r.t. an iteration or time limit— we apply the Step local search, followed by Swap in the
second third, and finally Rotate in the last third, whereas the local search variants are the
ones described before.
Although a single application of one of the local search variants is relatively fast, trying to
improve every offspring would dramatically increase the overall run-time without a substan-
tial quality gain in the final solution. Preliminary tests further indicated that it is also not
wise to apply local search on a certain portion of randomly chosen offsprings. Similarly as
in [48], we perform it only on new incumbent solutions, which is restrained but turned out
to be most effective. A pseudo-code of the MA is shown in Algorithm 7.

3.7 VNS with embedded VND

For the variable neighborhood descent (VND) we use the neighborhoods described in the
previous section and apply the already mentioned first-improvement strategy, thus always
immediately accepting the first solution yielding a better TreeRank score than the current.
Due to the size and related evaluation effort of the neighborhoods and their impact on a tree’s
structure the following order is used for the VND: Rotate, Swap, Step, and finally SPRr.
In contrast to VND, variable neighborhood search (VNS) focuses more on diversification
by applying shaking, i.e. random moves in larger neighborhoods. For intensification, VNS
includes a local search component, in this case VND. Algorithm 8 shows the pseudo-code
of the VNS with embedded VND. If the VNS is applied as a stand-alone algorithm, then we
utilize an input tree from T with the highest TreeRank score as initial solution. For shaking,
we perform a series of Step moves: A certain percentage of the taxa is randomly selected
and moved to some other, also randomly chosen positions. We start with 5% of the taxa and
gradually increase this portion by 5% up to 100% and hence the number of different VNS
neighborhoods kmax is 20. Both VND and VNS terminate if an iteration or time limit is
reached. VND also stops when the last neighborhood contains no better solution and thus,
the current solution is locally optimal w.r.t. all VND neighborhood structures.

3.8 Hybrid Metaheuristic Variants

Considering our developed algorithms it is an obvious idea to combine the EA (or MA) with
the VND or VNS. In our first approach, we do this as in the MA of the previous section:
The VND is always only applied to new best solutions as a strong local improvement. This
EA/VND hybrid will be denoted by HybB.
Another combination possibility is to run the EA and the VNS in a pure sequential way: The
EA’s finally best solution is used as the starting point for the VNS. We term this algorithmic
setting as HybS.
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Algorithm 8: VNS with embedded VND (x)

Set neighborhood structures for VND: N1=Rotate, N2=Swap, N3=Step and N4=SPRr1

k ← 0; // shaking strength2

while VNS stopping condition is not met do3

while k 6= kmax do4

// Shaking:
x′ ← Apply random Step moves on k · 5%|L| taxa of x selected at random5

// Local search by VND:
l← 16

while l 6= 4 and VND stopping condition is not met do7

// Exploration of neighborhood l:
Search first improving neighbor x′′ ∈ Nl(x

′)8

// Eventually move to x′′ and
// change neighborhood within VND:
if better solution x′′ found then9

x′ ← x′′10

l← 111

else l← l + 112

// Eventually move to x′ and
// change shaking strength:
if x′ is better than x then13

x← x′; // set new incumbent14

k ← 1; // reset shaking15

else k ← k + 1; // increase shaking16

// finished VNS iteration
k ← 1; // reset shaking17

A refinement of this approach is the intertwined execution of the EA and the VNS, as it is
shown in Algorithm 9: A prespecified total execution time T is divided into 2τ slots and
both algorithms are alternately applied. The EA starts and retains its population during its
pauses. When the VNS takes over, it always begins with the EA’s so far best solution and
with its first neighborhood. Of course, each final solution of the VNS at the end of its slots
is also inserted into the EA’s population, replacing the worst solution and rejecting solutions
having the same TreeRank scores as already existing ones. We denote such an intertwined
setting with τ EA/VNS phases by HybIτ .

One might think it is even better to use the MA instead of the EA in the hybrid variants,
but this is not true in general. Preliminary tests have clearly shown a worse performance of
a sequential MA/VNS combination. This is probably due to the MA already focusing too
strongly on local optima and thus seeding the VNS with a solution less suitable for further
improvement. In the following, we therefore only consider in more detail an intertwined
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EA(MA) / VNS(VND) Hybrids

start

current best solution in population

improved solution

1 to τ iterationsE A (M A) VNS (VND)

Figure 3.10: Information exchange between EA (MA) and VNS (VND).

Algorithm 9: Intertwined EA/VNS Hybrid (T, τ )

Initialize population of EA1

tslot = T/(2 · τ); // time limit per slot2

iter ← 03

while iter < τ do4

Run the EA for duration tslot5

x← best solution in EA’s population6

Run the VNS on x for duration tslot7

x′ ← best solution found by VNS8

if x′ is better than x then9

Insert x′ in population of EA10

iter ← iter + 111

MA/VNS hybrid which we denote by Hyb∗Iτ .
A schematic overview of the actual information exchange of the hybrid variants is given in
Figure 3.10.

3.9 Guided Neighborhood Variants

In Section 3.4 and subsequently for the VND in Section 3.7 we adhered to a fixed order
for examining the possible moves of the presented neighborhoods, the pre-order traversal of
the tree. Since we apply a first improvement scheme a potential advantage might be gained
via using a dynamic, instance specific examination order: finding improved solutions more
quickly and/or of better quality in the end. As information for the guided exploration we
utilize the UpDown distance which directly indicates whether a taxa is well-placed or not.
Due to implementation details we omit the guided variant of the Rotate neighborhood. For
the Swap and the Step neighborhood we thus determine the UpDown distance to the input
trees for every single taxa, whereas for the SPRr neighborhood a taxa always represents a
whole subtree for which the corresponding single taxa’s UpDown distances are summed up.
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Afterwards the taxa are sorted in decreasing order of their assigned UpDown distances and
subsequently considered in this order. In this way more emphasis is placed on changing “ex-
pensive” (i.e., dissimilar) tree structures first. Of course a certain overhead is to be expected
due to determining the UpDown distances per taxa. This will be investigated in the results
section.

3.10 ILP-based Exact Methods

The TreeRank measure is not (directly) applicable as objective function for an ILP model,
since it is highly non-linear. Hence we will either apply the UpDown distance or the Weighted
Triple score. Unfortunately, as we will see later on, especially an ILP model with the Up-
Down distance as objective function is in general only applicable to smaller instances as it
soon requires too much computational effort.

3.10.1 Triple Model

The first proposed ILP model, denoted as Triple model, uses tab|c variables representing the
presence or absence of each possible triple, and further utilizes the Weighted Triple score
(3.5) as objective function to be maximized (3.9); it is similar to the model for quartets
presented in [234].

max
∑

tab|c: ab|c∈R(T )

wTab|ctab|c (3.9)

s.t. tab|c + tbc|a + tac|b = 1 ∀a < b < c ∈ L (3.10)

tab|c + tad|c − tbd|c ≤ 1 ∀{a, b, c, d} ⊂ L (3.11)

tab|c + tac|d − tab|d ≤ 1 ∀{a, b, c, d} ⊂ L (3.12)

tab|c = tba|c ∀a < b, c ∈ L (3.13)

tab|c ∈ {0, 1} ∀{a, b, c} ⊂ L (3.14)

Constraints (3.10) ensure that exactly one possible triple ab|c, bc|a or ac|b is realized in the
resulting tree. The inequalities (3.11) and (3.12) express the triple transitivity and so-called
telescopic conditions, which are used in order to derive new necessary triples from other ones
to ensure consistency. Equality (3.13) states that triples ab|c and ba|c are equivalent. Finally,
constraints (3.14) enforce binary triple variables. This model implies Θ(n3) variables and
Θ(n4) constraints and has the advantage of being relatively efficient, since also the objective
function is easy to calculate. As we will see, moderately-sized instances can be solved well
in practice.

3.10.2 Combined Triple and UpDown Distance Model

Our second ILP model, denoted as Triple+UDD model, is an extension of the previous one
and includes both tab|c variables as well as uab variables representing the values in the Up-
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Down matrix of the final solution tree. The purpose of this is to allow the use of an objec-
tive function based on the values of the UpDown matrix—which is thus finer grained and
assumed to be more realistic—and at the same time obtain the tree defined by the triple
variables, in order to avoid the conversion from the UpDown matrix to the triple variables
(since this algorithm is not yet known, and might be a topic of future investigation). Also for
ensuring consistency of the UpDown matrix the tab|c variables are used.

min
∑

T∈T

∑

a,b∈L
δTab (3.15)

s.t. UT [a, b]− uab ≤ δTab ∀T ∈ T ;∀a, b ∈ L (3.16)

uab − UT [a, b] ≤ δTab ∀T ∈ T ;∀a, b ∈ L (3.17)

uaa = 0 ∀a ∈ L (3.18)

uab ≥ 1 ∀a, b ∈ L (3.19)

uab ≤ n− 1 ∀a, b ∈ L (3.20)

uab − uac < M(1− tab|c) ∀{a, b, c} ⊂ L (3.21)

uba − ubc < M(1− tab|c) ∀{a, b, c} ⊂ L (3.22)

uca − ucb ≤M(1− tab|c) ∀{a, b, c} ⊂ L (3.23)

ucb − uca ≤M(1− tab|c) ∀{a, b, c} ⊂ L (3.24)

uac − uab − (ubc − uba) ≤M(1− tab|c) ∀{a, b, c} ⊂ L (3.25)

ubc − uba − (uac − uab) ≤M(1− tab|c) ∀{a, b, c} ⊂ L (3.26)

min{uab | b ∈ L \ {a}} = 1 ∀a ∈ L (3.27)

uab ∈ N0 ∀a, b ∈ L (3.28)

δTab ∈ N0 ∀T ∈ T ;∀a, b ∈ L (3.29)

(3.10)–(3.14)

Here the UpDown distance (3.2) is used as an objective function: we introduce additional
variables δTab (3.29) which hold the absolute values linearized via (3.16) and (3.17), finally
allowing to minimize the sum of them (3.15). The distance from a taxa to itself is zero (3.18)
and the distance between two different taxa is at least one (3.19) and at most the number of
taxa minus one (3.20), since the latter is the largest depth of a binary tree having n leaves.
Constraints (3.21)-(3.26) ensure that the UpDown matrix is consistent. In these constraints
M is a sufficiently large constant (hence often also referred to as big-M constraints) which
can be set to the number of taxa n. This ensures that the constraints are activated only
when the triple ab|c is present (i.e. when tab|c = 1). Constraints (3.25)-(3.26) are called
path constraints. They ensure that the values themselves of the UpDown matrix, and not
only the relative distances, are consistent. The row-min constraints (3.27) ensure that no
“artificial” inner nodes may be added to lower specific taxa, which might otherwise happen
(also depending on the objective function in use). This model still implies Θ(n3) variables
and Θ(n4) constraints.
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3.10.3 Reduce Computational Effort with Lazy Constraints

For some ILP models quite a lot constraints are introduced to guarantee feasibility. They
can be regarded consistency constraints. In such cases it might be beneficial to initially omit
some of these constraints, but of course they would have to be respected during solving in
an appropriate way. One rather naïve possibility is to check the feasibility of the solution
obtained after solving the reduced model to optimality. After adding all violated constraints
one has to do a complete re-solving, probably in an iterated manner, causing (most likely)
too much overhead. Hence in order to gain more speed-up compared to solving the initial
complete model, these constraints are at best added in an incremental way during the solving
process. Ilog CPLEX offers an elegant way to do this via a pool of lazy constraints. For this
one adds the desired consistency constraints in a pool (set), which in our case are the tran-
sitivity (3.11) and telescopic constraints (3.12), and they are henceforth treated differently.
Whenever an integer solution is found it is checked whether one of these constraints is vio-
lated and adds them to the model if required; consult the user manual for more information.
This scheme is in some sense analogue to the cutting plane approach when solving a linear
program. Depending on the problem, this can dramatically improve the performance of the
solver.

3.10.4 Heuristic Generation of Variables

Instead of reducing the number of (initial) constraints the optimization algorithm has to deal
with, the number of variables considered for solving the problem can also be restricted at
the beginning. Triple variables tab|c corresponding to triples ab|c for which it is assumed
that they have value zero in the final solution are eliminated from the problem. This step
is referred to as pruning the variable set. The important question is: How is the variable
set to be pruned, so as not to discard the optimal solution? Since there is no theoretical
background to answer this question, the variable set is pruned in a heuristic way: triples
that are conjectured to most likely not appear in the optimal solution are pruned. These are
exactly the triples not appearing in any input tree. Since the tree which best summarizes the
information contained in the input trees is sought, it is expected that triples not appearing in
any input tree will not be present in the final solution.
The idea of beginning with a reduced set of variables is closely related to column generation
approaches, see Section 2.3.1 for a general outline and Section 4.7 for a concrete application
of it. However, since for the CTP the pricing problem is most likely only solvable via com-
plete enumeration of all variables (i.e. showing no special structure for which an effective
algorithm is known), we settled here to propose a heuristic method in which variables are
added in case they appear in an incumbent solution. For this purpose, an iterative rounding
and repair procedure is applied to each non-integer candidate solution in order to find a fea-
sible tree. In a first step this procedure investigates the triples in lexicographic order and sets
those corresponding triple variable having the highest (fractional) value in the LP solution
to one (randomly selecting a variable in case of equal values) and the other two variables to
zero. Then for each subset of four taxa we check all according transitivity and telescopic
constraints and in case of a violation repair them individually by setting the corresponding
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triple variable to one and the other two to zero. This repair step is consecutively applied until
no more violations occur.
We denote this whole method as heuristic column generation. In this approach, the initial set
of variables is chosen by the previously described pruning method.

3.10.5 Hybridization of Heuristic and Exact Methods

Initially we planned to combine the strengths of the heuristic and exact approaches in a
suitable way. We especially had in mind to select a subtree of a meaningful size (i.e. small
enough to be solved in reasonable time yet large enough to allow for an improvement) and
solve it to (near) optimality or to derive some sort of exact recombination operator (i.e.
basically a solution merging). Unfortunately, for several reasons this did not work out. The
major problem was the non-linearity of the favored TreeRank similarity measure and the fact,
that optimizing using alternative linear measures does not imply maximizing the TreeRank
measure. This makes it virtually impossible that the proposed exact methods are of a benefit
for the metaheuristics. Considering the contrary hybridization, i.e. in some way boosting the
performance of the exact approaches via utilizing the heuristics, also yielded no meaningful
possibilities here. Examples of the latter would be to offer better initial solutions than the best
input trees as well as to provide the exact methods with improved feasible solutions during its
execution. On the one hand these approaches would not really represent something new from
a methodical point of view and on the other hand the applicability of the exact approaches
strongly depends on the problem size (also memory consumption becomes an issue due to
the large number of constraints) and it is unlikely that good bounds from feasible solutions
will allow to tackle larger instances.

3.11 Experimental Results

This section gives details of the algorithm settings, introduces the test instances, and presents
the computational results as well as a comparison between them. All approaches have been
implemented in C++ and were compiled with GCC 4.1.2. The experiments with the meta-
heuristic algorithms were performed on a 2.2 GHz Dual-Core AMD Opteron 2214 PC with
4 GB RAM, those of the ILP-based approaches on a 2.8 GHz Intel Core i7 PC with 8 GB
RAM. The best performing (pure) EA from [45] has been reimplemented as proposed in this
original work and described in Section 3.5.
We adhere to the following abbreviations for the similarity measures: TR for TreeRank score,
UDD for UpDown distance, WT for Weighted Triple score, and TR-WT for TreeRank based
Weighted Triple score.

3.11.1 Algorithms Settings

The population size of the EA and MA was set to 100. In the MA local search is applied
to all new incumbent solutions until 100 consecutive non-improving moves have been tried.
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Due to space limitations, we present here only results for the MA with simple progressive
search, which proved to generally outperform the variants where only a single neighborhood
structure is considered. As mentioned earlier, the initial solution for the standalone VNS is
the tree with highest TreeRank score of the input collection. HybB is performing the VND
on all new incumbents limiting run-time per call to at most 5% of the overall time limit.
In case of HybS the EA and the VNS are given 50% of the computation time each, thus it
basically corresponds to HybI1. The intertwined EA/VNS hybrid HybIτ was applied with
τ = 4 alterations, thus in the following denoted by HybI4. For Hyb∗Iτ we basically combine
the settings of the best performing MA with SPS and of HybI4 and call it Hyb∗I4. The variants
using the guided neighborhood explorations use the same settings.
Following settings of the ILP-based methods proposed in Section 3.10 are used:

1. Triple model (TM)

2. Triple model plus lazy constraints (TMl)

3. Triple model using TreeRank based triple weighting (TMTR)

4. Triple model using TreeRank based triple weighting plus lazy constraints (TMTR+l)

5. Triple+UDD model (TUDDM)

6. Triple+UDD model plus lazy constraints (TUDDMl)

7. Each setting with additionally pruning of the variable set, adding subscript ’p’

The corresponding best input tree (either w.r.t. to UpDown distance or Weighted Triple score)
is used as an initial solution to (potentially) speed up the solution process. As a time limit
for applying the ILP methods we set one hour, hence we also state the resulting gap. The
general purpose MIP solver IBM ILOG CPLEX 12.2 is used for solving the models.
We further implemented the heuristic column generation approach (see Section 3.10.4) uti-
lizing the open-source framework COIN-OR BCP1. However, even though we also used
Ilog CPLEX as LP solver, it had an exceptionally high runtime. Looking closer at the perfor-
mance suggests that the internal mechanisms of creating/initializing the model and accessing
information from it were responsible for this circumstance. Though one has to keep in mind
that we are faced with a large number of constraints here. Due to this, meaningful tests were
not possible and we do not consider this approach in the following. Nevertheless, limited
preliminary results did indicate the expected benefit for a few instances.

3.11.2 Test Instances

For experimental evaluation we use three types of instances: trees resulting from three simple
agglomerative clusterings (single-link and complete-link [113] as well as average-link, also
known as unweighted pair group method with arithmetic mean [213]), trees resulting from

1see at http://www.coin-or.org/projects/Bcp.xml [accessed August 16, 2010]
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Figure 3.11: Artificial instances created by randomly perturbing an initial tree.

several runs of the scatter search approach in [46] (which were kindly provided by Carlos
Cotta), and new artificial trees. The latter are created by generating one initial random tree
and deriving the actual input trees by copying it and applying a series of perturbations in the
neighborhoods described in Section 3.4: Random Step, Swap, Rotate, and SPRr moves are
equally likely performed. In order to be able to control the similarity of the resulting input
trees in a good way, we defined minimum and maximum pairwise TreeRank scores and
performed the perturbations until a derived tree achieves a pairwise score w.r.t. the initial
tree within these limits. If the actual score is less than the lower bound, the previous move
is undone and the process continues. Note that the initial tree is finally discarded and not
included in the input tree collection. A schematic presentation of this process is shown in
Figure 3.11. An advantage of these artificially generated instances is that the known initial
tree, although not necessarily the best possible consensus tree, lends itself as a reference
solution. Having this procedure at hand also allows to generate small enough instances
which can be tackled by the ILP-based exact methods. The instances are differing in the
amount of taxa (10 to 178), the number of input trees (3 to 10) and their average similarity
to each other (below 50% up to 90%).

3.11.3 Comparison of Algorithms

First, our aim was to make a comparison of the different heuristic algorithms. Hence per
instance we ran the pure EA for 5 · 105 iterations and used the consumed CPU time as
limit for all others. Following this we did 30 runs per algorithm setting and instance and
state following TreeRank scores in Tables 3.2–3.5: the best result (best), the mean value

57



3. CONSENSUS TREE PROBLEM

Table 3.2: Results on agglomerative clustering tree instances.

M877 (3x134) M971 (3x158) M808agglom (3x178)

best mean sdv med best mean sdv med best mean sdv med

EA 51.85 51.68 0.10 51.70 63.38 63.28 0.04 63.28 48.47 48.44 0.01 48.44
MA 51.90 51.73 0.11 51.75 63.36 63.28 0.05 63.28 48.51 48.46 0.02 48.46
VNS 51.97 51.88 0.05 51.88 63.34 63.32 0.01 63.32 48.53 48.50 0.01 48.49
HybB 51.94 51.82 0.09 51.84 63.41 63.34 0.04 63.35 48.51 48.49 0.01 48.48
HybS 51.97 51.89 0.04 51.89 63.41 63.36 0.03 63.36 48.52 48.50 0.02 48.50
HybI4 52.00 51.89 0.06 51.88 63.40 63.35 0.03 63.36 48.53 48.51 0.01 48.51
Hyb∗I4 51.99 51.88 0.07 51.89 63.41 63.33 0.05 63.34 48.53 48.52 0.01 48.52

using guided neighborhood explorations in VND
VNS 51.95 51.84 0.07 51.84 63.37 63.29 0.02 63.28 48.49 48.49 0 48.49
HybB 51.98 51.78 0.1 51.77 63.41 63.33 0.09 63.36 48.52 48.49 0.01 48.49
HybS 51.99 51.89 0.05 51.88 63.43 63.35 0.07 63.36 48.52 48.50 0.01 48.50
HybI4 51.99 51.88 0.06 51.87 63.43 63.35 0.05 63.36 48.53 48.51 0.01 48.52
Hyb∗I4 52.01 51.86 0.08 51.87 63.41 63.36 0.04 63.37 48.54 48.52 0.01 48.52

best input 49.99 62.41 48.14

CPU-time [s] 228 283 480

(mean) with the corresponding standard deviation (sdv) as well as the median value (med).
Overall best obtained mean values are printed bold, the best found solution per instance is
printed in italics. For the agglomerative clustering and scatter search instances we also give
the number of trees and taxa in parentheses, e.g. “(3x134)” for 3 trees with 134 taxa each.
In case of the artificial tree instances the name itself holds this information and also the
TreeRank score upper bound used during creation, e.g. “5x150_70” for 5 trees with 150 taxa
each and a maximal TreeRank score of 70% w.r.t the initial tree. As lower limit the given
upper bound minus 10% was used, i.e. 60% in the previous example. For these instances
the TreeRank score of the initial input tree is given in line “init tree”, too. We further list
for each instance the TreeRank score of the best tree of the input collection T (“best input”)
and the aforementioned time limit (“CPU-time”) in seconds. In the following discussion, all
performance differences (i.e. differences in TreeRank score mean values) pointed out have
been statistically verified by Wilcoxon rank sum tests and error levels are less than 5%.
For seven out of the 12 instances the MA yields on average significantly better solutions
than the pure EA. In the remaining five cases the observed differences are not significant
(although for four the MAs mean values are higher and only for instance M808scatter the
EA achieved a slightly better mean). VNS is always significantly better than the pure EA
except for M808scatter, 5x175_80, and 5x175_90, where the latter achieved higher scores.
Compared to the MA, the VNS exhibits clearly better results on the real-world instances, but
was less effective on the artificially generated ones, for which it achieved a higher mean score
in only a single case (5x150_80). We believe the reason for this lies in the initial solution of
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Table 3.3: Results on scatter search tree instances.

Onco9 (9x148) Onco10 (10x148) M808scatter (10x178)

best mean sdv med best mean sdv med best mean sdv med

EA 91.21 90.98 0.10 90.97 91.01 90.98 0.02 90.97 91.05 90.98 0.05 90.98
MA 91.21 90.99 0.11 90.98 91.07 90.98 0.03 90.98 91.08 90.96 0.07 90.97
VNS 91.16 91.16 0 91.16 91.09 91.09 0 91.09 90.96 90.96 0 90.96
HybB 91.27 91.12 0.07 91.12 91.12 91.05 0.05 91.07 91.05 90.92 0.10 90.94
HybS 91.29 91.21 0.04 91.22 91.13 91.09 0.02 91.09 91.09 91.00 0.04 91.00
HybI4 91.26 91.20 0.04 91.22 91.13 91.09 0.02 91.09 91.10 90.99 0.06 91.00
Hyb∗I4 91.28 91.21 0.03 91.22 91.12 91.09 0.01 91.09 91.11 90.99 0.06 90.99

using guided neighborhood explorations in VND
VNS 91.24 91.24 0 91.24 91.09 91.09 0 91.09 90.96 90.96 0 90.96
HybB 91.26 91.10 0.09 91.09 91.10 91.03 0.05 91.03 91.10 90.97 0.08 90.97
HybS 91.28 91.23 0.03 91.23 91.12 91.08 0.03 91.08 91.08 91.02 0.04 91.02
HybI4 91.25 91.19 0.05 91.20 91.13 91.09 0.02 91.08 91.08 90.99 0.10 91.02
Hyb∗I4 91.28 91.20 0.04 91.21 91.11 91.09 0.01 91.09 91.06 90.98 0.09 91.00

best input 89.96 90.87 89.85

CPU-time [s] 391 420 573

the VNS, which is the input tree having the highest TreeRank score. While this best input
tree turned out to lie relatively close to high quality consensus trees in case of our real-world
instances, there are generally larger differences in the artificial instances. As the VNS is
dominated by its strong local search of the embedded VND, which consumes the major part
of the CPU-time on larger instances, its diversification abilities are less pronounced than
those of the population-based MA.

Now we concentrate on the hybrid approaches. The results of HybB, in which VND is used
to locally optimize new incumbent solutions within the EA, was disappointing, as its final
solutions are generally inferior to those of the other hybrids and VNS performed in most of
the real-world instances better. The more systematic EA/VNS combinations HybS, HybI4,
and Hyb∗I4 are more successful. They consistently achieve the overall best results; at least one
of them performed on all instances significantly better than all other algorithms. The only
exception is Onco10, where the VNS yields equally good results. Although there are only
few statistically significant differences between the sequential and the intertwined hybrids,
the former tends to yield better results for the real-world instances whereas the latter seems
to be better suited for the artificial instances. Finally, the intertwined MA/VNS hybrid Hyb∗I4
shows for many instances a better performance—in fact sometimes even the best—when
compared to the same variant utilizing the pure EA only (HybI4). Altogether the intertwined
variants can be clearly considered the most successful.
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Table 3.4: Results on artificial tree instances with 150 taxa.

5x150_70 5x150_80 5x150_90

best mean sdv med best mean sdv med best mean sdv med

EA 68.86 67.81 0.40 67.70 78.56 77.95 0.28 77.98 88.65 87.99 0.31 88.01
MA 69.10 68.55 0.26 68.61 78.55 78.15 0.24 78.20 88.87 88.46 0.30 88.54
VNS 68.47 68.47 0 68.47 78.53 78.53 0 78.53 88.35 88.35 0 88.35
HybB 69.40 68.90 0.21 68.83 78.83 78.46 0.26 78.53 88.91 88.50 0.34 88.59
HybS 69.48 68.97 0.32 68.97 78.85 78.64 0.20 78.70 88.96 88.78 0.18 88.82
HybI4 69.52 69.06 0.26 69.05 78.84 78.67 0.12 78.69 88.96 88.84 0.12 88.88
Hyb∗I4 69.53 69.16 0.23 69.23 78.82 78.67 0.17 78.73 88.96 88.82 0.14 88.87

using guided neighborhood explorations in VND
VNS 68.43 68.43 0 68.43 78.41 78.41 0 78.41 88.88 88.88 0 88.88
HybB 69.53 68.93 0.25 68.86 78.87 78.49 0.25 78.57 88.96 88.48 0.36 88.50
HybS 69.49 69.07 0.25 69.11 78.86 78.71 0.09 78.74 88.96 88.81 0.15 88.83
HybI4 69.64 69.17 0.20 69.15 78.86 78.67 0.12 78.71 88.96 88.85 0.11 88.87
Hyb∗I4 69.47 69.09 0.19 69.10 78.85 78.61 0.13 78.58 88.96 88.79 0.15 88.82

best input 64.54 72.65 84.34
init tree 67.24 78.27 88.96

CPU-time [s] 297 310 314

Coming to the guided neighborhood variants, these were exploited in all algorithms incor-
porating the VND, more concretely in the VNS as well as in all hybrid variants. The results
in bold again denote the best performing variant of this set of algorithms. Further, the same
runtime limit was used for the tests. In general, the outcome of the tests is similar than when
using a fixed neighborhood exploration: usually one of the hybrid variants performs best.
An exception occurs for instance 5x150_90 where especially the VNS benefits from the dy-
namic exploration and performs best. When comparing the results of these variants with
the previously proposed ones, it is notable that slightly more of the best known solutions
as well as higher best average solution values are obtained. Although there is not a drastic
performance boost, the inclusion of problem knowledge in the neighborhood exploration has
a significant beneficial impact.
When comparing the scores of the best input trees with those of the overall best solutions
found, it is apparent that our real instances offer less room for improvement, mostly below
2%, whereas the artificially generated ones allow for about 5% or even more. Another in-
teresting fact is the relation between the TreeRank scores of the artificial instances’ initial
trees and the corresponding best solutions found. As can be observed in Tables 3.4 and 3.5,
the initial tree is more likely the (nearly) optimal consensus tree (regarding the TreeRank
score) when the derived input trees are close to the initial tree, hence when the radius of the
inner circle in Figure 3.11 is small. The results of the best solutions also show that only the
hybrid algorithms are consistently able to find consensus trees being better than or equal to
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Table 3.5: Results on artificial tree instances with 175 taxa.

5x175_70 5x175_80 5x175_90

best mean sdv med best mean sdv med best mean sdv med

EA 69.57 68.66 0.38 68.65 76.94 75.98 0.48 75.96 86.44 85.71 0.47 85.62
MA 70.91 70.57 0.17 70.60 77.31 76.92 0.19 76.94 86.44 85.77 0.36 85.79
VNS 69.53 69.53 0 69.53 73.78 73.73 0.03 73.71 85.31 85.31 0.01 85.31
HybB 70.95 70.47 0.24 70.51 77.51 76.95 0.33 76.95 86.33 85.95 0.28 86.00
HybS 70.99 70.37 0.24 70.38 77.56 77.18 0.24 77.21 86.44 86.37 0.10 86.42
HybI4 71.20 70.70 0.19 70.67 77.50 77.21 0.18 77.22 86.44 86.33 0.12 86.39
Hyb∗I4 71.27 70.94 0.16 70.99 77.53 77.27 0.12 77.26 86.44 86.25 0.18 86.27

using guided neighborhood explorations in VND
VNS 70.70 70.70 0 70.70 73.81 73.80 0.01 73.80 86.09 86.07 0.06 86.09
HybB 71.12 70.77 0.16 70.79 77.51 77.01 0.26 77.02 86.44 85.99 0.27 85.94
HybS 71.03 70.61 0.2 70.63 77.54 77.25 0.16 77.24 86.44 86.36 0.12 86.42
HybI4 71.19 70.85 0.17 70.88 77.48 77.21 0.18 77.20 86.44 86.34 0.12 86.40
Hyb∗I4 71.13 70.95 0.12 70.97 77.42 77.17 0.13 77.18 86.44 86.23 0.23 86.29

best input 64.75 72.10 81.34
init tree 69.23 77.35 86.44

CPU-time [s] 382 384 380

the initial trees, where the latter happens for instances 5x150_90 and 5x175_90.

In the following we will have a look at the performance of the different VND neighborhoods
for all algorithms using either the normal or the guided VND variant. In Table 3.6 we state
how often the neighborhoods have been applied (used), how many times improvements were
achieved (impr.), also giving the corresponding fraction of all applications and improvements
in percent (%-total), and the average runtimes in seconds (t[s]). Since their order of applica-
tion is Rotate, Swap, Step, and SPRr, the former neighborhoods are naturally applied more
often in general. Moreover note that the average runtimes justify this order. Rotate and Swap
account for most of the improvements, Step also contributes a little bit, while SPRr is hardly
applied at all. For all hybrid variants using guided VND except of HybB the Rotate neigh-
borhood is roughly applied half the times as when using the standard VND. A reason might
be that in these cases the solutions tackled by the VNS are already of a high quality and due
to the better moves selected in guided Swap and Step there is less room for improvement
for the rather locally operating Rotate neighborhood. The latter does not occur for HybB be-
cause of the very strict time limit of the applied VND. Comparing the runtimes for Swap we
can observe a longer average runtime (overhead due to determining the UpDown distances
per taxon) but also a higher percentage of improvements in total for the guided variant. The
latter also holds for guided Step, but here the average runtimes are less, hence earlier finding
an improving move.
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Table 3.7: Characteristics of the instances used for testing the exact methods.

instance
best input tree initial tree

TR UDD WT TR-WT TR UDD WT TR-WT
5x10_70 68.05 393 417 265.16 67.62 395 420 265.23
5x10_80 75.71 283 469 340.47 74.79 300 473 342.37
5x10_90 86.42 165 565 467.75 86.61 166 567 469.10
5x15_70 63.87 1232 1394 841.65 65.59 1156 1488 899.50
5x15_80 73.22 924 1683 1179.21 75.99 814 1871 1316.11
5x15_90 81.52 658 1938 1559.19 86.48 480 1982 1594.20
5x20_70 60.29 2829 3807 2244.75 65.14 2583 3806 2238.63
5x20_80 67.55 2208 4350 2961.32 73.92 2166 4441 3018.22
5x20_90 84.18 1227 4841 3930.53 84.86 1200 5006 4061.17
5x25_70 64.19 4540 7527 4684.92 66.79 4168 7849 4859.63
5x25_80 69.06 4266 8470 5570.38 73.98 3588 9005 5919.94
5x25_90 84.11 2094 10062 8272.29 87.41 1628 10242 8416.85
5x30_70 63.78 7729 14687 9156.35 68.46 7080 14990 9339.27
5x30_80 70.08 6395 15894 10767.20 76.21 5150 16500 11159.10
5x30_90 82.08 3875 18053 14603.30 86.62 2900 18508 14975.60
5x35_70 65.24 9930 22652 14325.10 68.54 9112 23427 14804.70
5x35_80 70.85 8602 22244 15584.60 76.28 7116 24527 17157.80
5x35_90 83.63 5240 28883 23365.20 86.06 4318 29514 23850.00
5x37_70 66.28 11574 29186 18730.20 68.03 10460 29477 18877.30
5x37_80 71.92 9482 29007 20300.40 75.33 8658 30216 21054.60
5x37_90 82.97 5756 34253 27873.20 85.82 4620 35191 28622.10
5x39_70 59.54 16394 32877 19195.30 67.17 13240 35915 20926.10
5x39_80 74.67 9810 35765 26245.30 78.18 8482 37226 27303.10
5x39_90 82.60 7686 38695 31431.90 87.37 5544 40248 32675.70

Finally, we will investigate the performance of the ILP-based exact solution methods. For
this we created additional artificial instances which have a fewer number of taxa, ranging
from 10 up to 39. The different scores of the best input tree and the initial tree used during
creation of these instances are given in Table 3.7. The larger instances are used for testing
the model utilizing the Weighted Triple score as well as the TreeRank based Weighted Triple
score. These results are shown in Table 3.8 and 3.9, respectively. Therein the final solution
value, the resulting percentage gap, and the CPU time in seconds is given. The last line states
corresponding average values. In both cases using the model with lazy constraints yielded
the best results, the standard model performs worst, and using heuristic pruning of variables
leads to missing some improved solutions which also use triples not occurring in the input
trees. As expected, pruning also leads to a significant decrease of runtime when applied to the
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3. CONSENSUS TREE PROBLEM

standard model, but this is even more true for using lazy constraints. Contrary, when pruning
is applied in combination with lazy constraints the runtime increases again. Hence, reducing
the search space is not necessarily beneficial, even with regard to runtime. The results of the
more sophisticated ILP model with the UpDown distance as objective function are given in
Table 3.10. Here we had to use rather small instances, since applying the standard model,
even with lazy constraints, is quite soon very hard to solve. For this setting the pruning of
variables seems mandatory. However, also when doing so 5 of 15 instances could not be
solved to optimality within one hour.

3.12 Conclusions

In this chapter we tackled the consensus tree problem (CTP), mainly arising in the domain
of phylogenetics and representing an important problem in bioinformatics. We described
several tree similarity measures, as well as their advantages and drawbacks. Yet, the real
practical applicability of some of them is an open question which cannot be dealt with in
this work. On the heuristic side we introduced four meaningful neighborhood structures for
the CTP, whereof Step and Rotate are adopted from approaches for deriving phylogenetic
trees, SPRr is a restricted variant of SPR and Swap is a specific form of two Step moves
and has not been described before. A previously presented evolutionary algorithm using the
fine-grained TreeRank similarity measure has been extended to several memetic algorithm
variants by embedding a randomized local search utilizing these neighborhood structures.
Thereof the variant using the simple progressive search, which changes the neighborhoods
over time, performs best. Furthermore, a variable neighborhood descent procedure that also
uses these neighborhood structures has been developed and embedded in a variable neigh-
borhood search. The latter performs shaking by applying an increasing number of random
Step moves. The evaluation of neighborhoods could be substantially sped up by imple-
menting a (partly) incremental scheme through updates of the UpDown matrix. Next, we
hybridized the EA and MA with the VNS or the VND by running them either in sequential
or intertwined order exchanging improved solutions. Finally, we also derived variants of the
neighborhoods to be used in the VND where the exploration is done in an adaptive way via
utilizing the UpDown instance to change “expensive” structures of the tree first.
In another line of research we investigated the application of ILP models for solving the
problem. Since the TreeRank measure is non-linear we used two alternative linear measures:
the Weighted Triple score and the UpDown distance. We proposed to consider some of the
constraints as lazy constraints as well as to heuristically prune the set of variables (triples) in
order to speed up the computation with no or only a small loss in solution quality.
The algorithm’s performance has been evaluated with extensive tests on agglomerative clus-
tering, scatter search, and carefully generated artificial instances providing more room for
improvement. The MA utilizing SPS, the VNS, and the hybrid approaches are usually able
to outperform the EA. On our real-world instances, the VNS turned out to be better than the
MA, but on the artificial instances the situation was vice-versa. We explained this behavior
with the VNS’ stronger focus on intensification and weaker diversification abilities.

64



3.12. Conclusions

Ta
bl

e
3.

8:
R

es
ul

ts
of

di
ff

er
en

tI
L

P
m

od
el

se
tti

ng
s

on
ar

tifi
ci

al
in

st
an

ce
s

us
in

g
W

ei
gh

te
d

Tr
ip

le
sc

or
e.

T
M

T
M

p
T

M
l

T
M

l+
p

W
T

%
-g

ap
t[

s]
W

T
%

-g
ap

t[
s]

W
T

%
-g

ap
t[

s]
W

T
%

-g
ap

t[
s]

5x
25

_7
0

81
93

0.
00

7.
8

81
93

0.
00

3.
6

81
93

0.
00

1.
1

81
93

0.
00

1.
1

5x
25

_8
0

90
05

0.
00

3.
6

90
05

0.
00

2.
1

90
05

0.
00

1.
0

90
05

0.
00

0.
8

5x
25

_9
0

10
24

2
0.

00
3.

6
10

24
2

0.
00

1.
0

10
24

2
0.

00
0.

9
10

24
2

0.
00

0.
4

5x
30

_7
0

15
00

4
0.

00
21

49
.9

15
00

4
0.

00
10

.1
15

00
4

0.
00

35
.6

15
00

4
0.

00
51

.9
5x

30
_8

0
16

62
4

0.
00

8.
7

16
62

4
0.

00
4.

7
16

62
4

0.
00

2.
1

16
62

4
0.

00
1.

6
5x

30
_9

0
18

50
8

0.
00

8.
1

18
50

8
0.

00
1.

6
18

50
8

0.
00

2.
1

18
50

8
0.

00
0.

7
5x

35
_7

0
23

53
2

0.
00

58
.9

23
48

4
0.

00
36

.5
23

53
2

0.
00

9.
5

23
48

4
0.

00
9.

5
5x

35
_8

0
24

55
1

0.
00

22
.2

24
55

1
0.

00
18

.2
24

55
1

0.
00

4.
6

24
55

1
0.

00
5.

1
5x

35
_9

0
29

64
5

0.
00

16
.2

29
64

5
0.

00
3.

9
29

64
5

0.
00

4.
0

29
64

5
0.

00
1.

9
5x

37
_7

0
29

23
5

2.
33

36
00

.0
29

83
6

0.
00

18
01

.6
29

89
7

0.
00

25
2.

9
29

83
6

0.
00

37
1.

0
5x

37
_8

0
30

24
6

0.
00

86
.7

29
96

4
0.

00
15

79
.8

30
24

6
0.

00
10

.9
29

96
4

0.
00

23
0.

6
5x

37
_9

0
35

19
1

0.
00

20
.8

35
19

1
0.

00
5.

0
35

19
1

0.
00

5.
0

35
19

1
0.

00
2.

5
5x

39
_7

0
35

91
8

0.
00

67
.7

35
91

8
0.

00
39

.3
35

91
8

0.
00

6.
7

35
91

8
0.

00
11

.1
5x

39
_8

0
37

39
8

0.
00

27
.6

37
39

8
0.

00
35

.1
37

39
8

0.
00

6.
4

37
39

8
0.

00
7.

7
5x

39
_9

0
40

24
8

0.
00

26
.6

40
24

8
0.

00
16

.3
40

24
8

0.
00

6.
2

40
24

8
0.

00
5.

3

av
g

24
23

6
0.

15
40

7.
8

24
25

4
0.

00
23

7.
3

24
28

0
0.

00
23

.3
24

25
4

0.
00

46
.8

65



3. CONSENSUS TREE PROBLEM

Table
3.9:

R
esults

ofdifferentIL
P

m
odelsettings

on
artificialinstances

using
TreeR

ank
based

W
eighted

Triple
score.

T
M

T
R

T
M

T
R

+p
T

M
T

R
+l

T
M

T
R

+l+p

T
R

-W
T

%
-gap

t[s]
T

R
-W

T
%

-gap
t[s]

T
R

-W
T

%
-gap

t[s]
T

R
-W

T
%

-gap
t[s]

5x25_70
5090.82

0.00
6.7

5090.82
0.00

3.1
5090.82

0.00
1.1

5090.82
0.00

0.9
5x25_80

5919.94
0.00

4.0
5919.94

0.00
2.1

5919.94
0.00

1.2
5919.94

0.00
1.0

5x25_90
8416.85

0.00
3.5

8416.85
0.00

1.0
8416.85

0.00
0.9

8416.85
0.00

0.4
5x30_70

9321.85
0.28

3600.0
9347.95

0.00
11.9

9347.95
0.00

77.4
9347.95

0.00
15.2

5x30_80
11240.00

0.00
11.6

11240.00
0.00

4.7
11240.00

0.00
2.1

11240.00
0.00

1.9
5x30_90

14975.60
0.00

8.1
14975.60

0.00
1.6

14975.60
0.00

2.1
14975.60

0.00
0.7

5x35_70
14870.90

0.00
165.5

14828.20
0.00

422.9
14870.90

0.00
12.9

14828.20
0.00

12.1
5x35_80

17177.00
0.00

76.9
17177.00

0.00
18.2

17177.00
0.00

4.8
17177.00

0.00
5.4

5x35_90
23962.70

0.00
16.5

23962.70
0.00

3.9
23962.70

0.00
3.9

23962.70
0.00

1.8
5x37_70

19127.00
0.18

3600.0
19120.20

0.00
2137.8

19151.90
0.00

101.1
19120.2

0.00
466.3

5x37_80
21082.40

0.00
63.6

20925.30
0.00

240.5
21082.40

0.00
7.7

20925.30
0.00

120.7
5x37_90

28622.10
0.00

20.8
28622.10

0.00
5.1

28622.10
0.00

4.9
28622.10

0.00
3.0

5x39_70
20928.40

0.00
85.2

20928.40
0.00

39.6
20928.40

0.00
7.3

20928.40
0.00

10.9
5x39_80

27432.60
0.00

31.2
27432.60

0.00
35.2

27432.60
0.00

6.3
27432.60

0.00
7.7

5x39_90
32675.70

0.00
26.3

32675.70
0.00

16.4
32675.70

0.00
6.2

32675.70
0.00

5.3

avg
17389.60

0.03
516.4

17377.60
0.00

196.3
17393.00

0.00
16.0

17377.60
0.00

43.6
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3.12. Conclusions
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3. CONSENSUS TREE PROBLEM

On the heuristic side the hybrid approaches generally perform best, clearly exploiting the
benefits of the individual algorithms they combine. Especially the intertwined hybrids yield
consistently excellent and in most cases the overall best solutions. This is still true when
using the guided neighborhood explorations. Moreover, a slight improvement with regard to
solution quality can be recognized.
When applying the exact ILP-based solution approaches it is consistently beneficial to use
the proposed feature of lazy constraints, thereby often drastically reducing the required time
to solve the model. In case of using the extended model with the UpDown distance as
objective function to be minimized also pruning the considered variables, i.e. reducing the
search space, is of benefit. Only with this setting it is possible to find an improved solution
at all given the time limit of one hour.

Potential Future Work

Future work could include experiments on more problem instances with even more different
properties. Promising also seems to be the investigation of intertwined hybrids with more
sophisticated alteration schemes, in particular since we observed that in some cases the EA
or MA is not able to improve the solution in later time-slots anymore. A further idea is to
consider other neighborhood orders for the VND or even a (self-)adaptive strategy, which
would probably nicely combine with the already proposed dynamic guided neighborhood
exploration. Finally, a different, potentially suitable approach to follow is to incorporate the
multilevel refinement strategy; a general overview is given in [230, 231] as well as an ap-
plication in Section 5.4. It seems quite natural to either merge several taxa into so-called
supertaxa or to fix certain subtrees. This would definitely speed up the neighborhood explo-
ration and thus not only allow more (or even all) moves to be evaluated but also implicitly
consider more powerful moves. Another interesting aspect is that multilevel refinement has
to our knowledge not been applied to an optimization problem dealing with such tree struc-
tures before.
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4
PERIODIC VEHICLE ROUTING PROBLEM

WITH TIME WINDOWS

4.1 Introduction

The research efforts reported in the following were carried out while I was employed from
January 2008 until September 2010 in a larger project entitled Matheuristics: Hybrid Algo-
rithms for Transportation Problems funded by the Austrian Science Fund (FWF) under con-
tract number P20342. Three research groups of two different universities were involved: Karl
Dörner was the overall coordinator and local project leader at the Department of Business
Administration, University of Vienna, my supervisor Günther Raidl was the local project
leader on our side, and Walter Gutjahr was the local project leader at the Department of
Statistics and Decision Support Systems, University of Vienna.
In this and the subsequent chapter we deal with a generalized variant of the classical Vehicle
Routing Problem (VRP) where some customers must be served several times in a given plan-
ning period instead of only once on a single day. A large portion of our work is thus devoted
to the Periodic Vehicle Routing Problem with Time Windows (PVRPTW), reported in this
chapter, and to a lesser extent we tackle the Periodic Vehicle Routing Problem (PVRP), i.e.
the former variant without time windows, in the next chapter. Hence our main focus lay on
the PVRPTW as this was our task in the project. Such settings occur in many real-world ap-
plications as in courier services, grocery distribution, waste collection, or for various sorts of
suppliers. However, although its practical applicability is evident, only few specific solution
techniques have been described in the literature, which is especially true for the PVRPTW.

The basis forms the classical capacitated VRP which we informally introduced in Chapter 1.
Here we already assume a rather general VRP variant to start with. It is defined on a complete
graph G = (V,A), where V = {v0, v1, . . . vn} is the vertex set and A = {(vi, vj) : vi, vj ∈
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4. PERIODIC VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

V, i 6= j} is the arc set. Vertex v0 represents the depot at which are based m vehicles
having capacities Q1, . . . , Qm and maximal daily working times D1, . . . , Dm. Each vertex
of V \ {v0} corresponds to a customer and has an associated demand qi ≥ 0 as well as a
service duration di ≥ 0. For each arc (vi, vj) ∈ A there are further given travel times or costs
cij ≥ 0. The first generalization is due to additionally specifying a time window [ei, li] per
customer and the depot, where ei and li are nonnegative integers and denote the earliest as
well as latest beginning of the service, respectively. This yields the VRP with time windows
(VRPTW) [38]. The second generalization concerns the extension to a planning horizon of t
days: Each customer has defined a service frequency fi and a set Ci ⊆ {T ′ | T ′ ⊆ T, |T ′| =
fi} of allowable combinations of visit days, thus a customer has to be visited periodically.
The whole PVRPTW then consists of selecting a single visit combination per customer and
designing (at most) m vehicle routes on each of the t days on G such that

(1) each route starts and ends at the depot,

(2) each customer i belongs to exactly fi routes over the planning horizon,

(3) for each vehicle k = 1, . . . ,m, the total demand of each route does not exceed capacity
limit Qk, and its daily duration does not exceed the maximal daily working time Dk,

(4) the service at customer i begins in the interval [ei, li] and
every vehicle leaves the depot and returns to it in the interval [e0, l0], and

(5) the total travel cost of all vehicles is minimized.

