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Abstract. This work deals with the application of a variable neighbor-
hood search (VNS) to the capacitated location-routing problem (LRP) as
well as to the more general periodic LRP (PLRP). For this, previous suc-
cessful VNS algorithms for related problems are considered and accord-
ingly adapted as well as extended. The VNS is subsequently combined
with three very large neighborhood searches (VLNS) based on integer lin-
ear programming: Two operate on whole routes and do a rather coarse,
yet powerful optimization, with the more sophisticated one also taking
the single customers into account, and the third operates on customer se-
quences to do a more fine-grained optimization. Several VNS plus VLNS
combinations are presented and very encouraging experimental results
are given. Our method clearly outperforms previous PLRP approaches
and is at least competitive to leading approaches for the LRP.

1 Introduction

The location-routing problem (LRP) combines two classical NP-hard problems:
the facility location problem (FLP) and the vehicle routing problem (VRP). The
LRP occurs when it is necessary to place some facilities at given locations, as-
sign customers to them, and serve these customers by a fleet of vehicles, often
imposing a limit on the maximal load (capacity) of a vehicle. Additionally, also
capacity constraints on the facilities can and will be considered in the following.
Hence, contrary to the simple out-and-back routes visiting single customers in
the classical FLP, one is faced here with multi-stop routes. Solving the LRP
demands a strategic (facility placement) and tactical (routing) planning task at
the same time, contributing to the potential practical relevance of the LRP. Con-
sidering both aspects simultaneously is in favor of solving them in a subsequent
way (usually starting with placing the facilities first), since the latter is more
prone to yield suboptimal solutions [1].

An additional interesting strategic level can be incorporated by considering
the LRP for a given planning period, resulting in the periodic LRP (PLRP).
Here, specific customers must be served several times during the planning period.

The following definitions are targeted to the PLRP only since the LRP can
be considered as special case when having only a single day planning horizon. A
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planning horizon of t days, referred to by T = {1, . . . , t}, is considered and it is
defined on a complete, undirected, weighted graph G = (V,E), with V = VC∪VD
being the set of nodes, composed of n customers VC = {0, . . . , n − 1} and m
potential depots VD = {n, . . . , n + m}, and E = {{i, j} | i, j ∈ VC , i 6= j} ∪
{{i, j} | i ∈ VC , j ∈ VD} being the set of edges. Travel cost cij ≥ 0, independent
of the day, are given for any pair of nodes i, j ∈ V . Each depot i ∈ VD has an
associated capacity Wi and opening costs Oi. Further, a homogeneous fleet of K
vehicles, each having capacity Q, is available per depot and day. The fixed cost
of using a single vehicle at least once during T is given by F , and each vehicle is
limited to perform one single route per day. Further, each customer j ∈ VC has
defined a total demand dj , a visit frequency fj , and a non-empty set Cj ⊆ {T ′ |
T ′ ⊆ T, |T ′| = fj} of allowed combinations of visit days. The actual demand of
customer j on day l using visit combination r ∈ Cj is assumed to be given by djlr.

The PLRP then aims at selecting facilities (depots) to be opened as well as
a single visit combination per customer, and finding (at most) N ≤ K vehicle
routes on each of the t days on G such that:

– Each route starts and ends at the same opened depot within the same day,
– each customer j belongs to fj routes over the planning horizon at those days

belonging to the selected visit day combination, overall satisfying its demand
dj and respecting the given djlr values,

– the total load of each route does not exceed vehicle capacity limit Q,
– for each opened depot i the total load of each route assigned to it on any

day does not exceed depot capacity limit Wi,
– the total costs of opening depots, fixed costs for used vehicles, and corre-

sponding travel costs are minimized.

In this contribution we present a variable neighborhood search (VNS) suited
for the periodic as well as the non-periodic LRP. For this we combine successful
VNS variants/concepts for similar problems. To further improve the overall per-
formance, very large neighborhood searches based on integer linear programming
are introduced, and they are combined with the VNS in a fruitful way.

The remainder is organized as follows: Related work is presented in the next
section, the VNS is the topic of Section 3, and the very large neighborhood
searches are detailed in Section 4. Experimental results for both, LRP and PLRP,
are given in Section 5. Section 6 finishes the work with concluding remarks.

2 Related Work

The LRP with capacitated vehicles and depots was primarily dealt with in re-
cent years only, earlier work often considered one of both restrictions exclusively.
Among the currently leading methods for the so-called general LRP are (hybrid)
metaheuristics by Prins et al. [2, 3] and Duhamel et al. [4, 5] as well as combi-
nations of exact techniques and heuristics, e.g. [6]. A recent survey of different
LRPs and solution methods can be found in Nagy and Salhi [7]. The authors
emphasize the high practical relevance of the LRP in supply chain management
as well as a substantially increasing interest in the last years.
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The PLRP was introduced only recently by Prodhon together with an itera-
tive algorithm for solving it [8]. At the HM 2008 workshop, the same author(s)
presented a sophisticated genetic algorithm [9] yielding improved results. Finally,
at the HM 2009 workshop the so far best performing algorithm for the PLRP was
again introduced by Prodhon [10], being a hybrid of evolutionary local search
and path relinking, even more concentrating on the periodic aspect.

A similar VNS as the one applied here has been used for the periodic VRP
(PVRP) [11], the PVRP with time windows (PVRPTW) [12], as well as for the
related multi depot VRP with time windows [13]. As already mentioned, we
draw upon the experience described therein and obtained by ourselves.

Furthermore, a very large neighborhood search similar to the one we present
in Section 4.2 was introduced by De Franceschi et al. [14] for VRPs in general.
The very large neighborhood search of Section 4.1 is related to it, but operates
on a coarser level of the problem. A variant of it was recently successfully applied
to the PVRPTW by us [15].

Finally, for a survey on ongoing trends of combining metaheuristics and exact
methods, especially integer linear programming techniques, we refer to [16].

3 Variable Neighborhood Search for the (P)LRP

The variable neighborhood search (VNS) [17] metaheuristic applies random steps
in neighborhoods with growing size for diversification, referred to as shaking,
and uses an embedded local search component for intensification. It has been
successfully applied to a wide range of combinatorial optimization problems,
among others for very related problems, see Section 2. In the following we give
an overview on our VNS for the (P)LRP.

To smooth the search space, the VNS relaxes the vehicle load as well as the
depot load restrictions and adds penalties corresponding to the excess of these
constraints to the cost function; whereat we settled to use a constant weighting
of 10000 for all instances considered in this work.

An initial solution is created in the following way:

1. Choose a single visit day combination r ∈ Cj per customer j ∈ VC at random.
2. Determine the actual lower bound for the accumulated depot capacity based

on the previously selected visit combinations: WLB = argmax
l∈T

∑
j∈VC

djlr,

for the LRP this equals the sum of the customer demands:
∑

j∈VC
dj .

3. Select depots to be opened at random one by one until their combined ca-
pacity is greater or equal than WLB .

4. Repeat the following steps for each day l in T :
(a) Assign each customer to be visited on day l to its nearest opened depot,

thereby considering penalized depot load violations.
(b) Apply the well-known Clarke and Wright savings algorithm [18] until no

more routes can be feasibly merged due to the vehicle load restriction.
(c) In the event of ending up with more than N routes, least customer routes

are selected and customers contained therein are re-added in a greedy
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way on that day, allowing (penalized) excess of vehicle load. [Note that
due to the structure of the considered instances this never happened.]

We deem the initialization procedure rather straightforward, being not that
sophisticated as those described in [10]. Nevertheless, we felt (and also expe-
rienced in preliminary tests) that having initial solutions of high(er) quality is
often not beneficial for the subsequent optimization process, and we apply the
procedure solely for initialization purposes, too.

In the shaking phase we utilize five different neighborhood structures, each
with several moves of increasing perturbation size (denoted by δ), yielding a
total of 18 shaking neighborhoods (i.e. kmax = 18) for both LRP variants. Next,
these five basic neighborhood structures are described.

Exchange-segments: Exchange two random segments of variable length
between two routes at the same depot and on the same day. One of the segments
might be empty, realizing a customer relocation.

Exchange-segments-two-depots: In principle similar to the previous ex-
change-segments but both segments are located at two distinct depots. This
neighborhood structure facilitates the partitioning of customers to the opened
depots. Exchange-segments is applied in case only a single depot is opened.

Change-two-depots: A previously closed depot is opened and subsequently
another opened depot is closed such that the actual lower bound regarding the
depot capacity WLB is still satisfied. After opening the selected depot it is tried to
relocate routes to it in a cost saving manner, which means to place the new depot
at minimum cost between two consecutive customers. Afterwards the routes of
the depot to be closed are relocated to an opened depot one by one in the least
expensive way (as before also using the penalized objective function). After such
a neighborhood move the number of opened/closed depots stays the same. A
prerequisite is that at least one of all the available depots is not opened yet, the
following change-depot is applied otherwise.