Arriving before ei at a customer i implies a waiting time until this start of the time win-
dow (without further cost). Arriving later than li is not allowed, i.e. we assume hard time
window constraints. In this work, we further assume a homogeneous vehicle fleet with
Q1, . . . , Qm = Q and D1, . . . , Dm = D. This also holds for the test data we will consider
later on. An exemplary solution of a PVRPTW instance involving 96 customers, six vehicles
and a planning horizon of four days is displayed in Figure 4.1. At the first day (upper left) we
highlight three customers having different visit frequencies, demanding one, two, and four
visits. For the remaining days we also highlight the appearance of these customers.
In the following we will report on our work of solving the PVRPTW with metaheuristics,
exact approaches as well as several hybrid variants composed out of these methods. Though
the number of solution approaches might seem high, we, in fact, did not indent to develop a
sheer amount of them, but instead they originated rather naturally in the course of our main
project goal to investigate hybrid solution approaches. In Section 4.2 we refer to related
work. A variable neighborhood search is reported in Section 4.4, a multiple variable neigh-
borhood search in Section 4.5, and an evolutionary algorithm in Section 4.6. On the side of
the exact methods we report on a column generation approach in Section 4.7 as well as on
a branch-and-cut-and-price approach in Section 4.8. The hybrid variants are topic of Sec-
tion 4.9. In general, previous experimental results are given after the corresponding method
sections, though usually only in a summarized way alongside with a reference for further
details. We wanted to omit presenting too many and often even outdated results. Final and
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4.1. Introduction

objective: 5178.64, travel costs: 5178.64

1

#routes: 6, cost: 1425.89

2

#routes: 5, cost: 1184.95

3

#routes: 6, cost: 1369.67

4

#routes: 5, cost: 1198.13

f=2

f=4

f=1

Figure 4.1: Exemplary solution of a PVRPTW instance with n = 96, m = 6, t = 4.

more detailed results of newly conducted test runs are given in Section 4.10, finishing with
concluding remarks in Section 4.11.
Following parts of this work were presented before: the VNS at the 9th EU/MEeting on
Metaheuristics for Logistics and Vehicle Routing in 2008 [169], the column generation ap-
proach at the International Network Optimization Conference 2009 [160], the VNS-ILP hy-
brid at the 8th Metaheuristic International Conference in 2009 (MIC 2009) [159], the mVNS
and the mVNS-ILP hybrid at the 6th International Workshop on Hybrid Metaheuristics in
2009 (HM 2009) [161], as well as among other the evolutionary algorithm with the corre-
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4. PERIODIC VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

sponding hybrid variant at the 3rd International Workshop on Model-based Metaheuristic in
2010 (Matheuristics 2010) [162].

4.2 Related Work

Although a large number of (meta-)heuristics have been described for the classical version
of the VRP [39], and also the VRP with Time Windows (VRPTW) is covered to quite an
extent [29], when we started the project the PVRPTW has to our knowledge previously been
only dealt with in the works by Cordeau et al. [41, 42]. They developed a Tabu Search
(TS) heuristic and applied it to the VRPTW and two generalizations, among those also the
PVRPTW. For the PVRPTW the possible moves are to relocate a single customer to an-
other route or to change its visit combination. Recently Cordeau and Maischberger [43]
proposed a parallel iterated TS heuristic applicable to several routing problems, again also
to the PVRPTW.
Related VNS metaheuristics were described by Polacek et al. [172] for the Multi-Depot
VRPTW and by Hemmelmayr et al. [105] for the Periodic VRP. Our VNS for the PVRPTW
combines, adapts, and extends concepts of these works for considering time windows and
periodicity at the same time.
Evolutionary algorithms (EAs) for the VRPTW are subject of [28], applications to prob-
lem variants similar to the PVRPTW (e.g. the multi-depot case) can be found in [92]. Only
very recently also the PVRPTW has been tackled with EAs. The first work is by Nguyen et
al. [150] where a new, problem specific crossover is proposed and two metaheuristics, the
TS of Cordeau et al. and our VNS, are applied to further improve (“educate”) offspring so-
lutions. Promising results are shown, though devoting quite excessive runtimes. A different
EA based heuristic was proposed by Vidal et al. [227]. Their hybrid genetic search com-
bines the explorativeness of genetic algorithms and the intensification via local search-based
improvement procedures, effectively realizing a memetic algorithm. However, according
to the results a large portion of the success of this method is due to the adaptive diversity
management, which is seamlessly integrated into evaluating candidate solutions.
We are not aware of other exact or hybrid methods for the PVRPTW, yet similar PVRPs
are dealt with in [82] and [146]. Also, very recently – in fact after we already completed
our work – Baldacci et al. [12] proposed an exact solution approach for the PVRP based
on a set-partitioning-like formulation which is basically similar to ours (in fact a stricter
variant), introducing several relaxations of this formulation used to derive different bounding
procedures. A more general survey of different PVRP variants and solution methods is given
in [83]. An overview of exact approaches for the related VRPTW is given in [116]. A similar
idea as one followed in this work was recently applied to a ready-mixed concrete delivery
problem [206]. Our work also extends this by highlighting further aspects of this kind of
hybridization. In a somewhat related work Danna and Le Pape [50] apply an ILP solver for
deriving improved integer solutions during a branch-and-price procedure. In a recent survey
Dörner and Schmid review matheuristic approaches applied to rich VRPs [65].
Although we do not explicitly consider parallelization in this work, one of our intertwined
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4.3. Test Instances

approaches shares features with the replicated parallel VNS variant introduced among other
approaches in [88] and also applied in [143]. Finally, also related to our work is [100],
which evolved independently to ours, and presents a heuristic search based parallel VRP
solver additionally making use of an ILP solver to obtain solutions to set covering problems.
Though in their work Groër et al. tackled the VRP without any special constraints, they
highlight the general applicability to richer VRPs as well.

4.3 Test Instances

Although it is usually common to give details about the test data rather at the end just before
the computational results, we decided to put them here since we will present previous results
after some methods.
Note that since each algorithm is implicitly designed to tackle instances of specific maximal
size, we will not necessarily apply each algorithm on each instance set later on.

4.3.1 PVRPTW Instances from Cordeau et al.

The first PVRPTW instances were introduced in [41], originally proposed for the PVRP
in [40] and extended with time windows. They are of type Euclidean, range from 48 to
288 customers, 3 to 20 homogeneous vehicles, and have a planning horizon of 4 or 6 days;
more details are given in Table 4.1. Instances p01a–p10a and p01b–p10b have narrow and
larger time windows, respectively. The customers are located at random around also ran-
domly located clusters. For these type of instances no truncation/rounding is applied to the
distances.
Results for comparison are reported in [41] and [150] without forward time slack, as well as
in [42, 43, 227] with forward time slack.

4.3.2 Additional PVRPTW Instances Based on VRPTW Instances of
Solomon

In the course of our work on the PVRPTW we further derived new instance sets from the
Solomon VRPTW benchmark instances [215]. We proceeded by evenly assigning the possi-
ble visit combinations to all or only a subset of the customers at random.
We did so for the first five instances of type random (R), clustered (C), and mixed random
and clustered (RC) for a planning horizon of four, six, and eight days, denoted by p4, p6, and
p8, respectively. For p4 the customers need to be visited either one, two, or four times, for
p6 either one, two, three, or six times, and for p8 either one, two, three, four, or eight times.
Following instance sets were derived: p4 with 36 customers, p4 with 50 customers, as well
as p4, p6, and p8 with all 100 customers. In case less than 100 customers are used the actual
number is given as a subscript; these smaller instances were specifically created for the exact
approaches. During creation the number of vehicles m was altered (reduced) in such a way
that few or none empty routes occur in feasible solutions, yet it is not too hard to find feasible
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4. PERIODIC VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

Table 4.1: Characteristics of Cordeau et al.’s test instances with best known solutions
without and with forward time slack.

Id n m t D Q BKS BKSFTS

p01a 48 3 4 500 200 2989.58 2909.02
p02a 96 6 4 480 195 5107.51 5026.57
p03a 144 9 4 460 190 7158.77 7023.90
p04a 192 12 4 440 185 7981.85 7755.77
p05a 240 15 4 420 180 8584.35 8311.17
p06a 288 18 4 400 175 10935.60 10473.24
p07a 72 5 6 500 200 6892.71 6782.68
p08a 144 10 6 475 190 9751.66 9574.80
p09a 216 15 6 450 180 13707.30 13201.06
p10a 288 20 6 425 170 17754.20 16920.96

p01b 48 3 4 500 200 2284.83 2277.44
p02b 96 6 4 480 195 4141.15 4121.50
p03b 144 9 4 460 190 5567.15 5489.33
p04b 192 12 4 440 185 6471.74 6347.77
p05b 240 15 4 420 180 6963.11 6777.54
p06b 288 18 4 400 175 8855.97 8582.72
p07b 72 4 6 500 200 5509.08 5481.61
p08b 144 8 6 475 190 7677.68 7599.01
p09b 216 12 6 450 180 10874.80 10532.51
p10b 288 16 6 425 170 13851.40 13406.89

solutions quite early in the solution process. The capacity constraint (Q = 200) was mostly
left untouched, except for p8 instances. Note that for these type of instances we truncate the
distances to the first digit, e.g. as was done in [125]. The characteristics of the 100 customer
instances along with the current best known solutions from [150] and mainly [227] are given
in Table 4.2. Staying in line with [150, 227] we denote this whole 100 customer instance set
as “Pirkwieser and Raidl”.

4.3.3 Large-Scale PVRPTW Instances from Vidal et al. Based on Instances of
Cordeau et al.

Recently Vidal et al. [227] also derived new, large-scale instances. They did so using the
same creation procedure as Cordeau et al. [40, 41]. These instances range up to 960 cus-
tomers, 58 vehicles, and a planning horizon of 12 days, thus being notably larger than previ-
ous instances; see Table 4.3 for more details. So far the only results are presented in [227],
naturally without any comparison, which was an additional motivation to also consider them
for testing in our work.
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4.3. Test Instances

Table 4.2: Characteristics of new Solomon-based “Pirkwieser and Raidl” PVRPTW
instances having 100 customers and a planning horizon of four, six, and eight days, plus
the best known solutions used for calculating the gap.

Id m Q BKS

p4r101 14 200 4082.0
p4r102 13 200 3724.3
p4r103 10 200 3153.1
p4r104 7 200 2566.0
p4r105 11 200 3638.9
p4c101 10 200 2907.4
p4c102 8 200 2882.9
p4c103 7 200 2734.5
p4c104 7 200 2419.0
p4c105 8 200 2884.1
p4rc101 10 200 3955.9
p4rc102 10 200 3755.7
p4rc103 8 200 3449.9
p4rc104 7 200 2991.5
p4rc105 11 200 3932.6

p6r101 14 200 5376.1
p6r102 12 200 5201.6
p6r103 9 200 3940.5
p6r104 8 200 3335.8
p6r105 9 200 4272.9
p6c101 7 200 3981.2
p6c102 7 200 3841.7
p6c103 6 200 3523.6
p6c104 6 200 3206.3
p6c105 7 200 4052.1
p6rc101 10 200 5781.5
p6rc102 9 200 5333.3
p6rc103 7 200 4273.1
p6rc104 7 200 4062.0
p6rc105 9 200 5227.1

p8r101 11 150 6471.3
p8r102 10 180 6097.9
p8r103 8 200 4687.0
p8r104 7 170 4355.8
p8r105 9 150 5473.2
p8c101 7 180 4679.1
p8c102 6 190 4933.3
p8c103 6 200 4664.0
p8c104 8 120 4591.6
p8c105 7 160 5134.2
p8rc101 9 150 6847.2
p8rc102 8 140 5763.3
p8rc103 7 145 5424.9
p8rc104 7 160 4929.5
p8rc105 9 135 6203.4 75
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Table 4.3: Characteristics of Vidal et al.’s large-scale instances, also stating the (previ-
ously) best known solutions.

Id n m t BKS

p11a 360 24 4 20937.29
p12a 480 30 4 26483.68
p13a 600 38 4 31808.00
p14a 720 44 4 36954.39
p15a 840 50 4 41699.07
p16a 960 58 4 48375.16
p17a 360 22 6 28818.04
p18a 520 30 6 37385.82
p19a 700 38 6 48993.72
p20a 880 48 6 60144.66
p21a 420 22 12 54257.26
p22a 600 30 12 72978.33
p23a 780 38 12 90951.34
p24a 960 48 12 114712.30

p11b 360 18 4 15992.20
p12b 480 24 4 20753.17
p13b 600 30 4 24972.94
p14b 720 36 4 29790.14
p15b 840 48 4 41609.04
p16b 960 56 4 49470.50
p17b 360 18 6 22989.05
p18b 520 24 6 32093.04
p19b 700 32 6 42332.28
p20b 880 42 6 52863.23
p21b 420 18 12 43098.26
p22b 600 24 12 58814.76
p23b 780 30 12 74357.84
p24b 960 40 12 94395.56

4.4 Variable Neighborhood Search for the PVRPTW

The first metaheuristic we derive for the PVRPTW is a variable neighborhood search that
incorporates, unites, and partly extends some ideas from other VNS methods reported for
similar problems. The motivation for doing so were twofold: on the one hand, as reported in
the previous section, VNS was successfully applied to other routing problems as well and we
could benefit from these experiences, and on the other hand we needed a suitable candidate
for our envisioned hybrid variants.

76



4.4. Variable Neighborhood Search for the PVRPTW

Below we report on the parts composing our VNS, the outline of the method is further given
in Algorithm 10.

4.4.1 Penalized Cost Function

To help the VNS finding a good feasible solution we explicitly allow infeasible solutions
during the search process, thus smoothing the search space, by relaxing conditions (3) and
(4) of the problem definition. For a solution s, we denote the total travel cost by c(s), the
total violations of the load, duration, and time window constraints by q(s), d(s), and w(s),
respectively. While q(s) and d(s) are calculated on a route basis considering the values of
Qk and Dk, w(s) is determined by

∑n
i=1 max{0, ai − li}, where ai is the arrival time at

customer i. The cost function is defined as

f(s) = c(s) + αq(s) + βd(s) + γw(s) ,

where α, β, and γ are positive weights which can be adapted in a dynamic way during the
search. However, according to preliminary tests we settled on a common fixed value. If not
stated otherwise we use a value of 100, which was also the case in [172]. Only for the results
presented in Section 4.10 we use a different setting.

4.4.2 Initial Solution

Our initialization method is basically based on those introduced in [41], but with a few
modifications. First we randomly choose a visit combination per customer, thus assigning
customers to the days of the planning horizon. In case of Euclidean instances all customers
are ordered according to the angle they make with the depot; ties are broken choosing the
customer with the earlier center of its time window (ei + li)/2 first. An arbitrary ordering
can be used otherwise. Next a customer j ∈ {1, . . . , n} is chosen at random. At most m
routes per day are then constructed by running the following procedure for each day of the
planning horizon:

1. Set k ← 1.
2. For each customer i = j, j + 1, . . . , n, 1, . . . , j − 1 do:

a) If the insertion of customer i into route k would result in the violation of load or
duration constraints, set k ← min{k + 1,m}.

b) Insert customer i into route k so as to minimize the increase of the cost function.

Using this procedure only the last route of each day might violate load or duration con-
straints, whereas all routes might violate time window constraints.

4.4.3 Shaking

In our VNS we make use of three different neighborhood structures utilized in the shaking
phase. For each of these structures we define six moves with increasing maximal perturbation
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Algorithm 10: VNS for the PVRPTW with initial solution xinit
xbest ← xinit; // incumbent solution (though most likely1

infeasible at the beginning)
xvns ← xinit; // solution utilized for shaking2

k ← 1; // shaking strength3

initialize temperature to (average travel costs)/54

while VNS stopping condition is not met do5

while k 6= kmax do6

// shaking:
Select x′ ∈ Nk(xvns)7

// local search:
x′′ ← repeated first improving 2-opt neighbor of x′8

// probably apply additional local search:
if x′′ lies in-between 2% of x and with small probability then9

apply 2-opt∗ improvement on x′′10

// possibly update incumbent:
if x′′ is feasible and better than xbest then11

// additional local search:
apply 2-opt∗ improvement on x′′ if not already done before12

if x′′ made infeasible then13

revert previous local search14

xbest ← x′′; // set new incumbent15

k ← 1; // reset shaking16

// possibly update solution utilized by VNS:
if (x′′ is better than xvns) or (x′′ is worse than xvns but accepted due to17

Metropolis criterion) then
xvns ← x′′18

k ← 1; // reset shaking19

else k ← k + 1; // increase shaking20

every 100th iteration apply linear cooling21

// finished VNS iteration
k ← 1; // reset shaking22
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Figure 4.2: Exemplary segment move.

size δ, hence resulting in a total of 18 shaking neighborhoods. A move chooses the amount
of change randomly in the interval [1, δ].

Change Visit Combination:

Change up to δ visit combinations randomly: Remove a customer from previous visit combi-
nation days and insert it in corresponding days of the new visit combination so as to minimize
the increase of the cost function. It turned out to be beneficial to also allow “changing” the
visit combination of customers offering only one combination, thus removing and insert-
ing the customer on the same days. Due to the greedy insertion the latter operation can be
regarded as a local search.

Move Segment:

Move a random segment of maximal length δ, if δ ∈ [1, 5], or bounded by the route size in
case δ = 6 from a route to another one, i.e. perform a customer relocation. Thereby reverse
the segment with a small probability prev which is set to 0.1 according to preliminary tests.
Such a move is shown in Figure 4.2.

Exchange Segments:

Exchange two random segments of varying maximal length (as in the previous move opera-
tor) between two routes, performing a CROSS exchange move. Reverse the segments with a
small probability prev, occasionally performing an iCROSS exchange move [27]. Again, prev
is set to 0.1. See Figure 4.3 for an example.

4.4.4 Shaking Neighborhood Order

According to findings in [105] we also use for our VNS a fixed neighborhood order of change
combination, move segment, and finally exchange segments. The six moves of a specific
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r1
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1 2 3 4 5
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1 5

6 8

7 8
⇓

Figure 4.3: Exemplary segments exchange.

Table 4.4: Fixed shaking neighborhood order.

k Nk
1–6 Change Visit Combination up to δ = k times

7–11 Move Segment of maximal length δ = k − 6
12 Move Segment of maximal length bounded by the route

size
13–17 Exchange Segments of maximal length δ = k − 12

18 Exchange Segments of maximal lengths bounded by
corresponding route size

neighborhood structure are arranged in increasing order according to the perturbation size δ.
This order is detailed in Table 4.4.

4.4.5 Local Search Procedures

We apply local search on each tour changed during the shaking phase. Thereby we make
use of the well-known 2-opt neighborhood, where a single move corresponds to exchanging
two edges within a tour, inverting a segment. The neighborhood is searched in lexicographic
order and the search is repeatedly applied until no more improvement is possible. Extensive
tests revealed that the best improvement variant clearly outperforms a first improvement
strategy, both in terms of solution quality and runtime.
Additionally each new incumbent solution is subject to a 2-opt∗ inter-route exchange heuris-
tic [173]. Hereby for each pair of routes of the same day all possible exchanges of the routes’
end segments are tried; an exemplary application is depicted in Figure 4.4. Again, this local
search iterates until no further improvement is possible, considering all days of the planning
horizon. Contrary to before, for 2-opt∗ the first improvement version yielded slightly better
results, hence only applying this setting. In later variants of the VNS, and for complete-
ness also included in Algorithm 10, we further apply 2-opt∗ with a small probability to each
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Figure 4.4: Exemplary application of the 2-opt∗ improvement procedure on routes r1

and r2.

newly derived solution lying within 2% to the current incumbent. The accurate values of this
probability will be given in Section 4.10 since it depends on the instance set.

4.4.6 Acceptance Decision

To avoid that the VNS becomes too easily trapped in local optima, due to the cost func-
tion guiding towards feasible solutions and most likely complicating the escape of basins
surrounded by infeasible solutions, we also allow to accept worse solutions under certain
conditions. This is accomplished by utilizing a Metropolis criterion like in simulated anneal-
ing [123] for inferior solutions s′. They are accepted with a probability of e−(f(s′)−f(s))/T ,
depending on the cost difference to the actual solution s of the VNS process and the temper-
ature T . We apply a linear cooling scheme and decrease T every τT iterations by an amount
of (T ·τT )/τmax, where τmax denotes the maximal VNS iterations. Preliminary tests showed
a satisfying performance over a wide range of instances when setting τT = 100 and using an
initial temperature value of T0 = 10. Similar to the penalty weights only in Section 4.10 a
different setting is applied.

4.4.7 Improved Route Evaluation

So far we implicitly assumed that each vehicle arrives as early as possible at the first customer
j served by simply setting the waiting time at the depot to max{e0, ej − c0j}. An improved
method involves the concept of forward time slack introduced in [205] for the VRPTW. This
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initial waiting time

waiting time

(i)

(ii)

(iii)

Figure 4.5: Different initial waiting times: (i) none at all, the route duration limit is
exceeded before reaching the last customer (this setting is usually not used), (ii) set
waiting time such that first customer is visited as early as possible (default setting), (iii)
by considering forward time slack the initial waiting time is maximally increased to
keep the route duration at a minimum.

was already applied to the PVRPTW by the TS heuristic [42], and later also used in [227].
The idea is to postpone leaving the depot as late as possible without increasing the time
window violation, resulting in minimization of the route duration and probably rendering
previously infeasible routes and thus solutions feasible. An example of this circumstance
is shown in Figure 4.5. Even though this improved evaluation is only beneficial in case of
a restriction on the route duration (of course coupled with the time windows). Further, its
handling requires more computational effort. The concept of forward time slack will also be
utilized for the exact approaches later on.

4.4.8 Previous Computational Results

First computational results were presented in [158]. There it was shown that 2-opt∗ yields
an improvement at nearly no computational cost, but note that at this time its application
was restricted to new incumbent solutions only. Though a moderate iteration limit of 106

was used the VNS outperformed the TS of [41] as well as those in [42] utilizing the forward
time slack. A larger improvement with regard to the best known solutions could be obtained
without the forward time slack (-2.41% as opposed to -0.97%), i.e. compared to the results
in [41]. Nevertheless, for both settings for all 20 instances considered (total of 40) the VNS
yielded a better solution, i.e. a new best known solution.
More results as well as a comparison to the latest methods will be given in Section 4.10.
Some more previous results will also appear in the following sections, since this “pure”
VNS also represents a baseline for most of the other developed methods.

4.5 Multiple VNS

We extend the traditional VNS, which only has a single search trajectory, by considering
multiple cooperating VNS instances performed in an intertwined way. Thus, our concern
here is to investigate the possible benefits of a sequential cooperative multistart search. This
new VNS variant is denoted as multiple VNS (mVNS).
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Algorithm 11: Multiple VNS: #VNS refers to the number of VNS instances, #sec to
the number of sections per VNS instance, and itermax is the total number of allowed
iterations.

for i = 1 to #VNS do1

initialize VNS[i]2

itersec ← ditermax/(#VNS ·#sec)e3

for sec = 1 to #sec do4

for i = 1 to #VNS do5

execute VNS[i] for itersec iterations6

x← best solution of all VNS instances7

Replace solution of worst VNS instance by x8

Return best solution of all VNS instances9

Although it would be straight-forward to parallelize this approach, parallelization is not the
issue we want to focus on here. A somewhat related approach is replicated parallel VNS [88,
143], in which multiple VNS instances are performed independently in parallel; the overall
best solution is finally returned. In this case, the gain in performance is (almost) entirely due
to the parallelization. In contrast, we aim at achieving better results within the same total
CPU-time as required by a simple VNS run.

The multiple VNS algorithm is shown in Algorithm 11. We initialize each VNS instance in-
dependently by performing the method for creating a random solution 100 times and taking
the best solution. This way each VNS instance most likely starts with a different initial solu-
tion. In the following the VNS instances are executed section-wise by setting an appropriate
iteration limit given the total iteration limit and the number of sections. After each block
of section-wise executions the actual best solution is determined and replaces the solution
of the worst VNS instance. The latter is the cooperative part, where, considered locally, a
worse performing VNS is supported by the best one, and seen from a global perspective, the
search is intensified in the neighborhood of the so far best solution.

In some sense VNS instances can be said to be adaptively allocated to promising areas of the
search space: If a solution is best after one iteration of the outer loop, one additional search
trajectory is started from it. If the solution remains the incumbent over further iterations,
more VNS instances are restarted from this point and a corresponding stronger intensifica-
tion takes place. If, however, a new incumbent is found, no further VNS instances will be
restarted from the previous one. Of course, in the unlucky event of a very captious local
optimum this behavior could lead to a situation where all VNS instances are restarted from
the same solution and no further progress is achieved, though this would be no worse than in
the single VNS instance case.
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4.5.1 Previous Computational Results

In [161] we compared the performance of the multiple VNS, as well as a matheuristic utiliz-
ing it (see Section 4.9.2), to those of the standard VNS. Back then we tested on our newly
derived instances having a planning horizon of four and six days. In the following we present
the comparison of the mVNS and the VNS in a concise way—averaging over the instances of
a specific type—, extended by corresponding tests on the additional instances with an eight
day planning horizon. We always did 30 runs per instance and VNS variant and determined
how often the performance difference was statistically significant, using a Wilcoxon rank
sum test with an error level of 5%. The runtimes are omitted since mVNS takes virtually the
same time than VNS when executed with an equal iteration limit, in this case 106. Neverthe-
less, we also state the performance when compared to a VNS run with 2·106 iterations (which
we mainly performed to compare to the matheuristics). In Table 4.5 we present results for
mVNS running with 5, 8, 10, and 15 VNS instances, these are denoted by mVNS#VNS ,#sec ,
where #sec was here consistently set to 10 (as determined by preliminary tests). As can be
seen multiple VNS is very often able to significantly outperform the standard VNS, ranging
from 14 out of 15 times (93%) for p4 instances to 7 out of 15 times (46%) for p8 instances.
Even when compared to the VNS allotted twice as many iterations the performance gain is
notable for p4 and p6 instances. In this setting eight VNS instances (#VNS = 8) seems to
yield the best overall results. Though it is clear that choosing a suitable number depends on
the instances at hand, especially on their size, but also on the number of sections. With an
increasing length of the planning horizon #VNS should be rather small. This is not surpris-
ing since as the instance size gets larger in general (e.g. also more customers), so does the
search space, and executing many VNS instances for rather few iterations is not beneficial
anymore as the individual search attempts are not intensive enough. For further results we
refer to Section 4.10 where mVNS will also be applied on other instances.

4.6 Evolutionary Algorithm

Although the following EA was designed already having the specific hybridization in mind,
see Section 4.9.3, it achieves relatively good solutions on its own, but is clearly neither
competitive to the VNS nor to the recently appeared EA-based algorithms. Further, it was in
fact the first of its kind for periodic routing problems. Our intention was that the EA should
mainly operate with whole (feasible) routes, in the sense that we assume to already have
good routes at hand and more or less concentrate on solving the set covering aspect of the
problem, of course also taking visit combinations properly into account. However it turned
out very quickly that an appropriately combined repair/local search component is vital to
also adequately adjust the routes.
The chromosomes are essentially represented as solutions of the VNS, i.e. in a direct way
and not making use of any decoder. An array holds the currently selected visit combination
per customer, and each day of the planning horizon holds an array of routes, where the latter
directly represent the customer sequence. In accordance to the given fleet size we have m
routes on each day, some of them might be empty in case less vehicles are in use.
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Table 4.5: Concise results of mVNS on Pirkwieser and Raidl instances with a planning
horizon of four, six and eight days, stating how often mVNS performs significantly
better/worse than VNS.

Instances mVNS5,10 mVNS8,10 mVNS10,10 mVNS15,10

significantly better/worse than VNS (106)
p4r 4×/0× 5×/0× 4×/0× 4×/0×
p4c 5×/0× 5×/0× 5×/0× 5×/0×
p4rc 3×/0× 4×/0× 3×/0× 3×/0×
p6r 5×/0× 4×/0× 4×/0× 3×/0×
p6c 3×/0× 5×/0× 4×/0× 4×/0×
p6rc 3×/0× 2×/0× 2×/0× 0×/0×
p8r 2×/0× 2×/0× 3×/1× 0×/2×
p8c 2×/0× 1×/0× 3×/0× 2×/1×
p8rc 2×/0× 1×/0× 1×/1× 1×/2×

29×/0× 29×/0× 29×/2× 22×/5×
significantly better/worse than VNS (2 · 106)
p4r 3×/0× 4×/0× 4×/0× 3×/0×
p4c 2×/0× 5×/0× 3×/0× 4×/0×
p4rc 2×/1× 3×/0× 2×/0× 0×/0×
p6r 3×/0× 1×/0× 2×/0× 2×/0×
p6c 1×/0× 4×/0× 2×/0× 2×/0×
p6rc 1×/0× 1×/1× 0×/3× 0×/3×
p8r 1×/1× 0×/2× 0×/2× 0×/3×
p8c 0×/3× 0×/3× 0×/3× 0×/2×
p8rc 1×/2× 1×/4× 1×/4× 1×/4×

14×/7× 19×/10× 14×/12× 12×/12×
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Algorithm 12: Evolutionary Algorithm for the PVRPTW

initialize population pop1

repeat2

p1 ← binary tournament on pop3

p2 ← binary tournament on pop4

o← recombine(p1, p2)5

o← mutate(o)6

o← adjustVisitCombinations(o)7

o← removeRedundantCustomers(o)8

o← 2-opt(o)9

o← addMissingCustomers(o)10

o← 2-opt(o)11

if o is new incumbent solution then12

o← 2-opt∗(o)13

until stopping criteria not met14

The initial population of the stand-alone EA is created by repeatedly applying the initializa-
tion procedure also used for the VNS as described in Section 4.4. Also the same penalized
objective function is used, however, this time with penalty weights of 1000 to almost enforce
the selection of feasible solutions only.
For recombination we have three different operators affecting different aspects:

• apply recombination solely on the visit combinations,

• apply recombination solely on routes considering whole days as one unit (building
block),

• or a more fine-grained variant of the latter applying recombination solely on routes
considering single days’ routes.

In preliminary tests we evaluated the performance of different standard crossover strategies,
involving one-point, two-point, and uniform crossover. The latter yielded the best results, so
in each case an uniform crossover is used. Note that during crossover the routes itself are not
changed, so the resulting offspring solution might visit some customers more than once at a
day and/or might visit them not at all.
Another vital component is the mutation operator, which might cause several possible changes:

• removal of a route selected at random,

• swapping of two routes of differing days,

• greedy insertion of a random customer on a random day,

• removal of one occurrence of a random customer,

86



4.7. Column Generation Approach for the PVRPTW

• or changing one visit combination.

Each newly derived chromosome is subject to a procedure which eventually adjusts the visit
combinations according to the routes, i.e. the visit combinations are independently chosen
s.t. the least under-covering occurs, breaking ties w.r.t. the least over-covering. Though this
is not applied if recombining the visit combinations, also visit combinations changed during
mutation are left out. This adjustment step is to facilitate the set covering point of view,
i.e. to first change the visit combinations in accordance to the routes and then vice versa.
Hence afterwards, over-covering is tackled via removing redundant customers in a random
sequence, followed by a 2-opt intra-route improvement on the altered routes. Finally, missing
customers are added in a greedy way and subsequently 2-opt improvement is applied again.
Adding missing customers is the most critical part potentially rendering a solution infeasible,
most likely because of a time window violation. Due to this we initially adjust the visit
combinations to reduce the amount of necessary insertions. Similar to the VNS each new
incumbent solution is subject to the mentioned 2-opt∗ procedure. An outline of the EA is
shown in Algorithm 12.
The EA applies a steady-state reproduction with a population of 100 individuals, using binary
tournament selection with replacement, and accepting no duplicates (based on the objective
function). All different recombination as well as mutation operators are applied with equal
probability.
Since the EA is basically only compared to a matheuristic utilizing it, the combined results
are given in Section 4.9.3.

4.7 Column Generation Approach for the PVRPTW

Among the most successful solution approaches for VRPs are algorithms based on column
generation [63], where the initial basis is a restricted master problem gradually enriched by
new columns by iteratively solving pricing subproblems. Therefore we focus on an ILP
formulation suitable for such an approach. The master problem and the pricing subproblem
are presented in Section 4.7.1 and 4.7.2, respectively. A schematic diagram of this process
is shown in Figure 4.6.

4.7.1 Set-Covering Master Problem

We formulate the integer master problem (IMP) for the PVRPTW as a set-covering model,
since such an approach also led to strong bounds in case of the VRPTW [26]:

min
∑

τ∈T

∑

ω∈Ω

γω χωτ (4.1)

s.t.
∑

r∈Ci

yir ≥ 1 ∀i ∈ VC (4.2)

∑

ω∈Ω

χωτ ≤ m ∀τ ∈ T (4.3)
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Figure 4.6: Information exchange between LP master problem and ESPPRC pricing
subproblem.

∑

ω∈Ω

αiω χωτ −
∑

r∈Ci

βirτ yir ≥ 0 ∀i ∈ VC ; ∀τ ∈ T (4.4)

yir ∈ {0, 1} ∀i ∈ VC ; ∀r ∈ Ci (4.5)

χωτ ∈ {0, 1} ∀ω ∈ Ω; ∀τ ∈ T (4.6)

The set of all feasible routes, which grows exponentially with the number of customers, is
denoted by Ω, and for each route ω ∈ Ω its cost is γω and χωτ is the number of times route
ω is selected on day τ . For each customer i ∈ VC , variables yir indicate whether or not
visit combination r ∈ Ci is chosen. Following constraints are used: Cover constraints (4.2)
guarantee that at least one visit day combination is selected per customer, fleet constraints
(4.3) restrict the number of daily routes to not exceed the available vehicles m, and finally
visit constraints (4.4) link the routes and the visit combinations, whereas αiω and βirτ are
binary constants and indicate whether route ω visits customer i and if day τ belongs to visit
combination r ∈ Ci of customer i, respectively. In the following we want to derive a good
lower bound for the IMP by solving its LP relaxation. Therefore conditions (4.5) and (4.6)
are replaced by yir ≥ 0 and χωτ ≥ 0, yielding the (linear) master problem (MP). Due to the
exponential number of variables (columns) corresponding to routes, this LP cannot be solved
directly. Instead, we restrict ourself to a small number of initial columns Ω′ ⊂ Ω. The
corresponding LP is referred to as restricted master problem (RMP). Additional columns
(routes) that are able to improve the current LP solution are then generated by iteratively
solving the so-called pricing subproblem.

Initial Column Set

An obvious way to start the column generation process is to populate the set of initial
columns Ω′ by the routes of at least one feasible primal solution, e.g. provided by a short
run of the VNS or even only the construction heuristic. Of course this extra computation
is only necessary in case of a rather limited fleet size (which is the case for all considered
instances). As a side-note, suppose the fleet size equals or exceeds the number of customers.
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Then we could simply insert a depot-customer-depot route for each customer and guarantee
a feasible RMP.
However, if deriving initial columns is either not possible or not desired one can utilize slack
variables—one per customer to be visited—and can thus start with an empty set of columns
(Ω′ = ∅). These slack variables need to be added to constraints (4.4)

∑

ω∈Ω

αiω χωτ −
∑

r∈Ci

βirτ yir + si ≥ 0 ∀i ∈ VC ; ∀τ ∈ T

as well as with a penalty to the objective function (4.1)

min
∑

τ∈T

∑

ω∈Ω

γω χωτ +
∑

i∈VC

siM .

The penalty M should be high enough such that it is still profitable to actually visit the
customers.

4.7.2 Pricing Subproblem

In the pricing subproblem we search for a column (route) which potentially improves the
LP relaxation of the RMP. Since it is a “new” column it implies that it was not considered
before, i.e. belonging to the set Ω\Ω′. Solving the problem for day τ ∈ T basically amounts
to finding a route minimizing the reduced costs:

min
ω∈Ω

γω − ρτ −
∑

i∈VC

αiωπiτ

and checking if this cost value is below zero, with ρτ and πiτ being the corresponding dual
variable values of constraints (4.3) and (4.4), respectively. In case these costs are greater or
equal than zero then no potentially improving column could be found for day τ .
In order to formally state the detailed pricing subproblem we need to project the so far high-
level representation of a route to the arc level. Hence following pricing subproblem holds for
each day τ ∈ T and is solved on the auxiliary graph G′ = (V ′, A′), with V ′ = V ∪ {vn+1}
and A′ = {(v0, i), (i, vn+1) : i ∈ VC} ∪ {(i, j) : i, j ∈ VC , i 6= j}, where vn+1 is a copy
of the (starting) depot v0 and acts as target node, we further assume a homogeneous fleet of
vehicles:

min
∑

i∈V ′

∑

j∈V ′
ĉijτ xij (4.7)

s.t.
∑

j∈VC

x0j = 1 (4.8)

∑

i∈V ′
xik −

∑

j∈V ′
xkj = 0 ∀k ∈ VC (4.9)

∑

i∈VC

xi,n+1 = 1 (4.10)
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∑

i∈VC

∑

j∈V ′
qi xij ≤ Q (4.11)

an+1 − w0 ≤ D (4.12)

ai + wi + di + cij −Mij(1− xij) ≤ aj ∀(i, j) ∈ A′ (4.13)

ei ≤ (ai + wi) ≤ li ∀i ∈ V ′ (4.14)

wi ≥ 0 ∀i ∈ V ′ (4.15)

ai ≥ 0 ∀i ∈ V ′ \ {v0} (4.16)

a0 = 0 (4.17)

xij ∈ {0, 1} ∀(i, j) ∈ A′ (4.18)

Variables xij , ∀(i, j) ∈ A′ denote which arcs from A′ are used, and ĉijτ is the reduced cost
of using arc (i, j) on day τ :

ĉijτ =

{
cij − ρτ if i = v0, j ∈ VC
cij − πiτ if i ∈ VC , j ∈ V ′ .

Constraints (4.8)–(4.10) are the flow constraints, (4.11) and (4.12) guarantee feasibility re-
garding capacity and duration constraints, respectively. Finally, (4.13) and (4.14) are time
constraints, with variable ai denoting the arrival time at customer i and wi being the waiting
time occurring after this visit.
This pricing subproblem resembles a shortest path problem with resource constraints (SPPRC) [112].
Regarding the quality of the theoretically obtainable lower bound it is beneficial to restrict
the search to elementary paths, hence only considering the elementary SPPRC (ESPPRC).
A drawback, especially from a computational point of view, is that this condition renders the
problem NP hard, whereas the SPPRC is solvable in pseudo-polynomial time. However,
because of the better bounds we decided to go with the ESPPRC.

Exact Label Correcting Algorithm

The ESPPRC subproblem is solved by a dynamic programming approach based on [74, 31].
We use a label correcting algorithm and expand the partial paths from the depot v0 to the
target node vn+1, thereby retaining only non-dominated labels. We will give a short outline
of this method next, according to [112]. In the course of the algorithm two sets of paths,
the unprocessed and useful paths, are dynamically changed. One usually starts with a single
unprocessed path containing only the start depot. During the path extension step the next
unprocessed path is selected and all feasible one-node extensions are created and added to
the set of unprocessed paths, whereas the extended path itself is removed from it and added
to the set of useful paths. Having a lot and/or tight constraints already rules out a lot of the
extensions here, e.g. for the ESPPRC visiting a node twice is also not allowed. In a second
step the algorithm applies the dominance rule(s) to reduce both sets to limit the number
of necessary extension steps. It only retains the best (in fact the Pareto-optimal) paths and
guarantees finding an optimal solution to the ESPPRC. Though one can trade optimality for
less computational effort as we will see a bit later.
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In the following we describe the label and the dominance criteria suitable for our problem
setting in more detail, which are an important part of the whole algorithm. We are faced both
with the existence of time windows and restrictions on route duration. To our knowledge
this combination was not part of any work in the context of this algorithm before, though
it is highly relevant in practice. Due to these constraints it is a non-trivial task to find non-
dominated paths, since on the one hand partial paths arriving earlier might be beneficial
regarding following time windows, whereas on the other hand partial paths arriving later
might be able to reach more customers afterwards.
To minimize route duration we adhere to the concept of forward time slack, see Section 4.4.7,
and maximize the initial waiting time w0 at the (start) depot without introducing a time
window violation. When building a path we need to determine the minimum of this time
slack, also used to calculate the minimal route duration.
A label associated with a partial path p at node vi holds the following resource information:
accumulated cost Ci, load Li, overall waiting time Wi, as well as the arrival time Ai, the
actual minimal forward time slack Fi, and a set Vi(p) containing already visited nodes and
those unreachable due to the numerous restrictions. Having this information, we define two
more resources which are calculated on-the-fly: the start of service time Si = max{Ai, ei}
and the current minimal route duration Di = Si −min{Fi,Wi}.
When moving from node vi to node vj the label resources are updated as follows:

• costs: Cj = Ci + cij

• load: Lj = Li + qi

• arrival time: Aj = Ai + wi + cij + di

• waiting time: Wj =Wi + max{0, ej −Aj}

• forward slack time: Fj = min{Fi,Wj + (lj − Sj)}

When a path reaches the target node vn+1 the initial waiting time at the depot is set to
w0 = Fn+1 in order to yield the overall minimal route duration Dn+1.
Finally, based on these resources we define three different dominance rules stating whenever
partial path p1 dominates partial path p2, both ending at the same node vi:

R1: C1
i ≤ C2

i ∧ D1
i ≤ D2

i ∧ L1
i ≤ L2

i ∧ A1
i ≤ A2

i

R2: C1
i ≤ C2

i ∧ D1
i ≤ D2

i ∧ L1
i ≤ L2

i ∧ A1
i ≤ A2

i ∧ Vi(p
1) ⊆ Vi(p2)

R3: C1
i ≤ C2

i ∧ D1
i ≤ D2

i ∧ L1
i ≤ L2

i ∧ A1
i ≤ A2

i ∧ Vi(p
1) ⊆ Vi(p2) ∧ F1

i ≥ F2
i

A dominated partial path is discarded from further consideration. Dominance rule R1 is quite
simple and fast, a similar one was used in [31]. However, it sometimes also filters out (near)
optimal least cost paths. Contrary to rule R1, rules R2 and R3 are more refined and also
consider sets Vi(p1) and Vi(p2). Especially, rule R3 additionally takes the actual forward
time slack into account, which is the critical resource connecting the arrival time and the
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duration. Due to rules R1 and R2 being too relaxed and therefore of heuristic nature, rule
R3 must be applied at last to guarantee finding all least cost paths, since it is the only rule
(implicitly) incorporating all resources. In order to decrease computation time we apply the
following sequential dominance rule scheme:

(a) use rule R1 as long as more than 100 new columns could be found, else switch perma-
nently to (b)

(b) use rule R2 until no new columns could be found, if time windows and limited route
duration then switch to (c); terminate the column generation otherwise,

(c) finally use rule R3, returning to (b) in the next run whenever new columns could be
found; terminate the column generation otherwise.

Optionally the dynamic programming algorithm can be stopped after a certain number of
negative cost paths have been found, i.e. applying a forced early stop [128]. For this, one
simply keeps track of the number of paths which are extended to the end depot, and prema-
turely halts the execution if it exceeds the desired number. Although the optimal path will
most likely be missed (especially at the first applications when a lot paths are found), some
good-enough paths are obtained after a short time.

Heuristic Pricing Algorithms

We further propose two heuristics to generate new columns having negative reduced costs.
Both rely on a local search framework offering following neighborhood moves operating on
a single path each:

• insert a new customer in the path,

• delete a visited customer from the path,

• move a visited customer to another position within the path,

• replace a visited customer with another not yet visited one, and

• exchange/swap two visited customers.

The first method is actually a metaheuristic which can be regarded a greedy randomized
adaptive search procedure (GRASP) [191]: In each iteration we start with a virtually empty
path (v0, vn+1) with zero costs and successively try to append arcs with negative cost such
that the feasibility of the path is maintained, always appending to the currently last node
before vn+1. In case several arcs are available to append we always select one at random.
Afterwards we apply up to ten random moves out of the set of neighborhood moves de-
scribed above. Finally, we perform a local search also based on these moves, applying them
in a random fashion and always accepting the first improving change. This setting turned out
to yield better results on a large set of instances on average than using a strict order and/or a
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best improvement strategy. Whenever an iteration results in a negative cost path it is stored
and returned at the end of the heuristic, thereby avoiding to accept duplicate paths.
The second heuristic is quite similar, but instead of generating paths from scratch it exploits
currently active routes in the master problem as initial routes. These paths also initially have
a reduced cost of zero. As for the GRASP-based metaheuristic the method subsequently
applies random perturbation and first improvement local search. This variant is denoted as
REUSE heuristic. A similar idea was also successfully applied in combination with a tabu
search in [62].

Hybrid Pricing Algorithms

It is a natural extension to consider some form of hybridization of the exact and the heuristic
pricing algorithms which were presented before. An obvious approach is a pure sequential
hybrid: start with one of the heuristic methods and let it run as long as it yields satisfy-
ing results (which is to be defined), then switch to the exact dynamic programming based
algorithm, which is itself also applied in various phases.

Speeding Up the Column Generation

As soon as new columns are generated for one of the daily subproblems they can be inserted
for all days and the RMP is re-solved. This strategy leads to a substantial speed-up compared
to only inserting the columns in the corresponding day. In the following iteration the same
daily subproblem is solved again. This process continues until a full iteration over all days
yields no new columns.

4.7.3 Computational Results

The first set of test instances for the column generation approach was taken from Cordeau et
al., described in Section 4.3.1. We also reduced some of them by selecting only a random
subset of the customers and appropriately adapting the number of vehicles; in this case we
give a subscript denoting the index of the reduced instance. For this tests the initial set of
columns is provided by taking the routes of feasible solutions of the VNS. The algorithms
have been implemented in C++, compiled with GCC 4.1 and executed on a single core of a
2.2 GHz Dual-Core AMD Opteron 2214 PC with 4 GB RAM. Ilog CPLEX 11.2 was used as
LP solver. The ESPPRC subproblem is solved in four ways:

(i) dynamic programming (DP),

(ii) dynamic programming with forced early stop after generating more than 1000 columns
(DPS), and two hybrid methods composed of

(iii) the GRASP-based metaheuristic applied for at most 10000 iterations—in case it did
not find new columns in the first 1000 iterations—and switching to DPS if either less
than 100 new columns could be found or the number of new columns decreased in the
last five iterations (GRASP+DPS),
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(iv) as well as similar to (iii) but applying the REUSE heuristic instead (REUSE+DPS).

The newly generated routes are always inserted in all days. For the hybrid non-deterministic
variants we performed 10 runs on each instance.
In Table 4.6 we state the instances, the initially provided upper bounds by the VNS (UBVNS),
the derived lower bounds (LB), the percentage gaps between them, i.e. %-gap = (UB −
LB)/LB · 100%, the CPU times of settings DP and DPS, as well as the minimal and median
times of setting GRASP+DP and REUSE+DP over 10 runs. It can be observed that applying
a forced early stop (DPS) is in general faster than using none, especially for instances with
narrow time windows where the runtime is often halved. Using the hybrid variants is benefi-
cial for all instances but 2br1, showing only a small differene though. Thus it seems that the
faster heuristically generated columns outweigh the probably higher quality columns of the
DP algorithm. This difference is more obvious for instances having narrow time windows
(1a–8a). Of both hybrid variants the one using the REUSE heuristic is almost always faster
and therefore should be the method of choice. The resulting gaps are clearly smaller for
instances with a period of four days, though this is to some part also affected by the method
providing the initial solutions.
As second and third set of test instances we took those with a planning horizon of four days
(p4) either having 50 or all 100 customers of the PVRPTW instances we created out of the
Solomon VRPTW instances, see Section 4.3.2. For these tests we start with an empty set
of initial columns, hence introducing the slack variables into the model. Note that due to
this we cannot state a resulting percentage gap. Here we further always apply the forced
early stop, yet already after generating more than 100 new columns, which is of course a
speedup in the short term, but also turned out to be beneficial as a whole. Additionally a
different setting than before is to insert the generated columns for the corresponding day
only, denoted as DPS

1d. The results with 50 customers are reported in Table 4.7, those with
100 customers in Table 4.8. Whenever a “–” is reported instead of a runtime the run could
not be finished within 15 hours and was stopped. As was expected it is always clearly
better to insert the generated routes for all days, otherwise often consuming drastically more
runtime or even reaching the time limit. So apart from DPS

1d all settings yield a solution in
time. Concerning the performance when additionally using heuristic column generation, it
is observable that for 50 customers this sometimes leads to an overhead and therefore solely
applying the label correcting algorithm (with the different dominance rules though) is often
still better, in fact the ratio is 7:7 and one draw. Looking at the performance on the 100
customer instances though, the hybrid variants clearly yield better results, this time for each
instance. For both instance sets the hybrid variant using the REUSE heuristic outperforms the
one with the GRASP based method, again performing best of all settings. The improvements
are further not dependent on the instance type. Finally, we observed that when using either
of the pricing heuristics the actual number of slack variables in use decreases much faster as
when starting with the labeling algorithm, and only after a few iterations no slack variables
are active anymore. Moreover, the good performance of the heuristics is not influenced by
the reduced costs, whereas the labeling algorithm is quite sensitive to them and often takes
notably longer.
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Table 4.7: Experimental results of different subproblem algorithm settings on new
PVRPTW instances with 50 customers based on Solomon’s instances.

Id LB
DPS

1d DPS GRASP+DPS REUSE+DPS

t[s] t[s] min t[s] med t[s] min t[s] med t[s]

p4r10150 2736.50 0.6 0.2 0.8 0.9 0.6 0.7
p4r10250 2151.73 2.3 0.7 0.9 1.1 0.8 1.1
p4r10350 1868.40 6.8 1.5 1.3 1.7 1.3 1.7
p4r10450 1679.42 12321.4 7.0 2.8 4.0 2.6 3.4
p4r10550 2252.23 3.0 0.9 0.7 1.0 0.6 0.9
p4c10150 1966.00 3.4 1.1 1.4 1.6 1.3 1.5
p4c10250 1970.10 25.1 3.5 1.5 2.2 1.8 2.3
p4c10350 1825.77 16.2 4.4 2.7 3.2 2.3 3.1
p4c10450 1784.73 – 801.6 116.7 241.9 132.8 190.4
p4c10550 1978.80 9.0 2.7 1.9 2.1 1.6 2.0
p4rc10150 2771.97 0.8 0.4 0.6 0.8 0.6 0.7
p4rc10250 2420.57 3.0 0.9 0.7 1.0 0.8 1.2
p4rc10350 2145.00 64.5 4.3 1.3 2.2 1.4 2.1
p4rc10450 1787.56 43847.5 20.1 5.7 7.9 5.9 6.7
p4rc10550 2593.00 3.4 0.8 0.8 1.0 0.8 1.0

4.8 Branch-and-Cut-and-Price for the PVRPTW

Although the previously presented column generation approach for the PVRPTW yields tight
lower bounds, it does not provide upper bounds, i.e. feasible primal solutions, in general. In
order to certainly produce both, and eventually even prove the optimality of the solution
found, one needs to extend the column generation process with a branching scheme, finally
yielding a Branch-and-Price (B&P); this method is the topic of Section 4.8.1. Additionally
adding inequalities to strengthen the model yields a Branch-and-Cut-and-Price (B&C&P)
approach. The latter is achieved for our problem via adding 2-path cuts as well as subset-
row cuts, which is detailed in Section 4.8.2.

4.8.1 Branching Scheme

We propose three types of branching in order to obtain integer solutions. They are applied in
the order as presented. The first one often appears in the literature and concerns the number
of vehicles, also referred to as fleet size. Thereby we select the most fractional fleet over all
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Table 4.8: Experimental results of different subproblem algorithm settings on new
PVRPTW instances with 100 customers based on Solomon’s instances.

Id LB
DPS

1d DPS GRASP+DPS REUSE+DPS

t[s] t[s] min t[s] med t[s] min t[s] med t[s]

p4r101 4076.85 16.4 6.5 3.0 3.5 2.7 3.2
p4r102 3714.80 99.4 15.5 5.5 6.0 5.7 6.8
p4r103 3142.10 – 54.1 8.4 13.5 9.3 11.4
p4r104 2516.07 – 1127.5 98.4 145.4 78.5 130.4
p4r105 3590.48 104.6 14.4 5.2 5.9 4.3 4.9
p4c101 2904.50 123.8 19.9 5.7 6.7 4.9 6.3
p4c102 2869.30 7038.5 73.8 21.8 27.4 16.2 20.1
p4c103 2676.67 – 197.8 25.8 30.7 21.3 25.8
p4c104 2400.23 – 17488.7 6198.3 8360.9 3140.3 6773.7
p4c105 2876.30 174.2 51.7 8.8 10.6 8.6 10.1
p4rc101 3907.70 43.4 10.2 4.2 5.2 4.0 4.9
p4rc102 3716.95 292.0 22.0 6.7 7.6 6.7 7.6
p4rc103 3401.62 – 83.6 14.6 18.7 13.1 15.2
p4rc104 2941.71 – 4768.1 1003.2 1499.5 721.2 1447.7
p4rc105 3882.68 108.9 13.7 5.2 6.2 5.0 5.5

days:

τ ′ = argmax
τ∈T

min

(∑

ω∈Ω

χωτ −
⌊∑

ω∈Ω

χωτ

⌋
,

⌈∑

ω∈Ω

χωτ

⌉
−
∑

ω∈Ω

χωτ

)
,

afterwards we add two child nodes with the restriction:

• left child node with fleet size ≤
⌊∑

ω∈Ω χωτ ′
⌋
, and

• right child node with fleet size ≥
⌈∑

ω∈Ω χωτ ′
⌉
.

The next branching rule concerns the visit combinations yir. For this the most fractional visit
combination is selected:

(i′, r′) = argmax
i∈VC , r∈Ci

min(yir, 1− yir)

and utilized to generate the following child nodes:

• left child node with yi′r′ = 1 and yi′r = 0, ∀r ∈ Ci′ , r 6= r′, and
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• right child node with setting yi′r′ = 0.

Finally, we have to use a branching rule taking into account the flow on single arcs which is
implicitly given by the route variables. Again, we select those arc (vi′ , vj′) having the most
fractional flow over all days and add these two child nodes:

• left child node where the arc (vi′ , vj′) is “forced”: whenever a route visits customer i′

it must subsequently also visit j′, and

• right child node where the arc (vi′ , vj′) is forbidden.

Having a complete branching scheme defined, the difficulty in practice, however, is often the
enforcement of the branchings in the actual master problem as well as in subsequent pricing
rounds. Due to the second and third rule additional corresponding arcs have to be forbidden
in order to enforce the chosen branching step.

4.8.2 Strengthening Inequalities

Although the previously defined branching scheme allows to generate primal solutions, it
sometimes takes very long to close the gap between lower and upper bounds and prove
optimality, usually because of the slowly increasing lower bound. Hence we propose two
additional inequalities for strengthening the formulation. Finding cuts to strengthen the
model—either known ones which can be applied or even new ones—is not trivial in gen-
eral, and especially difficult in our case where already a lot of the “usual” cuts appearing
in the VRP literature are already implicitly contained in the model. Therefore we resort to
adapting suitable cuts to our problem which were reported recently.

2-Path Cuts

The 2-path cuts are a special form (an instance) of the k-path cuts which were introduced by
Kohl et al. in 1999 for the VRPTW [125]. Assuming a directed graph, the incoming flow of
a set of customers S ⊆ VC is defined as

X(S) =
∑

i∈VC\S

∑

j∈S
xij .

For a 2-path cut we seek a set S such that X(S) < 2 but the minimal number of vehicles
necessary to service all customers in S, in the following denoted by k(S), is greater than
one, i.e. k(S) > 1. Since the number of vehicles is integral it must hold that k(S) ≥ 2.
In case of non-periodic VRPs each customer needs to be serviced exactly once, whereas for
the PVRP(TW) occur “fractional daily visits” because of

0 ≤
∑

r∈Ci

βirτ yir ≤ 1 ∀i ∈ V .

The flow of a set S further depends on the day, thus is denoted by Xτ (S), τ ∈ T .
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Hence we propose the 2-path cut for the PVRP(TW) in the following way:

Xτ (S) +
∑

i∈S
(1−

∑

r∈Ci

βirτ yir) ≥ k(S) ∀S ⊆ VC ; ∀τ ∈ T

or equivalently

Xτ (S)−
∑

i∈S

∑

r∈Ci

βirτ yir ≥ k(S)− |S| ∀S ⊆ VC ; ∀τ ∈ T .

For separating 2-path cuts one first needs to find sets Xτ (S) < 2. Kohl et al. propose
a greedy algorithm in [125], though it only guarantees to find all sets when the graph is
acyclic. They further state an algorithm which enumerates all minimal sets, but its expected
long runtime prevented anyone from applying it so far. Cook and Rich [37] used the random
contraction algorithm of Karger [118, 117], which is a randomized min-cut algorithm. They
use a special form of the algorithm finding all cuts with a weight lying within a multiplicative
factor α of the minimum cut; they set α = 2. Ropke et al. [198] applied a randomized greedy
construction heuristic for finding the necessary sets.
In our work we implemented a heuristic multi-start method to obtain suitable sets of cus-
tomers which bears some resemblance with a variable neighborhood descent; it is depicted
in Algorithm 13. It always considers the customers in a random order and applies a first
improvement fashion, at which only customers with their in-flow X({vi}) above a spec-
ified threshold are taken into account. The latter guarantees to focus on actually rele-
vant customers at the time of separation, the inequality is weakened quite drastically oth-
erwise. Further, a customer i is added to S′ if it holds that 1 < X(S′ ∪ {vi}) < 2,
an exchange of customers i and j occurs when 1 < X((S′ ∪ {vj}) \ {vi}) < 2 and
X((S′ ∪ {vj}) \ {vi}) < X(S′), i.e. the exchange increases the remaining flow. Finally, a
removal of a customer is applied whenever neither adding nor exchanging was successful,
this is tried for n/2 times and yields sets that also satisfy 1 < X(S′) < 2.
Having obtained some viable customer sets, we have to check whether more than one vehicle
is necessary to serve the customers. For this we can directly use our exact label correcting
algorithm developed for the ESPPRC pricing subproblem. Therefore we have to set the costs
of the arcs in a suitable way, s.t. only a path departing from the depot, visiting all customers
in S and ending at the target node will have a negative cost:

c0i = |S| − 0.5 ∀i ∈ S
cij = −1 ∀i ∈ S; ∀j ∈ S ∪ {vn+1}

Those arcs which were not assigned a cost are deactivated. Similarly to solving the actual
pricing subproblem we can apply the different dominance rules in a sequential way, too.
Moreover, we can stop the procedure after finding a single negative cost path.
The 2-path cuts do not intrinsically alter the subproblem and hence allow for a robust B&C&P.
However, they need to be considered when deriving the reduced costs: for each arc from a
customer out of VC \ S to one belonging to S the dual variable value of the corresponding
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Algorithm 13: Separating 2-path cuts: find sets S ⊆ VC with Xτ (S) < 2

Sets← ∅1

for i = 1 to n do2

S′ ← {vi}3

count← 04

repeat5

repeat6

added← addCustomer(S′)7

if NOT added then8

exchanged← exchangeCustomer(S′)9

until NOT (added ∨ exchanged)10

if checkSetForInclusion(S′) then11

Sets← Sets ∪ {S′}12

count← count + 113

remove← removeCustomer(S′)14

until NOT removed ∧ count ≥ n/215

return Sets16

2-path cut must be taken into account when determining the reduced costs of the arc (by
subtracting it).
Note that due to the heuristic for finding the necessary customer sets the separation of 2-path
cuts as a whole is of heuristic nature.

Subset-Row Cuts

The subset-row (SR) inequalities were introduced by Jepsen et al. [114] and were derived
from the clique inequalities for the set-packing problem [149]. Using our notation they can
be stated as:

∑

ω∈Ω

⌊
1

k

∑

i∈S
αiω

⌋
χωτ ≤

⌊ |S|
k

⌋
∀τ ∈ T ; ∀S ⊆ VC ; 0 < k ≤ |S| .

The general idea behind these cuts is to avoid that customers are visited by more than one
vehicle (route), which is clearly satisfied by each feasible integral solution. In the original
work [114] they set |S| = 3 and k = 2, which turned out to be satisfying for our setting,
too. Further, we also do a complete enumeration to identify violated inequalities. The latter
poses no problem with regard to runtime. Their separation is thus done in an exact way.
A downside of the SR inequalities is that they alter the pricing subproblem, i.e. we end up
with a non-robust B&C&P. This is because we need to introduce an additional resource m
per inequality to the labels, setting its value to m = |S ∩ V (L)|, where V (L) are the nodes
visited by the partial path. Naturally these resources need to be considered when checking
for dominance; for details we refer to [114].
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4.8.3 Computational Results

For evaluating the performance of the Branch-and-Price as well as its extension to the Branch-
and-Cut-and-Price approach we took the newly created Solomon-based PVRPTW instances
having a planning horizon of four days and 36 as well as 50 customers (the column genera-
tion approach was already applied to the latter ones). All algorithms have been implemented
in C++, compiled with GCC 4.1, and performed on a single core of an Intel Xenon E5540
with 2.53 GHz and 3 GB RAM dedicated per core. The whole approach was implemented
with SCIP [2], using Ilog CPLEX 12.1 as LP solver. We performed tests with following
different settings:

• BP1: Branch-and-Price solely using the labeling algorithm

• BP2: apply the REUSE subproblem heuristic until it either finds no new columns for
five times in a row or the number of generated columns decreased in the last five
iterations, switch to the labeling algorithm afterwards

• BCP1: like BP1 plus separating at most 500 2-path cuts

• BCP2: like BP1 plus separating at most 100 subset-row cuts when dealing with 36
customers and 200 cuts in case of 50 customers

• BCP3: a mixture of BP1, BCP1 and BCP2

We always prematurely stop the pricing problem after generating more than 100 new columns
and set a time limit of one hour (stopping is not enforced during solving the pricing subprob-
lem). To not rely on any external method we introduce the slack variables to start without
initial columns. The results are shown in Table 4.9 for 36 customers and in Table 4.10 for 50
customers, stating the resulting percentage gap (%-gap) or “–” when no gap is available, the
number of solved nodes, and the runtime in seconds. Note that instance p4c10450 is omitted
since no setting yielded a feasible solution for it. Whenever non-determinism is involved,
i.e. for settings BP2, BCP1 and BCP3, we performed 10 runs and state average results as well
as in some rare cases (for instance p4rc10450) as superscript the number of runs with a gap
other than infinity. Per instance we print in bold either the resulting gap or the runtime of
the setting which performed best, i.e. those obtaining the smallest gap or the fastest one in
case of same gaps. We also state averaged results over all instances, where for BP1 on the
50 customer instances we averaged the gap only over the 13 solved instances.
As was also observed for the column generation approach, for such rather small instances
the heuristic pricing method yields not much gain. This is again not surprising since the
switch (fallback) to the labeling algorithm occurs quite soon. Taking a closer look: For
instances having 36 customers the gap is a little bit smaller, but the runtimes are slightly
higher, whereas for instances with 50 customers both characteristics are slightly improved.
Nevertheless, we were not convinced enough of BP2 and hence we solely apply the labeling
algorithm for the other settings, having also the advantage to investigate the influence of the
cutting planes without any bias from non-deterministic column generation. Looking at the
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results of the BCP variants it is clear that separating the proposed inequalities is always ben-
eficial, especially the subset-row cuts: either the runtime is more than halved (36 customers)
or the resulting gap is perceivably smaller (50 customers). When using subset-row cuts the
number of solved nodes often decreases substantially, which is one one hand due to their
strength and on the other hand—and which should not be neglected—due to the altered and
even more demanding pricing subproblem. Only utilizing the 2-path cuts is less successful,
but interestingly for the 50 customer instances the variant where both cuts are separated per-
forms best. It is also observable that the clustered instances seem easiest to solve (despite the
mentioned unsolvable instance p4c10450), a fact which was not apparent when only solving
the LP relaxation.

4.9 Matheuristic Variants for the PVRPTW

In the previous sections we introduced heuristic as well as exact methods for solving the
PVRPTW, either delivering primal solutions or valid lower bounds. Since the very beginning
of the project we aimed at combining compatible methods in a suitable way and come up
with powerful Matheuristics. Therefore we will especially focus on the hybridization of
the VNS and also the multiple VNS with the proposed set covering ILP model, which will
be done in Section 4.9.1 and 4.9.2, respectively, as well as further on the combination of
the column generation approach and the EA detailed in Section 4.9.3, followed by some
additional concepts reported in Section 4.9.4.

4.9.1 Hybridizing the VNS and the Set Covering ILP

In the following the ILP model of Section 4.7.1, i.e. basically the master problem of the
column generation approach, is used to boost the performance of the VNS of Section 4.4.
This is achieved by introducing feasible VNS solutions into the set covering model, i.e. by
adding the single routes of these solutions as new columns. This way the feasibility of the
model is guaranteed. The resulting ILP is solved by a (basically) branch-and-bound based
generic ILP solver, gradually fixing the visit combination (4.5) and route variables (4.6).
A similar approach was introduced in [206], where the authors highlight the “global view”
property of such an exact model. For a set of solutions’ routes the ILP solver might be able
to derive a more favorable combination and provide a better (less costly) solution in this way.
Obviously the potential of the ILP solver depends on the routes contained in the model since
it is neither able to alter routes nor create ones on its own.
Hence it is crucial to provide:

(i) a suitable amount of routes,

(ii) cost-effective routes,

(iii) and diverse enough routes.
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start

routes of feasible solutions

current best solution

I L PV N S

better solutions by combining available routes

model/solver

VNS/ILP Matheuristic

Figure 4.7: Information exchange between VNS and ILP model/solver.

Adding not enough or only weak routes might prevent finding a better solution at all, on the
other hand a too large set naturally increases the runtime, which might also prevent finding
better solutions quickly enough in case a time limit is given. Therefore solutions should not
be added arbitrarily to the model. Only finding new combinations of routes constituting a
feasible solution is not sufficient, the solution should also improve on the current incumbent
in terms of travel costs. This is dealt with by primarily adding improved and feasible solu-
tions found by the VNS (i.e. solutions that improved on the current best solution at the time
they were derived), as it is done in [206]. However, we found it often not enough to solely
add such improved solutions, since in case the VNS gets stuck for a while no improved solu-
tions are available at all and no further solving of the ILP is meaningful. In order to be able
to still exploit the power of the ILP solver we propose to further add some “intermediate”
VNS solutions, i.e. feasible solutions derived in an iteration but not improving on the best
solution. For ensuring a certain quality, we define a maximal deviation ε from the current
best solution (at the time of checking), and avoid duplicates.

We apply the following hybrid scheme, which is a high-level integrative combination; see
Figure 4.7. The hybrid algorithm divides the execution of a VNS run in several equally long
sections S , and after each section the current ILP model is solved. The latter is gradually
enriched by columns extracted from selected feasible VNS solutions. For this we choose
a number nsol of overall solutions to consider and first try to insert only the most current
improved VNS solutions. In case less than nsol such solutions are provided by the previous
VNS section we select the remaining ones from the set of intermediate solutions (also ac-
cumulated during the previous VNS section) at random, in order to obtain a set of diverse
solutions. Further, the ILP solver is always initialized with the current best solution to speed
up the process. If the ILP solver is able to improve on the current best solution this new
solution is transformed and transferred to the VNS. During transformation over-covered so-
lutions are repaired by choosing exactly one visit combination (the first active) and omitting
customers from following routes if they are already covered or do not need to be covered
on this day. This over-covering might happen since we use a set covering model. In con-
trast, a set partitioning model (derived by turning inequalities (4.2) and (4.4) into equalities)
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Table 4.11: Concise results of VNS-ILP on Pirkwieser and Raidl instances with a plan-
ning horizon of four and six days reported in [159].

Instances VNS-ILP5,0% VNS-ILP5,5% VNS-ILP5,10% VNS-ILP10,5% VNS-ILP10,10%

significantly better/worse than VNS (106) and not exceeding runtime by more than 20%
p4r 2×/1× 4×/0× 4×/0× 4×/0× 3×/0×
p4c 1×/0× 2×/1× 1×/0× 2×/0× 1×/0×
p4rc 2×/0× 4×/0× 4×/0× 4×/0× 3×/0×
p6r 3×/0× 4×/0× 4×/0× 1×/0× 1×/0×
p6c 0×/0× 1×/1× 0×/0× 0×/1× 1×/1×
p6rc 2×/0× 5×/0× 5×/0× 4×/0× 4×/0×

10×/1× 20×/2× 18×/0× 15×/1× 13×/1×

would yield only feasible solutions but at the same time exclude many potentially improving
combinations. Finally, when injecting this solution into the VNS it is also subject to the pre-
viously mentioned 2-opt∗ improvement procedure. In case routes were altered during these
procedures, corresponding new columns are also added to the ILP model.
What we did not mention so far is the applied route injection scheme, which is also of
concern in the classical column generation approach. Basically it is possible to either add the
route for the corresponding day only or for all days. The latter scheme produces significantly
larger ILP models (of factor t) which might yield better solutions at the expense of longer
running times to solve the ILP model. We compare these alternatives in our experimental
results. For both variants we allow the ILP solver the same overall amount of CPU-time as
the VNS, though it is expected that the former variant consumes only a fraction of it.

Previous Computational Results

The following results are reported in [159, 162], we present them in a concise form here. In
the former works we again use the VNS as a baseline with an iteration limit of either 106 or
2 · 106. The VNS-ILP hybrid is also based on a VNS run with 106 iterations and S is set to
10, i.e. it applies ten sequences of 105 VNS iterations with subsequent ILP solving phases.
In [159] we performed tests on instances having a planning horizon of four and six days with
three settings of ε (0%, 5%, and 10%, where 0% implies that no intermediate VNS solutions
are considered) and two settings of nsol (5 and 10), denoted by VNS-ILPnsol,ε. The solutions’
routes are mainly added for the corresponding day only (single day strategy VNS-ILPs, but as
it is the default setting we might also omit the ’s’), some experiments are done with insertion
for all days (all days strategy VNS-ILPa). Each algorithm setting is run 30 times per instance
and as said we report only concise results here. Among the hybrid variants there is rarely a
single one significantly outperforming all others, therefore we decided to compare the num-
ber of times the methods improved over the VNS, which we first did here and performed also
in later work. The results are shown in In Table 4.11, though to be “fair” only considering
those runs where the runtime of VNS-ILP did not exceed those of the VNS by 20%.
As can be seen it is generally beneficial to also consider intermediate VNS solutions, yield-
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Table 4.12: Concise results of VNS-ILP on Pirkwieser and Raidl instances with inser-
tion of new routes for one or all days reported in [159].

Instances best VNS-ILP VNS-ILPa
5,5%

significantly better than VNS (2 · 106)
p4r 4× 4×
p4c 1× 3×
p4rc 2× 2×
p6r 4× 1×
p6c 1× 0×
p6rc 2× 1×

14× 11×

ing twice as many significant improvements. Regarding the quality of these solutions, there
is a slight advantage when using better ones (ε = 5%). While the performance of the hybrid
method is nearly the same when adding 5 or 10 solutions at a time for instances having a
planning horizon of four days, the performance notably degrades for a planning horizon of
six days. This is mainly because of the too large runtime when the ILP solver consumes more
of the allotted time, leading to an exclusion of these variants for some instances (e.g. happen-
ing six times for VNS-ILP10,[5%,10%]). However, for many variants and instances the overall
execution time of the ILP solver itself is short (a few seconds), often solving the ILP to opti-
mality in fractions of a second. The remaining overhead compared to solely running the VNS
is mainly due to the information exchange, especially for storing the intermediate VNS so-
lutions and avoiding duplicates. The least improvement occurred for the clustered instances.

Now we will also have a look at the all days strategy, applied with nsol = 5 and ε = 5%,
since this setting yielded good results in the former tests. To be fair, its performance must
be compared to the VNS with 2 · 106 iterations, since its time consumption is basically
bounded by taking twice the run time of the VNS with 106 iterations, plus the overhead for
the information exchange. Again concise results are shown in Table 4.12, alongside with
the best performing single day strategy of each instance (see [159] for details), note that no
variants need to be excluded because of a too high time consumption here. It can be observed
that the all days strategy is generally worse than the single day strategy, though still yielding
a significant improvement for 11 of the 30 instances (36%). Most notably the best runs
of the single day strategy improve the results in 14 cases (46%), although the CPU-time
consumption is considerably less than that of both competitors. All in all one of the single
day strategies either performs better or at least comparable to the VNS with 2 ·106 iterations.

Additional test runs are reported in [162], where also the instances with a planning horizon
of eight days are considered, which were not available in the former case. We present them
in short in Table 4.13, again giving the number of times VNS-ILP is better or worse than
VNS, also stating the average runtime consumed. As can be observed for an increasing plan-
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Table 4.13: Additional concise results of VNS-ILP on Pirkwieser and Raidl instances
reported in [162].

Instances
VNS-ILP8,5% VNS

sign. better/worse
than VNS

t[s] t[s]

p4r 4×/0× 28.2 24.3
p4c 2×/0× 27.2 25.0
p4rc 5×/0× 27.8 26.2
p6r 4×/0× 35.5 27.9
p6c 1×/0× 34.3 31.3
p6rc 4×/0× 33.5 29.6
p8r 2×/0× 35.1 29.5
p8c 0×/0× 36.6 32.2
p8rc 2×/0× 33.4 30.4

ning horizon the better performance of the hybrid variant decreases compared to the standard
VNS approach, especially notable for the p8 instances. It seems that the derived (intermedi-
ate) VNS solutions of these larger instances are probably too diverse, so the ILP is not able
to utilize meaningful solution parts (routes and visit combinations), which are kind of “over-
lapping” for smaller instances, in a cost-decreasing manner anymore. A second observation
is that the additional runtime, mainly due to the ILP solving steps, is only quite moderate.

4.9.2 Hybridizing the Multiple VNS and the Set Covering ILP

Here we investigate a Matheuristic composed of the multiple VNS and again the set covering
ILP model. This hybrid variant is conceptually similar to the previous one when using the
standard VNS, though the handling of the solutions as well as some details are different. The
information exchange between the multiple VNS and the ILP, which can also be regarded an
integrative combination, can be seen in Figure 4.8 as well as in Algorithm 14.
Concerning the hybridization with the multiple VNS a natural and suitable way is to apply
the ILP solver after a block of section-wise executions. This way the number of solutions
to consider for adding to the ILP model is given by the number of VNS instances, from
which we always use the actual best solutions. Due to different search trajectories these
solutions’ routes are further assumed to be diverse enough. Hence, we deem conditions (i)–
(iii) introduced in the previous section as fulfilled. Hence, contrary to [206] and the previous
VNS-ILP hybrid we restrict ourselves to the actual best solutions only, yet now we have more
VNS instances available. Due to this there is no need for handling intermediate solutions.
Similarly the ILP solver is allotted the same amount of CPU-time than the multiple VNS.
The application of the ILP solver can in some way be regarded as a recombination operator
taking into account all available solutions provided by the “population” of the VNS instances,
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Figure 4.8: Information exchange between multiple VNS and ILP model/solver.

Algorithm 14: Multiple VNS / ILP Hybrid: #VNS refers to the number of VNS in-
stances, #sec to the number of sections per VNS instance and to the maximal number
of ILP solver applications, and itermax is the total number of allowed iterations.

Ω′ ← ∅; // start with empty model1

for i = 1 to #VNS do2

initialize VNS[i]3

itersec ← ditermax/(#VNS ·#sec)e4

for sec = 1 to #sec do5

Ω′sec ← ∅6

for i = 1 to #VNS do7

execute VNS[i] for itersec iterations8

add VNS[i] solutions’ routes to Ω′sec; // gather columns9

x∗ ← actual best solution10

Ω′ ← Ω′ ∪ Ω′sec; // enrich ILP model11

x← apply ILP solver on Ω′, initialized with x∗12

Replace solution of worst VNS instance by x13

Return best solution of all VNS instances14

hence realizing some kind of optimal merging. A novelty here is that in case a solution is not
feasible as a whole, its feasible routes are added anyway, yet the ILP solver is only applied
if at least one feasible solution exists. Again, the ILP solver is always initialized with the
current best solution to speed up the process.
If the ILP solver is able to improve on the current best solution this new solution is transferred
to the multiple VNS, where as usual the solution of the worst VNS instance is replaced. There
are also two options regarding the lifetime of the routes added to the ILP model: Either we
only consider the actual solutions’ routes, i.e. they are discarded afterwards, or we keep
all inserted routes and the ILP model gradually grows, i.e. realizing a long term memory.
However, it is clear that a model of continuously increasing size in general demands more and
more computation time to be solved. This could in turn lead to worse solutions when setting
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a time limit as in our case. Nevertheless the larger induced search space might also contain
better solutions. If routes are kept then the ILP solver is only applied if non-existing routes
could be added after a multiple VNS section. Both variants are examined in the next section.

Previous Computational Results

The results presented here are mainly reported in [161], extended by tests on Pirkwieser
and Raidl instances with a planning horizon of eight days. Like the multiple VNS (see
Section 4.5) also the mVNS-ILP hybrid is allowed 106 VNS iterations in total and #sec is
consistently set to 10 (as determined by preliminary tests); i.e. applying ten sequences of
#VNS VNS instances, each one running for 106/(#VNS · 10) iterations per section. For
solving the ILP model in the mVNS-ILP hybrid we applied the general purpose MIP solver
IBM ILOG CPLEX 12.1. We experimented with 5, 8, 10, and 15 VNS instances, denoted by
mVNS-ILP#VNS ,#sec . As before each algorithm setting was run 30 times per instance.
Table 4.14 shows concise results of all mVNS-ILP variants considered, with the setting of
storing all injected routes. We state how often they performed significantly better or worse
than the corresponding mVNS, as well as how many times they were significantly better
or worse than the standard VNS variants, again using a Wilcoxon rank sum test with an
error level of 5% for testing statistical significance. As was observed in Section 4.5 mVNS
was already able to often outperform standard VNS. However, combining the mVNS with
ILP techniques in the mVNS-ILP hybrid consistently yields even more satisfying results.
Looking at the overall best variant, mVNS-ILP8,10, it significantly improves upon VNS with
106 iterations in about 90% of all cases, and upon the corresponding mVNS as well as VNS
with 2 · 106 iterations in about 70%. Taking the average runtimes into account, which are
given in Table 4.16, we see that the runtime of mVNS-ILP8,10 is still notably less than that
of the VNS with 2 · 106 iterations (which is per setting the upper limit). We note that already
mVNS-ILP5,10 delivers good results, with the advantage of only a very small increase in
runtime. Naturally, for an increasing number of VNS instances #VNS and especially for
longer planning horizons we observe that the runtime of mVNS-ILP approaches that of VNS
(2 ·106), i.e. the ILP solving consumes all of the allotted time, hence justifying a comparison
to this latter VNS variant. For these cases a performance degradation can be observed, too.
In general, the mVNS-ILP hybrid approach achieves to a large extent significantly better
results than the standard VNS variants as well as the corresponding mVNS, yet the runtime
is very often below the limit.
So far we only considered the strategy to keep all routes in the model once they were added.
Therefore analog results of mVNS-ILP when resetting the columns after each application of
the ILP solver are given in Table 4.15, again stating the results of the statistical significance
tests, yet this time more condensed per planning horizon. Comparing these results to the pre-
vious ones there is mostly no gain in solution quality observable, for neither of the planning
horizons. Contrary, the results are in fact worse, i.e. it seems generally better to work with
an ILP model of increasing size and hence exploit information from the search trajectory.
The only exception being mVNS-ILP15,10, especially when compared to its corresponding
mVNS. Resetting the columns also leads, for obvious reasons, to shorter runtimes, which is
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Table 4.14: Concise results of mVNS-ILP on all Pirkwieser and Raidl instances, partly
reported in [161], stating how often mVNS-ILP performs significantly better/worse than
mVNS and VNS.

Instances mVNS-ILP5,10 mVNS-ILP8,10 mVNS-ILP10,10 mVNS-ILP15,10

significantly better/worse than corresponding mVNS
p4r 2×/0× 5×/0× 5×/0× 5×/0×
p4c 1×/0× 3×/0× 5×/0× 5×/0×
p4rc 4×/0× 5×/0× 5×/0× 5×/0×
p6r 2×/0× 4×/0× 4×/0× 1×/0×
p6c 1×/0× 1×/0× 1×/0× 1×/0×
p6rc 1×/1× 5×/0× 4×/0× 2×/0×
p8r 2×/0× 4×/0× 4×/0× 2×/0×
p8c 1×/0× 1×/0× 1×/0× 2×/0×
p8rc 2×/0× 4×/0× 3×/0× 2×/0×

16×/1× 32×/0× 32×/0× 25×/0×
significantly better/worse than VNS (106)
p4r 5×/0× 5×/0× 5×/0× 5×/0×
p4c 5×/0× 5×/0× 5×/0× 5×/0×
p4rc 5×/0× 5×/0× 5×/0× 5×/0×
p6r 5×/0× 5×/0× 5×/0× 3×/0×
p6c 5×/0× 5×/0× 4×/0× 4×/0×
p6rc 5×/0× 5×/0× 4×/0× 2×/0×
p8r 5×/0× 4×/0× 3×/0× 2×/1×
p8c 2×/0× 3×/0× 3×/0× 2×/1×
p8rc 3×/0× 4×/0× 2×/0× 1×/1×

40×/0× 41×/0× 36×/0× 29×/3×
significantly better/worse than VNS (2 · 106)
p4r 4×/0× 5×/0× 5×/0× 5×/0×
p4c 4×/0× 5×/0× 5×/0× 5×/0×
p4rc 4×/0× 5×/0× 5×/0× 5×/0×
p6r 5×/0× 5×/0× 5×/0× 2×/0×
p6c 3×/0× 4×/0× 2×/0× 3×/0×
p6rc 0×/0× 3×/1× 2×/1× 1×/2×
p8r 2×/0× 2×/0× 2×/1× 2×/3×
p8c 1×/2× 1×/2× 1×/2× 1×/3×
p8rc 1×/1× 1×/1× 1×/2× 1×/3×

24×/3× 31×/4× 28×/6× 25×/11×
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Table 4.15: Concise results of mVNS-ILP on all Pirkwieser and Raidl instances when
resetting the columns.

Instances mVNS-ILP5,10 mVNS-ILP8,10 mVNS-ILP10,10 mVNS-ILP15,10

significantly better/worse than corresponding mVNS
p4 4×/0× 6×/0× 10×/0× 14×/0×
p6 2×/1× 8×/0× 4×/0× 9×/0×
p8 3×/0× 2×/0× 7×/0× 12×/0×

9×/1× 16×/0× 21×/0× 35×/0×
significantly better/worse than VNS (106)
p4 14×/0× 15×/0× 15×/0× 14×/0×
p6 14×/0× 13×/0× 12×/0× 11×/0×
p8 10×/0× 7×/0× 8×/0× 8×/0×

38×/0× 35×/0× 35×/0× 33×/0×
significantly better/worse than VNS (2 · 106)
p4 10×/0× 13×/0× 13×/0× 13×/0×
p6 6×/1× 7×/1× 6×/1× 8×/1×
p8 2×/4× 3×/6× 2×/4× 3×/8×

18×/5× 23×/7× 21×/5× 24×/9×

documented in Table 4.16.
Nevertheless, for other instances or settings (iterations and/or VNS instances) it might pay
off to reset the columns, since due to the reduced size of the resulting model potentially more
improvements could be possible in limited time.

4.9.3 Hybridizing the Column Generation Approach and the Evolutionary
Algorithm

The next Matheuristic we investigated is a combination of the column generation approach
and the EA (denoted as CG-EA). We were motivated by the fact that columns created when
solving the LP relaxation of the problem often lend themselves to quite good primal solutions
when the resulting model is subsequently solved with an ILP solver. This led us to think
about ways of exploiting these columns and more generally the LP information derived when
performing column generation. First we apply an artificial start of the RMP by inserting the
mentioned slack variables and allowing to visit no customers yet to meet the visit constraints.
Next we apply the REUSE heuristic until it either does not find new columns or the amount
of new columns decreased in the last five iterations. Afterwards we switch to the dynamic
programming algorithm applied in a heuristic way. Each time the RMP is solved we keep
track of the LP values of the columns (routes). Since in the end we want to have a predictable
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Table 4.16: Average runtimes in seconds of all VNS, mVNS and mVNS-ILP variants
on Pirkwieser and Raidl instances.

Method p4 p6 p8

VNS (106) 25.2 29.6 30.7
VNS (2 · 106) 50.0 58.9 59.1

mVNS5,10 25.5 30.2 29.6
mVNS8,10 25.5 30.1 29.7
mVNS10,10 25.8 30.4 29.8
mVNS15,10 25.9 30.6 30.2

storing all columns
mVNS-ILP5,10 26.3 33.3 33.7
mVNS-ILP8,10 29.8 50.5 51.0
mVNS-ILP10,10 34.7 58.8 58.2
mVNS-ILP15,10 41.7 60.9 59.3

resetting columns
mVNS-ILP5,10 25.5 30.0 29.9
mVNS-ILP8,10 24.1 30.9 30.7
mVNS-ILP10,10 26.4 32.4 32.1
mVNS-ILP15,10 29.1 42.4 51.3

running time, we limit the runtime for solving the LP relaxation. Finally we exploit the
obtained data for initializing the EA. The number of nonempty routes per day is set to the
rounded down sum of the LP values of all active routes of that day. These are then set to
routes corresponding to active columns of that day in the last solved LP relaxation of the
RMP, applying a binary tournament selection for each route according to the accumulated
LP values and preferring those having a higher value, i.e. those which have proven suitable.
Currently, this procedure is applied to half of the initial chromosomes, the remaining ones
are initialized as described before. Although a solution created in such a way is most likely
not feasible due to over- and/or under-covering, it presumably includes high quality routes
advantageous for the whole gene pool.

Since we can expect that the initially created solutions will change quite soon, it seems desir-
able to have an ongoing exploitation of the column generation data. Preliminary experiments
turned out that a simple yet effective way of achieving this is via mutation: CG-EA can ad-
ditionally replace a route by another one selected from a given pool of routes. The latter is
created per day and contains all corresponding routes that were at least once active in a solu-
tion to an LP relaxation of the RMP. Again, we apply a binary tournament selection using the
accumulated LP values as a decision criterion. Though more sophisticated operations would
certainly be possible (e.g. a more advanced initialization, exploiting the column pool in a
local search, or applying re-initializations) we rather aim here at a proof of concept showing
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that the data from column generation (i.e., generated variables and their (accumulated) LP
values) can be successfully used to boost a metaheuristic.
We deem this hybridization, also shown in Figure 4.9, as a high-level sequential collaborative
combination where the column generation guides the EA.

start
E A

accumulated LP values of columns

Col. Gen.

subset of generated columns (routes)

Column Generator/EA Matheuristic

Figure 4.9: Information exchange between column generator and EA.

Column Generation Based Heuristic

To some extent the counterpart of the Matheuristics presented so far is to apply column
generation and subsequently solve the final restricted master problem to integrality by a
general purpose ILP solver. In both cases a certain time limit might be set. Generally this
is often referred to as a column generation based heuristic. For comparison purposes, we
examine this approach also here and denote it as CG-ILP. As for CG-EA we only consider at
least once active routes. Finally having a solution to the ILP we remove redundant customers
and apply our 2-opt procedure on all routes. This repair process is repeated several times
(100×) for the same initial solution with a randomized customer removal, naturally keeping
the best solution found.

Computational Results

The results were initially reported in [162], and as we will not present further results of this
method later on we give them in detail here. As mentioned in Section 4.6 we will present the
results of the proposed EA together with this matheuristic variant, since the former acts as a
baseline for the latter (just like [m]VNS did for [m]VNS-ILP).
The EA always applies recombination and performs mutation following a Poisson distribu-
tion with λ = 1, running for 2 ·105 iterations. To have equal conditions CG-EA and CG-ILP
are based on the same runs of column generation, limiting the latter to 20 seconds, which
suffices for many of the instances considered. Each algorithm setting is run 30 times per
instance and we report average results, stating the average travel costs (avg), correspond-
ing standard deviations (sdv), average CPU-times in seconds (t[s]), and the number of runs
yielding a feasible solution (feas).
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Table 4.17: Results of EA, CG-EA and CG-ILP on Pirkwieser and Raidl instances with
a planning horizon of four days.

Instance EA CG-EA CG-ILP

avg sdv t[s] feas avg sdv t[s] feas avg sdv t[s] feas

p4r101 4199.14 45.00 28.7 30 4162.54 35.92 31.4 30 4119.54 15.56 28.2 30
p4r102 3784.31 33.14 27.1 30 3780.50 24.52 31.7 30 3777.63 29.37 30.0 30
p4r103 3248.05 31.50 26.9 30 3217.31 24.84 33.9 30 3258.92 44.13 33.4 30
p4r104 2691.66 36.48 28.7 30 2673.09 29.85 40.7 30 2780.10 64.70 40.2 21
p4r105 3777.90 34.10 26.7 30 3745.00 28.82 29.7 30 3801.99 33.80 29.3 30
p4c101 2918.47 12.02 30.8 30 2921.08 22.11 35.0 30 2917.91 6.32 11.9 30
p4c102 3032.23 49.41 30.1 30 2963.28 42.32 44.7 30 2925.01 49.33 41.2 30
p4c103 2874.99 54.80 31.0 30 2825.01 42.33 43.9 30 2973.94 89.65 43.6 18
p4c104 2542.46 24.39 29.2 30 2518.90 32.90 46.7 30 2479.80 24.76 46.3 30
p4c105 3072.79 86.04 29.6 30 2977.45 54.82 38.1 30 2991.24 77.13 37.6 30
p4rc101 4081.77 44.36 26.9 30 4047.87 32.44 31.4 30 4087.80 43.80 31.0 30
p4rc102 3904.33 56.09 28.3 30 3869.21 53.28 32.1 30 3870.02 35.30 31.6 30
p4rc103 3596.08 45.32 28.2 29 3549.13 33.54 34.9 29 3670.73 60.17 34.5 18
p4rc104 3142.79 37.99 29.4 30 3114.51 36.46 39.4 30 3185.14 42.46 38.9 21
p4rc105 4052.78 42.09 28.7 30 4040.32 22.11 30.8 30 4047.39 40.29 30.3 30

# sign. better 0 12

Table 4.18: Results of EA, CG-EA and CG-ILP on Pirkwieser and Raidl instances with
a planning horizon of six days.

Instance EA CG-EA CG-ILP

avg sdv t[s] feas avg sdv t[s] feas avg sdv t[s] feas

p6r101 5471.23 33.24 39.7 30 5453.07 32.60 41.4 30 5505.08 42.90 41.0 30
p6r102 5315.03 31.43 36.8 30 5318.87 25.76 43.0 30 5445.35 40.39 42.6 30
p6r103 4149.57 41.18 36.9 30 4120.37 34.46 48.5 30 4254.40 67.58 48.1 30
p6r104 3465.46 28.20 37.1 30 3441.55 22.04 53.1 30 3665.01 62.43 52.6 30
p6r105 4514.95 46.59 35.8 30 4457.93 48.46 44.0 30 4647.59 112.43 43.6 28
p6c101 4192.24 77.09 36.8 30 4162.92 68.33 50.0 30 4592.38 194.23 49.6 4
p6c102 3960.89 56.36 38.9 30 3950.54 65.92 55.2 30 4414.48 208.85 54.7 19
p6c103 3788.68 63.95 37.3 30 3719.95 82.20 55.3 30 4191.75 170.11 54.8 13
p6c104 3450.31 54.19 36.5 30 3422.22 56.05 54.5 30 3766.94 92.55 54.0 18
p6c105 4285.79 84.27 37.1 30 4181.50 56.15 53.3 30 4551.39 187.19 52.9 13
p6rc101 5932.49 46.38 34.6 30 5909.63 40.87 39.4 30 6128.02 67.00 39.0 30
p6rc102 5577.50 54.72 36.0 30 5553.47 52.54 42.3 30 5756.83 83.19 41.8 30
p6rc103 4521.57 50.34 35.4 30 4476.44 45.03 50.5 30 4699.27 67.30 50.0 23
p6rc104 4306.30 52.83 36.1 30 4267.67 41.26 50.5 30 4436.69 85.22 49.9 30
p6rc105 5467.39 58.06 35.6 30 5450.10 44.81 42.3 30 5582.21 70.66 41.8 30

# sign. better 0 10
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Table 4.19: Results of EA, CG-EA and CG-ILP on Pirkwieser and Raidl instances with
a planning horizon of eight days.

Instance EA CG-EA CG-ILP

avg sdv t[s] feas avg sdv t[s] feas avg sdv t[s] feas

p8r101 6711.50 46.38 43.8 21 6696.89 75.06 53.5 27 6820.33 68.96 53.0 30
p8r102 6300.33 49.19 44.7 20 6313.65 70.20 60.8 22 6508.59 125.34 60.4 29
p8r103 4999.87 67.08 44.2 30 4930.83 43.14 61.4 30 5250.39 114.26 61.0 29
p8r104 4667.39 52.74 44.3 30 4598.77 64.23 62.4 30 5181.33 117.11 61.9 26
p8r105 5817.43 69.13 43.1 30 5744.09 53.36 58.2 30 6013.38 105.65 57.7 27
p8c101 4991.15 119.77 44.3 30 4900.84 75.41 62.0 30 5185.67 131.66 61.5 19
p8c102 5410.25 121.16 44.7 30 5308.69 114.27 64.9 30 6442.40 0.00 64.5 1
p8c103 5029.64 105.63 44.3 30 4965.95 69.92 62.4 30 6428.76 272.02 61.9 13
p8c104 5234.18 79.30 41.5 30 5202.05 91.42 60.4 30 5592.48 254.28 59.9 5
p8c105 5434.17 91.13 45.6 30 5384.95 95.36 61.7 30 6293.36 254.71 61.2 14
p8rc101 7225.04 98.40 43.2 30 7134.84 80.09 55.1 29 7432.93 152.95 54.6 20
p8rc102 6249.95 102.21 41.8 30 6163.02 76.37 60.5 28 6392.33 149.02 60.1 23
p8rc103 5847.79 95.54 44.7 30 5778.00 73.80 61.7 30 6126.24 128.82 61.3 8
p8rc104 5301.08 52.53 43.2 30 5277.23 46.59 60.3 30 5873.20 144.27 59.9 25
p8rc105 6606.78 79.69 42.9 30 6530.36 62.94 58.5 30 6727.78 120.43 58.0 30

# sign. better 0 12

Tables 4.17, 4.18, and 4.19 give results for instances having a planning horizon of four, six,
and eight days, respectively. In the bottom line we state the number of times the EA is signif-
icantly better than CG-EA and vice versa. Significantly better results on a per-instance basis
are further underlined, where as usual we used a Wilcoxon rank sum test with an error level
of 5% for testing statistical significance. On average CG-EA yields a significant improve-
ment over EA in about 80% of all cases. Further, this relative improvement is even more
consistent, i.e. also for longer planning horizons, than the one of [m]VNS-ILP to [m]VNS,
which is particularly interesting from a methodical point of view. However, comparing the
absolute results would clearly be in favor of the VNS based hybrids, since VNS is also clearly
superior to the EA.

Naturally CG-EA takes more time for solving than EA. To account for this we also compared
the results of CG-EA to additional pure EA runs with 3 · 105 iterations, i.e. an increase of
50%, which in contrast results often in (much) more allotted runtime especially for smaller
instances. Nevertheless, CG-EA was still significantly better in 13, 8, and 12 cases (instead
of 12, 10, and 12 cases with the shorter EA runs; see the bottom line of the tables) and the
prolonged pure EA did never outperform CG-EA. We were also interested in the effect of the
ongoing exploitation via mutation, so we did a comparison to test runs without this feature:
utilizing it yields in 9 out of 45 times (20%) a significant improvement, and only once (2%)
a significantly worse result is obtained.

Finally we compared VNS-ILP8,5% (see Section 4.9.1) and CG-EA to CG-ILP: The latter
only is significantly better as VNS-ILP for instance p4c102 and as CG-EA for instances
p4r101, p4c102, and p4c104. Essentially, it is only reasonable when the resulting ILP model
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is not too large (in fact only for p4 instances), otherwise its performance deteriorates quickly.

4.9.4 Concepts of Other Investigated Hybridizations

During our project we also investigated some other potential matheuristics. Unfortunately
their results were not convincing after all, so they did not appear in any publication so far. In
part we also tried some known concepts, e.g. deriving a primal heuristic via applying column
generation combined with some variable fixing procedure. Nonetheless, in the following we
will present two (in our opinion) novel matheuristics whose main ideas might still be of
interest.

Hybridizing the VNS and the Branch-and-Cut-and-Price Approach

For this matheuristic variant we tried to hybridize the VNS and the Branch-and-Cut-and-
Price (BCP) approach in a meaningful way. Since (our) BCP is generally applicable on rather
small instances only we need to “truncate” it in a suitable way to apply it on reasonably sized
instances as well. In a first attempt this was achieved via restricting the underlying network
to arcs which occurred in feasible solutions found during a preceding VNS run. Furthermore,
feasible solutions’ routes can also be utilized as initial set of columns. Of course, the best
incumbent can be applied as starting solution here, too. The overall approach is basically
similar to the VNS-ILP based matheuristics presented in previous sections, yet with the dif-
ference and potential advantage that new routes can be generated on demand in the process
of solving. In this sequential collaborative combination the VNS guides the BCP approach.
We tested this variant on the Pirkwieser and Raidl instances applying BCP for the same
amount of time than VNS. Unfortunately we observed only a small and not satisfying im-
provement on the instances having a planning horizon of four days. For longer planning
horizons no improvements could be achieved at all. Though regarding the column genera-
tion, we even did not apply the full dominance rule when solving the pricing subproblem,
but start with one of the heuristics and later switch to the incomplete dominance rule instead.
Nevertheless column generation is definitely the bottleneck here, paired with the increasing
time to solve the master problem for larger planning horizons.
In a second attempt we further tried to apply BCP with some additional constraints similar
to local branching, e.g. limiting the change of at most k visit combinations. However, the
results were still not convincing enough and we therefore abandoned this line of research.

Hybridizing the Column Generation Approach and the VNS

A somewhat opposite approach than in the previous section is based on column generation
and VNS. Our initial intention was to come up with a more fine grained utilization of the
information gathered when solving the LP relaxation of the problem compared to the CG-
EA matheuristic reported in Section 4.9.3. The latter mainly considers whole routes only,
whereas here we increase the level of detail and consider single arcs. For doing so we
start by (partly) solving the LP relaxation of the problem, again using a time limit as for
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CG-EA, keeping track of all arcs which occurred in intermediate solutions of the master
problem. These arcs are then favored in the VNS via penalizing all remaining arcs by a small
amount; obtaining a sequential collaborative combination where the VNS is guided by the
CG approach. Since we do not want to focus VNS too much on these arcs the penalty should
not be set too high. As a baseline for comparison we decided to apply VNS with penalizing
all but the 5% least cost arcs per customer. Running the same tests than previously this
approach was not able to yield any improvement against the baseline. Although we observed
that the number of favored arcs contained in the final solution is often around 80% (but
usually quite similar even without favoring arcs), apparently solving the LP relexation gives
no clue about the “remaining” arcs necessary to obtain low-cost solutions. Of course one
could solve the LP relaxation to optimality (i.e. switching to the full dominance rule without
time restrictions at all), but since we also wanted an approach which is competitive to pure
VNS when it comes to runtime, this was not an option.