Change-depot: Here the status of a single depot is changed, i.e. from closed
to opened or vice versa. The necessary route relocation operations are applied
as for change-two-depots. Finally, this neighborhood move allows to alter the
number of opened/closed depots. However, also here it is guaranteed that the
actual lower bound regarding the depot capacity WLB is still satisfied.

Change-visit-combinations: For tackling the periodic aspect of the PLRP
it is necessary to enable the VNS to change the selected visit combination per
customer. As for the periodic VRPs, it turned out that randomly changing sev-
eral visit combinations with greedy insertion for the new visit days (also allowing
to reassign the same visit combination) performs very well.

In this work we only consider a fixed shaking neighborhood order, which
is detailed in Table 1 for the LRP and in Table 2 for the PLRP. Apart from
the obvious difference of using change-visit-combinations for the PLRP only, a
greater focus is laid on exchanging segments for the LRP instead.

For intensification we apply the well-known 3-opt intra-route exchange pro-
cedure in a best improvement fashion, only considering routes changed during
shaking, and re-applying the operator until no more improvement is possible.
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Table 1. (Fixed) Shaking neighborhood order used for the LRP.

k Nk

1–5 Exchange-segments of maximal length δ = k
6 Exchange-segments of maximal lengths bounded by corre-

sponding route size (δ = 6)
7–11 Exchange-segments-two-depots of maximal length δ = k − 6

12 Exchange-segments-two-depots of maximal lengths bounded
by corresponding route size (δ = 6)

13–15 Change-two-depots is applied up to δ = k − 12 times
16–18 Change-depot is applied up to δ = k − 15 times

Table 2. (Fixed) Shaking neighborhood order used for the PLRP.

k Nk

1–6 Change-visit-combinations for up to δ = k customers
7–9 Exchange-segments of maximal length δ = k − 6

10–12 Exchange-segments-two-depots of maximal length δ = k − 9
13–15 Change-two-depots is applied up to δ = k − 12 times
16–18 Change-depot is applied up to δ = k − 15 times

Afterwards, each new incumbent solution is also subject to a 2-opt∗ inter-route
exchange heuristic [19]. Hereby for each pair of routes of the same day and depot
all possible exchanges of the routes’ end segments are tried, also applied repeat-
edly. For the LRP this is further applied with a probability of 0.2 to each newly
derived solution lying within 3% to the current incumbent.

To often enhance the overall VNS performance quite substantially, in addition
to better solutions sometimes also solutions having a worse objective value are ac-
cepted. As in [11, 12] this is done in a systematic way using the Metropolis crite-
rion like in simulated annealing [20]. A linear cooling scheme is used in a way such
that the acceptance rate of worse solutions is nearly zero in the last iterations.
Though this is somewhat of a hybrid variant on its own, we still denote it as VNS.

4 ILP-based Very Large Neighborhood Searches

The general idea of very large(-scale) neighborhood search (VLNS) [21] is to apply
a more sophisticated procedure than naive enumeration to search for a best (or
better) solution within a reasonably large but restricted part of the whole search
space induced by an incumbent solution. Various techniques especially including
(mixed) integer programming methods, dynamic programming, and constraint
programming have been successfully used in VLNS as embedded optimization
procedures. In the following we will introduce two VLNS procedures based on
integer linear programming (ILP) applicable to the LRP as well as to the PLRP.
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4.1 VLNS Operating on Routes

The first VLNS deals with (re-)locating whole routes to depots, as well as open-
ing/closing depots in the course of the application. In fact, we implemented a
simpler version (denoted as V1) and a more sophisticated one (denoted as V2)
of it, the latter building upon a set covering formulation which is to some degree
similar to the one used for the PVRPTW in [15] and being especially appealing
for the PLRP in principle. V1 is a special case of V2 and basically resembles the
procedure applied in [6] for the LRP. There the authors (approximately) solve
a Lagrangian relaxation formulation of the FLP subproblem via considering the
aggregated routes as supercustomers. For this several subproblems need to be
solved many times, as well as a lower and upper bound be computed. Contrary,
we directly solve the resulting ILP model which is presented in the following,
and is also applicable to the PLRP:

min
∑
i∈VD

Oi yi +
∑
l∈T

∑
i∈VD

∑
j∈R(l)

CL
ij xij +

∑
i∈VD

F zi (1)

subject to
∑
i∈VD

xij = 1 ∀l ∈ T ; ∀j ∈ R(l) (2)

∑
j∈R(l)

xij ≤ zi ∀i ∈ VD; ∀l ∈ T (3)

∑
j∈R(l)

Lj xij ≤Wi ∀i ∈ VD; ∀l ∈ T (4)