4.10 Latest Computational Results

These additional tests were performed in order to finally compare our developed methods to
other recently proposed approaches which were not available when we published/presented
our original work. A major reason why we did not just take our old results for comparison
is that some of the new results were obtained with considerable longer runtimes. To have a
fair(er) comparison we set the number of iterations such that we have similar runtimes as in
the most recent tests, though clearly oriented towards the faster methods. Therefore, deriving
(most likely) even better results at the cost of excessive runtimes was strictly not our goal.
Together with the previous results, more concerned with comparing different variants of our
own methods, these new results should give a nice, complete picture.
First some words about common settings. All algorithms have been implemented in C++,
compiled with GCC 4.5, and performed on a single core of an Intel Xenon E5540 with
2.53 GHz and 3 GB RAM dedicated per core.
Initially, and for all previous experimental results, we set the initial temperature T0 to 10 and
fixed the penalty weights to 100. Ideally these parameters should be set for each instance
individually. So we opted for an automated setting and after some experiments we decided
to use the following: we consider the average inter-customer travel costs cavg and set T0 =
cavg/5 and the penalty weights directly to cavg. This seems to accommodate in a suitable
way for the different instance characteristics. The only setting we did not (try to) automate
is the probability of applying 2-opt∗ whenever the newly derived solution lies within 2% to
the current incumbent solution, in the remainder denoted as P2-opt∗ . It is set such that 2-opt∗

does not consume too much runtime and is therefore subject to experimentation. The value
used will be given for each instance set.
Since there is a manageable number of works to compare to we will state them already here
and omit to mention them more than once later on. At first the tabu search of Cordeau et
al. [41], as well as the same method when utilizing forward time slack [42] (TS), tests were
run on a Sun Ultra 2 with 300 MHz and a Pentium 4 with 2 MHz, respectively. The next
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three are very recent methods: a hybrid genetic algorithm by Nguyen et al. [150] (HGA), run
on an Intel Core2 Duo with 2.4 GHz, a hybrid genetic search with adaptive diversity man-
agement by Vidal et al. [227] (HGSADC), run on an Intel Xeon X7350 with 2.93 GHz, and
a parallel iterated tabu search heuristic by Cordeau and Maischberger [43] (ITS), the sequen-
tial algorithm run on an Intel Xeon X7350 with 2.93 GHz and the parallel variant on a Linux
cluster with 128 nodes and Infiniband interconnections, each node being equipped with dual
Intel Xeon E5472 with 3 GHz. According to a CPU benchmarking site1 the environments of
HGSADC, ITS and ours have quite a similar performance (at least similar enough to more
or less also compare absolute runtimes), those of HGA is about 2.7 times slower, and those
of the TS in [42] is about 17.7 times slower, those of TS in [41] could not be resolved.
If not stated otherwise we perform for each algorithm setting 10 runs per instance, and state
the costs of the best run (min), the average costs (avg), corresponding standard deviations
(sdv), and the runtimes in minutes (t[m]).

4.10.1 Cordeau et al. Instances

For the Cordeau et al. instances we chose 2 · 107 VNS iterations to yield a comparable run-
time. For the mVNS we set 5 VNS instances and 40 sections. We also experimented with
more VNS instances (similar as reported for the previous results) but here we experienced
that due to the size of the Cordeau et al. instances mVNS hardly leads to a gain when choos-
ing a too high number, it then rather yields worse results than standard VNS. In Section 4.5
we have already reported similar findings and explanations for the Pirkwieser and Raidl in-
stances, yet here an even smaller number of VNS instances must be used. The probability
P2-opt∗ is set to 0.05 ·

√
288/n, which automatically promotes to apply 2-opt∗ when deal-

ing with less customers, yet retains an acceptable amount of time spent on it for the largest
instances.
The results are shown in Table 4.20 for the runs without forward slack time and in Table 4.21
with forward slack time. For both variants the best found solutions over all runs are given
in Table 4.22. Finally, Table 4.23 shows a comparison of all approaches we are aware of.
Note that for ITS we report the parallel runs using 8 and 64 processors, denoted as ITS/8 and
ITS/64, respectively. For the setting without forward slack time our methods clearly perform
best, both on average and also yielding 15 new best known solutions for the 20 instances,
despite HGA consuming a lot of runtime (which even when taking the different computing
environments into account still takes 10 times as long). The situation with forward slack time
is more competitive, again apart from the TS, which, given the time of its publication, is not
surprising. For this setting our methods seem slightly superior to ITS, but are inferior to
HGSADC, though the difference is not that much. However, when also taking the runtimes
into account (remember that ITS, HGSADC and our methods can be roughly compared with
regard to this), HGSADC and our methods are currently performing best. As seen for the
per instance as well as for the average results mVNS performs better than VNS, though the
difference in the resulting gaps is rather small. Finally, we observed that the performance of
our methods differs to some extent depending on the type of the time windows, first looking

1see at http://www.cpubenchmark.net/ [accessed September 12, 2011]
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Table 4.20: Results of VNS and mVNS on Cordeau et al. instances, indicating in bold
when a method is significantly better than the other.

Instance
VNS mVNS

min avg sdv t[m] min avg sdv t[m]

p01a 3003.68 3009.47 2.05 10.2 2989.58 2999.19 8.23 11.0
p02a 5111.26 5135.39 18.94 14.1 5116.92 5130.19 13.00 14.9
p03a 7164.91 7234.44 40.55 17.7 7174.10 7199.93 18.24 19.2
p04a 7973.73 8001.80 29.43 23.8 7947.20 7978.28 19.95 26.9
p05a 8542.57 8605.95 32.69 29.5 8548.77 8587.36 38.65 36.2
p06a 10814.55 10870.19 42.71 35.8 10786.32 10864.94 51.72 43.5
p07a 6900.71 6916.05 11.14 12.3 6897.06 6909.91 10.82 12.9
p08a 9741.41 9792.09 33.67 26.4 9736.26 9778.75 29.46 28.1
p09a 13595.43 13704.59 65.77 39.4 13650.64 13700.67 29.37 45.4
p10a 17544.93 17716.05 114.95 58.1 17621.26 17751.66 88.29 71.1

p01b 2289.17 2289.17 0.01 11.4 2289.17 2289.17 0.00 11.6
p02b 4144.02 4156.39 13.93 16.5 4143.58 4156.32 9.99 16.8
p03b 5576.24 5614.76 19.49 20.6 5559.81 5590.34 24.17 21.6
p04b 6477.98 6511.02 30.65 26.2 6458.35 6501.23 28.83 28.2
p05b 6870.05 6905.79 23.46 28.2 6890.43 6934.42 31.18 30.7
p06b 8767.55 8799.67 28.42 36.1 8782.21 8825.12 29.00 41.3
p07b 5564.95 5570.36 5.01 14.9 5505.54 5531.65 26.18 16.4
p08b 7655.80 7689.87 17.83 27.4 7663.03 7695.00 23.77 28.5
p09b 10701.65 10785.54 51.99 41.8 10714.69 10783.99 45.31 46.3
p10b 13630.11 13728.00 89.09 49.4 13685.63 13800.38 52.18 59.2

at the results with forward slack time. For narrow time windows (p01a–p10a) the average
gap of VNS (mVNS) is 0.39% (0.74%), while for the larger time windows (p01b–p10b) it is
0.68% (1.20%), while e.g. for ITS/64 it is 1.12% and 1.09%, respectively, and for HGSADC
it is 0.58% and 0.68%, respectively. However, without forward slack time it is 0.27% and
0.01% for VNS, and 0.11% and 0.01% for mVNS, so here they perform slightly better for the
larger time windows. HGA yields respective average gaps of 0.35% and 0.36%. Ultimately
our VNS approach seems more sensitive to the type (i.e. size) of the time windows than other
approaches, though we could not find an obvious reason for it.

4.10.2 Pirkwieser and Raidl Instances

For these instances we set P2-opt∗ = 0.001 and the number of VNS iterations to 107. mVNS
as well as mVNS-ILP is run with 20 VNS instances and the number of sections is 40. VNS-
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Table 4.21: Results of VNS and mVNS on Cordeau et al. instances using forward slack
time, indicating in bold when a method is significantly better than the other.

Instance
VNS mVNS

min avg sdv t[m] min avg sdv t[m]

p01a 2909.02 2909.73 1.01 10.2 2909.02 2909.25 0.75 10.1
p02a 5030.82 5033.71 3.65 14.2 5027.35 5030.60 1.64 14.2
p03a 7099.29 7145.57 25.27 18.1 7079.72 7114.52 21.51 18.6
p04a 7807.81 7846.35 22.34 25.1 7785.81 7812.90 15.92 25.9
p05a 8354.43 8398.74 32.10 29.5 8364.64 8404.38 32.43 30.8
p06a 10491.49 10564.94 45.65 37.8 10537.23 10573.96 26.31 39.1
p07a 6793.98 6807.24 10.04 13.1 6783.23 6794.33 6.08 13.3
p08a 9616.21 9652.67 28.67 27.2 9583.33 9612.29 18.90 28.3
p09a 13191.03 13316.99 60.75 42.6 13229.63 13292.82 35.61 45.0
p10a 17070.65 17206.95 66.59 63.2 17148.05 17255.35 68.90 66.1

p01b 2277.44 2277.44 0.00 11.1 2277.44 2277.44 0.00 11.1
p02b 4129.05 4163.33 20.96 16.0 4122.03 4143.71 8.99 16.2
p03b 5549.89 5576.66 14.82 20.5 5520.27 5569.34 25.71 20.8
p04b 6387.43 6428.41 26.23 26.2 6384.05 6432.29 24.36 27.2
p05b 6855.49 6911.79 36.07 27.5 6852.85 6890.37 23.01 28.7
p06b 8671.78 8716.33 29.45 37.0 8659.46 8723.71 32.67 37.4
p07b 5483.05 5509.16 15.24 15.8 5481.61 5487.79 8.99 16.7
p08b 7635.45 7690.02 29.21 27.5 7646.73 7675.60 18.92 29.0
p09b 10644.80 10709.60 30.77 41.2 10664.02 10732.57 39.25 42.5
p10b 13552.75 13651.27 74.08 48.1 13587.45 13717.26 74.02 50.1

ILP is applied similar, i.e. there are also 40 sections of VNS applications and every time
20 solutions are extracted and inserted in the ILP model as described in Section 4.9.1, con-
sidering intermediate solutions deviating at most 5% from the incumbent solution. Both
VNS-ILP and mVNS-ILP reset the columns after each ILP application, otherwise the model
would grow too large due to the 40 sections and hence model extensions.

The detailed results on the instances having a planning horizon of four, six, and eight days
are shown in Table 4.24, 4.25, and 4.26, respectively. The best found solutions over all runs
with the corresponding gaps to the BKS are reported in Table 4.27. The eagerly awaited
comparison of the methods which were applied on these instances, given per planning hori-
zon, is given in Table 4.28. Standard VNS delivers definitely usable but not yet convincing
results. Fortunately all extensions of it improve upon its performance also for these testruns.
We observe that mVNS yields a higher improvement upon VNS than does VNS-ILP, so we
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Table 4.22: Stating the best results obtained by our algorithms over all runs for the
Cordeau et al. instances without and with forward slack time and the corresponding
percentage gaps to the best known solutions (BKS), indicating newly found ones in
bold.

Instance
w/o forward slack time with forward slack time

best %-gap to BKS best %-gap to BKS

p01a 2989.58 0.00 2909.02 0.00
p02a 5111.26 0.07 5027.35 0.02
p03a 7164.91 0.09 7040.73 0.24
p04a 7947.20 -0.43 7785.81 0.39
p05a 8542.57 -0.49 8332.33 0.25
p06a 10786.32 -1.37 10491.49 0.17
p07a 6897.06 0.06 6783.23 0.01
p08a 9736.26 -0.16 9583.33 0.09
p09a 13595.43 -0.82 13191.03 -0.08
p10a 17544.93 -1.18 17012.41 0.54

p01b 2284.83 0.00 2277.44 0.00
p02b 4139.20 -0.05 4122.03 0.01
p03b 5559.81 -0.13 5520.27 0.56
p04b 6458.35 -0.21 6381.02 0.52
p05b 6870.05 -1.34 6820.12 0.63
p06b 8767.55 -1.00 8638.34 0.65
p07b 5505.54 -0.06 5481.61 0.00
p08b 7647.04 -0.40 7635.45 0.48
p09b 10701.65 -1.59 10634.21 0.97
p10b 13630.11 -1.60 13543.20 1.02

avg -0.53 0.32
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Table 4.23: Comparison to other methods applied on the Cordeau et al. instances. Note
that for ITS we state the absolute computational effort of 8 and 64 search threads running
for 7.60 and 11.32 minutes each, respectively.

Method runs
w/o forward slack time with forward slack time

%-gap %-gap t[m] %-gap %-gap t[m]
avg min avg avg min avg

TS [41] 11 – 3.31 651.00 – – –
TS [42] 10 – – – – 2.74 160.00

ITS/8 [43] 10 – – – 1.77 – 60.80
ITS/64 [43] 5 – – – 1.10 – 724.27

HGA [150] 30 0.35 0.00 654.09 – – –
HGSADC [227] 10 – – – 0.63 0.22 32.74

VNS 10 0.14 -0.37 27.00 1.07 0.53 27.59
mVNS 10 0.06 -0.40 30.48 0.97 0.52 28.56

see again that the multiple VNS instances do pay off for these rather small-sized instances.
Further adding the ILP model as an ingredient, obtaining mVNS-ILP, achieves the necessary
boost to obtain a competitive approach in the end. As per setting the runtime is similar to
HGSADC, while HGA again consumes considerable more runtime. While it can be assumed
that mVNS-ILP and HGSADC perform similar on the p4 and p6 instances, a small, but no-
ticeable gap can be observed for the p8 instances at the expense of mVNS-ILP. However, the
average gap over all instances (p4, p6, and p8) of HGSADC is 0.48% and that of mVNS-ILP
is 0.56%, so the difference is marginal and most likely not significant. For completeness:
that of HGA is 0.65%, hence also showing a good performance.

4.10.3 Vidal et al. Instances

Finally, we also consider the new, large-scale instances of Vidal et al. Similar overall run-
times could be achieved when running the VNS for 4 ·107 iterations. Due to this and the fact
that prematurely stopping the VNS is problematic because of the applied linear cooling we
omitted to restrict the runtime of a single run to five hours as in [227]. As the instances are
considerably larger, we also slightly modified 2-opt∗ to obtain the desired runtimes yet still
taking advantage of its improvement capabilities: on the one hand one third of all route pairs
is simply skipped (determined at random for each pair), and on the other hand for each pair
at most five improving moves are performed as opposed to re-applying until a local optimum
is reached. Further, P2-opt∗ is set to 0.02.
Note that since these instances were so far only tackled in [227], the best solution out of their
five runs is also the best known solution for the corresponding instance. Here we also only
performed five runs, showing the results of VNS in Table 4.29. Unfortunately the instance
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4.10. Latest Computational Results

Table 4.27: Stating the best results obtained by our algorithms over all runs for the
Pirkwieser and Raidl instances and the percentage gaps to the best known solutions
(BKS), indicating newly found ones in bold.

Instance best %-gap to BKS

p4r101 4082.0 0.02
p4r102 3725.2 0.02
p4r103 3153.1 0.00
p4r104 2572.2 0.24
p4r105 3641.7 0.08
p4c101 2907.4 0.00
p4c102 2882.9 0.00
p4c103 2734.5 0.00
p4c104 2422.3 0.14
p4c105 2884.1 0.00
p4rc101 3955.0 -0.02
p4rc102 3755.8 0.00
p4rc103 3444.6 -0.15
p4rc104 2991.5 0.00
p4rc105 3937.7 0.13

avg 0.03

p6r101 5376.6 0.01
p6r102 5201.6 0.00
p6r103 3949.8 0.24
p6r104 3341.0 0.16
p6r105 4279.6 0.16
p6c101 3981.2 0.00
p6c102 3841.7 0.00
p6c103 3528.5 0.14
p6c104 3222.6 0.51
p6c105 4052.1 0.00
p6rc101 5780.3 -0.02
p6rc102 5349.3 0.30
p6rc103 4278.3 0.12
p6rc104 4065.5 0.09
p6rc105 5235.3 0.16

avg 0.12

p8r101 6477.4 0.09
p8r102 6099.0 0.02
p8r103 4701.7 0.31
p8r104 4367.8 0.28
p8r105 5473.2 0.00
p8c101 4679.1 0.00
p8c102 4935.3 0.04
p8c103 4670.3 0.14
p8c104 4632.5 0.89
p8c105 5134.2 0.00
p8rc101 6870.9 0.35
p8rc102 5784.9 0.37
p8rc103 5440.3 0.28
p8rc104 4959.9 0.62
p8rc105 6196.7 -0.11

avg 0.22
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4.11. Conclusions

sizes do not allow to apply mVNS in a meaningful way (as discussed before). On average
HGSADC and VNS yield a more or less equal performance, the slightly reduced gaps of
VNS are marginal and perhaps more a by-product of fluctuation. Still, it is interesting that
VNS performs consistently better than HGSADC on instances having narrow time windows
(p11a–p24a), but this good performance is canceled on a global view by the consistently
worse performance than HGSADC on instances having larger time windows (p11b–p24b).
This is also of interest as in [227] especially the good performance of HGSADC on narrow
time windows was observed in general. It appears that this performance-bias is even more
distinct for the VNS, which was less evident for the Cordeau et al. instances in the previous
section.

4.11 Conclusions

In this line of work, which was part of a larger research project, we aimed at deriving new,
mainly heuristic solution approaches for periodic vehicle routing problems (PVRPs), espe-
cially investigating hybrid methods incorporating integer linear programming techniques.
PVRPs are a generalized variant of the classical VRP where some customers have to be
served more than once during a given planning horizon. On our side we concentrated on
the periodic vehicle routing problem with time windows (PVRPTW), which was at that time
barely treated in the literature.
First we presented a variable neighborhood search (VNS) metaheuristic for which we con-
sidered other successful VNS solution approaches developed for similar problems and com-
bined, adapted, and extended some of their concepts. A selectively applied simple inter-route
improvement procedure, 2-opt∗, was shown to considerably improve the performance with
only moderate computational effort. Back then the good performance of our method was
demonstrated when comparing our best solution values to the previously best known solu-
tion values of a tabu search heuristic, yielding an average improvement of around 1–3%, and
in some cases even more. Latest results indicate that the VNS is very competitive also to
the best recent approaches. On recently proposed large-scale instances it is further able to
improve upon all instances having narrow time windows.
Later we extended our previously introduced (standard) VNS to a multiple VNS (mVNS)
where several VNS instances are applied cooperatively in an intertwined way. This mVNS
puts emphasis on the so far best solution found within a major iteration by restarting the
worst performing VNS instances with it. In this way, mVNS investigates multiple search
trajectories from incumbent solutions, and from a global perspective it can be seen to adap-
tively allocate VNS instances to promising areas of the search space. On all but the large-
scale instances mVNS outperforms VNS, especially on the smaller instances almost always
significantly. The problem is that with increasing instance size it is better to devote all re-
sources (time or iterations) to a single search instance. We note that it might be interesting
to parallelize the multiple VNS instances as was done in [43] with a tabu search.
Another metaheuristic solution approach is based on evolutionary algorithms, which was the
first of its kind for PVRPs. It applies several variants of recombination and mutation which
operate either on the visit combinations or on the routes. Though it can quite reasonably
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4. PERIODIC VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

Table 4.29: Results on the Vidal et al. large-scale instances, indicating newly derived
BKS in bold.

Id
HGSADC VNS

min(BKS) avg t[m] min %-gap avg %-gap t[m]

p11a 20937.29 21120.94 61.74 20821.94 -0.55 20905.09 -0.15 98.63
p12a 26483.68 26677.56 192.16 26268.44 -0.81 26478.13 -0.02 143.98
p13a 31808.00 31909.12 297.03 31507.25 -0.95 31596.49 -0.66 190.65
p14a 36954.39 37066.65 302.25 36562.98 -1.06 36714.39 -0.65 214.95
p15a 41699.07 41847.30 301.05 41456.06 -0.58 41547.87 -0.36 300.16
p16a 48375.16 48855.14 307.29 48317.28 -0.12 48479.86 0.22 347.06
p17a 28818.04 28889.82 65.28 28506.40 -1.08 28591.99 -0.78 107.49
p18a 37385.82 37491.40 263.63 36956.66 -1.15 37117.37 -0.72 169.17
p19a 48993.72 49103.78 300.39 48552.08 -0.90 48722.98 -0.55 240.02
p20a 60144.66 60474.34 302.59 59699.33 -0.74 59859.09 -0.47 331.20
p21a 54257.26 54562.68 213.11 53716.96 -1.00 54007.93 -0.46 167.09
p22a 72978.33 73226.99 297.44 72258.33 -0.99 72782.13 -0.27 264.72
p23a 90951.34 91424.98 300.02 90286.66 -0.73 90822.07 -0.14 365.33
p24a 114712.30 114892.01 308.38 113472.06 -1.08 113931.60 -0.68 532.38

avg %-gap 0.00 0.46 -0.84 -0.41
avg t[m] 250.88 248.06

p11b 15992.20 16102.27 86.18 16098.59 0.67 16170.47 1.11 95.69
p12b 20753.17 20822.71 177.36 20799.53 0.22 20854.92 0.49 129.66
p13b 24972.94 25050.30 291.83 25121.22 0.59 25222.78 1.00 165.83
p14b 29790.14 29976.52 301.40 30249.10 1.54 30394.71 2.03 196.82
p15b 41609.04 41715.58 300.02 41759.56 0.36 41927.07 0.76 269.15
p16b 49470.50 49558.36 306.31 49587.56 0.24 49897.40 0.86 310.60
p17b 22989.05 23138.63 94.09 23015.78 0.12 23113.75 0.54 95.44
p18b 32093.04 32201.55 274.33 32396.99 0.95 32498.33 1.26 156.05
p19b 42332.28 42467.74 300.53 42884.86 1.31 42990.30 1.55 206.80
p20b 52863.23 53119.63 302.15 53570.09 1.34 53706.27 1.59 295.29
p21b 43098.26 43195.88 261.51 43179.71 0.19 43427.55 0.76 158.31
p22b 58814.76 58942.49 303.13 59051.31 0.40 59208.51 0.67 236.30
p23b 74357.84 74755.07 302.99 75476.59 1.50 75611.83 1.69 353.33
p24b 94395.56 94551.24 303.18 95351.52 1.01 95920.31 1.62 457.70

avg %-gap 0.00 0.38 0.75 1.14
avg t[m] 257.50 223.35

avg %-gap 0.00 0.42 -0.05 0.37
avg t[m] 254.19 235.71
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solve the problem, it is clearly not competitive to the VNS variants. It was mainly derived to
investigate a special matheuristic variant, mentioned later.

We further investigated an ILP formulation based on a set-covering model. The LP relax-
ation is solved via column generation, where the pricing subproblem resembles an elemen-
tary shortest path problem with resource constraints (ESPPRC) for which we apply an exact
dynamic programming algorithm. An important issue are the simultaneous restrictions on
time windows as well as on route duration. For this purpose we proposed suitable label
resources, their extension function, and dominance rules, incorporating the concept of for-
ward time slack in order to minimize overall route duration. Furthermore a GRASP-based
metaheuristic as well as the REUSE entitled method is proposed for heuristically solving the
ESPPRC. The latter uses active routes in the previous LP solution as a starting point to find
negative reduced columns in a faster way. Computational results indicate the advantage of
applying a forced early stop as well as the metaheuristics–especially REUSE–in combination
with the dynamic programming algorithm to often drastically reduce computation time. For
many instances only small remaining gaps were achieved. In contrast to the labeling algo-
rithm the developed ESPPRC heuristics are not sensitive to the dual variable values, which is
primarily of advantage at the beginning of the process. Due to this they further more easily
allow to start with no initial columns, but using slack variables instead. Building upon this
we embedded this column generation approach in a branch-and-price framework via propos-
ing suitable branching rules. It is also extended to branch-and-cut-and-price by introducing
2-path cuts which were adapted to our problem as well as the recently proposed subset-row
inequalities. Tests on smaller instances with 36 and 50 customers show that the ESPPRC
heuristics do not have a great impact here, and that especially the subset-row inequalities
reduce both the computation times and the resulting gaps. For the 50 customer instances
separating both cuts yielded the best results on average. We believe the key to tackle larger
instances, or to improve the performance in general, is to tune and/or adequately enhance the
labeling algorithm. In a further attempt different, more advanced branching rules as well as
additional strengthening inequalities could be considered.

In the course of the project we investigated several matheuristics, three of them were pre-
sented in detail. The first two directly made use of the set-covering ILP formulation and
can be classified as intertwined collaborative cooperations where the VNS or mVNS sup-
plies the exact method with feasible solutions’ routes and the current best solution, and the
ILP solver takes a global view and seeks to determine better feasible route combinations.
When doing so the solver might change the visit combinations. For testing we derived new
PVRPTW instances with a planning horizon of four, six, and eight days from the 100 cus-
tomer Solomon VRPTW benchmark instances. The VNS-ILP matheuristic yielded for two
third of all considered instances a statistically significant improvement over solely applying
the VNS. It was clearly beneficial to consider both improved and intermediate VNS solu-
tions of a certain quality for enriching the ILP model. Generally, it is better to include not
too many solutions to keep the runtime for solving the ILP small and increase the chance of
finding an improved solution in limited time, as well as rather to include the solutions’ routes
for the corresponding day only, instead for all days. This way the hybrid method still per-
forms significantly better for almost half of the instances even when compared to VNS runs
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4. PERIODIC VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

with twice the iteration limit, additionally requiring considerably less CPU-time. In case of
the mVNS-ILP matheuristic the current best solutions of the VNS instances are provided to
the exact method. Hence the application of the ILP solver can in some way be regarded as a
recombination operator taking into account all available solutions provided by the “popula-
tion” of the VNS instances. Also, if a solution is not feasible as a whole, its feasible routes
are added anyway. In our previous work mVNS-ILP yielded for 80%–100% of all conducted
tests a statistically significant improvement over solely applying the VNS in a standard way.
It has become evident that, if possible, keeping the routes (columns) in the model once they
were added is beneficial, though one has to keep in mind the longer runtimes of this setting
than when considering the actual best solutions’ routes only. Nevertheless, even the mVNS-
ILP hybrid with this continuously increasing ILP model requires for most of the instances
less CPU-time than the standard VNS with more iterations. The latest results with longer
runtimes and accordingly more applications of the ILP solver show that mVNS-ILP, this
time with resetting the columns, yields the best results of our methods and performs nearly
as good as the currently best performing method. Only for instances having an eight day
planning horizon there is a small gap of 0.26%. Potential improvements might be to include
better handling of intermediate VNS solutions (reducing overhead and probably increasing
overall quality and diversity), some sort of column management for the ILP to be able to
include more solutions (probably for all days) without performance degradation via discard-
ing unpromising columns over time, or adding problem specific cuts to the ILP. It might also
be possible to use such a hybrid method for finding initial feasible solutions by combining
several partly-feasible ones, though this task was not too hard for the given instances.
The third matheuristic is a combination of the column generation approach and the EA (CG-
EA). Here the solution to the LP relaxation of the set covering model, i.e. on the one hand
columns which were created and on the other hand the variable values, is successfully ex-
ploited in the subsequent EA. E.g. also an ongoing exploitation is realized via inserting routes
of a pool during mutation. The initial column generation is executed with a time limit, which
is inevitable to guarantee a viable runtime in total. This matheuristic, being lower-level
since specific information of the column generation is exploited in the EA and classified as
a sequential collaborative combination, is more interesting from a methodical point of view.
Although it performs worse compared to the VNS-ILP matheuristics, it almost always sig-
nificantly outperforms the pure EA, independent of the size of the planning horizon. CG-EA
also clearly outperformed a column generation based heuristic.
Finally, it is to be noted that these matheuristics not only seem promising for other, possibly
richer variants of routing problems, but their concept can fairly easily be applied to other
classes of combinatorial optimization problems as well.
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5.1 Introduction

After tackling the PVRPTW with various hybrid methods as reported in the previous chapter
we wanted to give a completely different approach a try, though this time for the problem
variant not involving time windows and especially targeting large(r) instances. The idea was
to combine the concept of multilevel refinement with a variant of the VNS previously applied
to the PVRPTW accordingly adapted to the specifics of the PVRP. Part of this work was
presented at the 10th European Conference on Evolutionary Computation in Combinatorial
Optimisation in 2010 (EvoCOP 2010) [163].

For a problem definition we refer to Chapter 4 on the PVRPTW; in case of the PVRP only
the time windows are omitted or are assumed to be [0,∞]. As a special case of the PVRP,
when only having a single vehicle, we will also consider the periodic traveling salesman
problem (PTSP).

Multilevel refinement strategies [230, 231] successively coarsen an initial problem instance,
yielding a sequence of instances of decreasing size, representing the problem on different
abstraction levels. The smallest instance is then solved by some auxiliary technique (e.g. a
metaheuristic), and the obtained solution is extended to a solution of the previous level. This
solution is possibly improved (e.g. again by some metaheuristic) and the solution extension
continued until a solution for the original problem is obtained. In an iterated multilevel re-
finement strategy the whole process is iterated; hereby, a recoarsening is performed exploit-
ing the last obtained solution in order to derive an eventually better hierarchy of abstraction
levels. Multilevel refinement strategies have been successfully applied to several combi-
natorial optimization problems, including graph partitioning [231], the traveling salesman
problem [229], and also the classical capacitated vehicle routing problem [197]. When ap-
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5. PERIODIC VEHICLE ROUTING PROBLEM

plied sensible, they seem to be able to often improve the scalability of underlying heuristics
significantly, either improving running times or final solution qualities.
The subject of this work therefore is to study the extension of a variable neighborhood search
(VNS) metaheuristic that was already successfully applied to periodic routing problems by
a multilevel refinement strategy in order to improve the performance of the VNS especially
on larger instances.
In the following section we review related work. The underlying VNS and the multilevel
extension are presented in Sections 5.3 and 5.4, respectively. Experimental results, in which
also new larger benchmark instances are used, are discussed in Section 5.5. We also inves-
tigate a second approach in combination with our proposed multilevel refinement as well as
the VNS in Section 5.6, with corresponding results given in Section 5.7. Finally, conclusions
and an outlook on potential future work is given in Section 5.8.

5.2 Related Work

From a problem oriented view recent successful approaches for one or both of PVRP and
PTSP are [40], [16], [7], and [105]. Cordeau et al. [40] describe a Tabu search for periodic
and multi-depot routing problems, achieving for all previously known benchmark instances
new best results at that time. The algorithm is based on rather simple standard neighborhoods
that move single customers to different routes or change single visit combinations. New ran-
dom test instances have further been introduced in this work. A well performing construc-
tion type algorithm with an embedded improvement procedure for the PTSP is presented
by Bertazzi et al. [16]. Alegre et al. [7] apply a scatter search heuristic tailored especially
to solve PVRP instances having a long planning horizon. Nevertheless they also obtained
improved results for many standard benchmark instances. Most recently Hemmelmayr et
al. [105] tackled the PVRP and PTSP with a sophisticated VNS that again yielded many
new best results. As neighborhoods for diversification they utilized moving or exchanging
route segments of different maximal size as well as changing several visit combinations. As
improvement procedure they applied the well-known 2-opt and a restricted 3-opt. Similar to
[40] they also allow infeasible solutions during the search but additionally apply an accep-
tance criterion similar to simulated annealing [123]. Francis et al. [83] gave a recent survey
on periodic routing problems considering several variants of it.
A VNS based on the one from [105] has further been described for the PVRP with time win-
dows in Chapter 4. The concept of multilevel refinement including an overview on applica-
tions is covered in [230, 231]. We point out the work by Rodney et al. [197] which introduces
a multilevel refinement strategy for the capacitated vehicle routing problem. They coarsen
the problem by building paths (segments) of customers through fixing the corresponding
edges and consider such a path as an atomic unit in the following. Due to the capacity
restrictions they propose to balance these paths according to the accumulated demand and
systematically allow a gradually decreasing violation of the limiting constraint. Further the
multilevel strategy has been previously applied to the traveling salesman problem [229, 25]
in a similar way. Yet we are not aware of an approach that was designed to handle the peri-
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Table 5.1: Fixed shaking neighborhood order of VNS.

k Nk
1–6 Change Visit Combination up to δ = k times
7–9 Move Segment of maximal length δ = k − 6

10–12 Exchange Segments of maximal length δ = k − 9
13 Mixed: probably apply all previous moves decided

upon individually at random

odicity as well as to accomplishing such a smooth integration into a metaheuristic. Further,
to our knowledge VNS has not been combined with multilevel refinement so far.

5.3 Underlying Variable Neighborhood Search

In the following, we give a rather short overview on our underlying VNS as most parts of it
have already been described in more detail in the previous chapter about the PVRPTW.
To smooth the search space and help escaping local optima, the VNS relaxes the restrictions
on vehicle load and route duration and adds penalties corresponding to the excess of these
constraints to the cost function. As for the PVRPTW we also set a constant penalty, again
corresponding to the average inter-customer travel costs. Initially a possible visit combina-
tion is selected for each customer at random. Afterwards we apply the Clarke and Wright
savings algorithm [32] in case of multiple routes. If we end up with too many routes, the
customers of those routes holding the least customers are relocated in a greedy way (for de-
tails we refer to [105]). By doing so the constructed routes might exceed maximal vehicle
load or allowed tour duration. For instances with a single vehicle, i.e. especially for all PTSP
instances, we make use of best insertion.
In the shaking phase we utilize three different neighborhood structures with increasing per-
turbation size per type: (i) randomly changing up to six visit combinations in a sequential
way with greedy insertion for the new visit days, where for the PVRP we also allow reas-
signing the same visit combination, (ii) moving a random segment of up to length three of
a route to another one on the same day, and (iii) exchanging two random segments of up to
length three between two routes on the same day. Finally, an additional mixed neighborhood
is applied where potentially all of the previous neighborhood structures are utilized. We thus
have a total of 13 shaking neighborhoods (i.e. kmax = 13) which are always considered in a
fixed order that is listed in Table 5.1. These settings reflect previous experience and showed
a good performance in preliminary tests. Contrary to [105] only segments of up to length
three instead of six are exchanged, we recognized no performance gain when exchanging
longer segments.
For intensification we apply the well-known 3-opt intra-route exchange procedure in a first
improvement fashion for the PVRP and 2-opt for PTSP, only considering routes changed
during shaking. According to preliminary tests on the PTSP we restrict 2-opt to segments of
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5. PERIODIC VEHICLE ROUTING PROBLEM

length 10 in case of n > 300, hence limiting its computational effort. Both are applied as
long as an improvement is achieved, i.e. until a local optimum is reached. Additionally each
new PVRP incumbent solution is subject to a 2-opt∗ inter-route exchange heuristic [173].
Hereby for each pair of routes of the same day all possible exchanges of the routes’ end
segments are considered. In case of the PTSP we additionally apply 3-opt on all routes. This
is an addition to the work of [105].
To enhance the overall VNS performance Hemmelmayr et al. [105] propose to not only ac-
cept better solutions, but sometimes also solutions having a worse objective value. This
is done in a randomized fashion using the Metropolis criterion like in simulated anneal-
ing [123]. A linear cooling scheme is used in a way such that the acceptance rate of worse
solutions is nearly zero in the last iterations. As for the PVRPTW in the previous chap-
ter the initial temperature is set to one fifth of the average inter-customer travel costs and
at each temperature level 100 iterations are applied, resulting in a temperature decrease by
Tinit · 100/max_iterations . The proposed VNS is depicted in Algorithm 15.

5.4 Multilevel Variable Neighborhood Search

In this section we extend the described VNS with ideas from the multilevel refinement strat-
egy, hence we call it the Multilevel VNS (MLVNS). The basic idea of multilevel refine-
ment [230, 231] is to suitably coarsen the problem with two goals: (i) to concentrate more
on the costly parts of the problem during optimization, and (ii) at the same time to (tem-
porarily) reduce its size, making it more tractable at the coarser levels. The problem is then
(approximately) solved at the highest level and the obtained solution refined in an iterative
way until a solution to the original problem is reached.

Contrary to most existing multilevel refinement approaches, our method

• does not automatically obtain one specific feasible solution at the coarsest level to start
with, which is due to the periodicity in our case, and

• does not have several subsequent (and even independent) applications of the same
method on different levels, but smoothly integrates the transitions from the most ab-
stract level to the original problem in the VNS; i.e. many levels with small changes (in
fact always only one) are used.

In the following we propose an initial coarsening process operating at a given problem in-
stance, as well as a recoarsening based on an incumbent solution.

5.4.1 Initial Problem Coarsening

Two common coarsening schemes on graphs are based on either merging nodes (into “super-
nodes”) or building segments (paths). Since we have to determine sequences of customer
visits it is rather natural to follow the latter scheme here, keeping in line with previous
work [229, 197]. We opt for an exact coarsening, i.e. the objective value of a coarsened
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Algorithm 15: VNS for the PVRP/PTSP with initial solution xinit
xbest ← xinit; // incumbent solution (though most likely1

infeasible at the beginning)
xvns ← xinit; // solution utilized for shaking2

k ← 1; // shaking strength3

initialize temperature to (average travel costs)/54

while VNS stopping condition is not met do5

while k 6= kmax do6

// shaking:
Select x′ ∈ Nk(xvns)7

// local search:
if m > 1 then PVRP instance8

x′′ ← repeated first improving 3-opt neighbor of x′9

else10

if n ≤ 300 then11

x′′ ← repeated first improving 2-opt neighbor of x′12

else13

x′′ ← repeated first improving reduced 2-opt neighbor of x′14

// possibly update incumbent:
if x′′ is feasible and better than xbest then15

// additional local search:
if m > 1 then PVRP instance16

apply 2-opt∗ improvement on x′′17

else18

apply 3-opt on all routes of x′′19

if x′′ made infeasible then20

revert previous local search21

xbest ← x′′; // set new incumbent22

k ← 1; // reset shaking23

// possibly update solution utilized by VNS:
if (x′′ is better than xvns) or (x′′ is worse than xvns but accepted due to24

Metropolis criterion) then
xvns ← x′′25

k ← 1; // reset shaking26

else k ← k + 1; // increase shaking27

every 100th iteration apply linear cooling28

possibly do a refinement step29

// finished VNS iteration
k ← 1; // reset shaking30
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S1start

S3start = S1start S3end = S2end

Cost(S1) + cS1end, S2start + Cost(S2)

Segment S1 Segment S2

Segment S3

Demand(S1) + Demand(S2)

coarsening
step

refinement
step

S1end S2start S2end

Serv.Dur.(S3) =

Cost(S3) =

Demand(S3) =

Serv.Dur.(S1) + Serv.Dur.(S2)

Figure 5.1: Coarsen: merge two segments into one, refine: split a segment into two.

solution always equals the one of the corresponding fully refined solution. Basically during
coarsening the nodes of the graph (i.e. single customers) are merged to segments via fix-
ing a specific edge between them. One such coarsening step of merging two segments into
a longer segment and the corresponding reversed refinement step are shown in Figure 5.1.
Note that a single customer can be regarded a segment with identical start and end point, too.
The accumulated cost, demand, and service duration of the newly created segment must be
set accordingly.
Due to the periodicity, building customer sequences on a daily basis as for the single day
of the classical vehicle routing problem would not make much sense. On the one hand this
would require to choose a visit day combination per customer in advance (a bad choice
would potentially result in a bad coarsening) and on the other hand such segments would
most likely not allow to change its visit day combination without the need of breaking it
apart, thus creating only short-lived segments being inconsistent with the general idea of
the multilevel refinement strategy. Therefore it is necessary to apply a coarsening process
respecting the periodicity and building segments spanning the whole planning horizon. This
is achieved by incorporating the customers’ sets of available visit day combinations—the
service frequencies alone might not be sufficient—and allow customers and subsequently
segments to be merged only if their sets are equal.
At this point several initial problem coarsenings could be obtained by using different cost
criteria as well as processing sequences. For example, in [197] per level they randomly
choose an unmatched segment and fix an edge between it and the nearest unmatched seg-
ment according to the savings measure, whereas the actual costs of connecting the segments’
free end nodes only considering segments in a defined surrounding for matching are used
in [229]. We investigated several possibilities and after preliminary tests came up with these
findings/settings:

• In general we observed the tendency that the greedier the selection for matching is, the
better are the results on average; hence we always select the cheapest matching among
all possible ones.
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• Regarding the size (length) of the segments, i.e. how many customers are contained in
the segment, we used two options:

– Setting I: Enforce no limit at all, thus coarsen in a pure greedy fashion.

– Setting II: Start with an allowed maximal length of two and gradually increase
this limit by one whenever no more matching could be found. The maximum
number of occurrences of one set of visit day combinations is used as an upper
bound for this maximal length.

• We settled on using the actual costs of connecting the segments’ free end nodes,
thereby trying all four possible ways.

• Optionally we set a limit for the connection costs by multiplying the average inter-
customer travel costs by a given factor δc, hence having an instance independent mea-
sure

• Optionally we respect given limits on vehicle capacity and route duration when build-
ing the segments.

A small schematic coarsening example for both settings I and II without limiting the connec-
tion costs is shown in Figure 5.2. The common practice of coarsening with a random factor
yielded (so far) clearly worse results.
Having the coarsest problem, we generate the initial solution as described in Section 5.3
(there is no need to change this procedures). Then we interweave the iterative refinement
with the VNS’ execution. First, we select a fraction of the total VNS iterations in which
this initial coarsening/refinement phase takes place. Then these iterations are divided by the
number of present refinements (plus one to also execute some iterations on the fully refined
problem) to determine the iterations per (mini-)level.
Refinement is exactly the reversed process as coarsening (in a “last in–first out” fashion),
thus splitting the usually most costly matchings first and keeping the more likely (cheaper)
ones accordingly longer. Hence in a refinement step (refer to Figure 5.1) we have to locate
the segment in a route at all days of the actual visit day combination and split it in two
segments again, thereby preserving the direction.
At the end of this phase we may either continue with the fully refined problem or apply a
recoarsening which will be the subject of the next section.

5.4.2 Solution-Based Recoarsening

Solution-based recoarsening is a very common practice to extend the concept of multilevel
refinement beyond the initial coarsening/refinement phase. For this, the problem is recoars-
ened on the basis of a current incumbent solution in such a way as to preserve its structure,
hence neglecting/destroying no obtained information. Despite this the coarsening principle
stays the same. This obviously leads to considerably less degrees of freedom during the
coarsening and in our case automatically to rather short segments.
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1 2 3

4 5 6

7 8 9

customer depot

(a) Setting I

1 2 3

4 5 6

7 8 9

customer depot

(b) Setting II

Figure 5.2: Exemplary (deterministic) initial problem coarsenings for customers having
the same visit day combinations, iteratively building longer (route) segments.

This time we restrict our attention to adjacent segments in the current solution’s routes,
whereas again, they must have equal sets of visit day combinations. Further, such a segment
pair must be adjacent on all visit days, only a whole reversed occurrence (s.t. the same end
points are connected) is acceptable. As a cost criterion we directly use the present connection
costs.

Regarding the recoarsening procedure we basically adhere again to the greedy approach as
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used in the initial problem based coarsening, but try to prevent obtaining the same recoars-
ening in case we use the same solution multiple times: Using a parameter x, we always
select one of the x cheapest possible matchings per step (or level) at random. Initially, x is
set to one, but when we encounter the same solution to be used for recoarsening again, x is
incremented. Contrary, if a different solution than in the previous iteration is used we reset
x to one and turn the procedure into a pure greedy selection again. This extension further
reduces the risk of getting stuck in local optima.
For recoarsening we have so far fixed the connection cost limit to δc/2 of the average inter-
customer travel costs (in case the factor δc is used at all). Since we utilize a feasible solution
for guiding the recoarsening a violation of the vehicle capacity or route duration is impossible
and must not be checked. Finally, the subsequent refinement phase is handled in the same
way as the initial refinement in the preceding section. Therefore we also choose a fraction
of the VNS’ iterations to be allotted to a recoarsening/refinement phase.

5.4.3 Handling Segments in the VNS

Due to incorporating the multilevel refinement strategy into the VNS there are a few more
things to consider when dealing with segments of merged customers:

• As already mentioned the solution construction heuristics need not to be changed, the
same applies to moving or exchanging route segments and all local search procedures.

• After each refinement step we immediately apply the intra-route local search in use on
the routes that contain refined segments.

• Although the segments have different start and end points, i.e. are asymmetric, when
changing visit combinations during shaking we always reinsert them in the direction
at the time of creation instead of the one in the previous route. We observed no gain
doing otherwise nor when trying both directions.

5.5 Computational Experiments I

The following experiments were aimed at investigating the performance difference of the
standard VNS and the multilevel VNS, hence we were not hunting for new best solutions
on available data sets. Nevertheless, we already did find a few ones back then (which are
outdated by now) but we will not elaborate on this. The algorithms have been implemented
in C++, compiled with GCC 4.5 and executed on a single core of a 2.83 GHz Intel Core2
Quad Q9550 with 8 GB RAM.
For each chosen setting we performed 10 runs per instance with a limit of 106 iterations,
i.e. solution evaluations. Preliminary tests on all considered instances suggested to ignore
the given limits on vehicle capacity and tour duration during coarsening (which would only
affect PVRP instances), probably because the VNS was built to cope with infeasibility. If not
stated otherwise 20% of all iterations are devoted to the initial coarsening/refinement phase
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Table 5.2: Summarized average results on available benchmark test data of VNS and
MLVNS; giving standard deviations in paranthesis.

test data instances
VNS MLVNS II0.5

%-gap %-gap %-gap %-gap %-time
BKS HDH BKS HDH VNS

PVRP
old 32 3.02 (4.67) -0.19 (1.43) 2.50 (3.91) -0.66 (1.57) 89.2
new 10 2.86 (1.73) -0.75 (0.89) 2.68 (1.66) -0.92 (0.90) 85.1

PTSP
old 23 0.85 (1.12) 0.05 (0.39) 0.30 (0.43) -0.49 (0.80) 89.9
new 10 0.34 (0.18) 0.04 (0.05) 0.28 (0.17) -0.01 (0.07) 79.1

and recoarsening is applied four times also devoting 20% of the iterations each. The two
remaining options we varied are the type of problem coarsening (setting I or II) and the cost
limit factor δc; these will be denoted by [I,II]δc . We experienced that usually it is better to
enforce a merging cost limit.
Figures 5.3 and 5.4 show PVRP solutions throughout the initial refinement process with
coarsened segments highlighted in red.

5.5.1 PVRP and PTSP Instances Used in the Literature

We utilize available “old” and “new” benchmark test data1 both for the PVRP and the PTSP.
Here we will only present results on them in concise form and refer to [40] for further de-
tails and origins of these instances. Back then relevant and recent results for comparison
are reported in [105]. Meanwhile Vidal et al. [226] proposed a hybrid genetic algorithm
outperforming previous approaches in terms of solution quality with comparable computing
effort.
Results are presented in concise form in Table 5.2. Here we state the percentage gap to the
so far best known solutions at that time (%-gap BKS) as well as to the average results of the
VNS described by Hemmelmayr et al. [105] using the same iteration limit of 106 (%-gap
HDH), all these values are given in [105]. The corresponding standard deviations are written
in parentheses. For the MLVNS we further state the amount of CPU time spent given in
percentage of the VNS’ CPU time (%-time VNS). As can be seen the MLVNS generally
performs better than the standard VNS, achieving especially on the old data sets a notable
improvement with regard to solution quality. Contrary, on the new data sets no such clear
improvement can be observed, especially not for the PTSP. However, for all these data sets
there is a CPU time reduction between 10 and 20 percent on average. As it turned out
coarsening setting II gave consistently better results, though the differences were sometimes
negligible.

1Available at http://neumann.hec.ca/chairedistributique/data/pvrp [accessed
on October 22, 2011]
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objective: 286324, travel costs: 8389.91

#routes: 6, cost: 2297.55 #routes: 6, cost: 1881.88

#routes: 6, cost: 2321.11 #routes: 6, cost: 1889.36

(a) initial coarse solution

objective: 6842.65, travel costs: 6842.65

#routes: 6, cost: 1681.59 #routes: 6, cost: 1814.48

#routes: 6, cost: 1647.02 #routes: 6, cost: 1699.56

(b) solution after about 1/3 of all initial refinement steps

Figure 5.3: Exemplary (coarsened) PVRP solutions during the VNS search process.
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objective: 5923.48, travel costs: 5934.96

#routes: 6, cost: 1427.58 #routes: 6, cost: 1566.12

#routes: 5, cost: 1317.41 #routes: 6, cost: 1612.37

(a) solution after about 2/3 of all initial refinement steps

objective: 5610.65, travel costs: 5610.65

#routes: 6, cost: 1308.78 #routes: 6, cost: 1546.84

#routes: 5, cost: 1247.42 #routes: 6, cost: 1507.6

(b) solution at the end of the initial refinement process

Figure 5.4: Exemplary (coarsened) PVRP solutions during the VNS search process.
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Table 5.3: New larger PVRP and PTSP (setting m = 1 and ignoring D and Q) in-
stances using the generation method introduced in [40], additionally stating our best
found solutions’ values over all runs.

Id n m t D Q
service frequencies best found solutions

f1 f2 f3 f4 f6 PVRP PTSP

pr11 336 14 4 480 185 112 112 112 11224.40 6618.53
pr12 384 16 4 475 195 128 128 128 11320.99 7062.96
pr13 432 18 4 450 185 144 144 144 10429.50 6757.86
pr14 480 20 4 475 185 160 160 160 13463.25 7740.23
pr15 528 22 4 470 190 176 176 176 15237.87 8377.39
pr16 576 24 4 455 185 192 192 192 13315.25 7640.57
pr17 360 15 6 445 165 90 90 90 90 15888.55 9459.08
pr18 432 18 6 450 170 108 108 108 108 19564.87 11314.85
pr19 504 21 6 440 160 126 126 126 126 22949.66 11344.27
pr20 576 24 6 450 165 144 144 144 144 24004.13 11660.07

5.5.2 Additional PVRP and PTSP Instances Similar to Cordeau et al.’s

Since the multilevel refinement strategy is in general especially appealing for large(r) in-
stances where it may unfold its full potential, but the available test data lack them, we created
some PVRP and PTSP instances on our own by applying the generation method described
in [40]. They can be regarded a continuation of the instances introduced in this latter work,
except that we evenly distributed the visit frequencies among the customers for all instances;
more details, already including our best found solutions’ values over all conducted runs
(partly also with more iterations), are given in Table 5.3.
When doing preliminary tests we recognized that the VNS’ acceptance decision using the
Metropolis criterion in some way weakens the potential gain of the multilevel extension.
Hence we also performed tests with only accepting improved solutions, whose results are
given in Table 5.4 and 5.6 for the PVRP and the PTSP, respectively. The corresponding re-
sults using the default acceptance decision are given in Table 5.5 and 5.7. For both variants
and problems we tested coarsening setting I and II with a cost limit factor δc of 0.5 and 0.33
(which was narrowed down in preliminary tests), as well as devoting all iterations to the ini-
tial coarsening/refinement phase and doing no recoarsening at all, where we always state the
results of the setting yielding the best solutions on average. The tables show average travel
costs (avg), corresponding standard deviations in percent (sdv[%]), CPU-times in seconds
(t[s]), as well as the percentage gaps to the VNS (%-gap) and the CPU-times given in per-
cent of the VNS (%-time) for the MLVNS. In Tables 5.4–5.7 average values of the MLVNS
are printed bold whenever a statistically significant improvement compared to the VNS has
been achieved or vice versa, according to a Wilcoxon rank sum test with an error level of
5%. For these new larger instances the greedy coarsening setting I turned out to achieve
consistently better results than setting II. Comparing Table 5.4 and 5.5, as well as Table 5.6
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Table 5.4: Average results of standard and multilevel VNS on new larger PVRP in-
stances only accepting improved solutions.

Id
VNS MLVNS I0.5

best avg sdv[%] t[s] best avg sdv[%] t[s] %-gap %-time

pr11 11988.17 12135.04 0.92 40.6 11764.62 12066.05 1.59 31.4 -0.57 77.3
pr12 11935.12 12099.76 0.76 42.8 11913.75 12019.06 0.68 33.3 -0.67 77.8
pr13 11291.21 11484.99 0.86 47.3 11123.96 11265.22 1.18 37.2 -1.91 78.6
pr14 14457.39 14572.72 0.61 52.4 14217.40 14352.14 0.80 40.3 -1.51 76.9
pr15 16329.00 16498.72 0.68 59.7 15878.62 16078.02 0.66 42.1 -2.55 70.5
pr16 14716.46 14815.95 0.69 67.3 13832.13 14064.44 1.00 47.3 -5.07 70.3
pr17 16864.64 17072.72 0.69 41.5 16525.56 16804.22 0.79 34.4 -1.57 82.9
pr18 20778.33 21057.55 0.83 48.8 20345.62 20613.84 0.65 39.4 -2.11 80.7
pr19 24898.62 25148.96 0.42 57.7 24330.25 24795.71 1.19 44.4 -1.40 76.9
pr20 25716.70 25875.35 0.52 70.4 25075.55 25273.14 0.59 53.4 -2.33 75.9

avg 50.6 39.8 -1.97 77.1

and 5.7 it can be clearly seen that the MLVNS yields a higher relative improvement when
only accepting improved solutions, nevertheless also when using the default acceptance de-
cision the improvement is notable, especially in case of the PTSP. Interestingly, for the PTSP
using no recoarsening and extending the initial problem coarsening/refinement phase to all
iterations turned out to be usually better (which only holds for the new larger instances, we
checked it for the available test data, too). This has the additional positive effect that the
required CPU-time is more than halved. Contrary, for the PVRP the decrease in CPU-time
is about 20%. For the latter problem we also observed that improvements during refinement
after a recoarsening occur more often when also accepting worse solutions, otherwise the
customer segments are probably too coarse and do not allow an improvement in a direct
way. In summary, for almost all instances and both acceptance decisions the MLVNS yields
on average significantly better results than the VNS.

The relative usage, acceptance and success rate of the shaking neighborhoods for both prob-
lems averaged over all corresponding runs is shown in Table 5.8 and 5.9. In general chang-
ing visit combinations is by far the most important neighborhood, even more evident for the
PTSP, yet the others make significant contributions as well. Looking at the rates of the mul-
tilevel VNS shows that they are smoothed to some extent, i.e. the neighborhoods’ usage and
subsequently their acceptance and success rates are more uniformly than before, again more
so for the PTSP. This shows that by using the multilevel refinement allows to better utilize
also the later (in terms of a higher k value) neighborhoods.

5.6 Multilevel Variable Neighborhood Descent and Embedment
in VNS

Due to the smaller performance gain of the proposed multilevel refinement strategy when
applying the Metropolis criterion in the previous VNS we decided to investigate a more
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Table 5.5: Average results of standard and multilevel VNS variants on new larger PVRP
instances using the acceptance decision with the Metropolis criterion.

Id
VNS MLVNS I0.5

best avg sdv[%] t[s] best avg sdv[%] t[s] %-gap %-time

pr11 11777.81 11925.97 0.73 40.6 11534.90 11791.76 1.00 32.1 -1.13 79.1
pr12 11599.29 11662.50 0.35 42.5 11557.46 11654.71 0.51 34.0 -0.07 80.0
pr13 10775.92 10893.52 0.63 46.7 10679.85 10789.19 0.79 37.5 -0.96 80.3
pr14 13843.26 13968.70 0.59 51.9 13854.73 13894.75 0.19 40.8 -0.53 78.6
pr15 15481.21 15600.60 0.44 58.2 15544.47 15659.44 0.62 43.6 0.38 74.9
pr16 13693.90 13840.69 0.54 65.1 13701.18 13762.91 0.49 48.4 -0.56 74.3
pr17 16203.55 16287.59 0.47 41.2 16220.30 16324.32 0.46 34.8 0.23 84.5
pr18 19954.18 20132.26 0.55 48.2 19921.72 20046.51 0.51 40.4 -0.43 83.8
pr19 24157.00 24358.89 0.61 56.5 23921.31 24047.23 0.42 44.9 -1.28 79.5
pr20 24473.60 24708.36 0.57 67.2 24282.46 24583.69 0.59 53.0 -0.50 78.9

avg 50.0 40.6 -0.48 79.3

Table 5.6: Average results of standard and multilevel VNS variants on new larger PTSP
instances only accepting improved solutions.

Id
VNS MLVNS I0.5 (no recoarsening)

best avg sdv[%] t[s] best avg sdv[%] t[s] %-gap %-time

pr11 6827.31 6846.83 0.26 202.5 6704.23 6759.25 0.44 95.1 -1.28 47.0
pr12 7222.48 7305.13 0.60 261.0 7149.85 7170.01 0.27 117.5 -1.85 45.0
pr13 6916.30 6968.14 0.57 341.7 6794.93 6852.11 0.44 151.9 -1.67 44.5
pr14 7969.23 8040.07 0.66 426.0 7800.44 7839.22 0.40 183.7 -2.50 43.1
pr15 8545.86 8681.43 0.74 535.5 8482.55 8527.30 0.29 211.6 -1.78 39.5
pr16 7874.67 7993.22 0.82 677.0 7718.15 7759.57 0.32 264.9 -2.92 39.1
pr17 9748.70 9858.72 0.66 221.5 9575.85 9640.96 0.36 107.6 -2.21 48.6
pr18 11577.94 11703.62 0.63 318.5 11457.79 11549.69 0.48 148.9 -1.32 46.8
pr19 11716.97 11788.73 0.44 452.7 11519.13 11594.03 0.44 192.9 -1.65 42.6
pr20 12023.09 12114.09 0.43 623.2 11793.31 11875.43 0.33 256.3 -1.97 41.1

avg 383.9 167.8 -1.91 43.8

standard approach, too. In order to better observe the different search capabilities when uti-
lizing the multilevel refinement a variable neighborhood descent (VND) seemed promising.
Since it is a straightforward VND we will only mention the neighborhoods in use, which are
listed in Table 5.10. The first is to change a visit combination of either a single customer or
a customer set if in a coarsened state (Change Visit Combination). The entities as well as
the possible visit combinations are enumerated in a random way to avoid any bias and the
first improving change is accepted, followed by an immediate subsequent improvement via
2-opt∗ or 3-opt, depending on the problem as before. We also tried a variant with changing
two or more visit combinations at a time, but the size of these neighborhoods and hence the
computational effort grows very quickly and renders them not viable anymore. The second
and third neighborhoods were proposed by Osman [153] and are the local search based vari-
ants of the corresponding shaking neighborhoods of the VNS: shift a segment of length one
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Table 5.7: Average results of standard and multilevel VNS variants on new larger PTSP
instances using the acceptance decision with the Metropolis criterion.

Id
VNS MLVNS I0.5 (no recoarsening)

best avg sdv[%] t[s] best avg sdv[%] t[s] %-gap %-time

pr11 6714.47 6744.34 0.28 176.9 6648.71 6698.56 0.37 87.3 -0.68 49.3
pr12 7166.25 7207.09 0.38 226.2 7119.42 7145.22 0.24 108.8 -0.86 48.1
pr13 6840.12 6888.41 0.68 292.3 6775.80 6824.10 0.61 142.4 -0.93 48.7
pr14 7841.78 7893.10 0.30 363.8 7763.72 7816.93 0.34 173.0 -0.97 47.6
pr15 8463.47 8539.77 0.60 457.3 8432.79 8475.92 0.27 194.4 -0.75 42.5
pr16 7781.59 7820.54 0.50 567.1 7666.86 7717.41 0.35 240.9 -1.32 42.5
pr17 9575.55 9609.36 0.24 213.1 9464.30 9533.57 0.38 106.4 -0.79 49.9
pr18 11406.03 11479.46 0.39 299.2 11364.40 11407.04 0.29 143.1 -0.63 47.8
pr19 11507.13 11578.74 0.48 411.1 11408.89 11463.24 0.27 186.1 -1.00 45.3
pr20 11817.31 11865.51 0.26 551.8 11696.71 11745.97 0.27 246.6 -1.01 44.7

avg 331.5 158.1 -0.89 47.7

Table 5.8: Relative usage, improvement of xvns and improvement of xbest in percent of
shaking neighborhoods for new larger PVRP instances.

k
VNS MLVNS I0.5

%-use %-improved %-new best %-use %-improved %-new best

1 14.01 26.45 20.35 11.94 22.92 19.17
2 11.91 23.03 19.68 10.69 21.47 19.28
3 10.07 17.90 18.02 9.51 18.10 17.62
4 8.62 13.48 15.12 8.51 14.61 15.53
5 7.52 10.15 13.23 7.70 11.76 13.54
6 6.69 7.75 10.87 7.04 9.44 11.51

7 6.05 0.19 0.16 6.51 0.23 0.27
8 5.97 0.12 0.13 6.44 0.15 0.17
9 5.92 0.10 0.10 6.40 0.13 0.14

10 5.87 0.22 0.80 6.36 0.31 1.01
11 5.82 0.15 0.48 6.32 0.21 0.64
12 5.79 0.11 0.42 6.29 0.17 0.38

13 5.76 0.35 0.63 6.27 0.49 0.75

to three from one route to another one (Lambda-shift) as well as interchange two segments of
length one to three between two routes (Lambda-interchange). Due to the necessity of having
at least two routes the latter two neighborhoods are only applicable in case of the PVRP. It is
obvious that a high degree of coarsening allows for major changes in the solution, hence the
neighborhoods are somewhat themselves successively refined. Contrary to the VNS before
where a refinement occurs rather arbitrarily after a fixed amount of iterations, here, whenever
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Table 5.9: Relative usage, improvement of xvns and improvement of xbest in percent of
shaking neighborhoods for new larger PTSP instances.

k
VNS MLVNS I0.5 (no recoarsening)

%-use %-improved %-new best %-use %-improved %-new best

1 51.85 67.75 41.46 29.94 49.02 34.72
2 17.90 19.94 21.33 16.76 22.08 19.66
3 7.91 6.90 12.62 10.80 11.31 11.38
4 4.45 2.87 9.05 7.74 6.47 7.51
5 3.01 1.41 7.00 5.98 4.05 5.87
6 2.30 0.79 5.87 4.88 2.69 4.20

7 1.91 0.05 0.37 4.14 0.90 3.45
8 1.86 0.05 0.43 3.85 0.73 2.70
9 1.83 0.04 0.33 3.61 0.62 2.44

10 1.80 0.06 0.34 3.41 0.75 2.77
11 1.76 0.05 0.39 3.16 0.64 2.47
12 1.73 0.05 0.37 2.95 0.56 2.18

13 1.69 0.05 0.44 2.77 0.21 0.65

Table 5.10: Neighborhoods utilized by the VND.

l Nl applied for

1 Change Visit Combination PVRP, PTSP
2–4 Lambda-shift of a segment with length δ = l − 1 PVRP
5–7 Lambda-interchange of segments with length δ = l − 4 PVRP

the VND terminates at a local optimum a refinement step is applied.

This proposed VND naturally lends itself to be embedded into a VNS as the local search
component. Basically the VNS of the preceding sections can be used for this, though with
one modification regarding the shaking neighborhood where visit combinations are changed
(with k ranging from 1 to 6): it turned out to be beneficial to insert the customer into a
route selected at random for the new visit day as opposed to choosing the best insertion
position among all daily routes. In this way a more disruptive shaking can be realized which
contributes to the success of the subsequent VND. Also the VNS only accepts improved
solutions. An outline of the algorithm variants is given in Algorithm 16, which also holds
for the case when no coarsening is applied at all. As for the previous VNS the local search of
choice is applied after each refinement step, again restricting 2-opt if a PTSP instance having
more than 300 customers is encountered.
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Algorithm 16: Multilevel VND/VNS for the PVRP/PTSP with initial solution xinit
and refine refinement steps

x← xinit; // incumbent solution (though most likely1

infeasible at the beginning)
iter ← 02

while iter < refine + 1 do3

run VND or VNS with embedded VND on x4

if not yet fully refined then5

do one refinement step6

// Apply additional (standard) local search:
if m > 1 then PVRP instance7

apply repeated first improving 3-opt on x8

else9

if n ≤ 300 then10

apply repeated first improving 2-opt on x11

else12

apply repeated first improving reduced 2-opt on x13

iter ← iter + 114

5.7 Computational Experiments II

For evaluating the VND, the multilevel VND (MLVND) as well as the multilevel VND em-
bedded into the VNS (MLVNS+VND) we only consider the newly created larger instances
which are more interesting for highlighting the differences. For the latter variant we set three
iterations (shakings) of the VNS, which might seem rather limited but the runtime drasti-
cally increases with higher numbers. The results for the PVRP and the PTSP are given in
Table 5.11 and Table 5.12, respectively. Again we tested several coarsening settings and in
the end similar ones than before achieved the best results; the actual setting is denoted in
the tables. For the MLVND and the MLVNS+VND we also state per instance the average
percentage gap to the “classic” VND without multilevel refinement, as well as for all new
methods the average percentage gap over all instances and the percentage of the required
CPU time compared to the (ML)VNS. To have a somewhat fairer comparison to the previ-
ous (ML)VNS we consider the variants where only improved solutions are accepted. For
both problems in each case the MLVND and the MLVNS+VND yielded significantly better
results (according to a Wilcoxon rank sum test with an error level of 5%) than VND and in
the same way MLVNS+VND always outperformed MLVND. Interestingly although VND is
many more times applied in the multilevel variant the increase in runtime is only moderate,
in fact taking about twice for the PVRP and less than three times for the PTSP. Contrary to
the previous (ML)VNS a larger improvement can be noticed for the PVRP. With regard to
solution quality MLVND consistently shows a performance that is comparable to MLVNS,
but takes less runtime. The new MLVNS+VND yields even better results than MLVNS but
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Figure 5.5: Development of the objective value of VND and MLVND on PVRP instance
pr16.

this time at the expense of longer runtimes, especially in case of the PVRP (but here it is even
slightly better than the MLVNS using the Metropolis criterion). An exemplary development
of the objective value over time for a run of the VND and the MLVND on PVRP instance
pr16 (obtaining average results each) is shown in Figure 5.5. The VND needs more time to
come up with a solution at all due to the more time consuming initialization process, then
instantly a feasible solution is found and improved. In contrast, MLVND starts quickly yet
with a highly infeasible solution, in the following the refinement steps are observable where
the objective value rapidly improves, halfway of the VND already finding a better solution
and improving it a bit further. Due to the logarithmic vertical axis the improvement over
VND is rather hard to spot: the VND finishes with 15275.33 as opposed to the MLVND with
14008.33, the latter achieving an improvement of 8.30%.

Additionally we also tried to reduce the number of shaking steps for the MLVNS+VND
which are allowed in early stages of the search, i.e., when the problem is rather coarse. The
result was only a moderate decrease of runtime but unfortunately also a decrease in solution
quality, so it seems to pay off to also promote optimization at high levels. Another point was
to experiment with recoarsening which was sometimes beneficial for the previous MLVNS.
However, using it here only led to longer runtimes with merely no improvements at all.

Finally, we also give here statistics of the VND neighborhoods for the PVRP with and with-
out multilevel refinement; see Table 5.13 (since in case of the PTSP solely the first neighbor-
hood is used). Similar to before but even more evident is the increased average utilization
of the neighborhoods when using the multilevel refinement. Though not only the usage rate
increases but also the rate of finding better solutions. The rates when embedding the VND
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5. PERIODIC VEHICLE ROUTING PROBLEM

Table 5.13: Relative usage and success rate of VND neighborhoods for new larger
PVRP instances.

l
VND MLVND I0.33 MLVNS+VND I0.33

%-use %-new best %-use %-new best %-use %-new best

1 70.17 89.93 31.74 83.68 53.39 85.48

2 7.22 0.00 12.63 0.52 10.17 0.14
3 7.22 0.18 12.51 0.54 10.09 0.28
4 7.09 0.03 12.39 0.12 9.95 0.05

5 7.07 8.89 12.36 13.22 9.93 12.75
6 0.85 0.65 9.34 1.37 3.48 0.98
7 0.39 0.32 9.03 0.54 2.99 0.32

inside the VNS are somewhat between the two others, i.e., in contrast to the MLVND the
search process concentrates again more on the earlier neighborhoods.

5.8 Conclusions

We extended a recently proposed leading variable neighborhood search (VNS) with the mul-
tilevel refinement strategy to a multilevel VNS (MLVNS) for better solving periodic routing
problems. A path based coarsening scheme is used that builds fixed (route) segments of
customers accounting for the periodicity. The refinement process, i.e. starting at the coarsest
level and iteratively refining until the original problem is reached again, is smoothly inte-
grated into the VNS. Furthermore a suitable solution-based recoarsening is proposed that
respects the structure of a given solution during coarsening.
We presented results on available benchmark test data as well as on newly generated larger
instances that show the advantage of the multilevel VNS compared to the standard VNS, of-
ten yielding significantly better results in usually less CPU time. In general the performance
gain on the PTSP instances is higher. To note is that the gain for both problems is smaller
when also accepting worse solutions using the Metropolis criterion, yet the final solution
quality is still better.
Further we also proposed a variable neighborhood descent (VND) which builds upon neigh-
borhoods similar to those utilized in the shaking of the VNS. We subsequently derived a
multilevel VND (MLVND) which represents a more classical multilevel refinement approach
according to previous literature, i.e., improve until getting stuck at a local optimum and re-
fine afterwards, executed in an iterated manner. At high levels the neighborhoods are able to
impose major changes on the solution structure, while with increasing refinement the focus
of the optimization lies automatically on the details. The MLVND clearly outperformed the
VND with only a moderate increase in runtime, this time yielding a better performance for
the PVRP. Finally, embedding the MLVND in a slightly changed VNS improved the results
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once more, though clearly at the expense of longer runtimes. The initial assumption holds
that these new approaches are especially appealing for large instances.

Potential Future Work

It might be interesting to perform longer test runs to further analyze the performance of the
new approaches utilizing the multilevel refinement strategy. Another interesting point would
be to create even larger instances having different characteristics. It might also be worth-
while to think about alternative ways of interweaving the refinement with the VNS, such as
refining whenever the VNS gets stuck for a while; similar thoughts apply to the recoarsen-
ing. Also the interrelation of the multilevel extension and the Metropolis criterion could be
a future topic for investigation, probably also considering to accept worse solutions for the
MLVNS+VND approach. Finally, it should be relatively easy to adopt this promising multi-
level refinement strategy for periodic routing problems also for other underlying algorithms.
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6.1 Introduction

Having obtained good results with matheuristics for the PVRPTW in Chapter 4 in course of
the funded FWF project we were motivated to follow this promising line of research in the
context of another problem. We deemed the location-routing problem a promising candidate
for this: it is in many aspects similar to the former problem yet it is even “richer”. Part of
this work, at an earlier stage, was presented at the 7th International Workshop on Hybrid
Metaheuristics in 2010 (HM 2010) [164].
The location-routing problem (LRP) combines two classicalNP-hard problems: the facility
location problem (FLP) and the vehicle routing problem (VRP). The LRP occurs when it is
necessary to place some facilities at given locations, assign customers to them, and serve
these customers by a fleet of vehicles, often imposing a limit on the maximal load (capacity)
of a vehicle. Additionally, also capacity constraints on the facilities can and will be con-
sidered in the following. Hence, contrary to the simple out-and-back routes visiting single
customers in the classical FLP, one is faced here with multi-stop routes. Solving the LRP
demands a strategic (facility placement) and tactical (routing) planning task at the same time,
contributing to the potential practical relevance of the LRP. Considering both aspects simul-
taneously is in favor of solving them in a subsequent way (usually starting with placing the
facilities first), since the latter is more prone to yield suboptimal solutions [204].
An additional interesting strategic level can be incorporated by considering the LRP for a
given planning period, resulting in the periodic LRP (PLRP). Here, specific customers must
be served several times during the planning period.
The following definitions are targeted to the PLRP only since the LRP can be considered as
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special case when having only a single day planning horizon. A planning horizon of t days,
referred to by T = {1, . . . , t}, is considered and it is defined on a complete, undirected,
weighted graph G = (V,E), with V = VC ∪ VD being the set of nodes, composed of
n customers VC = {0, . . . , n − 1} and m potential depots VD = {n, . . . , n + m}, and
E = {{i, j} | i, j ∈ VC , i 6= j} ∪ {{i, j} | i ∈ VC , j ∈ VD} being the set of edges. Travel
cost cij ≥ 0, independent of the day, are given for any pair of nodes i, j ∈ V . Each depot
i ∈ VD has an associated capacityWi and opening costsOi. Further, a homogeneous fleet of
K vehicles, each having capacity Q, is available per depot and day. The fixed cost of using a
single vehicle at least once during T is given by F , and each vehicle is limited to perform one
single route per day. Further, each customer j ∈ VC has defined a total demand dj , a visit
frequency fj , and a non-empty set Cj ⊆ {T ′ | T ′ ⊆ T, |T ′| = fj} of allowed combinations
of visit days. The actual demand of customer j on day l using visit combination r ∈ Cj is
assumed to be given by djlr.
The PLRP then aims at selecting facilities (depots) to be opened as well as a single visit
combination per customer, and finding (at most) N ≤ K vehicle routes on each of the t days
on G such that:

• Each route starts and ends at the same opened depot within the same day,

• each customer j belongs to fj routes over the planning horizon at those days belonging
to the selected visit day combination, overall satisfying its demand dj and respecting
the given djlr values,

• the total load of each route does not exceed vehicle capacity limit Q,

• for each opened depot i the total load of each route assigned to it on any day does not
exceed depot capacity limit Wi,

• the total costs of opening depots, fixed costs for used vehicles, and corresponding
travel costs are minimized.

A visualization of a solution (which is in fact a new best known one) for PLRP instance
200-10-1b is shown in Figure 6.1.
In this chapter we present a variable neighborhood search (VNS) suited for the periodic as
well as the non-periodic LRP. For this we combine successful VNS variants/concepts for
similar problems. To further improve the overall performance and at the same time con-
tinue investigating matheuristics, very large neighborhood searches based on integer linear
programming are introduced, which are combined with the VNS in a fruitful way.

The remainder is organized as follows: Related work is presented in the next section, the
VNS is the topic of Section 6.3, and the very large neighborhood searches are detailed in
Section 6.4. Experimental results for both, LRP and PLRP, are given in Section 6.5. Sec-
tion 6.6 finishes this chapter with concluding remarks.
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6.1. Introduction

instance PLRP1coord200-10-1b
t=5, n=200, m=10, N=200

objective: 359182, total costs: 359182
depot costs: 80050, routing costs: 279132

day 1
#routes: 16, routing costs: 43829

day 2
#routes: 16, routing costs: 41087

day 3
#routes: 9, routing costs: 27927

day 4
#routes: 13, routing costs: 34563

day 5
#routes: 16, routing costs: 51726

Figure 6.1: Visualized solution of PLRP instance 200-10-1b.
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6.2 Related Work

The LRP with capacitated vehicles and depots was primarily dealt with in recent years
only, earlier work often considered one of both restrictions exclusively. Among the cur-
rently leading methods for the so-called general LRP are (hybrid) metaheuristics by Prins et
al. [176, 175] and Duhamel et al. [68, 69] as well as combinations of exact techniques and
heuristics, e.g. [177]. Another recent approach based on simulated annealing is presented by
Yu et al. [241]. As pointed out by them their heuristic is fairly standard, yet the applied solu-
tion encoding scheme was specially designed for this problem: basically a string consisting
of (a permutation of) the customers and the potential depots is interspersed with so-called
dummy zeros which terminate the current route by visiting the current depot again (besides
terminating a route due to capacity constraints). All customers between two depot entries are
served by the former depot, also placing such an entry at the beginning of the string. Such
schemes have also been applied for other routing problems in the past.

We further mention two solution approaches which appeared very recently and in fact after
our work has been published. Our former (but now outdated) results are included there.
The first is an adaptive large neighborhood search by Hemmelmayr et al. [104]. Though
they actually tackle the richer two-echelon VRP (2E-VRP), where two levels of facilities
exist, also results for the LRP—being a special case of the former problem—are given. In
their method they use several schemes for removing and reinserting customers as well as
changing facilities. To our knowledge the most current work is by Contardo et al. [35] and
proposes a GRASP plus ILP-based metaheuristic, where similar to our work the capability
of the metaheuristic is enhanced by an ILP-based large neighborhood search. More details
on it will be presented later in the corresponding section.

A survey of different LRPs and solution methods can be found in Nagy and Salhi [148]. The
authors emphasize the high practical relevance of the LRP in supply chain management as
well as a substantially increasing interest in the last years.

The PLRP was introduced only recently by Prodhon together with an iterative algorithm for
solving it [179]. At the Hybrid Metaheuristics 2008 workshop, the same author(s) presented
a sophisticated genetic algorithm [182] yielding improved results. Finally, at the Hybrid
Metaheuristics 2009 workshop the so far best performing algorithm for the PLRP was again
introduced by Prodhon [180], being a hybrid of evolutionary local search and path relinking,
even more concentrating on the periodic aspect. A more recent article of the latter method
is [181], where also other results are presented.

A similar VNS as the one applied here has been used for the periodic VRP (PVRP) in [105]
and in Chapter 5, the PVRP with time windows (PVRPTW) in Chapter 4, as well as for the
related multi-depot VRP with time windows [172]. As already mentioned, we draw upon the
experience described therein and obtained by ourselves.

Furthermore, a very large neighborhood search similar to the one we present in Section 6.4.2
was introduced by De Franceschi et al. [58] for VRPs in general. The very large neighbor-
hood search of Section 6.4.1 is related to it, but operates on a coarser level of the problem.
A variant of it was recently successfully applied to the PVRPTW by us [161].
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6.3 Variable Neighborhood Search for the (P)LRP

To smooth the search space to more easily overcome local optima our variable neighborhood
search (VNS) relaxes the vehicle load as well as the depot load restrictions and adds penalties
corresponding to the excess of these constraints to the cost function; more about setting them
will be described in the results section. Though the method is typically able to find feasible
solutions and improve upon them in short time, allowing infeasible solutions might help the
overall search process.

An initial solution is created in the following way:

1. Choose a single visit day combination r ∈ Cj per customer j ∈ VC at random.

2. Determine the actual lower bound for the accumulated depot capacity based on the
previously selected visit combinations: WLB = argmax

l∈T

∑
j∈VC djlr, for the LRP this

equals the sum of the customer demands:
∑

j∈VC dj .

3. Select depots to be opened at random one by one until their combined capacity is
greater than or equal to WLB .

4. Repeat the following steps for each day l in T :

a) Assign each customer to be visited on day l to its nearest opened depot, thereby
considering penalized depot load violations.

b) Apply the Clarke and Wright savings algorithm [32] until no more routes can be
feasibly merged due to the vehicle load restriction.

c) In the event of ending up with more than N routes, least customer routes are
selected and customers contained therein are re-added in a greedy way on that
day, allowing (penalized) excess of vehicle load. [Note that due to the structure
of the considered instances this never happened in our tests.]

We deem the initialization procedure rather straightforward, being not that sophisticated as
those described in [180]. Nevertheless, we felt (and also experienced in preliminary tests)
that having initial solutions of high(er) quality is not necessarily beneficial for the subsequent
optimization process, and we apply the procedure solely for initialization purposes, too.

In the shaking phase we utilize five different neighborhood structures, each with several
moves of increasing perturbation size (denoted by δ), yielding a total of 18 shaking neigh-
borhoods (i.e. kmax = 18) for both LRP variants. Next, these five basic neighborhood
structures are described.
Exchange-segments: Exchange two random segments of variable length between two routes
at the same depot and on the same day. One of the segments might be empty, realizing a
customer relocation.
Exchange-segments-two-depots: In principle similar to the previous exchange-segments
but both segments are located at two distinct depots. This neighborhood structure facilitates
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Table 6.1: (Fixed) Shaking neighborhood order used for the LRP.

k Nk
1–5 Exchange-segments of maximal length δ = k

6 Exchange-segments of maximal lengths bounded by
corresponding route size (δ = 6)

7–11 Exchange-segments-two-depots of maximal length δ =
k − 6

12 Exchange-segments-two-depots of maximal lengths
bounded by corresponding route size (δ = 6)

13–15 Change-two-depots is applied up to δ = k − 12 times
16–18 Change-depot is applied up to δ = k − 15 times

the partitioning of customers to the opened depots. Exchange-segments is applied in case
only a single depot is opened.
Change-two-depots: A previously closed depot is opened and subsequently another opened
depot is closed such that the actual lower bound regarding the depot capacity WLB is still
satisfied. After opening the selected depot it is tried to relocate routes to it in a cost saving
manner, which means to place the new depot at minimum cost between two consecutive
customers. Afterwards the routes of the depot to be closed are relocated to an opened depot
one by one in the least expensive way (as before also using the penalized objective function).
After such a neighborhood move the number of opened/closed depots stays the same. A
prerequisite is that at least one of all the available depots is not opened yet, the following
change-depot is applied otherwise.
Change-depot: Here the status of a single depot is changed, i.e. from closed to opened
or vice versa. The necessary route relocation operations are applied as for change-two-
depots. Finally, this neighborhood move allows to alter the number of opened/closed depots.
However, also here it is guaranteed that the actual lower bound regarding the depot capacity
WLB is still satisfied.
Change-visit-combinations: For tackling the periodic aspect of the PLRP it is necessary to
enable the VNS to change the selected visit combination per customer. As for the periodic
VRPs, it turned out that randomly changing several visit combinations with greedy insertion
for the new visit days (also allowing to reassign the same visit combination) performs very
well.
In this work we only consider a fixed shaking neighborhood order, which is detailed in
Table 6.1 for the LRP and in Table 6.2 for the PLRP. Apart from the obvious difference of
using change-visit-combinations for the PLRP only, a greater focus is laid on exchanging
segments for the LRP instead.

For intensification we apply the well-known 3-opt intra-route exchange procedure in a best
improvement fashion, only considering routes changed during shaking, and re-applying the
operator until no more improvement is possible. Afterwards, each new incumbent solution
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Table 6.2: (Fixed) Shaking neighborhood order used for the PLRP.

k Nk
1–6 Change-visit-combinations for up to δ = k customers
7–9 Exchange-segments of maximal length δ = k − 6

10–12 Exchange-segments-two-depots of maximal length δ =
k − 9

13–15 Change-two-depots is applied up to δ = k − 12 times
16–18 Change-depot is applied up to δ = k − 15 times

is also subject to a 2-opt∗ inter-route exchange heuristic [173]. Hereby for each pair of
routes of the same day and depot all possible exchanges of the routes’ end segments are
tried, also applied repeatedly and in a best improvement fashion. For the LRP this is further
applied with a probability of 0.2 to each newly derived solution lying within 3% to the current
incumbent.
To often enhance the overall VNS performance quite substantially, sometimes also solutions
having a worse objective value are accepted in addition to better solutions. As in [105, 158]
this is done in a randomized way using the Metropolis criterion like in simulated anneal-
ing [123]. A linear cooling scheme is used in a way such that the acceptance rate of worse
solutions is nearly zero in the last iterations. Though this is somewhat of a hybrid variant
on its own, we still denote it as VNS. For completeness the proposed VNS is depicted in
Algorithm 17. We want to note that similar to [105] we also tried other acceptance schemes
here. Among them were threshold accepting and skewed VNS as in [105] but also the se-
quence heuristic and great deluge approach. Although especially the skewed VNS showed
some potential none of them could yield a consistent gain in solution quality.

6.4 ILP-based Very Large Neighborhood Searches

The general idea of very large(-scale) neighborhood search (VLNS) was already outlined
in Section 2.5.6. In the following we will introduce two VLNS procedures based on integer
linear programming (ILP) applicable to the LRP as well as to the PLRP.

6.4.1 VLNS Operating on Routes

The first VLNS deals with (re-)locating whole routes to depots, as well as opening/closing
depots in the course of the application. In fact, we implemented a simpler version (denoted as
V1) and a more sophisticated one (denoted as V2) of it, the latter building upon a set covering
formulation which is to some degree similar to the one used for the PVRPTW in Section 4.7
and being especially appealing for the PLRP in principle. V1 is a special case of V2 and
basically resembles the procedure applied in [177] for the LRP. There the authors apply
a Lagrangian relaxation approach on the FLP subproblem via considering the aggregated
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Algorithm 17: VNS for the (P)LRP with initial solution xinit
xbest ← xinit; // incumbent solution (though most likely1

infeasible at the beginning)
xvns ← xinit; // solution utilized for shaking2

k ← 1; // shaking strength3

initialize temperature to (average travel costs)/54

while VNS stopping condition is not met do5

while k 6= kmax do6

// shaking:
Select x′ ∈ Nk(xvns)7

// local search:
x′′ ← repeated first improving 3-opt neighbor of x′8

// probably apply additional local search:
if tackling the LRP and x′′ < 1.03 · xbest and with probability 0.2 then9

apply 2-opt∗ improvement on x′′10

// possibly update incumbent:
if x′′ is feasible and better than xbest then11

// additional local search:
apply 2-opt∗ improvement on x′′ if not already done before12

if x′′ made infeasible then13

revert previous local search14

xbest ← x′′; // set new incumbent15

k ← 1; // reset shaking16

// possibly update solution utilized by VNS:
if (x′′ is better than xvns) or (x′′ is worse than xvns but accepted due to17

Metropolis criterion) then
xvns ← x′′18

k ← 1; // reset shaking19

else k ← k + 1; // increase shaking20

every 100th iteration apply linear cooling21

// finished VNS iteration
k ← 1; // reset shaking22

164



6.4. ILP-based Very Large Neighborhood Searches

routes as super-customers. For this several subproblems need to be solved many times,
as well as a lower and upper bound must be computed. In contrast, we directly solve the
resulting ILP model, which is presented in the following and is also applicable to the PLRP:

(V1) min
∑

i∈VD

Oi yi +
∑

l∈T

∑

i∈VD

∑

j∈R(l)

CLij xij +
∑

i∈VD

F zi (6.1)

subject to
∑

i∈VD

xij = 1 ∀l ∈ T ; ∀j ∈ R(l) (6.2)

∑

j∈R(l)

xij ≤ zi ∀i ∈ VD; ∀l ∈ T (6.3)

∑

j∈R(l)

Lj xij ≤Wi ∀i ∈ VD; ∀l ∈ T (6.4)

∑

i∈VD

Wi yi ≥WLB (6.5)

zi ≥ yi ∀i ∈ VD (6.6)

xij ∈ {0, 1} ∀i ∈ VD; ∀l ∈ T ; ∀j ∈ R(l) (6.7)

yi ∈ {0, 1} ∀i ∈ VD (6.8)

zi ∈ N ∀i ∈ VD (6.9)

The objective (6.1) is to minimize costs for opening depots, routing costs (here only route
location costs), as well as fixed costs for vehicles. The set of all considered (aggregated)
routes per day l is denoted by R(l), the least cost of locating it at depot j is CLij . We in-
troduce following binary variables: xij (6.7) indicating whether or not depot i hosts route
j, yi (6.8) if depot i is opened, as well as integer variables zi (6.9) stating the maximum
number of routes located at depot i of all days, used for the vehicle fixed costs in (6.1). The
following restrictions are applied: Each route must be located at one depot (6.2), the value
of the zi variables is determined by (6.3), and the load of a depot must be respected (6.4),
with Lj denoting the load of route j. The last two constraints are to strengthen the model:
the accumulated capacity of the selected depots must be at least the actual corresponding
lower bound (6.5), and the depot with its corresponding maximum number of routes are
coupled via (6.6); refer to [6], though they used the minimal number of depots in (6.5). A
visualization of an application of V1 is shown in Figure 6.2.
The previous model is built for a given feasible solution and the solution’s routes are used
for the corresponding day only.
As already mentioned, the more sophisticated variant formulates a similar, yet potentially
much larger neighborhood as a set covering model. Therefore, the main difference between
V1 and V2 is that although both operate on whole routes, the latter takes the single customers
into account. The whole model including constraints for both the LRP and the PLRP can be
stated as (also refer to [6] for a similar model for the LRP only):

(V2) min
∑

i∈VD

Oi yi +
∑

l∈T

∑

i∈VD

∑

j∈R(l)

(CLij + CRj )xij +
∑

i∈VD

F zi (6.10)
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instance 100-5-2
t=1, n=100, m=5, N=100

objective: 221924, total costs: 221924
depot costs: 102541, routing costs: 119383
#routes: 26, routing costs: 93383

instance 100-5-2
t=1, n=100, m=5, N=100

objective: 211598, total costs: 211598
depot costs: 102246, routing costs: 109352
#routes: 26, routing costs: 83352

Figure 6.2: Visualized application of ILP neighborhood V1 on a solution of LRP in-
stance 100-5-2 (left: before, right: after application).

subject to (6.3)–(6.4)
∑

r∈Cn

pnr ≥ 1 ∀n ∈ VC (6.11)

∑

i∈VD

∑

j∈R(l)

anj xij −
∑

r∈Cn

bnrl pnr ≥ 0 ∀n ∈ VC ; ∀l ∈ T (6.12)

∑

i∈VD

∑

j∈R(l)

xij ≤ N ∀l ∈ T (6.13)

∑

j∈R(l)

anj xij − yi
∑

j∈R(l)

anj ≤ 0 ∀n ∈ VC ;∀i ∈ VD;∀l ∈ T (6.14)

∑

i∈VD

Wi yi ≥WLB (6.15)

∑

i∈VD

Wi yi −
∑

n∈VC

∑

r∈Cn

bnrl pnr dnlr ≥ 0 ∀l ∈ T (6.16)

∑

l∈T

∑

i∈VD

∑

j∈R(l)

xij −
⌈∑

n∈VC dn

Q

⌉
≥ 0 (6.17)

∑

l∈T

∑

i∈VD

∑

j∈R(l)

d′nj xij ≥ dn ∀n ∈ VC (6.18)

∑

i∈VD

∑

j∈R(l)

d′nj xij − djlr bnrl pnr ≥ 0 ∀n ∈ VC ; ∀r ∈ Cn; ∀l ∈ T (6.19)
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(6.6)–(6.9)

pnr ∈ {0, 1} ∀n ∈ VC ; ∀r ∈ Cn (6.20)

Beside the adopted constraints and variables from V1 following additions were made: For
each customer n ∈ VC , binary variables pnr (6.20) indicate whether or not visit combination
r ∈ Cn is chosen. The objective function (6.10) now also includes routing costs CRj for
visiting the customers in route j (without the depot connection). Cover constraints (6.11)
guarantee that at least one visit day combination is selected per customer, visit constraints
(6.12) link the routes and the visit combinations, whereat anj and birl are binary constants
indicating whether or not route j visits customer n and if day l belongs to visit combination
r ∈ Cn of customer n, respectively, and the number of routes per day may not exceed N
(6.13). Again, constraints (6.14)–(6.17) strengthen the model: the routes containing cus-
tomer n located at depot j and the depot itself are coupled in (6.14), (6.15) is like for V1 and
only used in case of the LRP, further (6.16) is a special variant instead of the latter for the
PLRP, incorporating the periodic aspect, and finally, the minimal amount of vehicles (routes)
necessary is set by (6.17). The motivation for a set covering model was to be able to exploit
the routes of more than one feasible solution. A consequence with respect to the PLRP is
that the selected visit combination of several customers might (or better need) to eventually
change. However, the fact that the daily demand of a customer depends on the chosen visit
combination does not ”suit the model very well“: In order to build a feasible PLRP solution
out of the ILP solution it might be necessary to change the amount delivered to a customer,
which is a potential problem if the amount has to be increased due to given vehicle load
constraints. At least we alleviate this problem by introducing constraints (6.18) and (6.19),
reducing the chance of a conflict by forcing a certain amount to be delivered per customer
(and chosen visit combination), with d′nj denoting the amount delivered to customer n in
route j. If all fails, the customer is tried to be added in a feasibly way via greedy insertion.
Finally, also over-covered customers need to be dealt with: we simply remove all but their
first occurrence.
The model of V2 is created for a given set of feasible solutions, again using the solution’s
routes for the corresponding day only. This solution set always contains the current incum-
bent solution as well as a preferred number of optional solutions which are selected via bi-
nary tournament from the set of all improved solutions (found during the run up to that time).
This way of handling it has the advantage of keeping a certain diversity (assuming enough
available solutions) yet still favoring good solutions, as well as having to store no additional
solutions. The current incumbent further acts as a starting solution for the ILP solver.
Basically, this model could be applied as the master problem of a classical column generation
approach as well (see Section 2.3.1), of course a suitable subproblem for generating new
columns would have to be defined. However, our intention is to have a (relatively) fast
supplementary neighborhood. Therefore we restrict ourselves to producing the columns
(routes) with the VNS only, i.e. having a pure metaheuristic column generation.
To control (limit) the effort and hence runtime for solving an instance of V1 and V2, there is
the possibility to set an upper bound on the number of depots the routes might be located to.
In this case the depots are selected per route in the order of increasing costs for locating this
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route. The only exception being the best solution in the given set, its routes are allowed to
be located at any depot.

6.4.2 VLNS Operating on Customers

Our second type of VLNS (denoted by V3) operates on the customer level, it is therefore
responsible for finer-grained optimization, yet it bears quite some resemblance with V2 in
that it also makes use of a set covering formulation. It is similar to the so-called ILP-based
refinement heuristic presented by De Franceschi et al. [58]. The idea is to extract sequences
of customers from given routes, re-connect the disconnected route parts, and then find an
optimal allocation of these sequences to possible insertion points, i.e. between any two (re-
maining) consecutive customers. Whenever the customer sets of sequences are not disjoint,
this neighborhood is hard to solve and an ILP formulation as a set covering model is appro-
priate. A suitable one for our setting is the following:

(V3) min
∑

j∈R
CRj +

∑

s∈S

∑

i∈Is

CIsi xsi (6.21)

subject to
∑

s∈S:n∈s

∑

i∈Is

xsi ≥ 1 ∀n ∈ VC (6.22)

∑

s∈S:i∈Is

xsi ≤ 1 ∀i ∈ I (6.23)

Lj +
∑

s∈S

∑

i∈Is∩I(j)

L′s xsi ≤ Q ∀j ∈ R (6.24)

∑

j∈R(i)

Lj +
∑

s∈S

∑

i∈Is∩I(j)

L′s xsi ≤Wi ∀i ∈ VD (6.25)

xsi ∈ {0, 1} ∀s ∈ S; ∀i ∈ Is (6.26)

The objective (6.21) is to minimize the insertion costs CIsi of the sequences s ∈ S in their
possible or allowed insertion points i ∈ Is. Each extracted customer must be covered by
at least one of the sequences containing it (6.22). Further, each insertion point can hold at
most one sequence (6.23). Constraints (6.24) and (6.25) are responsible to enforce limits on
vehicle and depot loads, respectively. Here, Lj again denotes the load of route j and L′s the
load of sequence s, I(j) are all insertion points provided by route j, and R(i) are all routes
located at depot i.

Several methods were proposed in the literature for similar or related neighborhoods to ex-
tract customers from given routes. Among them to pick the customers inducing the greatest
detour [203], select a seed node and neighbored nodes, to select all odd or even customers of
a route, or just select them at random on a per route basis; refer to [58] for more details. Here
we settle for a simple model: Select the customers independent of the actual routes, since it
is to be expected that no selection scheme is generally better as all others, and preliminary
results showed no great difference, too. Therefore we proceed in the following way: Choose
a preferred number of consecutive iterations iterV3 of V3, randomly partition all customers
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into equally sized sets Ni with |Ni| = n/iterV3 , and finally perform V3 iterV3 times, for
each iteration i using set Ni as customers to be extracted as well as considering a specific set
of feasible solutions. The latter is created as for V2 described in Section 6.4.1. The routes
of the current incumbent represent the considered set of routes R, and together with the se-
quences contained therein they are used as a starting solution for the ILP solver. Initially all
possible sequences from the given solutions’ routes are extracted adhering to the pre-selected
customers, and the potential insertion points are determined while processing routes of setR.
This way we omit the costly generation of sequences via making use of the linear program-
ming dual values as in [58], yet (most likely) also obtain non-disjoint sequences, hence like
for V2 we again exploit the information of several solutions. Additionally, for each sequence
of length more than one we create all possible sequences containing one of the customers
each. Again, a customer is only accepted in the resulting solution on its first occurrence.
Note that V3 is applied on a per day basis only, which has to be considered when using it for
the PLRP. The possible insertion points Is per sequence s are determined by taking the x%
least costly ones, also omitting infeasible pairings.
To conclude the VLNS section, in [35] basically a mixture of both presented ILP-based
very large neighborhoods is used. I.e. they simultaneously locate facilities and reallocate
customers to routes assigned to these facilities. In another step the same ILP is iteratively
solved by column generation to further improve the solution. Naturally this also yields a
notable increase in runtime. In the following section we will compare, among others, the
results of both methods.

6.5 Experimental Results

The algorithms have been implemented in C++, compiled with GCC 4.5 and executed on
a single core of a 2.53 GHz Intel Xeon E5540 with 3 GB RAM dedicated per core, though
the memory consumption is not an issue here. The general purpose MIP solver IBM ILOG
CPLEX version 12.2 is used to solve the VLNS’ ILP models.
For both problem variants we took freely available benchmark data sets which were col-
lectively provided by Caroline Prodhon [178]. They comprise 79 and 30 instances for the
LRP and the PLRP, respectively. The Prodhon instances differ in the number of customers
n, depots m, and clusters, as well as in the vehicle capacity (‘a’ denotes low, and ‘b’ high)
and are named: n-m-#clusters[a,b]. The PLRP instances further span a working week, i.e.
five working days and two idle days and customers must be visited one, two, or three times,
offering five, three, and one visit combinations, respectively. We refer to [178, 180] for com-
puting the daily demands djlr. For the Tuzun and Burke LRP instances we give the identifier,
the number of customers is one of {100, 150, 200} and the number of depots either 10 or 20.
Finally, the Barreto LRP instances are named as: identifier-nxm. More details about the
instances can be found in [177] regarding the LRP and in [180] for the PLRP.
Initially we settled to use for all Prodhon instances a constant penalty weighting of 10000 and
an initial temperature of 500 for the Metropolis acceptance criterion, applying linear cooling
every 100 iterations, thereby reducing the temperature by 500 ·100/max_iterations; as was
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done in [164]. Later on we also did tests on other instance sets and it became evident that
the penalty weights as well as the temperature need to be properly adjusted according to the
instance at hand to yield the desired effect. Choosing wrong values might otherwise even
compromise the method. Due to this a simple scheme was sought allowing to set both values
automatically. In the end we applied a similar strategy as for the PVRP(TW) in the previous
chapters: the penalty weighting is set consistently to the averaged inter-customer distances
and the initial temperature is set to one tenth of this value for the LRP and to one fifth for the
PLRP. Linear cooling is still applied every 100 iterations with the same temperature decrease
than before.
The combination with the VLNS variants is performed in the following way: V1 is applied
on each new incumbent solution since it can be solved quite fast (denoted by VNS+V1),
hence in a dynamic way. The other two, more demanding VLNS are applied in a static
way by deciding a-priori how often they should be applied and executing them after fixed
intervals of the VNS, e.g. running 106 VNS iterations in total and setting 10 applications of
the VLNS, the latter is applied after every 105 iterations of the VNS. Thereby we either solely
apply V2 (resulting in VNS+V1,2) or V3 (resulting in VNS+V1,3), or V2 directly followed
by V3 (denoted by VNS+V1,2,3). The number of additional feasible solutions used for V2 is
ten and for V3 nine, iterV3 is set to four. As an upper bound for considered depots in V2 we
chose five, and in V3 only the least costly 50% insertion points are considered. Note again,
the initial depot location is always retained. All these values were determined in preliminary
test runs. Basically, the runtime per application of each VLNS is restricted to two seconds,
although this limit is seldom reached. Finally, each new VLNS incumbent is subject to 2-
opt∗, those of V3 also to 3-opt. These are all high-level integrative combinations, where the
VLNS methods are incorporated in the VNS.
For each algorithm setting we perform 10 runs per instance, and state the average costs
(avg), corresponding coefficients of variation (i.e. standard deviations divided by average
values) in percent (CV [%]), and the runtimes in seconds (t[s]). For the more detailed, longer
runs also the costs of the best run out of these 10 is given (min). Furthermore, we state
the average percentage gap to the so far best known solutions including all (mostly recent)
previous results in the literature of the average solution values (%-gap avg) as well as of the
best solutions obtained in the 10 runs each (%-gap min).
We will proceed by comparing our enhanced VNS methods to solely applying VNS, fol-
lowed by a comparison to leading methods of the corresponding problem variant in terms of
solution quality and runtime.

6.5.1 Results on the PLRP

At first we did some preliminary test runs to investigate the effect of the different VNS
plus VLNS combinations. VNS is applied for 105 iterations in total, optionally applying V2

and/or V3 after every 104 iterations (10 times); the results are shown in Table 6.3. Only using
V1 already yields a notable improvement, additionally applying V2, i.e. the combined variant
VNS+V1,2, further improves the results, regarding both the average and the best solution
values. So it seems incorporating the periodicity in V2 pays off. Interestingly, V3 leads
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Table 6.3: Results of VNS and VNS plus VLNS combinations on the Prodhon PLRP
instances using 105 iterations.

Instance
VNS VNS+V1 VNS+V1,2 VNS+V1,3 VNS+V1,2,3

avg
CV t

avg
CV t

avg
CV t

avg
CV t

avg
CV t

[%] [s] [%] [s] [%] [s] [%] [s] [%] [s]

20-5-1 79079.20 0.61 1.7 79546.50 1.10 1.8 79790.70 1.28 2.1 79875.30 0.53 2.1 79522.50 0.81 2.4
20-5-1b 78829.70 2.73 1.8 79206.20 2.56 1.9 77791.50 2.09 2.1 78844.70 2.62 2.3 79065.50 2.39 2.5
20-5-2 80202.90 0.82 1.7 80162.50 0.72 1.7 79490.90 1.42 2.2 79997.40 1.16 2.0 79868.80 1.11 2.4
20-5-2b 63300.30 0.88 1.7 63408.40 1.58 1.6 63037.70 0.89 2.1 63514.60 0.89 2.1 63625.60 1.83 2.4
50-5-1 153411.60 1.66 3.4 152451.70 0.88 3.7 152238.00 1.73 4.7 151268.80 1.31 4.5 151653.70 1.00 5.4
50-5-1b 142500.50 1.52 3.7 141690.80 0.85 4.0 140947.50 1.94 5.5 141766.30 1.34 4.7 141973.10 1.27 6.0
50-5-2 144327.70 1.29 3.4 143676.00 0.83 3.5 142436.40 0.56 5.6 143274.70 0.95 4.1 142478.80 0.97 5.8
50-5-2b 115400.00 1.68 3.4 116741.30 2.07 3.5 115926.40 1.86 5.1 115378.40 1.51 4.2 116264.80 1.54 5.8
50-5-2BIS 175304.80 1.71 2.7 174386.20 2.14 3.0 174825.20 1.75 4.5 174458.10 1.50 3.5 174767.70 2.72 4.8
50-5-2bBIS 104751.70 2.13 3.1 105168.50 2.35 3.2 104134.40 1.14 4.1 105950.20 2.66 4.0 104515.40 2.16 4.9
50-5-3 158870.20 1.95 3.3 157284.60 0.76 3.6 157376.70 1.68 4.6 158006.80 1.33 4.2 156496.70 0.89 5.1
50-5-3b 113800.20 1.52 3.5 113261.90 2.14 3.7 112314.80 1.59 5.0 113960.10 2.24 4.3 112235.00 1.08 5.7
100-5-1 356657.30 1.00 5.3 357192.10 0.88 5.3 352195.40 1.16 7.1 355113.40 1.37 6.9 354109.40 1.54 8.1
100-5-1b 240643.10 1.69 6.6 237007.80 1.32 6.7 236916.90 1.45 8.6 238111.00 1.73 8.5 235487.20 1.36 9.7
100-5-2 271884.40 1.35 5.3 271378.50 0.84 5.3 270047.00 1.13 8.3 270476.50 1.03 7.0 269231.70 1.25 8.9
100-5-2b 170139.20 1.60 5.2 168906.80 1.29 5.3 169266.20 1.76 7.8 172698.70 1.41 6.9 167610.50 1.02 8.5
100-5-3 228007.90 1.20 5.2 227561.90 1.02 5.4 225608.50 1.17 8.9 228104.60 1.25 6.8 225191.80 1.11 9.4
100-5-3b 178278.10 1.16 6.5 177974.10 1.40 6.8 176035.60 1.73 10.1 177392.20 1.21 8.6 177111.70 1.45 11.1
100-10-1 270383.30 1.19 9.2 265443.10 1.42 10.9 263635.70 1.08 22.3 265233.90 0.73 12.4 264774.90 0.95 23.2
100-10-1b 217477.30 2.08 8.6 214547.10 1.30 10.5 215792.10 1.68 20.0 217726.20 1.70 12.2 216959.50 1.33 19.1
100-10-2 268995.80 0.94 6.2 267025.00 1.23 7.7 267754.90 1.01 15.5 268647.80 1.31 9.2 266471.70 1.27 15.0
100-10-2b 175366.70 1.74 6.7 174171.20 1.36 7.9 175383.00 1.26 11.9 175722.90 1.41 9.7 176397.80 2.25 13.0
100-10-3 266926.60 1.25 7.2 263543.90 1.35 8.9 264155.70 1.44 17.0 266119.60 0.95 10.3 263964.50 0.78 16.0
100-10-3b 200396.20 2.03 8.6 197000.20 1.57 9.6 199448.70 1.15 15.4 201774.10 1.26 10.8 198643.50 1.15 16.0
200-10-1 454664.50 0.58 14.3 448954.70 0.35 17.1 451892.20 1.21 28.2 454979.10 1.41 19.8 451096.30 1.34 27.3
200-10-1b 385855.90 1.30 15.7 384340.40 0.92 18.7 386983.00 1.04 30.3 387602.70 1.61 24.1 385048.90 1.60 33.3
200-10-2 397318.90 0.58 11.9 393381.80 0.78 13.0 388849.60 1.16 23.2 399891.70 0.89 16.5 393020.80 0.77 21.4
200-10-2b 326984.60 1.64 12.0 325399.40 0.94 14.3 324441.70 1.42 21.8 328909.00 0.92 19.1 328219.80 1.70 24.9
200-10-3 558626.40 0.68 11.4 559491.50 1.06 14.6 555431.90 1.40 25.2 567518.10 1.60 18.3 559833.00 1.28 24.9
200-10-3b 364258.00 1.03 12.3 360919.70 1.02 14.9 360204.00 0.84 22.4 365983.20 1.38 18.7 358196.80 0.94 24.6

avg 224754.77 1.38 6.4 223374.13 1.27 7.3 222811.74 1.37 11.7 224943.34 1.37 8.9 223127.91 1.36 12.3

%-gap avg -0.62 -1.11 -1.42 -0.61 -1.26
%-gap min -2.62 -2.98 -3.34 -2.75 -3.28

to a decrease of solution quality on average and obviously is not well suited for the PLRP
in this constellation. Especially when combined with V1 it neutralizes the potential gain
when solely using V1. Seemingly V3 works against the optimization process and probably
promotes getting stuck in (unfavorable) local optima. However, the bad performance of V3

for the PLRP is most likely also related to the structure of the instances considered, since they
rather promote many small routes, offering less potential for more sophisticated intra-route
improvement.
Naturally, when applying the VLNS variants an increase in runtime occurs, in fact it roughly
doubles it for these runs, but this factor is approximately constant, i.e. does not strongly
depend on the size of the instance.
The second round of test runs devotes more runtime and we apply the VNS and the pre-
viously best performing VNS plus VLNS variant VNS+V1,2 (which will be denoted as
VNS+ILP in the following): VNS is run for 106 iterations and V2 is applied after every
2·104 iterations (50 times). Table 6.4 shows the corresponding results, as usual the statistical
significance tests were performed with a Wilcoxon rank sum test with an error level of 5%.
Also in these tests VNS+ILP yields a consistent and notable improvement over VNS, for
nine out of 30 instances (30%) even a significant improvement. This time the increase in
runtime is on average about 50%, which is less than before (due to fewer applications of V2)
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Table 6.4: More detailed results of VNS and best performing VNS plus VLNS com-
bination on the Prodhon PLRP instances using 106 iterations, significant improvements
are marked bold.

Instance
VNS VNS+ILP (VNS+V1,2)

min avg
CV t

min avg
CV t

[%] [s] [%] [s]

20-5-1 78477.00 78670.20 0.30 16.7 78477.00 78828.00 0.45 18.9
20-5-1b 76102.00 77119.00 1.59 19.0 76102.00 77196.10 1.26 19.7
20-5-2 77784.00 78369.60 0.89 17.8 77784.00 78347.00 0.60 18.6
20-5-2b 62133.00 62473.70 0.48 16.5 62133.00 62536.40 0.42 18.9
50-5-1 147621.00 148713.10 0.81 36.0 145639.00 148465.00 1.02 43.9
50-5-1b 134997.00 138621.00 1.42 37.3 136412.00 138618.90 1.06 45.7
50-5-2 139556.00 141328.50 0.68 32.6 138486.00 140028.50 1.00 43.0
50-5-2b 111413.00 112768.10 1.02 34.0 110526.00 112028.60 0.73 42.9
50-5-2BIS 169350.00 170377.70 0.28 27.5 169075.00 170160.10 0.31 34.3
50-5-2bBIS 101951.00 102749.90 0.54 30.8 101501.00 102100.40 0.47 36.4
50-5-3 153687.00 154270.40 0.28 33.4 152530.00 154099.60 0.90 40.7
50-5-3b 109631.00 110234.80 0.42 34.7 109047.00 110331.90 0.73 42.0
100-5-1 335702.00 341514.00 0.90 52.3 337892.00 342945.90 0.70 65.7
100-5-1b 224085.00 229494.10 1.17 56.6 223757.00 227701.30 1.19 77.2
100-5-2 261091.00 263952.10 0.73 50.3 257710.00 261394.90 0.79 66.0
100-5-2b 162963.00 164853.90 0.99 48.6 162799.00 164494.60 0.70 62.5
100-5-3 218750.00 220264.10 0.53 50.5 214118.00 219215.00 0.92 71.0
100-5-3b 171363.00 173188.70 0.68 66.8 166865.00 171381.90 1.05 85.8
100-10-1 255630.00 259677.60 0.84 92.0 257114.00 259201.30 0.49 159.4
100-10-1b 208410.00 210398.10 0.78 91.3 207574.00 208568.50 0.38 146.7
100-10-2 258611.00 262216.30 0.78 57.8 255345.00 259468.80 1.40 105.7
100-10-2b 166703.00 169311.50 1.05 64.9 167817.00 169623.40 0.66 93.6
100-10-3 253280.00 258223.40 1.21 69.3 254472.00 256907.60 1.08 131.5
100-10-3b 189370.00 191316.80 1.37 85.7 189557.00 192022.60 1.19 120.5
200-10-1 431183.00 436251.40 0.70 126.7 431131.00 433030.70 0.46 216.2
200-10-1b 364583.00 370378.20 0.79 152.8 359182.00 367650.00 1.49 240.1
200-10-2 380989.00 384230.40 0.67 98.9 374016.00 378350.90 0.56 168.0
200-10-2b 309586.00 313302.70 1.03 99.8 308316.00 311796.90 0.53 182.5
200-10-3 526244.00 534405.30 0.75 97.4 521229.00 528412.10 0.76 179.4
200-10-3b 339142.00 346259.70 0.98 114.1 339321.00 343923.60 0.91 180.2

avg 214012.90 216831.14 0.82 60.4 212864.20 215627.68 0.81 91.9

%-gap avg -3.73 -4.13
%-gap min -4.88 -5.32
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and deemed acceptable by us. Due to the dependence of V2’s ILP model size also on the
depots the runtime increase is more evident when m = 10.
Now we will contrast our solution approaches for the PLRP with all previous ones we are
aware of: an iterated metaheuristic [179] (IM), a memetic algorithm with population man-
agement [182] (MAPM), a evolutionary local search with path relinking [180], and the hy-
brid evolutionary local search approach [181] (HELS). To be able to also roughly compare
the runtimes we determined the speedup of our machine stated at the beginning of this sec-
tion to their Intel Core Duo with 1.2 GHz. According to a CPU benchmark1 our machine
is 7.25 times faster. Results are shown in Table 6.5. We also give the number of runs per-
formed per instance, if stated in the original work. In addition to the gap of the average
and best solutions we need to occasionally state the gaps of single runs here (%-gap1×run)
as unfortunately only these were provided. As we feel it is not fair to directly compare av-
erage results to results of single runs, a separate column is used for these single run results.
Despite this comparison issues our approaches clearly outperform the previous ones, already
the preliminary results which require less runtime are better. Yet even the better results of
the second test run are still obtained within the same order of runtime.
Speaking of the latter, a further interesting comparison is made with regard to the dependence
of runtime on instance size. The results of this are presented in Table 6.6. Here each algo-
rithm’s average runtime is normalized by its average runtime on instances of type n = 50,
m = 5, yielding a somewhat better picture as using the smallest instances with n = 20,
m = 5 for it. Looking at the truly moderate increase of relative runtime of our methods
compared to the others, they also seem very promising with respect to tackling even larger
instances without a substantial increase in runtime. See Figure 6.3 for a more appealing way
of presenting this data, note that the vertical axis is logarithmic.
The comparison of the best results obtained over all our runs—also including previous [164]
and further preliminary runs—to the so far best known solutions is given in Table 6.7. On
all but one of the 30 instances we were able to obtain a (mostly considerable) improvement,
which is 5.48% on average.
Finally, in Table 6.8 we give statistics of the shaking neighborhoods for both approaches
considering both test runs at once. At first sight most of the values seem nearly unchanged,
which is more or less even true for the usage, improvement and acceptance rates. The ability
to derive new incumbent solutions is, however, reduced for many of the neighborhoods, es-
pecially those operating on the depots, in case of applying the large neighborhood searches.
This is because the VLNS itself finds better solutions, partly instead of the VNS neighbor-
hoods.

6.5.2 Results on the LRP

For testing our approaches on the LRP we will proceed basically in the same way as for the
PLRP and use the same notation. First results for the VNS and all considered VNS plus
VLNS variants on the Prodhon instances with only 105 VNS iterations and again optionally

1see at http://www.cpubenchmark.net/
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Table 6.5: Comparison of our approaches to previous methods applied to the PLRP.
Originally given average runtimes (to[s]) are approximately normalized to our comput-
ing environment.

Method runs
Prodhon instances

%-gap %-gap %-gap t[s] to[s]
avg min 1×run avg avg

IM – 13.73 31.2 226.0
MAPM – 10.72 23.0 166.7
ELS+PR 5 2.71 16.1 116.4
HELS 10 0.16 22.8 165.3

VNS 105 10 -0.62 -2.62 6.4
VNS+ILP 105 10 -1.42 -3.34 11.7
VNS 106 10 -3.73 -4.88 60.4
VNS+ILP 106 10 -4.13 -5.32 91.9

Table 6.6: Average relative runtimes of PLRP solution approaches on Prodhon in-
stances.

Method
n, m

50, 5 100, 5 100, 10 200, 10

IM 1.00 8.01 17.97 145.14
MAPM 1.00 11.26 13.45 250.78
ELS+PR 1.00 5.50 10.15 60.95
HELS 1.00 5.25 9.87 58.98

VNS 1.00 1.63 2.31 3.45
VNS+ILP 1.00 1.74 3.07 4.73

applying V2 and/or V3 after every 104 iterations (10 times) are given in Table 6.9. Again,
V1 yields the highest improvement, even with nearly no increase in runtime. Regarding the
performance of V2 and V3 we encounter almost the opposite here as for the PLRP: addition-
ally applying V2 slightly worsens the solution quality, while V3 is this time obviously able
to realize an intra-route improvement, profiting from the now longer routes which offer more
room for improvement. With this setting the runtime is about twice for some instances, by
trend rather for the larger instances. To conclude this first results, VNS+V1,3 is the method
of choice for the LRP, and will in the remainder for simplicity also be denoted as VNS+ILP
in the context of the LRP. We also did preliminary tests on the other available LRP instance
sets, yet the outcomes were the same, so we omit these results and concentrate on the “final”
test runs instead. As a side note, we experienced that solely applying V2 would often lead to
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Figure 6.3: Plot of average relative runtimes of PLRP solution approaches on Prodhon
instances.

a considerably larger increase in runtime, especially for the LRP (but also for the PLRP). So
it seems that V1 achieves important preliminary work.

The second test runs are consistently performed with 4·106 VNS iterations in total with
optionally applying V3 after every 2·104 iterations (200 times). For the Prodhon instances
the results are shown in Table 6.10. Though VNS+ILP only yields a significant improvement
in six out of 30 cases (20%) the overall average gap is more than halved, yet only consuming
about 20% more runtime on average as the VNS. Also, the best solution values of the runs
are very close to the so far best known solutions (0.02%). Table 6.11 gives the results on
the Tuzun and Burke instances, this time showing a significant improvement of VNS-ILP
over VNS for six out of 36 instances (16.6%). The results on the Barreto set is shown in
Table 6.12, where the enhanced method is only once of 13 times significantly better (6.7%).
Anyway, for both instance sets the average as well as the minimal gap were further reduced,
so an overall performance gain is clearly noticeable, with an increase in runtime of 30% and
13%, respectively.

As for the PLRP we also compare our methods to previous solution approaches for the LRP,
some of them were proposed very recently: a GRASP based approach [176] (GRASP), a
memetic algorithm with population management [175] (MAPM), a Lagrangean relaxation-
granular tabu search heuristic [177] (LRGTS), a GRASP with evolutionary local search [69]
(GRASP+ELS), a simulated annealing heuristic [241] (SALRP), an adaptive large neighbor-
hood search [104] (ALNS) and a GRASP plus ILP-based metaheuristic [35] (GRASP+ILP).
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Table 6.7: Comparison of previous best known solutions (BKS) and best results ob-
tained by our algorithms over all runs for the LRP and PLRP instances of Prodhon.

Instance LRP PLRP

BKS best %-gap BKS best %-gap

20-5-1a 54793 54793 0.00 78741 78477 -0.34
20-5-1b 39104 39104 0.00 75554 76102 0.73
20-5-2a 48908 48908 0.00 80386 77784 -3.24
20-5-2b 37542 37542 0.00 62987 62133 -1.36
50-5-1a 90111 90111 0.00 156577 145639 -6.99
50-5-1b 63242 63242 0.00 142359 134997 -5.17
50-5-2a 88298 88298 0.00 143934 138486 -3.79
50-5-2b 67308 67308 0.00 117416 110526 -5.87
50-5-2aBIS 84055 84055 0.00 177529 168721 -4.96
50-5-2bBIS 51822 51822 0.00 102775 100836 -1.89
50-5-3a 86203 86203 0.00 157929 152530 -3.42
50-5-3b 61830 61830 0.00 114622 108790 -5.09
100-5-1a 274814 275079 0.10 362452 335702 -7.38
100-5-1b 213615 213568 -0.02 234762 223757 -4.69
100-5-2a 193671 193671 0.00 281699 257710 -8.52
100-5-2b 157095 157095 0.00 168754 162799 -3.53
100-5-3a 200079 200079 0.00 233108 214118 -8.15
100-5-3b 152441 152441 0.00 175365 166726 -4.93
100-10-1a 287695 287692 -0.001 278508 255630 -8.21
100-10-1b 230989 230989 0.00 220133 207326 -5.82
100-10-2a 243590 243590 0.00 280447 255345 -8.95
100-10-2b 203988 203988 0.00 176408 166703 -5.50
100-10-3a 250882 250882 0.00 272463 253280 -7.04
100-10-3b 204317 204567 0.12 204897 188678 -7.92
200-10-1a 475294 474850 -0.09 464596 431131 -7.20
200-10-1b 377043 376509 -0.14 398611 359182 -9.89
200-10-2a 449115 448421 -0.15 403962 374016 -7.41
200-10-2b 374280 373885 -0.11 324121 308316 -4.88
200-10-3a 469433 469471 0.01 567336 521229 -8.13
200-10-3b 362653 362645 -0.002 356618 339142 -4.90

avg -0.01 -5.48

The comparative results are given in Table 6.13 for each of the considered instance sets, ad-
hering to the same notation as before. Unfortunately quite often the methods’ performance
is only documented by the results of single runs, again not allowing a really fair comparison.
The most recent methods clearly yield the best performance, but also devote more computing
effort than previous approaches (not even taking the outdated hardware into account). The
most comprehensive comparison can be made to ALNS and GRASP+ILP, where our meth-
ods, especially VNS+ILP, show clearly a similar behavior with respect to solution quality.
Due to this we additionally state in Table 6.14 average results over all instance sets, i.e., con-
sidered as one large set, since just averaging over the already averaged gaps would neglect
the number of instances. We see that VNS performs on average as ALNS, and VNS+ILP
as GRASP+ILP (actually differing at the third digit and only after rounding at the second),
especially noting for VNS+ILP the very small value of 0.04 of %-gapmin. So much for the
solution quality, but it is also interesting to take the absolute runtime into account for achiev-
ing it, which is often easier said than done. ALNS was run on a 2.2,GHz AMD Opteron 275

176



6.5. Experimental Results

Table 6.8: Relative usage, improvement of xvns, acceptance of worse solutions and
improvement of xbest in percent of shaking neighborhoods averaged over all 30 PLRP
instances.

k
VNS VNS+ILP

%-usage %-impr. %-accept %-best %-usage %-impr. %-accept %-best

1 7.90 24.85 21.57 22.20 7.89 24.78 21.50 23.90
2 7.20 18.90 16.72 17.63 7.19 18.84 16.68 18.90
3 6.67 13.80 12.39 14.47 6.66 13.75 12.34 14.64
4 6.27 10.19 9.24 10.73 6.27 10.19 9.20 11.32
5 5.98 7.78 7.12 8.80 5.98 7.76 7.10 9.03
6 5.76 6.08 5.62 7.22 5.76 6.06 5.61 7.28
7 5.58 7.59 11.13 6.84 5.59 7.70 11.25 6.08
8 5.30 5.40 8.05 4.53 5.31 5.47 8.08 4.19
9 5.10 4.50 6.85 3.97 5.10 4.54 6.91 3.43
10 4.93 0.17 0.31 0.26 4.94 0.16 0.31 0.23
11 4.93 0.14 0.25 0.36 4.93 0.13 0.24 0.27
12 4.92 0.14 0.25 0.41 4.92 0.13 0.24 0.30
13 4.91 0.16 0.16 0.69 4.92 0.17 0.17 0.15
14 4.91 0.07 0.08 0.39 4.91 0.07 0.08 0.05
15 4.91 0.04 0.05 0.18 4.91 0.04 0.05 0.05
16 4.91 0.09 0.08 0.61 4.91 0.08 0.08 0.08
17 4.90 0.06 0.08 0.45 4.91 0.08 0.09 0.04
18 4.90 0.05 0.06 0.29 4.90 0.06 0.07 0.05

and GRASP+ILP on an Intel Xeon E5472 with 3.0,GHz. The former is definitely slower
than ours, so ALNS would probably take the same or even less time if run on our machine,
whereas the latter is even a slightly faster but comparable machine. Ultimately considering
both runtime and solution quality our methods currently achieve the best performance.

Additionally we will show the relative increase of runtime dependent on instance size in
the same way as before, again using the Prodhon instance set, which provides instances of
several different sizes; see Table 6.15 and Figure 6.4. As expected VNS and VNS+ILP be-
have the same as for the PLRP, and fortunately yield again the least increase of all methods.
Those obtaining the most similar performances are ALNS and SALRP, which is not surpris-
ing since they also bear the most resemblance from a methodical point of view. Contrary,
especially the GRASP based methods show quite a huge increase and hence seem less suited
for potentially larger instances.

Looking at the best results obtained by our methods for the Prodhon (see Table 6.7), Tuzun
and Burke, as well as Barreto instance sets (both in Table 6.16) again highlights the satisfying
performance they achieve. Despite the fierce competition, for 20 of the 79 instances a new
best known solution is found, 45 times the best known solution could be reproduced and only
in 14 cases a slightly worse solution was achieved.
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Table 6.9: Results of VNS and VNS plus VLNS combinations on the Prodhon LRP
instances using 105 iterations.

Instance
VNS VNS+V1 VNS+V1,2 VNS+V1,3 VNS+V1,2,3

avg
CV t

avg
CV t

avg
CV t

avg
CV t

avg
CV t

[%] [s] [%] [s] [%] [s] [%] [s] [%] [s]

20-5-1 55054.20 1.08 1.2 54903.90 0.28 1.2 54861.40 0.20 1.3 54815.80 0.13 1.3 54881.10 0.28 1.4
20-5-1b 39104.00 0.00 1.3 39104.00 0.00 1.2 39104.00 0.00 1.3 39104.00 0.00 1.4 39104.00 0.00 1.5
20-5-2 48985.70 0.50 1.1 48908.00 0.00 1.2 48908.00 0.00 1.2 48908.00 0.00 1.3 48908.00 0.00 1.4
20-5-2b 37542.00 0.00 1.3 37542.00 0.00 1.3 37542.00 0.00 1.4 37542.00 0.00 1.4 37542.00 0.00 1.5
50-5-1 90111.00 0.00 1.6 90751.60 1.22 1.6 90343.80 0.81 1.9 90892.60 1.82 2.1 90140.10 0.10 2.2
50-5-1b 64220.20 2.68 2.4 64019.20 0.99 2.4 65077.90 3.63 2.5 63464.60 0.58 3.0 63509.40 0.56 3.1
50-5-2 90685.40 0.71 1.7 89989.20 1.36 1.7 89707.00 0.96 1.9 90129.90 1.43 2.1 89982.80 1.28 2.5
50-5-2b 68775.20 1.24 3.7 68041.50 0.53 3.3 67887.30 0.19 3.4 68103.20 0.98 3.8 68449.90 1.35 4.0
50-5-2BIS 84407.00 0.37 2.2 84316.70 0.19 2.3 84174.00 0.16 2.4 84163.60 0.15 2.7 84199.20 0.09 2.9
50-5-2bBIS 52219.80 0.53 3.9 51977.50 0.36 4.1 52149.70 0.39 4.2 51991.90 0.22 4.6 51896.60 0.18 4.9
50-5-3 87190.70 1.02 1.3 86851.10 0.59 1.5 86615.70 0.27 1.8 87045.10 0.72 1.8 86713.50 0.53 2.1
50-5-3b 62105.90 0.81 2.2 62133.70 0.96 2.3 61969.50 0.42 2.6 61961.40 0.52 3.0 62062.30 0.71 3.1
100-5-1 279094.20 0.40 4.1 278530.50 0.25 4.1 278201.00 0.29 4.6 277644.70 0.22 5.6 277663.00 0.29 5.8
100-5-1b 217476.90 0.56 6.7 216280.80 0.54 6.7 217378.70 0.62 7.0 215680.30 0.35 7.9 216246.40 0.43 8.5
100-5-2 195832.60 0.60 3.3 195566.50 0.28 3.4 195495.30 0.31 3.9 194859.90 0.37 4.9 195219.00 0.46 5.1
100-5-2b 158535.70 0.92 3.4 158247.80 0.41 3.5 158405.10 0.60 3.8 157462.70 0.12 5.0 157784.60 0.30 5.3
100-5-3 202811.70 0.52 2.7 201540.70 0.47 2.9 201604.50 0.20 3.7 201645.20 0.42 4.3 201819.60 0.25 4.9
100-5-3b 155785.70 0.64 3.2 155183.60 0.80 3.2 155888.30 0.87 3.5 154652.90 0.70 4.7 154414.40 0.39 5.1
100-10-1 314374.80 2.43 4.4 293069.20 0.56 6.6 292108.40 0.55 9.2 292023.30 0.59 10.4 292506.00 0.66 15.0
100-10-1b 260432.90 5.83 6.5 239751.00 1.02 6.4 239743.90 1.38 7.1 236627.10 0.47 9.3 237965.40 0.46 10.9
100-10-2 246980.20 0.34 3.8 245817.60 0.38 4.5 245976.70 0.51 7.5 245550.60 0.40 6.0 245577.90 0.52 8.5
100-10-2b 206721.10 0.66 5.4 205822.80 0.46 5.6 206117.40 0.55 6.3 205575.90 0.36 7.1 205939.80 0.65 8.0
100-10-3 257457.40 0.46 3.9 254869.80 0.55 4.6 254803.70 0.24 11.6 255658.70 0.47 6.4 255146.90 0.54 11.1
100-10-3b 209678.10 0.99 5.1 207029.00 0.37 5.3 207159.20 0.28 6.3 206363.50 0.50 7.0 207546.80 0.72 9.1
200-10-1 487561.30 0.95 12.0 481822.70 0.20 13.4 481776.90 0.31 16.8 480800.90 0.19 17.7 480737.00 0.21 21.3
200-10-1b 386651.50 0.84 8.9 383746.40 0.91 9.9 382662.00 0.33 12.4 379859.20 0.34 16.5 381209.30 0.75 18.1
200-10-2 457560.30 0.38 11.6 453159.40 0.28 12.6 452449.40 0.21 15.1 451533.60 0.16 16.9 451753.80 0.27 18.6
200-10-2b 383981.20 0.96 8.7 377852.80 0.26 9.4 378544.90 0.32 11.2 376051.20 0.14 17.1 376414.10 0.33 17.7
200-10-3 478663.50 0.57 11.5 475215.40 0.34 13.3 475144.30 0.23 18.4 475435.20 0.13 17.5 474901.80 0.28 21.3
200-10-3b 372324.50 0.54 8.8 366853.90 0.23 9.1 366263.80 0.23 10.9 365284.90 0.20 16.7 365164.20 0.14 17.4

avg. 201744.16 0.92 4.6 198963.28 0.49 5.0 198935.46 0.50 6.2 198361.06 0.42 7.0 198513.30 0.42 8.1

%-gap avg 2.10 1.05 1.08 0.82 0.87
%-gap min 0.90 0.49 0.47 0.32 0.40

Finally, we will also inspect the VNS neighborhoods statistics, given in Table 6.17. Appar-
ently also for the LRP only very little changes occur when additionally applying the ILP-
based VLNS. Perhaps most noticeable is again the reduction of %-best of the neighborhoods
dealing with the depots, most likely due to V1, yet this time V3 also has a slight influence on
the remaining route segment-based neighborhoods.

6.6 Conclusions

We presented a variable neighborhood search (VNS) for the periodic location-routing prob-
lem (PLRP) with capacitated vehicles and depots, which is also directly applicable to the
LRP, i.e. the special case when having only a single day planning horizon. For the core part,
the shaking, we apply neighborhood structures exchanging route segments between routes of
the same depot and between routes of two depots, changing the status (opened/closed) of two
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Table 6.10: More detailed results of VNS and best performing VNS plus VLNS com-
bination on the Prodhon LRP instances using 4·106 iterations, significant improvements
are marked bold.

Instance
VNS VNS+ILP

min avg
CV t

min avg
CV t

[%] [s] [%] [s]

20-5-1 54793.00 54793.00 0.00 47.7 54793.00 54793.00 0.00 48.1
20-5-1b 39104.00 39104.00 0.00 49.7 39104.00 39104.00 0.00 54.4
20-5-2 48908.00 48908.00 0.00 47.5 48908.00 48908.00 0.00 47.7
20-5-2b 37542.00 37542.00 0.00 52.0 37542.00 37542.00 0.00 55.0
50-5-1 90111.00 90140.10 0.10 62.8 90111.00 90111.00 0.00 72.4
50-5-1b 63242.00 63254.60 0.04 92.6 63242.00 63253.20 0.04 105.9
50-5-2 88298.00 88712.40 0.81 64.8 88298.00 88640.90 0.73 74.8
50-5-2b 67449.00 67913.70 0.39 141.4 67308.00 67408.80 0.24 147.9
50-5-2BIS 84055.00 84055.00 0.00 89.6 84055.00 84055.00 0.00 95.0
50-5-2bBIS 51822.00 51830.70 0.03 155.9 51822.00 51842.90 0.05 168.9
50-5-3 86203.00 86349.50 0.18 53.1 86203.00 86370.80 0.17 62.4
50-5-3b 61830.00 61830.00 0.00 90.7 61830.00 61830.00 0.00 101.9
100-5-1 275079.00 275689.00 0.15 137.5 275441.00 276091.50 0.25 165.4
100-5-1b 213671.00 214364.30 0.20 241.4 213671.00 214349.40 0.23 273.6
100-5-2 193671.00 193839.80 0.09 101.4 193671.00 193750.70 0.06 122.8
100-5-2b 157129.00 157163.70 0.01 120.4 157129.00 157201.30 0.08 150.5
100-5-3 200114.00 200480.30 0.16 95.5 200202.00 200565.00 0.18 116.8
100-5-3b 152441.00 153240.30 0.38 119.6 152441.00 153165.70 0.41 145.3
100-10-1 288480.00 310418.70 3.39 162.6 287692.00 289365.80 0.41 182.2
100-10-1b 232041.00 234710.90 0.64 181.3 230989.00 233564.10 0.53 216.8
100-10-2 243590.00 244105.20 0.23 131.6 243590.00 244422.80 0.29 159.2
100-10-2b 204217.00 204992.00 0.24 200.0 204178.00 204560.00 0.21 235.6
100-10-3 252670.00 253823.40 0.56 139.8 250971.00 252872.10 0.40 162.9
100-10-3b 204631.00 205077.30 0.25 194.1 204567.00 204799.60 0.13 228.6
200-10-1 476402.00 477690.80 0.22 422.8 475165.00 477088.30 0.20 486.6
200-10-1b 377011.00 377699.80 0.16 327.5 376876.00 377752.10 0.20 435.3
200-10-2 449173.00 450345.40 0.25 413.4 448985.00 449481.50 0.05 523.4
200-10-2b 374070.00 374927.10 0.14 316.9 374411.00 374691.10 0.10 458.9
200-10-3 470627.00 471986.40 0.23 383.5 469471.00 471558.90 0.23 456.4
200-10-3b 364214.00 365689.30 0.26 314.7 363129.00 363653.40 0.13 424.2

avg 196752.90 198022.56 0.30 165.1 196526.50 197093.10 0.18 199.3

%-gap avg 0.58 0.24
%-gap min 0.10 0.02
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Table 6.11: Results of VNS and best performing VNS plus VLNS combination on the
Tuzun and Burke LRP instances using 4·106 iterations, significant improvements are
marked bold.

Instance
VNS VNS+ILP

min avg
CV t

min avg
CV t

[%] [s] [%] [s]

111112 1469.43 1481.18 0.56 151.8 1467.68 1479.60 0.43 184.7
111122 1449.20 1458.12 0.69 179.6 1449.20 1452.53 0.36 210.6
111212 1396.59 1403.96 0.63 145.3 1394.80 1399.55 0.44 176.7
111222 1432.29 1441.91 0.69 172.0 1432.29 1435.00 0.53 197.4
112112 1167.16 1186.61 0.88 152.4 1167.16 1185.10 0.98 184.5
112122 1102.24 1104.92 0.40 203.8 1102.24 1103.33 0.20 221.2
112212 793.09 795.28 0.27 151.2 791.74 794.20 0.22 178.6
112222 728.40 729.33 0.12 183.9 728.30 728.72 0.13 208.8
113112 1238.49 1247.29 0.88 188.9 1239.22 1253.72 0.74 208.2
113122 1247.68 1249.56 0.21 199.2 1247.27 1249.70 0.19 226.8
113212 902.26 913.85 2.63 173.2 902.26 902.65 0.07 226.3
113222 1018.29 1031.84 0.98 446.5 1018.29 1025.51 0.67 467.3
131112 1922.27 1927.74 0.24 247.1 1898.39 1921.31 0.62 305.3
131122 1825.00 1854.30 0.97 254.1 1820.94 1830.15 0.53 340.2
131212 1969.92 1982.61 0.49 217.4 1966.07 1989.04 0.71 285.3
131222 1804.33 1817.18 0.53 249.8 1798.13 1819.94 0.85 308.7
132112 1445.13 1461.12 1.14 168.8 1443.32 1455.24 1.40 231.9
132122 1433.82 1443.65 0.46 213.5 1431.43 1447.77 0.75 270.4
132212 1204.86 1205.45 0.03 203.3 1204.42 1206.06 0.26 265.4
132222 931.58 932.03 0.04 234.0 927.67 930.81 0.17 303.0
133112 1722.37 1726.51 0.24 245.8 1718.55 1723.94 0.30 314.2
133122 1393.55 1409.32 0.76 251.4 1392.69 1406.32 0.68 313.9
133212 1199.02 1207.18 0.53 187.8 1198.31 1208.13 0.58 238.4
133222 1152.81 1156.99 0.19 316.0 1151.83 1155.59 0.16 388.4
121112 2250.83 2270.21 0.64 235.4 2251.56 2275.44 0.65 364.9
121122 2145.17 2164.49 0.49 369.5 2144.91 2163.56 0.52 484.7
121212 2206.39 2227.53 0.45 327.8 2227.23 2237.17 0.40 532.5
121222 2240.58 2259.81 0.42 291.2 2229.27 2253.22 0.66 448.5
122112 2086.57 2097.67 0.30 206.3 2090.34 2100.05 0.35 325.5
122122 1695.94 1713.40 0.78 276.5 1685.91 1705.20 0.75 394.1
122212 1460.99 1469.24 0.43 209.0 1453.78 1465.67 0.64 322.9
122222 1083.02 1086.32 0.17 264.5 1082.85 1085.95 0.15 377.5
123112 1959.52 1968.71 0.25 325.6 1951.02 1973.91 0.85 438.8
123122 1925.86 1947.06 0.47 355.1 1920.99 1937.94 0.70 470.7
123212 1767.83 1770.65 0.30 202.4 1763.98 1788.05 1.03 338.9
123222 1391.71 1393.70 0.09 443.4 1391.45 1392.74 0.06 570.4

avg 1504.56 1514.91 0.54 240.1 1502.37 1513.41 0.52 314.6

%-gap avg 0.87 0.75
%-gap min 0.21 0.07
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Table 6.12: Results of VNS and best performing VNS plus VLNS combination on the
Barreto LRP instances using 4·106 iterations, significant improvements are marked bold.

Instance
VNS VNS+ILP

min avg
CV t

min avg
CV t

[%] [s] [%] [s]

Christ.69-50x5 570.50 576.11 1.26 122.2 565.60 573.24 1.41 133.5
Christ.69-75x10 848.85 855.23 0.66 188.0 848.85 853.25 0.38 201.9
Christ.69-100x10 833.43 835.03 0.35 196.0 833.43 835.83 0.41 221.8
Daskin95-88x8 355.78 356.96 1.00 276.6 355.78 355.78 0.00 312.6
Daskin95-150x10 44167.18 44398.07 0.59 358.9 43919.90 44126.12 0.40 453.2
Gaskell67-21x5 424.90 424.90 0.00 49.1 424.90 424.90 0.00 51.9
Gaskell67-22x5 585.11 585.11 0.00 66.9 585.11 585.11 0.00 72.9
Gaskell67-29x5 512.10 512.10 0.00 59.2 512.10 512.10 0.00 64.7
Gaskell67-32x5 562.22 562.22 0.00 68.5 562.22 562.22 0.00 72.1
Gaskell67-32x5b 504.33 504.33 0.00 101.9 504.33 504.33 0.00 104.6
Gaskell67-36x5 460.37 460.37 0.00 73.1 460.37 460.37 0.00 77.8
Min92-27x5 3062.02 3062.02 0.00 66.6 3062.02 3062.02 0.00 73.3
Min92-134x8 5720.09 5746.90 0.75 320.0 5711.49 5769.73 1.17 368.6

avg 4508.22 4529.18 0.35 149.8 4488.16 4509.62 0.29 169.9

%-gap avg 0.38 0.28
%-gap min 0.13 0.003

depots, such that one is closed and another is opened, and finally also changing the status of a
single depot. For the PLRP also the selected visit combinations can be changed during shak-
ing. The VNS is subsequently combined with integer linear programming-based very large
neighborhood searches (VLNS). Two of them operate on a higher level via relocating whole
routes to depots, considering all days at once, with one being a more sophisticated version
using a set covering model. The third one deals with the location of customer sequences to
insertion points in routes of a single day. Two of the VLNS are further designed to exploit
the information contained in several solutions provided by the VNS. Experimental results on
available benchmark test data show the excellent performance of our methods especially on
the PLRP but also on the LRP (where quite a competition exists) when compared to corre-
sponding leading approaches, both in terms of solution quality, the absolute computing time
needed for achieving it as well regarding the dependence of runtime on instance size. For the
latter our methods show the least increase and seem very promising to tackle even larger in-
stances. The results further indicate almost always a gain in solution quality when applying
the proper combination of VLNS, sometimes yielding significantly better results as applying
VNS alone. Mostly at the expense of only a moderate increase in runtime, especially when
considering the longer (final) runs.
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Table 6.14: Most recent and also best performing methods applied to the LRP.

Method runs
all three instance sets

%-gap %-gap t[s]
avg min avg

ALNS 5 0.68 0.35 578.2
GRASP+ILP 10 0.47 0.17 1498.4

VNS 10 0.68 0.16 196.8
VNS+ILP 10 0.48 0.04 247.0

Table 6.15: Average relative runtimes of LRP solution approaches on Prodhon in-
stances.

Method
n, m

50, 5 100, 5 100, 10 200, 10

GRASP 1.00 10.87 17.33 207.79
MAPM 1.00 9.10 8.46 87.88
LRGTS 1.00 5.11 16.00 73.11
GRASP+ELS 1.00 29.76 32.52 188.26
SALRP 1.00 3.88 3.60 21.25
ALNS 1.00 6.12 1.79 10.33
GRASP+ILP 1.00 7.18 78.40 236.63

VNS 1.00 1.45 1.79 3.87
VNS+ILP 1.00 1.57 1.91 4.48

Potential Future Work

It would be possible to incorporate the periodic aspect of the PLRP in a suitably enhanced
version of the third VLNS, which might increase its performance and make it a viable candi-
date for the PLRP again. Especially in the light of the latter addition it would probably make
sense to also generate more diverse PLRP instances to allow for a broader performance eval-
uation and also a potential better comparison to other approaches in the future.
Due to the very satisfying results also on the LRP we deemed it a natural (and promising)
step to adapt/extend our solution approach to the richer two-echelon variant of the problem
(2E-LRP) [24]. In the meantime we realized a VNS for this problem and began to experiment
also with appropriate variants of the ILP neighborhoods. In [208] we report on the successful
VNS approach, showing that it is highly competitive to the leading approaches, obtaining
several new best solutions.
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Figure 6.4: Plot of average relative runtimes of LRP solution approaches on Prodhon
instances.
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Table 6.16: Comparison of previous best known solutions (BKS) and best results ob-
tained by our algorithms over all runs for the LRP instances of Tuzun and Burke as well
as Barreto.

Tuzun and Burke Barreto

Instance BKS best %-gap Instance BKS best %-gap

111112 1467.68 1467.68 0.00 Christ.69-50x5 565.60 565.6 0.00
111122 1449.20 1449.20 0.00 Christ.69-75x10 848.85 848.85 0.00
111212 1394.80 1394.80 0.00 Christ.69-100x10 833.40 833.43 0.00
111222 1432.29 1432.29 0.00 Daskin95-88x8 355.78 355.78 0.00
112112 1167.16 1167.16 0.00 Daskin95-150x10 43919.90 43919.90 0.00
112122 1102.24 1102.24 0.00 Gaskell67-21x5 424.90 424.90 0.00
112212 791.66 791.74 0.01 Gaskell67-22x5 585.11 585.11 0.00
112222 728.30 728.30 0.00 Gaskell67-29x5 512.10 512.10 0.00
113112 1238.49 1238.49 0.00 Gaskell67-32x5 562.22 562.22 0.00
113122 1245.31 1247.18 0.15 Gaskell67-32x5b 504.33 504.33 0.00
113212 902.26 902.26 0.00 Gaskell67-36x5 460.37 460.37 0.00
113222 1018.29 1018.29 0.00 Min92-27x5 3062.02 3062.02 0.00
131112 1866.75 1898.39 1.69 Min92-134x8 5709.00 5711.49 0.04
131122 1823.53 1820.32 -0.18
131212 1965.12 1966.07 0.05
131222 1796.45 1792.77 -0.20
132112 1443.33 1443.32 -0.001
132122 1434.63 1431.43 -0.22
132212 1204.42 1204.42 0.00
132222 930.99 925.14 -0.63
133112 1694.18 1694.22 0.001
133122 1392.01 1392.69 0.05
133212 1198.28 1198.31 0.00
133222 1151.80 1151.80 0.00
121112 2251.93 2247.07 -0.22
121122 2159.93 2139.64 -0.94
121212 2220.01 2206.39 -0.61
121222 2230.94 2224.17 -0.30
122112 2073.73 2086.57 0.62
122122 1692.17 1685.65 -0.39
122212 1453.18 1453.78 0.04
122222 1082.74 1082.46 -0.03
123112 1960.30 1947.62 -0.65
123122 1918.93 1920.99 0.11
123212 1762.03 1762.54 0.03
123222 1391.68 1390.99 -0.05

avg -0.05 0.003
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6. (PERIODIC) LOCATION-ROUTING PROBLEM

Table 6.17: Relative usage, improvement of xvns, acceptance of worse solutions and
improvement of xbest in percent of shaking neighborhoods averaged over all 79 LRP
instances.

k
VNS VNS+ILP

%-usage %-impr. %-accept %-best %-usage %-impr. %-accept %-best

1 7.01 35.77 40.64 26.99 6.84 35.10 39.79 27.67
2 6.34 20.04 19.85 16.15 6.26 19.77 19.65 16.64
3 5.99 13.64 12.62 12.66 5.95 13.61 12.64 13.04
4 5.76 10.20 9.21 10.57 5.75 10.29 9.32 10.71
5 5.59 8.13 7.35 9.48 5.60 8.29 7.51 9.76
6 5.46 6.24 5.79 8.23 5.47 6.41 5.94 8.50
7 5.35 0.39 0.42 1.71 5.38 0.38 0.42 1.66
8 5.35 0.26 0.26 1.04 5.37 0.25 0.26 1.14
9 5.34 0.19 0.19 0.93 5.37 0.19 0.19 1.08
10 5.34 0.16 0.16 0.81 5.36 0.16 0.16 0.78
11 5.34 0.15 0.15 0.80 5.36 0.15 0.15 0.74
12 5.33 0.13 0.13 0.69 5.36 0.13 0.14 0.63
13 5.33 1.14 1.22 2.09 5.36 1.33 1.44 1.34
14 5.31 0.77 0.66 1.11 5.34 0.90 0.78 0.70
15 5.30 0.60 0.47 0.71 5.32 0.69 0.57 0.52
16 5.29 0.87 0.12 2.96 5.31 0.90 0.15 2.44
17 5.28 0.69 0.31 1.76 5.30 0.74 0.37 1.47
18 5.27 0.63 0.43 1.32 5.30 0.70 0.51 1.19
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7
VEHICLE ROUTING PROBLEM WITH

COMPARTMENTS

7.1 Introduction

In this chapter we investigate another special vehicle routing problem, combining the clas-
sical (capacitated) vehicle routing problem ((C)VRP) and a packing subproblem caused by
having more than one compartment in which the customers’ orders have to be placed con-
sidering potential incompatibilities. We adhere to the definition of a rather general variant
given by Derigs et al. [60] and hence also denote it as the vehicle routing problem with
compartments (VRPC).
As usual some words about the history: The VRPC was introduced to us by Jens Gottlieb
in the event of the 7th International Workshop on Hybrid Metaheuristics in October 2010,
which was organized by us and took place in Vienna. Having gained experience for other
special routing problems in the past we decided to tackle also this problem, thereby trying to
focus on new aspects of it.
Part of this work was presented at the 13th International Conference on Computer Aided
Systems Theory in 2011 (Eurocast 2011) [165], as well as at the 9th Metaheuristic Interna-
tional Conference in 2011 (MIC 2011) [166]. A post-conference proceedings article of the
Eurocast 2011 is also available [167].

7.1.1 Problem Description

Besides having vehicles of limited capacity and the goal to minimize the total travel costs,
which resembles a classical VRP, the specialties of the VRPC are:
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7. VEHICLE ROUTING PROBLEM WITH COMPARTMENTS

• vehicles have more than one compartment,

• more than one product is delivered,

• the customer demand per product might be satisfied via several smaller orders,

• all goods delivered on a tour must be assigned to compartments (in a feasible way),

• there might be incompatible products and compartments, or incompatibilities between
products.

7.1.2 Considered Scenarios

Similarly to [60] we will primarily consider the cases of having compartments which are
flexible in size/capacity but bounded by the total vehicle capacity, together with products that
are only compatible with specific compartments, as well as fixed compartment capacities and
product groups that might not be placed together in the same compartment.

C1 C2

Figure 7.1: Truck of food scenario with a movable dividing wall between the compart-
ments.

The first setting occurs in practice for food retail when delivering frozen and dry goods, or
when collecting harmful substances (depicted in Figure 7.1), whereas the second—and from
a computational point of view more challenging and thus interesting—setting occurs when
distributing petrol involving different fuel types (depicted in Figure 7.2). In fact, in case of
the latter setting, the packing subproblem is NP-hard, which will be discussed later.

C2 C3 C4C1 C5

Figure 7.2: Truck of petrol scenario with compartments of fixed size.

A further scenario involves two compartments of fixed size and two types of products, each
one dedicated to a single compartment type in advance. Due to the pre-selected compartment
per customer order there evidently occurs no packing subproblem, hence we basically face
two superposed classical VRPs in this case. A real-life scenario of distributing cattle food to
farms, probably involving several such compartment-product pairs, is mentioned in [72].
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7.1.3 Outline

Related work is presented in the next section, followed by an examination of the packing
subproblem in Section 7.3. A variable neighborhood search and an adaptive large neigh-
borhood search is introduced in Section 7.4 and 7.5, respectively. Experimental results are
shown and discussed in Section 7.6, giving conclusions in Section 7.7.

7.2 Related Work

Vehicle routing problems involving several compartments have been tackled in the literature
only very recently. Note that in previous work it is mostly denoted as the multi-compartment
vehicle routing problem (MC-VRP). El Fallahi et al. [72] propose a memetic algorithm and
a tabu search for a cattle food delivery scenario. Muyldermans and Pang [147] consider the
(co-)collection of waste and present solution approaches based on local search as well as
on guided local search. Mendoza et al. [136, 137] tackled a problem variant with stochas-
tic demands via several construction heuristics and a memetic algorithm. All these works
considered the previously mentioned simpler scenario, comprising two compartments with
fixed capacities and two product groups, each being compatible with only one compartment.
As already mentioned, in Derigs et al. [60] a more general variant is proposed. Instead of a
single solution algorithm they derive a metaheuristic framework and solve the problem with
several instances of it, aiming at identifying a good setting.

7.3 The VRPC Packing Subproblem: The Compartment
Assignment Problem

We will start with the core of the VRPC, essentially differentiating it from the classical VRP:
the packing (sub-)problem, in the following denoted as the compartment assignment problem
(CAP). When solving the VRPC we are either given an empty route or one with some orders
already assigned to compartments, and a set of new orders to insert. The question is then if
we can find a feasible (re-)assignment of the new (or all) orders. Naturally we are not only
interested whether such a (re-)assignment exists but also in the concrete assignment of the
orders. The problem resembles a decision problem since any feasible solution will satisfy
our needs, no matter what the actual packing looks like, although we will later favor some
assignments over others when it comes to heuristically solving the problem. Since we are
filling one-dimensional entities the CAP is similar to the bin packing problem, yet different
in some aspects as in the classical bin packing problem there is usually an unlimited number
of bins and there are no restrictions (incompatibilities) regarding the placing of items in the
bins. In Table 7.1 we give several settings of compartments and products which can possibly
occur together with the resulting packing problem. The latter ranges from a simple capacity
check over an NP-hard bin packing-like problem to a problem related to the NP-hard bin
packing problem with conflicts [90].

189



7. VEHICLE ROUTING PROBLEM WITH COMPARTMENTS

Table 7.1: Compartment/product settings and resulting packing problem.

Setting Required feasibility check or resulting
packing problem

only overall capacity limited, compart-
ment partition entirely flexible; covered
by instances of type food

capacity check on vehicle level is suffi-
cient

product types pre-assigned to compart-
ment(s) and one compartment per type;
covered by instances of type food as
well as Christofides and Eilon based in-
stances (see Section 7.6.1)

capacity check on compartment level is
sufficient

product types pre-assigned to compart-
ment(s) and multiple fixed compart-
ments per type

NP-hard bin packing-like problem

incompatibilities between products; in-
stances of type petrol

NP-hard bin packing-like problem

incompatibilities between orders similar to related NP-hard bin packing
problem with conflicts [90]

7.3.1 Straightforward ILP Formulation

We give a straightforward (naive) integer linear programming (ILP) model of the previously
termed “NP-hard bin packing-like problem”; a similar variant is present in the ILP formu-
lation of the whole VRPC given in [60]. In the following the set of all orders is denoted
by O, the set of all product types by P , the set of all compartments by C, the capacities
of compartments c ∈ C by Qc, the demands of orders o ∈ O by do, all orders of product
type p ∈ P by ordProd(p), the incompatibilities between products and compartments by
IncPC , given as set of pairs (p, c) with p ∈ P and c ∈ C, as well as the incompatibilities
between different products by IncPP , given as set of pairs (p, q) with p, q ∈ P . We assume
a subset O′ ⊆ O of all orders is considered for packing in currently empty compartments:

max
∑

o∈O′

∑

c∈C
xoc (7.1)

s.t.
∑

c∈C
xoc = 1 ∀ o ∈ O′ (7.2)

∑

o∈O′
do xoc ≤ Qc ∀ c ∈ C (7.3)

∑

o∈O′:o∈ordProd(p)

xoc −Mp ycp ≤ 0 ∀ p ∈ P ; c ∈ C (7.4)
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ycp = 0 ∀ (p, c) ∈ IncPC (7.5)

ycp + ycq ≤ 1 ∀ (p, q) ∈ IncPP (7.6)

xoc ∈ {0, 1} ∀ o ∈ O′; c ∈ C (7.7)

ycp ∈ {0, 1} ∀ p ∈ P ; c ∈ C (7.8)

Binary variables xoc and ycp denote whether order o is placed in compartment c and whether
an order of product type p is placed in compartment c, respectively. Equalities (7.2) ensure
that each order o ∈ O′ is placed in exactly one of the compartments. The capacity restric-
tions per compartment are ensured by inequalities (7.3). Next, inequalities (7.4) link the xoc
and ycp variables by forcing ycp to one as soon as an order of product type p is placed in com-
partment c. Here the “big-M”-like constants Mp can either be all set consistently to |O′| or
more accurately per product p to |{o|o ∈ O′ : o ∈ ordProd(p)}|. Incompatibilities between
products and compartments IncPC are considered via equalities (7.5), while incompatibili-
ties between different products IncPP are taken into account via equalities (7.6). Last and
in this case even least the objective function (7.1) basically maximizes the number of placed
orders, though equalities (7.2) render it a dummy objective function since every feasible so-
lution has the value |O′|. The latter is mainly because we are only interested in feasible
solutions where all orders are placed and want this condition to be included the model.
This model is merely to formalize the CAP, its practical applicability will be discussed in
Section 7.3.3.

Complexity of the CAP

Here we investigate the complexity of the CAP when having (at least) two compartments of
fixed capacity. We can show its NP-hardness via reduction from the subset sum problem
(SSP) to the CAP. The SSP is defined as follows: Given a set of n integer numbers and a
number s, does a subset of the integer numbers exist which sums up to s? The construction
of a CAP that solves the SSP is as follows: the CAP has n orders, with order sizes equivalent
to the integer numbers of the SSP, assuming a vehicle with capacity Q equals the sum of
all integers and incorporating two compartments with capacities s and Q − s. A feasible
solution for the CAP exists if and only if a feasible solution to the SSP exists. Note that CAP
assumes non-negative order sizes, but SSP may contain negative numbers. However, such a
SSP can be transformed to an equivalent SSP with only positive integers. Therefore, we can
assume a SSP with only positive integer numbers.
The SSP is, however, after all only of limited applicability, as it effectively only covers CAPs
involving two compartments. Further, to be more precise, we have so far only shown that
the CAP is at least weaklyNP-hard, as the SSP belongs to this class. We will reconsider its
complexity at the end of Section 7.3.3.

7.3.2 Cascaded CAP Solving Approach

Having described the different scenarios and characteristics of the CAP we explain how
it will actually be tackled in the solution approaches to follow, either deriving a feasible
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7. VEHICLE ROUTING PROBLEM WITH COMPARTMENTS

solution for it or determining that it is unsolvable. At some points we differentiate between
adding a single order or several orders to an existing (possibly empty) assignment. These
sequence of solving techniques is applied:

1. Perform a simple check considering the current load and the total vehicle capacity. If
the additional demand exceeds the remaining capacity the CAP is infeasible.

2. To speed up the packing process and hence save computation time at a first attempt we
try to solve an incremental CAP by keeping the possible already existing assignments
and trying to insert the additional orders:

a) For a single order: try to insert it in an allowed compartment (respecting the
incompatibilities) either using first-fit or best-fit (FF or BF). If no single com-
partment with enough residual space exists we check whether the total residual
space for this product type scattered over all admissible compartments is less
than the demand of this order. If so, the CAP is unsolvable.

b) For several orders: determine whether the simple continuous lower bound

#min_compartments =
∑

p∈P

⌈∑
o∈O′:o∈ordProd(p) do

maxc∈C Qc

⌉

exceeds the number of compartments. If not, try to insert the orders via first fit
or best-fit decreasing (BFD).

3. For several orders: remove all previously assigned orders and try to solve the CAP
from scratch via FF or BFD.

4. Optionally for several orders: finally try to solve it exactly as described in the next
section.

5. Optionally for a single order: also try to solve the CAP from scratch via FF or BFD, if
unsuccessful try to solve it exactly as described in the next section.

For completeness we also describe the simple and well-known (bin-)packing heuristics which
were mentioned before:

• first-fit: place the order in the first compartment where it fits (respecting capacity and
incompatibilities),

• best-fit: place the order in the viable compartment resulting in the minimal residual
space,

• best-fit decreasing: consider the orders in the sequence of decreasing demand and pack
each one via best-fit.

For more information about them we refer to [33].
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7.3.3 Exactly Solving the CAP

Here we will describe the exact solution approaches for the CAP, which are two based on
integer linear programming and one on constraint programming.

Applying the Straightforward ILP Approach

Here the straightforward model from Section 7.3.1 is utilized, which can be directly applied
to solve the problem. However, the required effort (runtime) for solving it is not appealing.
This is mainly due to considering all product types at once, a circumstance that will be
considered for improvement in the next ILP model.
Nevertheless we also tried a variant of it where equalities (7.2) are changed to inequalities
(i.e., replacing “=” by “≤”). This time the model is actually an optimization problem, pack-
ing as many orders as possible, afterwards checking if all could be assigned to a compartment
to identify feasible solutions. Not surprisingly the runtime is even higher as before in gen-
eral, as often a substantial effort is devoted to pack, say, all but one order yet still resulting
in an infeasible solution.

Improved ILP Approach

Taking a closer look at the problem and considering the incompatibilities between prod-
ucts, reveals that one can in fact split the CAP into several independent bin packing prob-
lems. Whenever orders of a certain product type are involved in the CAP a bin packing
problem needs to be solved for them, always minimizing the number of compartments used
(“opened”). We will state an appropriate ILP model for this, assuming that O′p contains only
orders belonging to the same product type and C ′ is the set of currently available empty
compartments:

min
∑

c∈C′
zc (7.9)

s.t.
∑

c∈C′
xoc = 1 ∀ o ∈ O′p (7.10)

∑

o∈O′′
doxoc ≤ Qczc ∀ c ∈ C ′ (7.11)

zc+1 ≤ zc ∀ c ∈ {1, . . . , |C ′| − 1} (7.12)

xoc ∈ {0, 1} ∀ o ∈ O′p; c ∈ C ′ (7.13)

zc ∈ {0, 1} ∀ c ∈ C ′ (7.14)

Binary variables xoc (7.13) are defined as before, while binary variables zc (7.14) indicate
whether compartment c is used. We ensure that each order must be placed in exactly one
compartment (7.10), and that the capacity of the compartments might not be exceeded (7.11),
conveniently linking both variables via the latter constraints. Finally, constraints (7.12) are
introduced for symmetry breaking, forcing that compartments with lower index are filled
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first. Note that the latter constraints are usually added to reduce the effective search space
and hence to potentially speed up the solution approach. Though we did not observe this
effect in practice, it would perhaps be more evident given a larger number of compartments.
Also note that when the minimal amount of required compartments exceeds |C ′| then there
exists no feasible packing.
An outline of this procedure is shown in Algorithm 18, also stating the variant with constraint
programming explained in the next section.

Constraint Programming Approach

The third solution approach is based on constraint programming (CP), otherwise being quite
similar to the previous ILP approach. So also here we consider the orders per product
type and solve the corresponding bin packing problem. Fortunately we encountered a bin
packing example (bin-packing.cpp) distributed with Gecode [1], which could more or
less be utilized out-of-the-box. In this example the lower bound L2 according to Martello
and Toth [135] is applied together with a simple upper bound obtained via FFD; both were
adopted by us in Algorithm 18. The CP model uses three types of variables: one per order
holding the selected compartment, one per compartment representing the load, and a single
variable stating how many compartments are currently in use. The domain of the latter de-
cision variable is initially set to [LB ,UB ]. We always use the (optional) more sophisticated
components: a problem specific bin-packing constraint introduced by Shaw [209], as well as
the complete decreasing best-fit branching by Gent and Walsh [93] with some improvements
also given in [209]. Contrary to the previous ILP model we cannot directly limit the num-
ber of compartments to those which are currently available, but have to check afterwards.
We will not further go into detail here, but refer to Chapter 17 of the Gecode manual [207].
Again, in Algorithm 18 the outline of the solution procedure also when using the CP model
is shown.

Complexity of the CAP Revisited

As we have seen the CAP can be considered a multiple bin packing problem, where one bin
packing problem arises per product type. Since the bin packing problem is a strongly NP-
hard problem, we might be tempted to categorize the CAP as a stronglyNP-hard problem as
well. Yet this point of view of the CAP is perhaps too strict. It might be an unnecessary effort
to obtain per product type the minimal number of bins possible, as this might eventually lead
to some spare compartments, although even a solution where all of them are opened would
be equally good (as the CAP is a decision problem).
Very recently we discovered the work of O’Neil [152] in which a sub-exponential time algo-
rithm for the bin packing problem with a fixed number of bins is proposed. The algorithm is
a so-called dynamic dynamic programming (DDP) algorithm where the pool of solutions is
dynamically allocated, additionally pruning this pool depending on problem semantics and
the set of the remaining items to be considered. Since the CAP involving an arbitrary number
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Algorithm 18: Solve the CAP for order subset O′ with ILP or CP via several bin-
packing problems, returning infeasible or a feasible solution

numFreeCompartments← |C|1

foreach p ∈ P do2

O′p ← {o|o ∈ O′ ∧ o ∈ ordProd(p)}3

if O′p 6= ∅ then4

LB← determine lower bound L2 for O′p according to [135]5

if LB > numFreeCompartments then6

return infeasible7

UB← determine upper bound for O′p via FFD8

if LB == UB then9

store feasible and optimal FFD sub-solution for product p10

numFreeCompartments← numFreeCompartments −11

compartments used in FFD solution12

else13

if apply ILP then14

exactSolution← solve ILP model for O′p using |C ′| =15

numFreeCompartments16

if exactSolution is feasible then17

numFreeCompartments← numFreeCompartments −18

compartments used in exactSolution19

store feasible and optimal sub-solution for product p20

else21

return infeasible22

else // apply CP23

exactSolution← solve CP model for O′p using bounds24

LB and UB25

if compartments used in exactSolution ≤ numFreeCompartments then26

numFreeCompartments← numFreeCompartments −27

compartments used in exactSolution28

store feasible and optimal sub-solution for product p29

else30

return infeasible31

return feasible solution combining all sub-solutions32
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of compartments could be solved by several applications of this algorithm it can again and
finally be classified as weakly NP-hard.

7.3.4 CAP Solution Cache

When solving the VRPC we can expect that some CAP instances appear several times. Hence
in order to save unnecessary computations we use a simple solution cache, holding the re-
sults of the exact CAP solution approach. This cache is realized with a hash map, using
as key the array of the orders sorted according to increasing index and stores whether the
solution is feasible plus the assignment of the orders to the compartments. In preliminary
tests this variant outperformed a static bit set approach (one bit per order). Of course more
sophisticated cache variants could be implemented, very promising could be to use index
structures that also offer subset and superset queries. The latter were successfully applied to
a two-dimensional routing and loading problem in [217].

7.3.5 Density as Packing Measure

So far we treated each feasible solution to the CAP equally, since we are essentially only
interested in whether we can find a packing or not. If each CAP would always be solved in
an exact way this would still be the case. However, since the CAP or even the incremental
variant of it will mainly be solved heuristically to significantly reduce the computational ef-
fort we might prefer some packings over others. Indeed, as will be shown later in the results,
it is beneficial to increase the density, i.e. the efficiency, of the packing. Opting for a high
packing density directly corresponds to maximizing the utilization of the vehicles, eventu-
ally enabling a more (cost) efficient delivery, e.g. allowing a customer to be visited by only
one instead of two vehicles. The basic idea is adopted from a concept introduced by Falke-
nauer and Delchambre for the one-dimensional bin packing and line balancing problem [73].
This density measure is the average squared loading ratio (load divided by capacity) on a per
compartment basis for fixed capacities:

∑
c∈C

(
Lc
Qc

)2

|C| ,

where Lc and Qc denote the load and capacity of compartment c, and on a per vehicle basis
otherwise:

(
L

Q

)2

,

where L and Q denote the vehicle load and capacity, respectively. The value of the density
lies within the range [0, 1]. These formulas are applicable to single routes, for the whole
solution the overall density is just the average of all routes.
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7.3.6 Local Search to Improve the Packing

When applying the heuristic insertion as well as solution procedures for the CAP mentioned
in Section 7.3.2 it is expected that the packing “degrades” over time, i.e. the density de-
creases, and one fails with increasing probability to add orders to an existent packing. This
is because the residual space tends to get scattered over the compartments and it becomes
less likely that a great portion of it remains in a single compartment. Hence, in order to
maintain a rather favorable packing we additionally apply a local search specifically aiming
at the packing and using the density as objective function to be maximized:

1. Re-insert all orders of a route using BFD similar to the fallback strategy when the
incremental CAP cannot be solved. Keep an improved packing, in any case go to step
2. Note: a possibility would be to (partly) change the deterministic order sequence—
according to decreasing demand—at random, but we did not consider this here.

2. Iteratively empty single compartments and re-insert these orders via BF. The compart-
ments are considered according to increasing index. Repeat this procedure as long as
an improvement is obtained, else go to step 3.

3. Iteratively apply several order exchange moves, trying to exchange two by two, two
by one, and one by one order. Consider the orders as they appear in the corresponding
vehicle route. If this procedure yielded an improvement go to step 2 again.

Moves 2 and 3 are similar to the heuristic for bin packing presented in [130], they are further
applied in a variable neighborhood descent fashion (as pointed out by the “go to” statements).
This local improvement procedure, in the remainder denoted as repacking heuristic, is only
applied on improved solutions (to be more precise: on routes which changed), as they are
the basis of the subsequent iterations of the metaheuristic in use. Applying it on each newly
derived solution would yield no further gain, as the travel costs are not changed in any way.
An alternative would be to apply it also on intermediate solutions, e.g. after removing some
of the orders in course of a neighborhood move, which might allow an easier re-insertion
and could eventually lead to minimized costs. However, a significant overhead would most
likely be the result of this, so we did not actually apply it that way.

7.4 Variable Neighborhood Search for the VRPC

Our first metaheuristic solution approach is primarily based on variable neighborhood search
(VNS) and includes some of the problem-specific techniques from [60] which were reported
to yield good performance. In the following we give an overview on our VNS for the VRPC.

7.4.1 Objective Function

Besides trying to minimize the total routing costs, which still is the ultimate goal, we also
aim at increasing the overall packing density described in Section 7.3.5. Hence the density
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Table 7.2: Shaking neighborhoods and their order as applied by the VNS, newly pro-
posed ones are marked bold.

k Nk
1 randomly remove orders
2 remove random customers’ orders
3 remove orders of random route
4 remove orders of longest route
5 remove orders of least density route
6 remove random compartments’ orders
7 remove orders of non-empty least loaded compart-

ment (having most orders)
8 remove most costly orders (as sets) based on detour
9 remove orders based on similarity

10–15 exchange segments with lengths up to k − 7

is applied as a minor objective for tie-breaking when having two solutions with equal costs,
basically preferring a smaller amount of well-filled compartments (routes) over many equally
and hence less-filled ones. We further only consider feasible solutions during search, hence
no sort of repair operations or penalty terms for violations are necessary.

7.4.2 Initial Solution

As initial solution for the classical single-trajectory VNS we select the best solution out of
several generated with variants of best insertion, the savings algorithm, and the sweep algo-
rithm. We implemented two sweep-like algorithms: the first is similar to that of [60], even
though we did not search for the largest (radial) gap among all customers to obtain the begin-
ning of the order sequence for insertion. In contrast we select a customer at random, consider
the successive one tenth of the customers and select the largest gap among them (denoted as
“sweep 1”). In the second variant we do not only insert the orders in the current single open
route but insert them in a greedy fashion considering all potential routes (denoted as “sweep
2”). As expected, and also experienced in [60], the performance of these initialization pro-
cedures depend on the characteristics of the problem instance. In the results section we will
state how often the individual methods could obtain the best initial solution for the instances
considered.

7.4.3 Shaking Neighborhoods

In the shaking phase we utilize several move operations, i.e. we remove and reinsert a certain
number of orders selected according to different criteria. On the one hand, we choose the
orders either at random, based on the induced costs (or detour), or on their similarity to
a randomly chosen seed order taking into account the product type, the demand and the
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customer location as in [60]. Regarding the removal based on the induced costs, unlike
in [60] we consider orders belonging to the same customer as a set, otherwise only the
first and last order of such a route sub-sequence would be “misplaced” (since the distance
between orders of the same customer is zero). Whole sets of orders are also selected either
via considering orders belonging to a certain customer, or being contained in a route which is
itself selected at random, having the highest routing costs, or the least density. Similarly, such
sets of orders might belong to a randomly selected compartment or the compartment with the
least load. In the latter case we use the number of orders as a tie-breaking criterion and prefer
a higher number, since several smaller orders are easier to reinsert. On the other hand, we
also try to exchange route segments of limited size between two different routes as is often
done in the context of VRPs. An overview of the shaking neighborhoodsNk, k ∈ [1, 15], as
well as their order is shown in Table 7.2.

7.4.4 Insertion of Orders

The insertion of single orders in a route’s sequence is either done in a purely greedy and
thus myopic way or using a regret-k heuristic [170, 60] which acts more foresighted. The
latter takes the k cheapest routes’ insertion costs into account for selecting the next order.
We randomly select k to be between two and five or equal to the number of all routes. All
six insertion variants are selected with equal probability.

Local Improvement

To improve upon the travel costs after the insertion we apply the well-known 3-opt intra-
route exchange procedure, where in terms of sequences a-b-c we exclusively apply the move
resulting in a-c-b. Additionally, all improved solutions as well as with a small probability
P new

2-opt∗ (concrete value will be given in the results section) also newly derived solutions lying
within two percent to the current incumbent solution are subject to the 2-opt∗ inter-route
exchange heuristic [173]. In 2-opt∗ all routes’ end segments of all route pairs are tried to
be exchanged, hence contrary to 3-opt also the packing needs to be checked and solved.
Both exchange procedures are applied repeatedly and in a first improvement fashion. So
also for the VRPC we basically rely on the same local improvement methods which proved
successful in previous chapters.

7.5 Adaptive Large Neighborhood Search Based on VNS
Components

As second metaheuristic we apply adaptive large neighborhood search (ALNS) [199, 171].
Our motivation was twofold: (i) already having implemented a VNS we can realize an ALNS
with only little additional effort as basically only the selection of the (shaking) neighbor-
hoods differs, and (ii) ALNS is especially appropriate when the neighborhoods are only
partly or even not overlapping at all, which is in contrast to the VNS where for consecu-
tive shaking neighborhoods it is usually assumed that Ni ∩ Ni+1 6= ∅ or even Ni ⊂ Ni+1.
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7. VEHICLE ROUTING PROBLEM WITH COMPARTMENTS

Since in our case the number of orders to be removed is selected at random whenever one
of the neighborhoods is applied and they are further conceptually quite different, we deemed
ALNS a viable candidate.
For ALNS in each iteration one of the neighborhoods is selected at random with a prob-
ability directly proportional to its previous success, stated as a score value. This success,
or contribution to the search process, is in general not necessarily restricted to cover im-
proved solutions only, e.g. also the ability for diversification might be accounted for. Several
schemes have been proposed in the literature regarding the update of the score value. After
some preliminary tests we settled with a quite simple variant, which was also used in [104]:
whenever an improved solution is found the corresponding score is increased by one, initially
setting all scores to one. All other components of this ALNS are the same as for our VNS.

7.6 Experimental Results

The algorithm was implemented in C++, compiled with GCC 4.5 and executed on a single
core of a 2.53 GHz Intel Xeon E5540 with 24 GB RAM, 3 GB RAM dedicated per core.
We apply the general purpose MIP solver IBM ILOG CPLEX 12.2 for the ILP packing
models, whereas the constraint programming based bin packing approach is implemented
in Gecode 3.7.1 [1]. For all settings and instances we performed 10 runs. The number of
orders to be removed and reinserted during shaking is chosen at random between two and
one third of all orders. If not stated otherwise, newly derived solutions (lying within two
percent to the current incumbent solution) will be subject to 2-opt∗ with a probability of 1%,
i.e. P new

2-opt∗ = 0.01. Regarding the packing we distinguish between solely applying first-fit
(denoted by VNS-FF or ALNS-FF), or using best-fit and best-fit decreasing when insert-
ing single orders and several orders, respectively (denoted as VNS-BFD or ALNS-BFD).
Since first-fit is used for inserting single as well as several orders, we denote the respective
sub-methods as FF1 and FF+ if they need to be distinguished. When a method applies the
density measure, including the shaking neighborhoods related to the packing, this is denoted
by adding “d” as superscript. In case the repacking heuristic is used we add a “r” as super-
script. Note that the latter are only effective when facing a hard packing problem (CAP), so
they will only be considered for some instance sets.

7.6.1 Christofides and Eilon Based Instances

The first set of instances is based on well-known VRP instances introduced by Christofides
and Eilon, available in the VRPLIB [228] denoted as symmetric CVRP instances. Some of
them were extended to two compartments by introducing two product types and assigning
the original requests to both of them (i.e. doubling them), where the capacity of each com-
partment corresponds to the original vehicle capacity. On the positive this scheme allows
for an easy regeneration of the instances (they are not publicly available) but on the negative
their very special structure limits the usefulness for the VRPC, especially for such a general
variant as considered here, a fact that was also pointed out in [60]. Since an optimal solu-
tion to these instances directly corresponds to an optimal VRP solution where the original
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Table 7.3: Considered adapted Christofides and Eilon instances (only those without
route length restrictions), also giving the costs of the corresponding best known VRP
solution.

Id BKS (of VRP)

Subset 1
E051-05e 524.61
E076-10e 835.26
E101-08e 826.14
E151-12c 1028.42
E200-17c 1291.29
E121-07c 1042.11
E101-10c 819.56
E241-22k 707.79
E484-19k 1107.19

Subset 2
E072-04f 237.00
E076-08s 735.00
E076-07u 682.00
E135-07f 1162.00

Subset 3
E253-27k 859.11
E256-14k 583.39
E301-28k 998.73
E321-30k 1081.31
E324-16k 742.03
E361-33k 1366.86
E397-34k 1345.23
E400-18k 918.45
E421-41k 1821.15
E481-38k 1622.69

requests appear in both compartments (so to say “mirrored”), they are far more appropriate
for testing the ability to solve VRP-like VRPC instances, and in fact not facing any special
packing/partitioning subproblem. It has to be noted that because of this in [72] a second set
was used where the demands of the requests are not alike but differ in their amount between
the the two products. Unfortunately no direct comparison is possible since on the one hand
their creation involves randomness and they were not made publicly available, and on the
other hand they used real numbers for the demands, which is at present not incorporated in
our implementation. Basically in line with this, also in [147] an additional set was created,
this time not based on any VRP instances and using integer demands. However, it was not
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7. VEHICLE ROUTING PROBLEM WITH COMPARTMENTS

Table 7.4: Results of VNS for the Christofides and Eilon based instances for different
CPU-times.

Instance
5 min 10 min 20 min 60 min

min avg min avg min avg min avg

E051-05e 524.61 526.47 524.61 526.47 524.61 526.47 524.61 526.47
E076-10e 836.78 841.12 835.77 840.92 835.26 840.72 835.26 840.41
E101-08e 831.71 836.06 831.71 835.21 831.71 833.94 830.79 832.62
E151-12c 1047.64 1052.94 1047.64 1052.27 1047.64 1052.21 1047.64 1051.14
E200-17c 1319.91 1335.11 1318.74 1332.97 1318.74 1330.48 1315.22 1325.65
E121-07c 1042.12 1043.85 1042.12 1043.68 1042.12 1043.68 1042.12 1042.47
E101-10c 819.56 819.56 819.56 819.56 819.56 819.56 819.56 819.56
E241-22k 723.77 730.33 723.77 729.00 720.36 726.68 715.94 722.01
E484-19k 1166.90 1170.30 1165.01 1168.79 1161.46 1165.02 1151.23 1159.55
%-gapBKS 1.40 1.90 1.36 1.82 1.26 1.70 1.05 1.49

E072-04f 241.97 241.97 241.97 241.97 241.97 241.97 241.97 241.97
E076-08s 742.04 749.14 742.04 748.53 742.04 747.68 742.04 746.91
E076-07u 691.51 698.34 687.60 695.78 687.60 694.53 687.60 694.05
E135-07f 1162.96 1167.57 1162.96 1167.57 1162.96 1167.57 1162.96 1165.82
%-gapBKS 1.13 1.72 0.99 1.61 0.99 1.53 0.99 1.45

E253-27k 885.70 891.95 884.07 890.10 880.54 887.63 878.17 885.41
E256-14k 600.28 604.00 599.59 602.07 599.17 601.59 597.03 600.07
E301-28k 1036.19 1042.98 1036.19 1041.52 1033.07 1039.68 1028.70 1035.73
E321-30k 1122.77 1131.42 1119.12 1128.88 1118.34 1126.48 1111.73 1122.94
E324-16k 773.71 778.56 772.92 776.31 769.37 775.15 768.16 773.74
E361-33k 1415.40 1420.81 1412.09 1418.39 1411.09 1415.64 1402.08 1411.50
E397-34k 1395.60 1407.86 1386.23 1403.13 1383.63 1400.42 1383.63 1395.37
E400-18k 956.54 964.30 952.14 961.57 951.40 959.38 950.11 956.70
E421-41k 1904.04 1909.89 1896.92 1906.18 1894.34 1902.82 1889.10 1898.67
E481-38k 1697.38 1703.17 1686.36 1694.57 1682.05 1689.45 1673.95 1684.24
%-gapBKS 3.84 4.48 3.52 4.20 3.31 3.99 2.97 3.70

made public, too, and they further used it to highlight the benefits of co-collection in general
and not presented detailed results. Nevertheless, we still consider the few VRP-like VRPC
instances to obtain a comparison as meaningful as possible; they are given in Table 7.3 with
the costs of the corresponding best known solutions (BKS), which are derived from the best
known VRP solutions, as well as their partition into subsets as considered later on.

Similar to [60] we will report on results of our methods for CPU-times of 5, 10, 20, and
60 minutes, stating the minimal costs obtained in the 10 runs (min) as well as the average
costs (avg). Due to the simple packing problem both methods rely on first-fit for placing the
orders into the compartments, and apply the density measure. So, adhering to our naming
convention they should be denoted as VNS-FFd and ALNS-FFd, though for simplicity we
only use the abbreviations VNS and ALNS as we only apply these variants here. The results
of VNS and ALNS are shown in Table 7.4 and Table 7.5, respectively.
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Table 7.5: Results of ALNS for the Christofides and Eilon based instances for different
CPU-times.

Instance
5 min 10 min 20 min 60 min

min avg min avg min avg min avg

E051-05e 524.61 526.47 524.61 526.47 524.61 526.47 524.61 526.47
E076-10e 835.26 841.80 835.26 841.60 835.26 841.60 835.26 841.60
E101-08e 828.34 834.11 828.34 833.49 828.34 833.36 828.34 833.00
E151-12c 1047.38 1053.61 1047.38 1053.15 1046.55 1051.41 1045.58 1048.44
E200-17c 1320.02 1331.14 1317.23 1327.66 1317.23 1327.15 1317.23 1324.60
E121-07c 1042.12 1043.26 1042.12 1042.95 1042.12 1042.82 1042.12 1042.65
E101-10c 819.56 819.56 819.56 819.56 819.56 819.56 819.56 819.56
E241-22k 718.00 726.43 716.58 722.86 714.77 720.79 714.62 716.68
E484-19k 1161.81 1172.05 1160.91 1168.12 1156.93 1164.46 1150.59 1159.90
%-gapBKS 1.19 1.80 1.13 1.66 1.06 1.56 0.98 1.39

E072-04f 241.97 241.97 241.97 241.97 241.97 241.97 241.97 241.97
E076-08s 742.56 748.68 742.56 748.24 742.56 746.52 742.56 746.38
E076-07u 687.60 695.48 687.60 695.39 687.60 693.84 687.60 693.75
E135-07f 1162.96 1164.78 1162.96 1164.65 1162.96 1164.01 1162.96 1164.00
%-gapBKS 1.01 1.54 1.01 1.52 1.01 1.39 1.01 1.39

E253-27k 881.63 890.20 876.52 887.04 876.52 885.04 876.52 881.99
E256-14k 598.02 602.23 597.62 600.79 592.72 599.65 591.63 598.33
E301-28k 1033.03 1037.56 1031.86 1035.19 1027.53 1032.23 1023.79 1028.83
E321-30k 1115.92 1127.96 1115.25 1125.32 1113.61 1123.02 1113.16 1122.09
E324-16k 771.92 777.19 771.51 775.52 771.23 773.97 768.00 772.52
E361-33k 1412.63 1420.21 1404.58 1414.52 1401.17 1410.51 1399.26 1405.09
E397-34k 1390.37 1404.22 1384.25 1399.14 1383.94 1394.75 1379.11 1389.40
E400-18k 955.93 962.92 952.22 958.76 949.26 956.15 946.91 952.88
E421-41k 1896.25 1911.17 1893.23 1906.92 1886.98 1900.23 1876.01 1887.15
E481-38k 1688.33 1696.54 1684.27 1692.33 1678.08 1685.91 1670.72 1681.00
%-gapBKS 3.47 4.24 3.20 3.94 2.92 3.65 2.64 3.32

In Table 7.6 we state the relative usage of the neighborhoods, as well as how often they
yielded an improved solution. VNS does not focus on specific neighborhoods and applies
them all alike. Although VNS returns to the first shaking neighborhood in case of an im-
provement, this has no notable effect here as the number of improvements is negligible com-
pared to the overall iterations. In contrast, ALNS effectively reinforces neighborhoods show-
ing a good performance, and interestingly neighborhoods 10–15 are less often applied as in
case of VNS yet show a higher success rate. However, for both methods these neighborhoods
only play a minor role.
Finally, a comparison to previous methods is shown in Table 7.7. The memetic algorithm
(MA) and tabu search (TS) of El Fallahi et al. [72] were run on a PC Pentium 4 at 2.4 GHz,
the guided local search (GLS) of Muyldermans and Pang [147] was run with different itera-
tion limits on a PC Pentium M740 at 1.73 GHz, and the method of Derigs et al. [60] was run
with different time limits on a not further defined 3 GHz PC with 2 GB RAM. While both
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7. VEHICLE ROUTING PROBLEM WITH COMPARTMENTS

Table 7.6: Relative usage and contribution to success of shaking neighborhoods of VNS
and ALNS on Christofides and Eilon based instances.

k
VNS ALNS

%-use %-success %-use %-success

1 6.67 17.92 5.50 9.83
2 6.67 60.27 34.27 70.66
3 6.67 1.68 5.44 0.79
4 6.67 0.52 3.94 0.29
5 6.67 1.11 4.90 0.54
6 6.67 1.01 4.21 0.84
7 6.67 0.92 4.64 0.63
8 6.67 13.46 8.74 12.31
9 6.67 2.87 4.87 3.20
1–9 60.00 99.76 76.52 99.09

10 6.67 0.01 3.72 0.11
11 6.67 0.05 3.97 0.14
12 6.67 0.02 3.94 0.18
13 6.67 0.05 3.85 0.11
14 6.67 0.05 3.82 0.11
15 6.67 0.07 4.18 0.25
10–15 40.00 0.24 23.48 0.91

former computing environments are definitely slower than ours, a comparison to the last one
is not really possible. Nevertheless, against better judgement we chose the same CPU-time
limits. None of these works reports average results and no details are given about how many
runs were performed in total. As a consequence of this we regard their single runs as their
best runs in the following, and at least when comparing our best runs to the results of De-
rigs et al. this seems reasonable, albeit comparing best (or also single runs in general) has
to be done with care. We can observe that the MA, TS and GLS seem inferior in solution
quality to the latest approaches, although keeping in mind that they were mostly given less
runtime. Comparing the results obtained by Derigs et al. to ours reveals that there is hardly
a difference when given one hour runtime. However, looking at the results of the 5, 10, and
20 minutes runs, both VNS and ALNS yield a better solution quality. Opposing VNS and
ALNS is in favor of the latter: ALNS almost always obtains better results on average as well
as with regard to the best found solutions.

7.6.2 Instances of Derigs et al.

The second set of instances was introduced in [60] and is available online at http://www.
ccdss.org/vrp/ together with the best known solutions. The instances differ in type
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7. VEHICLE ROUTING PROBLEM WITH COMPARTMENTS

(petrol or food), number of customers (10 to 200, either clustered or not), number of products
(2 or 3), vehicle capacity (600 to 9000), and the maximal order demand. This maximal order
demand dmax represents an upper bound on the amount of single demands: the total customer
demand of a specific product dp is split into bdp/dmaxc orders with a demand of dmax each,
plus an additional order of demand dp mod dmax (if this value is different from zero). For
type petrol there are five compartments of fixed capacity Q/5 and dmax/Qc is either 0.5 or
1, whereas for type food there are flexible compartments where each one might occupy the
total storage, yet their total capacities sum up to the vehicle capacity and dmax/Qc is either
0.25 or 0.5; also see Section 7.1.2 about these scenarios. There are 200 instances in total,
125 of type petrol and 75 of type food. Though they did not use and hence not explicitly state
the packing density of the best solutions it can be calculated given the actual assignment of
orders to compartments. We consistently set a CPU-time limit of 10 minutes as was done
in [60] to allow for a more or less direct comparison. Three algorithm variants are tested:
VNS-FF, VNS-BFDd[r], and ALNS-BFDd[r], where we apply the repacking heuristic only
for instances of type petrol. Again 10 runs are performed per instance and setting.
The results on the instances of type food are given in Table 7.8, those on the instances
of type petrol in Table 7.9, where we averaged them for instances with the same number
of customers n and products p. As expected the VNS benefits more from the extensions
for the instances of type petrol. However, also for the food instances where we are faced
with a considerably simpler packing subproblem a slight gain can be observed. We can see
that improved costs are accompanied by an improved (i.e. increased) density, suggesting
that utilizing the density measure, along with the packing-related neighborhoods and the
repacking heuristics, is beneficial. Since the average performances, when comparing to the
best solutions of [60], are not varying much, we examine whether statistically significant
differences exist. Corresponding results in Table 7.10 confirm our former impression that
the performance gap between VNS-BFDd[r] and VNS-FF is larger on petrol type instances.
We can further conclude that ALNS-BFDd[r] outperforms VNS-BFDd[r], though only for
food type instances there is a notable difference.
Altogether, the performance of our algorithmic framework is very encouraging as high-
lighted in Table 7.11: the best method, ALNS, could obtain for 146 out of 200 instances
(73.0%) a new best known solution, reach the same objective value for 37 instances (18.5%),
and only for 17 instances (8.5%) the solution quality is slightly inferior. Yet remarkably, all
methods perform quite similar with respect to the best solutions obtained. For a complete
listing of the overall best found solution values we refer to Section A.2 in the appendix.
Finally, Tables 7.12 and 7.13 show the usage and success of the neighborhoods for instances
of type food and petrol, respectively. We see again the focus of ALNS on better perform-
ing neighborhoods and that our newly introduced neighborhoods (number 2, 5, 6, and 7)
contribute a lot to the total improvements in general.

Examining the Packing of the Petrol Type Instances

We want to take a closer look at the CAP regarding the petrol type instances, as in contrast
to the food type instances they involve the NP-hard packing subproblem. Therefore Ta-
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7.6. Experimental Results

Table 7.10: Pairwise Wilcoxon rank sum tests of results on instances of Derigs et al.
with an error level of 5%, stating how often significantly better / worse.

VNS-BFDd[r] ALNS-BFDd[r]

type food
VNS-FF 10 (13.3%) / 17 (22.7%) 9 (12.0%) / 21 (28.0%)
VNS-BFDd – 7 (9.3%) / 20 (26.7%)

type petrol
VNS-FF 6 (4.8%) /26 (20.8%) 8 (6.4%) / 30 (24.0%)
VNS-BFDdr – 9 (7.2%) / 12 (9.6%)

Table 7.11: Comparison of best solutions obtained by our methods to best known solu-
tions derived by [60].

better draw worse

type food
VNS-FF 48 (64.0%) 16 (21.3%) 11 (14.6%)
VNS-BFDd 50 (66.7%) 15 (20.0%) 10 (13.3%)
ALNS-BFDd 50 (66.7%) 18 (24.0%) 7 (9.3%)

type petrol
VNS-FF 93 (74.4%) 18 (14.4%) 14 (11.2%)
VNS-BFDd 95 (76.0%) 17 (13.6%) 13 (10.4%)
ALNS-BFDd 96 (76.8%) 19 (15.2%) 10 (8.0%)

total
VNS-FF 141 (70.5%) 34 (17.0%) 25 (12.5%)
VNS-BFDd 145 (72.5%) 32 (16.0%) 23 (11.5%)
ALNS-BFDd 146 (73.0%) 37 (18.5%) 17 (8.5%)

bles 7.14 and 7.15 show the amount of undecided packings, which are those (presumably
hard) CAP instances where the heuristics fail to find a feasible solution yet we are also not
able to prove the infeasibility via the applied checks (see Section 7.3). The amount is of
small to moderate size. The difficulty of inserting single orders correlates to the number of
customers, whereas we are seemingly more successful at inserting several orders. Table 7.15
shows that instances where the vehicle capacity Q is larger the both packing scenarios tend
to get harder, which is not surprising as also the size of the route is increasing. There is only
quite a small difference between VNS-FF and VNS-BFDdr, more noticeable is the difference
of both to ALNS-BFDdr. As the latter two methods exhibit an equal performance on this
instances this might confuse at first. The reason is the different usage of the neighborhoods
as shown in Table 7.13, as ALNS implicitly also takes the packing outcomes into account
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Table 7.12: Relative usage and contribution to success of shaking neighborhoods of
VNS variants and ALNS on food type instances of Derigs et al.

k
VNS-FF VNS-BFDd ALNS-BFDd

%-use %-success %-use %-success %-use %-success

1 7.69 39.21 6.67 35.28 17.93 45.97
2 7.69 16.01 6.67 12.19 12.77 11.71
3 7.69 3.03 6.67 2.37 6.27 0.86
4 7.69 1.50 6.67 1.36 5.29 0.75
5 – – 6.67 4.00 5.13 2.30
6 7.69 9.48 6.67 9.12 7.99 5.08
7 – – 6.67 11.41 7.21 10.68
8 7.69 2.99 6.67 2.23 4.79 2.09
9 7.69 24.97 6.67 16.90 9.98 19.34
1–9 53.85 97.19 60.00 94.86 77.34 98.79

10 7.69 0.53 6.67 0.87 3.64 0.16
11 7.69 0.53 6.67 0.89 3.80 0.20
12 7.69 0.50 6.67 0.83 3.82 0.22
13 7.69 0.42 6.67 0.79 3.81 0.21
14 7.69 0.41 6.67 0.90 3.81 0.21
15 7.69 0.41 6.67 0.85 3.78 0.21
10–15 46.15 2.81 40.00 5.14 22.66 1.21

and hence automatically prefers neighborhoods where the packing is more often solvable,
leading to less undecided packings in general.
Although we have seen that usually not many packings are undecided, it would be interesting
to know whether they could still lead to a better routing. Therefore we have tried to solve
them in an exact way using one of our developed methods. The interesting finding was that
we did not encounter a single CAP which was previously undecided and could be feasibly
solved. All of them were shown to be infeasible, hence although we only applied heuristics
for the packing, they seem to almost always yield a feasible solution whenever one exists
for these instances. The reason has to be the strict pre-splitting according to the maximal
order demand, producing a uniform demand distribution with only very few orders having a
demand different from the maximal order demand, in fact only one per customer and product
type (as a side note: the median absolute deviation is always zero).

7.6.3 Modified Derigs et al. Petrol Instances

To finally be able to test our methods on instances which actually provide a harder packing
subproblem we modified the Derigs et al. instances of type petrol. Our goal was to make the
order demands less uniform by introducing some randomness, yet we wanted them to still
relate to the original instances. In the end we decided to choose their values at random in the
range [0.4 · dmax, 0.6 · dmax]. Except for instances vrpc_p_n100_p2_k06_120.vrp,
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Table 7.13: Relative usage and contribution to success of shaking neighborhoods of
VNS variants and ALNS on petrol type instances of Derigs et al.

k
VNS-FF VNS-BFDd ALNS-BFDd

%-use %-success %-use %-success %-use %-success

1 7.69 24.12 6.67 24.39 13.10 23.39
2 7.69 13.84 6.67 11.33 10.96 7.85
3 7.69 1.68 6.67 1.23 5.21 0.50
4 7.69 0.85 6.67 0.76 3.85 0.28
5 – – 6.67 1.24 4.76 0.78
6 7.69 31.75 6.67 22.51 14.48 24.03
7 – – 6.67 16.22 10.37 17.77
8 7.69 3.08 6.67 2.38 4.87 1.99
9 7.69 23.07 6.67 18.76 11.33 23.11
1–9 53.85 98.39 60.01 98.81 78.94 99.71

10 7.69 0.32 6.67 0.28 3.44 0.05
11 7.69 0.29 6.67 0.21 3.56 0.05
12 7.69 0.26 6.67 0.18 3.56 0.07
13 7.69 0.24 6.67 0.19 3.48 0.04
14 7.69 0.25 6.67 0.17 3.50 0.03
15 7.69 0.25 6.67 0.16 3.51 0.05
10–15 46.15 1.61 39.99 1.19 21.06 0.29

vrpc_p_n10_p3_k1_c_200.vrp, vrpc_p_n50_p2_k06_120.vrp, and
vrpc_p_n50_p3_k06_c_120.vrp, where we had to choose [0.2 · dmax, 0.8 · dmax]
instead to realize a harder packing.

Computational Effort of Exact Packing Methods

In case the heuristics fail to solve a CAP instance and we have not already proven its infea-
sibility we occasionally want to solve it to optimality. Hence the different methods which
were developed were analyzed in preliminary tests. As we are not able to integrate the den-
sity measure into these models there is not really a possibility to prefer one of the optimal
solution over another, hence there is just a single important factor for to differentiate the
methods: the runtime they need for solving. One scenario is to apply the exact methods
on CAPs when inserting several orders, i.e. when building initial solutions with the savings
heuristic, exchanging segments during shaking, and applying 2-opt∗. The fraction of the
overall runtimes which are devoted to exactly solving the CAPs for setting VNS-BFDdr are
shown in Table 7.16 for the two ILP approaches and the CP based approach. The alternative
ILP formulation (ILP-2) more than halves the runtime needed for the straightforward ILP
formulation (ILP-1), but the CP formulation is able to yield an incredible additional speedup
of about 155. So the latter method is clearly superior and will be the only one considered in
the following tests.
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Table 7.14: Average results of undecided packings on petrol type instances of Derigs et
al., differentiating between inserting single orders (via FF1 or BF) or several orders (via
FF+ or BFD).

n p
VNS-FF VNS-BFDdr ALNS-BFDdr

FF1[%] FF+[%] BF[%] BFD[%] BF[%] BFD[%]

10
2 0.30 0.07 0.07 0.00 0.04 0.00
3 0.36 0.07 0.17 0.05 0.07 0.01

25
2 1.38 0.70 0.54 0.12 0.29 0.06
3 1.19 3.09 1.13 3.26 1.00 4.19

50
2 2.84 4.00 2.46 3.60 1.76 0.98
3 2.42 2.87 2.52 2.48 1.84 0.70

100
2 4.63 1.05 4.66 0.89 2.83 0.08
3 4.05 0.52 4.08 0.36 2.80 0.05

200
2 13.29 0.85 11.85 0.72 7.55 0.31
3 10.71 0.40 11.64 0.31 7.66 0.20

avg 3.40 1.47 3.21 1.27 2.04 0.57

Table 7.15: Results of Table 7.14 given per vehicle capacity.

Q
VNS-FF VNS-BFDdr ALNS-BFDdr

FF1[%] FF+[%] BF[%] BFD[%] BF[%] BFD[%]

600 0.35 0.01 0.24 0.00 0.09 0.00
800 0.80 0.07 0.43 0.04 0.19 0.01

1000 0.76 0.03 0.70 0.03 0.36 0.01
3000 4.20 0.88 2.66 0.32 1.55 0.09
9000 24.90 18.70 27.13 17.91 18.62 13.18

Testing Various Methods on the Modified Instances

For these instances we more thoroughly examine the effects of the proposed extensions,
namely the density measure, the repacking heuristics, and the chosen exact approach for
solving the CAP. We do this by iteratively enhancing the solution method, beginning with
VNS-FF. There are two variants of exactly solving the CAP, as was already explained in
Section 7.3.2: only when inserting several orders due to exchanging segments during shaking
and applying 2-opt∗ (denoted as CP), as well as when also inserting single orders excluding
insertions occurring in the repacking heuristics (denoted as CPfull). In total we tested six
settings: VNS-FF, VNS-FFd, VNS-BFDd, VNS-BFDdr, VNS-BFDdr-CP, and VNS-BFDdr-
CPfull. In preliminary tests we also tried the ALNS, but the results were at most competitive
to the VNS, so we do not apply it here. We use the same test settings as for the Derigs et
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Table 7.16: Fraction of overall runtime devoted to exactly solving harder CAPs when
inserting several orders using different methods.

n p ILP-1 ILP-2 CP

10
2 27.37 16.70 0.02
3 27.43 15.78 0.04

25
2 13.51 3.81 0.02
3 7.98 3.30 0.01

50
2 4.22 1.30 <0.01
3 1.85 0.67 0.10

100
2 1.70 0.40 <0.01
3 1.26 0.51 <0.01

200
2 0.78 0.21 <0.01
3 0.45 0.05 <0.01

avg 6.77 3.10 0.02

Table 7.17: Average results of VNS variants on new instances of type petrol taking best
solutions of VNS-FF as baseline.

Method
%-gap %-gap %-gap t[s]

min cost avg cost avg density avg

(1) VNS-FF 0.00 1.34 -1.18 602.9
(2) VNS-FFd -0.76 0.52 2.72 602.8
(3) VNS-BFDd -1.10 0.17 3.77 602.9
(4) VNS-BFDdr -1.18 0.10 4.54 602.9
(5) VNS-BFDdr-CP -1.42 -0.26 4.59 602.9
(6) VNS-BFDdr-CPfull -1.71 -0.47 5.50 1244.1

al. instances, i.e. a CPU-time limit of 10 minutes and 10 runs per setting and instance. The
only exception being VNS-BFDdr-CPfull where we examined in preliminary tests that the
solution quality is not competitive when also allotting a 10 minute runtime, which is due to
the effort of packing many CAPs in an exact way. Since we were interested in the potential
of setting CPfull anyway, we decided to apply VNS-BFDdr-CPfull with the same amount
of iterations as VNS-BFDdr-CP. Concise average results are shown in Table 7.17. Together
with Table 7.18, stating the statistical significance results using the numbering introduced in
Table 7.17, we see that most extensions have a notable and significant impact on the solution
quality. Lesser improvements occur when directly comparing VNS-BFDd and VNS-BFDdr,
as well as VNS-BFDdr-CP and VNS-BFDdr-CPfull. It is to note that for some instances we
experienced that the repacking heuristic in its current form consumes quite a lot of runtime,
so it would be wise to limit its computational effort. Looking at VNS-BFDdr-CPfull shows
that solving the CAP when also inserting single orders is beneficial in principle. However,
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Table 7.18: Pairwise Wilcoxon rank sum tests on all 125 new petrol type instances with
an error level of 5%, stating how often sign. better/worse.

Method (2) (3) (4) (5) (6)

(1) 1/55 0/83 2/84 1/91 1/97
(2) – 1/35 5/42 6/57 2/69
(3) – – 9/15 8/33 3/39
(4) – – – 1/26 4/45
(5) – – – – 6/19

Table 7.19: More detailed average results of VNS-FF and VNS-BFDdr-CP on new
instances of type petrol taking best solutions of VNS-FF as baseline.

n p
VNS-FF VNS-BFDdr-CP

%-gap %-gap %-gap %-gap %-gap %-gap
min cost avg cost avg density min cost avg cost avg density

10
2 0.00 0.72 -1.83 -2.33 -2.19 9.92
3 0.00 1.59 -1.93 -1.54 -0.24 5.06

25
2 0.00 1.36 -1.74 -1.31 -0.43 3.90
3 0.00 1.61 -2.59 -0.92 0.45 3.00

50
2 0.00 1.29 -0.68 -1.23 -0.20 5.04
3 0.00 1.49 -0.36 -1.68 -0.15 4.81

100
2 0.00 1.02 -0.44 -1.57 -0.67 4.94
3 0.00 1.21 -0.04 -1.65 -0.53 5.03

200
2 0.00 0.96 -1.07 -1.20 0.12 3.90
3 0.00 1.73 -3.06 -1.22 0.30 3.06

avg 0.00 1.34 -1.18 -1.42 -0.26 4.59

we have to keep in mind that the actual improvements were achieved with roughly twice the
amount of runtime and we would have to apply the other methods with a longer runtime, too,
to allow a fair comparison. Finally, in Table 7.19 we give more detailed results of the baseline
method, VNS-FF, and the most enhanced method with equal runtime, VNS-BFDdr-CP.

Examining the Packing

As for the Derigs et al. instances we will also investigate the packing more closely here.
Like before we state the fraction of the packings which remain undecided in view of the
heuristics, and in case of the CP-enriched variants for how many of the CAPs which were
subject to the exact solving approach a feasible solution could be obtained. In the latter case
we additionally state the amount of solutions (either feasible ones or the proof that none
exists) which could be retrieved from the hash map and were thus already solved before. We

214



7.6. Experimental Results

Table 7.20: Average results of undecided packings of heuristics on new petrol type in-
stances, differentiating between inserting single orders (via FF1 or BF) or several orders
(via FF+ or BFD).

n p
VNS-FF VNS-FFd VNS-BFDd VNS-BFDdr

FF1[%] FF+[%] FF1[%] FF+[%] BF[%] BFD[%] BF[%] BFD[%]

10
2 14.09 0.12 5.29 0.11 4.33 0.10 4.24 0.11
3 12.49 0.38 4.78 0.34 4.20 0.16 3.94 0.20

25
2 14.71 0.28 9.47 0.28 8.20 0.20 7.17 0.21
3 12.01 0.30 8.14 0.30 6.68 0.19 5.13 0.19

50
2 14.40 0.26 11.50 0.28 10.02 0.18 7.66 0.18
3 12.85 0.28 10.60 0.28 9.07 0.14 5.39 0.14

100
2 13.30 0.26 11.18 0.25 9.93 0.14 8.12 0.14
3 10.70 0.33 9.17 0.31 8.13 0.14 5.34 0.14

200
2 12.65 0.15 12.00 0.16 9.90 0.10 8.50 0.11
3 4.46 0.19 4.04 0.19 2.99 0.10 1.89 0.10

avg 12.80 0.29 9.50 0.28 8.17 0.17 6.17 0.18

use the same notation for CP as in previous sections for FF to state the concrete results, i.e.
denote it as CP1 when inserting a single order and as CP+ othwerwise.

In Table 7.20 the results of the pure heuristic methods are shown, whereas Table 7.21 shows
that of the hybrid methods. We see that the number of undecided packings for single orders
is decreasing with the enhancement status of the given methods. Contrary, the number of un-
decided packings for several orders seems only to depend on whether FF or BFD is applied.
Further, on average for about one fourth of all CAPs when inserting several orders (CP+[%])
a feasible solution could be obtained, whereas in case of inserting single orders (CP1[%]) it
is about 12% on average. Not very surprisingly, we can conclude that it is definitely more
“profitable” to solve the CAPs to optimality when inserting several orders. Especially when
also taking the runtime into account, which was investigated already in the previous section.
Further, as we have seen in Table 7.16 the time for solving the CP model for VNS-BFDdr-CP
is on average 0.02% of the overall runtime, whereas for VNS-BFDdr-CPfull it is 13.98%.
The large number of solutions which were retrieved from the hash map indicates that very of-
ten the same CAPs are considered. Without implementing such a solution archive, even more
runtime would have to be devoted to solving the CAPs, in fact the whole method would not
be viable anymore. Note that in case of VNS-BFDdr-CPfull quite a huge number of pack-
ings are stored, leading to an according memory consumption which has to be considered
(for these tests less than 3 GB RAM were used).

What was not mentioned so far are the absolute number of times the different packing meth-
ods were applied, which are interesting, too. Therefore these numbers are given in Table 7.22
as average per applied method, where for the CP-based packings we also count those cases
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Table 7.21: Average results on new petrol type instances: undecided packings of heuris-
tics, considered CAPs where a feasible solution could be obtained with the CP approach,
as well as the fraction of solutions retrieved from the map (“hit”), differentiating be-
tween inserting single orders (via BF or CP1) and several orders (via BFD or CP+).

n p
VNS-BFDdr-CP VNS-BFDdr-CPfull

BF[%] BFD[%] CP+[%] hit[%] BF[%] BFD[%] CP1[%] hit[%] CP+[%] hit[%]

10
2 4.12 0.08 74.94 56.03 3.36 0.09 34.02 94.22 79.93 69.76
3 4.01 0.20 30.76 85.31 3.22 0.18 22.90 95.43 35.15 87.54

25
2 7.28 0.19 19.01 89.09 6.43 0.19 11.36 97.36 21.78 91.24
3 5.08 0.19 25.05 92.26 4.36 0.18 13.24 96.70 25.49 93.47

50
2 7.42 0.19 15.07 92.17 6.63 0.19 10.82 97.84 21.65 93.09
3 5.25 0.13 20.22 91.41 4.65 0.14 12.35 97.49 23.33 92.50

100
2 7.94 0.13 14.04 89.59 7.25 0.14 8.61 98.39 16.07 90.98
3 5.38 0.13 9.60 88.87 4.75 0.14 8.18 97.96 13.14 89.77

200
2 8.46 0.10 21.34 86.71 7.89 0.11 7.97 98.85 27.06 88.24
3 1.92 0.10 10.32 87.91 1.65 0.10 19.75 97.39 13.44 86.63

avg 6.10 0.17 21.56 89.20 5.39 0.17 11.57 97.58 24.83 90.90

Table 7.22: Average applications of the different packing methods on new instances of
type petrol taking.

Method FF1/BF FF+/BFD CP1 CP+

VNS-FF 1938948918 19365950 – –
VNS-FFd 1880783649 18688275 – –
VNS-BFDd 1700816334 18333503 – –
VNS-BFDdr 1638908180 18348678 – –
VNS-BFDdr-CP 1624697163 18114419 – 30872
VNS-BFDdr-CPfull 1572424316 18474309 72801609 31226

where the solution could be retrieved from the hash map (as we consider this as part of the
method itself). Due to the way our metaheuristics are designed adding a single order to an
existing packing occurs more often, the difference is roughly two orders of magnitudes for
the heuristic packing methods and even larger for the exact packing methods. The latter are
way less often applied as their heuristic counterparts, as they are only a fallback.

7.6.4 Performance of Initial Solution Construction Procedures

In this last results section we look at the performance of the initial solution construction
heuristics. Remember that we generate several solutions using the different methods and pick
the best one as starting solution. The evaluation for each instance set considered is shown
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Table 7.23: Number of times in percent the respective construction heuristic yielded the
best initial solution.

heuristic
times best initial solution[%]

Eilon food petrol new petrol avg

best insertion 0.00 20.76 20.26 0.00 10.26
savings 100.00 32.00 17.14 31.88 45.25
sweep 1 0.00 19.56 23.49 0.00 10.76
sweep 2 0.00 27.69 39.11 68.12 33.73

in Table 7.23, highlighting that the success of the methods highly depends on the instance
characteristics. On average the savings method as well as our additional sweep heuristic
(sweep 2), which was not applied in [60], perform best. However, we have to keep in mind
that it is not generally the case that using the best initial solution ultimately yields the best
solution after the optimization process, as e.g. a worse solution might allow more changes
(with regard to a getting stuck in a local optimum) and be better suited as initial solution. So
a more thorough investigation would be necessary to identify the real potential/benefit of the
different construction procedures.

7.7 Conclusions

In this chapter we considered the vehicle routing problem with compartments (VRPC), which
is basically the classical VRP incorporating vehicles offering more than one compartment,
delivering goods of different type, and possible incompatibilities between products and be-
tween products and compartments. For the first time we specifically focused on the packing
aspect of the problem, initially showing different scenarios and the resulting packing prob-
lem. In some cases, which were mostly considered in previous work, there is no packing
problem at all, hence a simple capacity check is sufficient. In case of at least two compart-
ments having a fixed capacity we are faced with an NP-hard packing problem, which we
denote as the compartment assignment problem (CAP). This problem is solved in a cascaded
way, mainly relying on the first-fit, best-fit, and best-fit decreasing heuristics, but optionally
also apply an exact approach to solve it. For the latter we proposed a straightforward overall
integer linear programming (ILP) model and a simplified approach that considers one bin
packing problem per product type. This alternative is realized either also by an ILP model
or with constraint programming (CP). The CP approach turned out to be clearly faster and
is thus the method of choice. We also implemented a solution cache via a hash map to
avoid unnecessary re-computations for the exact approach. Further, we applied a measure to
distinguish packings and ultimately to favor solutions with denser packings. For the devel-
oped variable neighborhood search (VNS), which uses some concepts from previous work,
we introduced additional problem-tailored neighborhood structures for shaking, which also
partly incorporate the packing, e.g. emptying single weakly packed compartments or clear-
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ing whole routes with a bad packing. These neighborhoods were shown to contribute a lot
to the overall improvements. Building upon the VNS, we also developed an adaptive large
neighborhood search (ALNS), where, in contrast, the (shaking) neighborhood to be applied
is always chosen at random with a probability according to its previous success. The initial
solutions are constructed using different procedures, as their performance depends on the
characteristics of the instance at hand.

Several instance sets were used to evaluate the methods. The most common used instances,
based on VRP instances of Christofides and Eilon, have a very special structure and offer no
real packing problem. Both VNS and ALNS performed at least competitive to previously
applied methods, especially yielding good results in short time. ALNS is able to outperform
VNS here. As second set we considered those introduced by Derigs et al. where two sce-
narios, one of delivering food and another one of delivering petrol, are modeled. Only the
petrol scenario involves the NP-hard CAP, at least in principle, but in all these instances
we did never encounter a single CAP instance which could not be solved via the heuristic
packing methods. The results are very encouraging, for nearly two third of all instances a
new best known solution was found. As expected, the algorithms performed especially well
on the petrol instances. Overall ALNS yields slightly better results than VNS. The potential
of our extensions could, however, not be fully assessed yet. For this we modified the petrol
type instances to show less uniform order demands than before. On this last set we could
observe the benefits of our extensions when gradually adding them to the methods. Also
tackling some CAPs with the exact approach, which would otherwise remain undecided, is
of benefit. At first only CAPs when inserting several orders were solved, which was possible
with only a very small computational effort, but yielded a notable improvement. In a second
attempt we also solved those CAPs to optimality when inserting several orders, which again
lead to an improvement. However, this was more to investigate the potential of it, as this
was only possible with roughly twice the amount of runtime. This is because these cases
occur for several orders of magnitude more often and hence the overall computational effort
is significantly increasing (including the memory consumption of the hash map).

Potential Future Work

Meaningful future work could be to consider real-world scenarios where hard(er) packing
problems involving compartments occur. In these cases our cascaded CAP solving approach
and the problem-tailored neighborhoods would clearly be of advantage and allow an inter-
esting evaluation. In the course of this also other packing solution archives could be tried,
e.g. like the index structures we have already mentioned. Another future topic could be to
investigate methods for determining (even) stronger lower bounds, in order to avoid some
more cases of wasting time by handing an infeasible packing problem to the exact method.
We also tried two ILP-based very large neighborhood search approaches (basically similar
to those for the location-routing problem described in Section 6.4), but their performance
with regard to runtime and/or improvement was not satisfying so far. However, a further
consideration might still be worthwhile.
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I set out on this “journey” with the aim to thoroughly investigate and devise hybrid meth-
ods in order to come up with highly effective solution approaches for certain classes of
NP-hard combinatorial optimization problems. In general, such hybrids try to combine in
various ways the strengths of two or more methods from possibly different streams. It was
further intended to focus in particular on combining exact and (meta-)heuristic algorithms,
especially exploiting the power of mathematical programming techniques, yielding so-called
matheuristics (or model-based metaheuristics). Although we did not decide on the problems
which would be tackled right from the start—as I was more interested in the methodical
aspect—it eventually turned out that we dealt with problems that are not only interesting
from an academic perspective but highly relevant in practical application areas, too. More
specifically, one of them is from the bioinformatics domain, whereas all others arise in the
field of transportation and are extensions of the capacitated vehicle routing problem moti-
vated by important real-world aspects. So it happened that over the years I began to develop
a particular interest in transportation problems, and in logistic problems in general.
In retrospect, we can actually confirm that hybrid methods, if appropriately conceived, im-
plemented, and eventually applied, can be very powerful and one might even obtain leading
solution approaches; something we achieved for most of the problems we considered.
In the following we will shortly mention the hybrid methods that were developed, following
the use cases documented in Section 2.5. Note that several other extensions were proposed
which we do not mention here again.
Finding Initial or Improved Solutions. In Chapter 3 we developed sequential and inter-
twined collaborative combinations for the consensus tree problem (CTP). For this we com-
bined an evolutionary algorithm (EA) as well as a memetic algorithm with a variable neigh-
borhood descent (VND) and a variable neighborhood search (VNS). The individual methods
benefit from each other via exchanging whole solutions. Also for the CTP, in Section 3.10.4
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an integer linear programming (ILP) approach, starting with a heuristically pruned set of
variables, is enriched by an iterative rounding and repair procedure applied to each non-
integer candidate solution in order to find a feasible tree. On the one hand, such a solution
acts as new primal bound, but on the other hand variables that appear in this solution but are
not present in the current model are added to it. In this way a heuristic column generation
is realized. Next, a cooperative search is realized via several VNS instances running in an
intertwined way in Section 4.5 for solving the periodic vehicle routing problem with time
windows (PVRPTW). This multiple VNS (mVNS) puts emphasis on the so far best solution
found within a major iteration by restarting the worst performing VNS instances with it. In
this way, mVNS investigates multiple search trajectories from incumbent solutions, and from
a global perspective it can be seen to adaptively allocate VNS instances to promising areas
of the search space.
Multi-Stage Approaches. For the periodic vehicle routing problem in Chapter 5 we pro-
posed a novel, smooth integration of the multilevel refinement strategy into a VNS, which
could be applied to other metaheuristics as well. We further implemented a multilevel VND
representing a more classical approach according to previous literature. Multilevel refine-
ment enhanced the scope of the neighborhoods involved and thus also shaking and local
improvement, and led to improved solutions and shorter runtimes in general, making the
methods especially suited for large instances.
Strategic Guidance of a Method by Another. In Chapters 4–6 the concept of simulated
annealing is tightly integrated into a VNS in order to better escape local optima, hence real-
izing a low-level integrative combination. In contrast, a high-level sequential collaborative
combination of a column generation approach and an EA is proposed in Section 4.9.3 for
the PVRPTW. Here the solution to the LP relaxation of a set covering model, i.e. on the one
hand columns which were created and on the other hand the variable values, is successfully
exploited in the subsequent EA.
Very Large Neighborhood Search (VLNS). ILP-based VLNS applied within a VNS were
presented in Section 6.4 for the (periodic) location routing problem ((P)LRP). V1 is handed
a single solution and operates on a higher level via relocating whole routes to depots, consid-
ering all days at once in case of the PLRP, while V3 deals with the (re-)location of customer
sequences to insertion points in routes (of a single day each). Note that V3 can exploit the
information contained in several solutions provided by the VNS via extracting admissible
customer sequences, thus omitting a possibly more costly generation.
Combination of Very Large Neighborhood Search and Optimal Merging. The search
space of the VLNS mentioned right before is defined by a single solution. Although V3 can
use several solutions, the insertion points are still derived of a single solution only. Contrary,
the approaches for the PVRPTW in Section 4.9.1 and 4.9.2 as well as that for the (P)LRP in
Section 6.4.1 (V2, being a more sophisticated variant of V1) are primarily devised to directly
exploit the information of several VNS solutions. For both problems they are based on a
set covering ILP formulation, but instead of considering only attributes of several solutions,
which would be done in case of optimal merging, dedicated problem parts might freely
change and adapt to the information offered. This results in a potentially much larger search
space and therefore can be considered a VLNS, too. In case of the PVRPTW the visit
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combinations are free to change, in case of the LRP it is the placement of the facilities,
and for the PLRP even both. In general, this approach can also be considered a purely
metaheuristic column generation, as the set covering ILP model, being the master problem,
is solely enriched by columns provided by VNS solutions.

Heuristically Solving Subproblems in Exact Approaches. In Section 4.7 we faced the
NP-hard elementary shortest path problem with resource constraints as pricing problem in
a column generation approach for the PVRPTW. Therefore we applied several heuristic mea-
sures before switching to an exact algorithm to proof optimality. They included construction
and improvement (meta-)heuristics as well as variants of the exact algorithm applied in a
heuristic way. Later in Section 4.8 a heuristic, which is similar to VND, is involved in sepa-
rating 2-path cuts for a branch-and-cut-and-price approach.

Exactly Solving Subproblems in Heuristic Approaches. Finally, in Chapter 7 the NP-
hard packing subproblem of the vehicle routing problem with compartments (VRPC) might
be solved to optimality by different exact methods. Here constraint programming clearly
turned out to be the method of choice. Of course, the exact method is only applied whenever
a cascade of heuristics fails to find a solution.

We have shown that for all considered problems a skillfull hybridization of the developed
exact and heuristic methods, or of several heuristics, led to a significant improvement in
general. In fact, the exact add-ons for heuristics and vice versa, representing an integrative
combination, gave in our cases almost always a considerable performance boost to the main
(host) method. Thereby either heuristic components were able to notably reduce the required
runtime or exact components could significantly increase the solution quality. Moreover, the
collaborative combinations could clearly benefit from the diverse algorithms in use. How-
ever, it is clear that for hybrids where an exact solution method is involved, the size of
the instances for which they are viable strongly depends on the performance of this exact
method. For example, our devised hybrids for the PVRPTW could not be applied to the
larger instances in a meaningful way, as opposed to the (P)LRP and VRPC, where we were
able to tackle all instances.

In addition, the role of the individual methods or the single underlying method is not to be
underestimated. In our case variants of variable neighborhood search were the most promi-
nent metaheuristics applied, and for all but one problem a solution approach based on VNS
was presented for the first time. The simple elegance of VNS offered a great flexibility when
it came to extension as well as specialization, as neighborhood structures can be added like
building blocks in order to assemble a powerful solution method. Especially meaningful
problem-tailored neighborhood structures, which vary on the level/part of the problem they
operate, contributed a lot to the overall success. Combined with an appropriate embedded lo-
cal search component we always achieved a good balance of exploration and intensification.
Note that in some cases, as mentioned above, the ability to escape local optima was improved
by tightly integrating the concept of simulated annealing, i.e. accepting worse solutions with
a certain probability.

In thorough comparisons to previous solution approaches we almost always achieved at least
competitive results. In many cases they were even clearly better, hence obtaining currently
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leading approaches. This is also documented by numerous new best known solutions ob-
tained. However, the improvement was not only in solution quality, but often our methods
also exhibited much better runtime behaviors and thus scalability to larger instances. As
a consequence of this, already competitive results could often be obtained with consider-
ably less runtime. Beside obvious methodical differences it is likely that implementation
specifics such as appropriate data structures, efficient neighborhood evaluations, as well as
incremental updates and copying also contributed to this (although it is, for better or worse,
not common to report on such things).
Since the means to compare to other approaches are after all quite limited, we were all the
more concerned with rigorously comparing our “baseline methods” to the subsequently en-
hanced hybrid methods whenever meaningful. Overall, it turned out that our hybrid methods
almost always exhibited statistically significant better results, in some cases for whole in-
stance sets. Although this could be at the expense of an also significant increase in runtime,
this was not the case here, as we either strictly allowed the same runtime or only a moderate
increase occurred otherwise.
Note that each of these hybrid variants has its strengths and weaknesses, which have been
addressed in this work. Not surprisingly, we encountered none that clearly dominates all oth-
ers and should be the preferred variant for each possible problem – also for hybrid methods
there is “no free lunch”. Nevertheless, our work provides additional guidelines concerning
under which conditions which hybridization schemes can be promising. For one thing, our
devised matheuristics not only seem promising in particular for other, possibly even richer
variants of routing problems, but their concept can fairly easily be applied to other classes
of combinatorial optimization problems as well. Especially the applied combination of very
large neighborhood search and optimal merging is recommendable for problems exhibiting
a similar structure.
Despite all their potential benefits, hybrid methods generally also have some drawbacks
which one should be aware of: they have a higher complexity, they require more effort
for design and implementation, to combine algorithms/concepts from different streams an
appropriate knowledge of each individual stream is a prerequisite, and they are likely to be
harder to tune. However, if one copes with these issues such hybridizations might give rise
to promising solution approaches for many problems.

Since their advent hybrid solution approaches gained an ever increasing interest and pop-
ularity, which is clear when looking at the many success-stories, where we were also able
to contribute some. Especially combining possibly complementary methods from different
streams, e.g. matheuristics, which in some way exploit the mathematical model of a prob-
lem in conjunction with a heuristic, is very promising and likely to produce further effective
solution approaches. Although hybridization might not be the holy grail of (combinatorial)
optimization, it surely is worth of continuous research as well as application. Moreover, it
will be exciting to see its future development – which I hope not only to observe but in some
way to participate in, too.
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A.1 Conference Poster on Consensus Tree Problem

In Figure A.1 we show our poster presented at the 2nd International Conference on Bioin-
formatics Research and Development in 2008 (BIRD’08), accompanying our conference
contribution [169].

A.2 Best Found Solution Values on VRPC Instances of
Derigs et al.

Here we report on the costs of the best found solutions considering all test runs reported
in Section 7.6.2 as well as a few preliminary test runs where also a CPU-time limit of 10
minutes was set. The instance names hold the characteristics, where we directly took the
file name: vrpc followed by ‘f’ (food) or ‘p’ (petrol), then ‘n’ followed by the number
of customers, next ‘p’ followed by the number of products, ‘k’ followed by an encoded
vehicle capacity (06 means 600, whereas 3 means 3000), optionally ‘c’ denoting a clustered
customers, as well as finally giving the maximal order demand, yielding the scheme:
vrpc_[f|p]_n#customers_p#products_kvehicleCapacity_[c_]maximalOrderDemand .
The results for instances of type food and petrol are given in Table A.1 and A.2, respectively,
stating the costs of the previous best known solution (prev. BKS), the costs of our best found
solution, as well as the resulting percentage gap (i.e. (bestFound − prevBKS )/prevBKS ∗
100%). For the 75 instances of type food we obtain 56 times (74.7%) an improved solution
and 19 times (25.3%) a solution having equal costs, the overall gap is -0.498%. Investigat-
ing the performance on the 125 petrol type instances, we obtain an improved solution for
105 times (84.0%) while a solution having equal costs for 20 times (16.0%), yielding an
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Introduction

The Consensus Tree Problem (CTP) arises in the
domain of phylogenetics and seeks to find for a
given collection of trees a single tree best repre-
senting it:

Input Trees T
A

B

C

D

A

B

C

D

=⇒

Output Tree

A

B

C

D

The resulting consensus tree depends on the ap-
plied method and metric:

fully
resolved

A

D

F

E

C

B

maximize
measure
⇐=
fine-

grained
metric

T

strict
method
=⇒

coarse-
grained
metric

poorly
resolved

A

D

F

E

C

B

We apply the recently proposed TreeRank (TR)
measure, based on the UpDown distance (UDD):

UpDownDist(T1, T2) =
∑

u,v∈L
|UT1

[u, v]− UT2
[u, v]| ,

utilizing the Up(Down) matrix of a given tree,
stating the necessary up-traversals to reach an-
other taxon from a given one:

T1:

D

C

B

A

UT1
:

A B C D

A 0 1 2 3
B 1 0 2 3
C 1 1 0 2
D 1 1 1 0

This finally allows to state the TreeRank score:

TreeRank(T1, T2) =

(
1− UpDownDist(T1, T2)∑

u,v∈LUT1
[u, v]

)
· 100% .

EA, VNS and Hybrids

As fitness function the average TR score of a can-
didate solution to the set of input trees is used:

TreeRank(T, T ) =

∑
T ′∈T TreeRank(T, T ′)

|T | .

•Evolutionary Algorithm (EA) applies well-

known prune-delete-graft recombination

•EA extended with local search (random neighbor

Step, Swap and Rotate moves) yields a memetic

algorithm (MA)

•Variable Neighborhood Search (VNS) applies

Step moves for shaking and an embedded VND

using all four neighborhood structures in a first-

improvement fashion as a local search component

•The hybrid algorithm runs the EA/MA and the

VNS in a sequential or intertwined way:

EA/MA VNS

sequential

intertwined

solution
exchange

Neighborhood Structures

Exemplary Step moves of taxon C (a) to the leaf
branch of F and (b) to an inner branch:
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C

(a)
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Exemplary Swap move of taxa C and F:
A

D

E

B

F

C

=⇒

A

D

E

B

C

F

Schematic rotate right moves (rotate left is per-
formed analogously):

R

LL

LR ROT1
R

⇐=

R

LR
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ROT2
R

=⇒
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LR

Exemplary SPRr moves of subtree (-1, B,C) (a)
to the leaf branch of F and (b) to an inner branch:
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Metaheuristic Results

We compare the best results of our EA(MA)/VNS
hybrids to a re-implemented version of a former
EA from Cotta (2005), stating the best and mean
TreeRank scores averaged over 30 runs:

Instance
EA Hybrid

best mean best mean

M877 51.85 51.68 52.00 51.89
M971 63.38 63.28 63.41 63.36
Onco9 91.21 90.98 91.29 91.21
Onco10 91.01 90.98 91.13 91.09

5x150 70 68.86 67.81 69.53 69.16
5x150 80 78.56 77.95 78.84 78.67
5x150 90 88.65 87.99 88.96 88.84
5x175 70 69.57 68.66 71.27 70.94
5x175 80 76.94 75.98 77.53 77.27
5x175 90 86.44 85.71 86.44 86.37

The hybrid algorithms improve on all instances,
despite setting the same time limit.

Conclusions

• Instances with up to 34 taxa were solved to optimality by
ILP methods optimizing the UDD or the WT score.

•For the larger instances up to 175 taxa only metaheuristics
are applicable, directly applying the TR score.

•The hybrid variants achieve a significant improvement
in solution quality; the sequential EA/VND variant es-
pecially for the real-world instances and the intertwined
MA/VND variant for the artificial ones.

Exact Methods

A model to solve the problem to optimality by
means of Integer Linear Programming (ILP) is
proposed. Since TR is non-linear on the values of
the UpDown matrix, other measures are sought.
The UDD is one of these measures. Another alter-
native measure is based on representing a rooted
binary tree as a collection of rooted triplets, which
are lists (A,B|C) relating three taxa:

A

B

C

D

=⇒

A

B

D

A

C

D

B

C

D

The Weighted Triplet (WT) score is defined by:

WT (T, T ) =
K∑

k=1

|R(T ) ∩ R(Tk)| =
∑

ta,b|c∈R(T )
wT

a,b|cta,b|c (1)

where R(T ) represents the set of all triplets defin-
ing the tree T , variables ta,b|c are binary and in-
dicate presence/absence of each triplet, and coef-
ficients wT

a,b|c are defined as the number of input
trees in which triplet (a, b|c) is present. Either
UDD is minimized or WT score is maximized. Fol-
lowing constraints ensure the feasibility of the ob-
tained tree:

uaa = 0 ∀a ∈ L (2)

1 ≤ uab ≤ n− 1 ∀a, b ∈ L (3)

uab < uac +M (1− ta,b|c) ∀{a, b, c} ⊂ L (4)

uba < ubc +M (1− ta,b|c) ∀{a, b, c} ⊂ L (5)

uca ≤ ucb +M (1− ta,b|c) ∀{a, b, c} ⊂ L (6)

ucb ≤ uca +M (1− ta,b|c) ∀{a, b, c} ⊂ L (7)

uac − uab ≤ ubc − uba +M (1− ta,b|c) ∀{a, b, c} ⊂ L (8)

ubc − uba ≤ uac − uab +M (1− ta,b|c) ∀{a, b, c} ⊂ L (9)

min{uab | b ∈ L \ {a}} = 1 ∀a ∈ L (10)

ta,b|c + tb,c|a + ta,c|b = 1 ∀a < b < c ∈ L (11)

ta,b|c + ta,d|c − tb,d|c ≤ 1 ∀{a, b, c, d} ⊂ L (12)

ta,b|c + ta,c|d − ta,b|d ≤ 1 ∀{a, b, c, d} ⊂ L (13)

tab|c = tba|c ∀a < b, c ∈ L (14)

ILP methods alone are able to solve only small

instances. To solve larger instances, heuristic ap-

proximations are proposed:

•Lazy Constraints: Constraints (12)-(13) are

only dynamically added when violated, similar

to the concept of generating cutting planes.

•Heuristic Column Generation: Triplets

ta,b|c not present in any input tree are initially

not included in the model. If they appear af-

ter rounding a non-integer solution by means of

a greedy procedure, they are dynamically added

to the problem.

Results on artificial and real instances show that:
1. The use of lazy constraints improves greatly the
overall performance when solving the problem to
optimality.

2. Near-optimal high-quality solutions can be ob-
tained by removing some variables and adding
them heuristically.

Results

C o n t a c t
Sandro Pirkwieser pirkwieser@ads.tuwien.ac.at

Rubén Ruiz Torrubiano ruben.ruiz@uam.es

Günther R. Raidl raidl@ads.tuwien.ac.at

Figure A.1: Poster presented at the 2nd International Conference on Bioinformatics
Research and Development in 2008 (BIRD’08).
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overall gap of -0.988%. So for both instance types the best found solutions where at least
of the same quality, mostly even better. Especially in Table A.2 we can observe a larger
improvement with increasing instance size in general, culminating in -7.738% for instance
vrpc_p_n200_p3_k9_c_900.

Table A.1: Comparison of costs of previous best known solutions to our best found
solutions on food type instances of Derigs et al. [60].

Instance prev. BKS best found %-gap

vrpc_f_n10_p2_k06_150 11456.73 11456.73 0.000
vrpc_f_n10_p2_k06_c_150 8934.37 8905.86 -0.319
vrpc_f_n10_p3_k06_150 14197.32 14197.32 0.000
vrpc_f_n10_p3_k06_300 14231.80 14231.80 0.000
vrpc_f_n25_p2_k06_150 32825.67 32333.69 -1.499
vrpc_f_n25_p2_k06_c_150 21471.16 21212.50 -1.205
vrpc_f_n25_p2_k08_400 27039.70 27039.70 0.000
vrpc_f_n25_p3_k06_150 33524.81 33248.39 -0.825
vrpc_f_n25_p3_k06_c_150 19158.18 19070.64 -0.457
vrpc_f_n25_p3_k08_200 25293.84 25293.84 0.000
vrpc_f_n25_p3_k08_c_200 12837.50 12837.50 0.000
vrpc_f_n25_p2_k06_300 32950.05 32950.05 0.000
vrpc_f_n25_p2_k06_c_300 22015.68 22015.68 0.000
vrpc_f_n25_p2_k08_c_400 19278.13 19278.13 0.000
vrpc_f_n25_p3_k06_300 33404.46 33288.80 -0.346
vrpc_f_n25_p3_k06_c_300 19085.20 19077.71 -0.039
vrpc_f_n25_p3_k08_400 26485.08 26485.08 0.000
vrpc_f_n25_p3_k08_c_400 13595.43 13531.28 -0.472
vrpc_f_n50_p2_k06_150 68625.52 67347.28 -1.863
vrpc_f_n50_p2_k08_200 51700.25 51698.40 -0.004
vrpc_f_n50_p2_k3_750 15389.21 15389.21 0.000
vrpc_f_n50_p3_k06_300 69145.39 68532.43 -0.886
vrpc_f_n50_p3_k08_400 53896.39 53203.32 -1.286
vrpc_f_n50_p3_k3_c_750 10782.88 10782.88 0.000
vrpc_f_n50_p2_k06_300 69113.32 69037.63 -0.110
vrpc_f_n50_p2_k08_400 51678.11 51655.78 -0.043
vrpc_f_n50_p2_k3_c_750 7408.67 7408.67 0.000
vrpc_f_n50_p3_k06_c_150 41556.88 40817.69 -1.779
vrpc_f_n50_p3_k08_c_200 30674.70 30616.86 -0.189
vrpc_f_n50_p3_k9_4500 8469.54 8469.54 0.000
vrpc_f_n50_p2_k06_c_150 50188.20 48917.75 -2.531
vrpc_f_n50_p2_k08_c_200 39048.54 38971.99 -0.196
vrpc_f_n50_p2_k9_c_4500 3615.55 3615.55 0.000
vrpc_f_n50_p3_k06_c_300 41132.19 40866.95 -0.645
vrpc_f_n50_p3_k08_c_400 32283.54 31873.92 -1.269
vrpc_f_n50_p2_k06_c_300 50923.35 50833.40 -0.177

continued on next page
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Table A.1 – continued from previous page
Instance prev. BKS best found %-gap

vrpc_f_n50_p2_k08_c_400 39029.48 38971.99 -0.147
vrpc_f_n50_p3_k06_150 69575.34 68623.86 -1.368
vrpc_f_n50_p3_k08_200 51454.34 51286.57 -0.326
vrpc_f_n50_p3_k3_750 16531.02 16531.02 0.000
vrpc_f_n100_p2_k06_150 141560.56 140593.09 -0.683
vrpc_f_n100_p2_k08_200 103565.03 103036.14 -0.511
vrpc_f_n100_p2_k3_750 29676.06 29676.06 0.000
vrpc_f_n100_p3_k06_150 139297.91 136632.99 -1.913
vrpc_f_n100_p3_k08_200 92274.76 91459.81 -0.883
vrpc_f_n100_p3_k3_750 28181.98 28179.02 -0.010
vrpc_f_n100_p2_k06_300 142506.12 142082.23 -0.297
vrpc_f_n100_p2_k08_400 103534.48 103030.03 -0.487
vrpc_f_n100_p2_k3_c_750 18366.51 18354.27 -0.067
vrpc_f_n100_p3_k06_300 138137.05 135863.90 -1.646
vrpc_f_n100_p3_k08_400 96844.83 96340.95 -0.520
vrpc_f_n100_p3_k3_c_750 19145.10 19141.43 -0.019
vrpc_f_n100_p2_k06_c_150 76540.90 75668.96 -1.139
vrpc_f_n100_p2_k08_c_200 75006.44 74621.86 -0.513
vrpc_f_n100_p2_k9_4500 13076.57 13064.65 -0.091
vrpc_f_n100_p3_k06_c_150 87838.23 86197.75 -1.868
vrpc_f_n100_p3_k08_c_200 68355.19 67904.66 -0.659
vrpc_f_n100_p3_k9_4500 13095.44 13095.44 0.000
vrpc_f_n100_p2_k06_c_300 77268.61 76921.93 -0.449
vrpc_f_n100_p2_k08_c_400 75034.32 74624.65 -0.546
vrpc_f_n100_p2_k9_c_4500 6763.30 6757.10 -0.092
vrpc_f_n100_p3_k06_c_300 87615.28 85711.27 -2.173
vrpc_f_n100_p3_k08_c_400 71929.07 71429.02 -0.695
vrpc_f_n100_p3_k9_c_4500 7386.82 7386.82 0.000
vrpc_f_n200_p2_k06_300 537151.14 536911.78 -0.045
vrpc_f_n200_p2_k3_750 112659.90 112551.11 -0.097
vrpc_f_n200_p2_k9_4500 47773.07 47454.79 -0.666
vrpc_f_n200_p3_k08_400 439891.72 437381.48 -0.571
vrpc_f_n200_p3_k3_c_750 94515.40 94338.87 -0.187
vrpc_f_n200_p3_k9_c_4500 37707.03 37464.49 -0.643
vrpc_f_n200_p2_k08_400 399830.11 397508.69 -0.581
vrpc_f_n200_p2_k3_c_750 88506.35 88255.39 -0.284
vrpc_f_n200_p2_k9_c_4500 39753.17 39653.74 -0.250
vrpc_f_n200_p3_k3_750 112636.55 112395.97 -0.214
vrpc_f_n200_p3_k9_4500 46188.89 45939.85 -0.539
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Table A.2: Comparison of costs of previous best known solutions to our best found
solutions on petrol type instances of Derigs et al. [60].

Instance prev. BKS new BKS %-gap

vrpc_p_n10_p2_k06_60 11299.13 11299.13 0.000
vrpc_p_n10_p2_k08_80 13717.15 13717.15 0.000
vrpc_p_n10_p3_k06_60 11502.25 11502.25 0.000
vrpc_p_n10_p3_k08_160 13111.39 13111.39 0.000
vrpc_p_n10_p3_k08_c_160 7034.47 7034.47 0.000
vrpc_p_n10_p3_k1_100 10008.83 10008.83 0.000
vrpc_p_n10_p3_k1_c_100 2968.06 2968.06 0.000
vrpc_p_n10_p2_k06_c_60 9298.64 9298.64 0.000
vrpc_p_n10_p2_k08_c_80 3726.27 3726.27 0.000
vrpc_p_n10_p3_k06_c_60 5558.19 5557.86 -0.006
vrpc_p_n10_p3_k08_80 12127.13 12127.13 0.000
vrpc_p_n10_p3_k08_c_80 6619.40 6619.09 -0.005
vrpc_p_n10_p3_k1_200 10021.58 10021.58 0.000
vrpc_p_n10_p3_k1_c_200 2968.59 2968.59 0.000
vrpc_p_n25_p2_k06_120 34239.36 34158.85 -0.235
vrpc_p_n25_p2_k08_80 26877.06 26701.27 -0.654
vrpc_p_n25_p2_k1_c_100 16655.57 16576.10 -0.477
vrpc_p_n25_p3_k06_120 34869.26 34864.43 -0.014
vrpc_p_n25_p3_k08_80 26681.67 26227.52 -1.702
vrpc_p_n25_p3_k1_c_100 14342.57 14211.84 -0.911
vrpc_p_n25_p3_k3_c_600 5810.59 5810.59 0.000
vrpc_p_n25_p2_k06_60 34161.05 34138.55 -0.066
vrpc_p_n25_p2_k08_c_160 18259.73 18241.79 -0.098
vrpc_p_n25_p2_k1_c_200 16993.28 16991.37 -0.011
vrpc_p_n25_p3_k06_60 34219.86 33530.50 -2.015
vrpc_p_n25_p3_k08_c_160 12584.29 12542.30 -0.334
vrpc_p_n25_p3_k1_c_200 14267.07 14211.60 -0.389
vrpc_p_n25_p3_k9_900 5602.74 5602.74 0.000
vrpc_p_n25_p2_k06_c_120 19124.78 19124.03 -0.004
vrpc_p_n25_p2_k08_c_80 18358.89 18251.55 -0.585
vrpc_p_n25_p2_k3_300 10826.72 10807.92 -0.174
vrpc_p_n25_p3_k06_c_120 26430.79 26430.79 0.000
vrpc_p_n25_p3_k08_c_80 12212.12 11918.06 -2.408
vrpc_p_n25_p3_k3_300 10540.55 10524.77 -0.150
vrpc_p_n25_p2_k06_c_60 19145.98 19115.13 -0.161
vrpc_p_n25_p2_k1_100 21301.84 21240.02 -0.290
vrpc_p_n25_p2_k3_c_300 6264.54 6264.21 -0.005
vrpc_p_n25_p3_k06_c_60 25423.34 24982.95 -1.732
vrpc_p_n25_p3_k1_100 21536.35 21402.91 -0.620
vrpc_p_n25_p3_k3_600 10578.49 10578.49 0.000
vrpc_p_n25_p2_k08_160 26701.33 26701.27 -0.000
vrpc_p_n25_p2_k1_200 21895.59 21892.80 -0.013
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Table A.2 – continued from previous page
Instance prev. BKS new BKS %-gap

vrpc_p_n25_p2_k3_c_600 6979.93 6979.93 0.000
vrpc_p_n25_p3_k08_160 27472.19 27414.74 -0.209
vrpc_p_n25_p3_k1_200 21539.70 21329.76 -0.975
vrpc_p_n25_p3_k3_c_300 5799.42 5790.32 -0.157
vrpc_p_n50_p2_k06_120 69543.35 69077.11 -0.670
vrpc_p_n50_p2_k08_c_160 33417.74 33206.55 -0.632
vrpc_p_n50_p2_k3_300 17639.70 17537.85 -0.577
vrpc_p_n50_p3_k06_120 59296.26 59251.75 -0.075
vrpc_p_n50_p3_k08_c_160 31193.75 30773.49 -1.347
vrpc_p_n50_p3_k3_300 19123.75 18942.81 -0.946
vrpc_p_n50_p2_k06_60 69703.29 69285.69 -0.599
vrpc_p_n50_p2_k08_c_80 33941.72 33290.48 -1.919
vrpc_p_n50_p2_k3_600 18466.70 18464.95 -0.009
vrpc_p_n50_p3_k06_60 58931.43 58049.52 -1.496
vrpc_p_n50_p3_k08_c_80 30540.11 29899.62 -2.097
vrpc_p_n50_p3_k3_600 19050.70 18950.91 -0.524
vrpc_p_n50_p2_k06_c_120 38264.58 37980.87 -0.741
vrpc_p_n50_p2_k1_100 44110.75 43640.29 -1.067
vrpc_p_n50_p2_k3_c_300 9324.11 9262.55 -0.660
vrpc_p_n50_p3_k06_c_120 43166.79 43077.55 -0.207
vrpc_p_n50_p3_k1_100 42593.88 42157.15 -1.025
vrpc_p_n50_p3_k3_c_300 12214.62 12090.77 -1.014
vrpc_p_n50_p2_k06_c_60 38453.62 38066.04 -1.008
vrpc_p_n50_p2_k1_200 44718.46 44579.50 -0.311
vrpc_p_n50_p2_k3_c_600 9654.59 9654.59 0.000
vrpc_p_n50_p3_k06_c_60 42670.99 41698.75 -2.278
vrpc_p_n50_p3_k1_200 42403.02 41651.78 -1.772
vrpc_p_n50_p3_k3_c_600 12095.53 12030.97 -0.534
vrpc_p_n50_p2_k08_160 49324.23 48820.47 -1.021
vrpc_p_n50_p2_k1_c_100 27986.95 27497.60 -1.748
vrpc_p_n50_p2_k9_900 9094.30 9094.30 0.000
vrpc_p_n50_p3_k08_160 54581.30 53985.31 -1.092
vrpc_p_n50_p3_k1_c_100 31403.05 30989.43 -1.317
vrpc_p_n50_p3_k9_900 9297.92 9211.97 -0.924
vrpc_p_n50_p2_k08_80 50497.70 49170.04 -2.629
vrpc_p_n50_p2_k1_c_200 28529.33 28380.61 -0.521
vrpc_p_n50_p2_k9_c_900 4288.61 4288.61 0.000
vrpc_p_n50_p3_k08_80 53846.58 52751.20 -2.034
vrpc_p_n50_p3_k1_c_200 31039.89 30618.72 -1.357
vrpc_p_n50_p3_k9_c_900 5931.20 5929.39 -0.031
vrpc_p_n100_p2_k06_120 136367.37 135442.97 -0.678
vrpc_p_n100_p2_k08_c_80 62390.24 60935.03 -2.332
vrpc_p_n100_p2_k3_300 34071.60 33489.13 -1.710
vrpc_p_n100_p2_k9_c_900 9627.42 9598.55 -0.300
vrpc_p_n100_p3_k08_c_80 58195.58 57515.23 -1.169
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A.2. Best Found Solution Values on VRPC Instances of Derigs et al.

Table A.2 – continued from previous page
Instance prev. BKS new BKS %-gap

vrpc_p_n100_p3_k3_300 35346.80 34605.59 -2.097
vrpc_p_n100_p3_k9_c_900 11759.74 11422.03 -2.872
vrpc_p_n100_p2_k06_c_120 78615.94 77916.09 -0.890
vrpc_p_n100_p2_k1_100 89671.50 88177.68 -1.666
vrpc_p_n100_p2_k3_600 35215.70 35153.94 -0.175
vrpc_p_n100_p3_k06_120 142984.55 142552.32 -0.302
vrpc_p_n100_p3_k1_100 87827.08 87627.10 -0.228
vrpc_p_n100_p3_k3_600 34868.96 34073.00 -2.283
vrpc_p_n100_p2_k08_160 111130.81 109941.72 -1.070
vrpc_p_n100_p2_k1_200 90946.34 89992.50 -1.049
vrpc_p_n100_p2_k3_c_300 21200.61 20769.87 -2.032
vrpc_p_n100_p3_k06_c_120 85658.52 85417.49 -0.281
vrpc_p_n100_p3_k1_200 86893.43 85282.74 -1.854
vrpc_p_n100_p3_k3_c_300 23623.33 23288.19 -1.419
vrpc_p_n100_p2_k08_80 113599.58 111774.99 -1.606
vrpc_p_n100_p2_k1_c_100 49877.31 48597.03 -2.567
vrpc_p_n100_p2_k3_c_600 22055.41 22023.80 -0.143
vrpc_p_n100_p3_k08_160 110606.77 109181.52 -1.289
vrpc_p_n100_p3_k1_c_100 56518.88 55313.72 -2.132
vrpc_p_n100_p3_k3_c_600 23314.19 22818.67 -2.125
vrpc_p_n100_p2_k08_c_160 60498.25 59876.71 -1.027
vrpc_p_n100_p2_k1_c_200 50678.36 50269.36 -0.807
vrpc_p_n100_p2_k9_900 15913.75 15900.42 -0.084
vrpc_p_n100_p3_k08_c_160 59037.40 58466.41 -0.967
vrpc_p_n100_p3_k1_c_200 55438.01 54588.56 -1.532
vrpc_p_n100_p3_k9_900 17578.58 17322.81 -1.455
vrpc_p_n200_p2_k3_300 136456.65 132074.12 -3.212
vrpc_p_n200_p2_k3_c_300 104902.77 101592.71 -3.155
vrpc_p_n200_p2_k9_900 57033.68 56283.36 -1.316
vrpc_p_n200_p3_k3_300 132669.63 128124.07 -3.426
vrpc_p_n200_p3_k3_c_300 116198.19 114159.88 -1.754
vrpc_p_n200_p3_k9_900 62121.91 59259.26 -4.608
vrpc_p_n200_p2_k3_600 139285.23 138384.29 -0.647
vrpc_p_n200_p2_k3_c_600 107486.95 106889.54 -0.556
vrpc_p_n200_p2_k9_c_900 36935.56 36357.12 -1.566
vrpc_p_n200_p3_k3_600 127928.67 123976.62 -3.089
vrpc_p_n200_p3_k3_c_600 115811.24 111464.37 -3.753
vrpc_p_n200_p3_k9_c_900 47562.86 43882.29 -7.738
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