∑
i∈VD

Wi yi ≥WLB (5)

zi ≥ yi ∀i ∈ VD (6)

xij ∈ {0, 1} ∀i ∈ VD; ∀l ∈ T ; ∀j ∈ R(l) (7)

yi ∈ {0, 1} ∀i ∈ VD (8)

zi ∈ N ∀i ∈ VD (9)

The objective (1) is to minimize costs for opening depots, routing costs (here
only route location costs), as well as vehicle fixed costs. The set of all considered
(aggregated) routes per day l is denoted by R(l), the least cost of locating it
at depot j is CL

ij . We introduce following binary variables: xij (7) indicating
whether or not depot i hosts route j, yi (8) if depot i is opened, as well as
integer variables zi (9) stating the maximum number of routes located at depot
i of all days, used for the vehicle fixed costs in (1). The following restrictions
are applied: Each route must be located at one depot (2), the value of the zi
variables is determined by (3), and the load of a depot must be respected (4),
with Lj denoting the load of route j. The last two constraints are to strengthen
the model: the accumulated capacity of the selected depots must be at least
the actual corresponding lower bound (5), and the depot with its corresponding
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maximum number of routes are coupled via (6); refer to [22], though they used
the minimal number of depots in (5).

The previous model is built for a given feasible solution and the solution’s
routes are used for the corresponding day only.

As already mentioned, the more sophisticated variant formulates a similar,
yet potentially much larger neighborhood as a set covering model. Therefore,
the main difference between V1 and V2 is that although both operate on whole
routes, the latter takes the single customers into account. The whole model
including constraints for both the LRP and the PLRP can be stated as (also
refer to [22] for a similar model for the LRP only):

min
∑
i∈VD

Oi yi +
∑
l∈T

∑
i∈VD

∑
j∈R(l)

(CL
ij + CR

j )xij +
∑
i∈VD

F zi (10)

subject to (3)–(4)∑
r∈Cn

pnr ≥ 1 ∀n ∈ VC (11)

∑
i∈VD

∑
j∈R(l)

anj xij −
∑
r∈Cn

bnrl pnr ≥ 0 ∀n ∈ VC ; ∀l ∈ T (12)

∑
i∈VD

∑
j∈R(l)

xij ≤ N ∀l ∈ T (13)

∑
j∈R(l)

anj xij − yi
∑

j∈R(l)

anj ≤ 0 ∀n ∈ VC ;∀i ∈ VD;∀l ∈ T (14)

∑
i∈VD

Wi yi ≥WLB (15)

∑
i∈VD

Wi yi −
∑
n∈VC

∑
r∈Cn

bnrl pnr dnlr ≥ 0 ∀l ∈ T (16)

∑
l∈T

∑
i∈VD

∑
j∈R(l)

xij −
⌈∑

n∈VC
dn

Q

⌉
≥ 0 (17)

∑
l∈T

∑
i∈VD

∑
j∈R(l)

d′nj xij ≥ dn ∀n ∈ VC (18)

∑
i∈VD

∑
j∈R(l)

d′nj xij − djlr bnrl pnr ≥ 0 ∀n ∈ VC ; ∀r ∈ Cn; ∀l ∈ T (19)

(6)–(9)

pnr ∈ {0, 1} ∀n ∈ VC ; ∀r ∈ Cn (20)

Beside the adopted constraints and variables from V1 following additions
were made: For each customer n ∈ VC , binary variables pnr (20) indicate whether
or not visit combination r ∈ Cn is chosen. The objective function (10) now
also includes routing costs CR

j for visiting the customers in route j (without
the depot connection). Cover constraints (11) guarantee that at least one visit
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day combination is selected per customer, visit constraints (12) link the routes
and the visit combinations, whereat anj and birl are binary constants indicating
whether or not route j visits customer n and if day l belongs to visit combination
r ∈ Cn of customer n, respectively, and the number of routes per day may not
exceed N (13). Again, constraints (14)–(17) strengthen the model: the routes
containing customer n located at depot j and the depot itself are coupled in
(14), (15) is like for V1 and only used in case of the LRP, further (16) is a
special variant instead of the latter for the PLRP, incorporating the periodic
aspect, and finally, the minimal amount of vehicles (routes) necessary is set by
(17). The motivation for a set covering model was to be able to exploit the routes
of more than one feasible solution. A consequence with respect to the PLRP is
that the selected visit combination of several customers might (or better need)
to eventually change. However, the fact that the daily demand of a customer
depends on the chosen visit combination does not ”suit the model very well“:
In order to build a feasible PLRP solution out of the ILP solution it might be
necessary to change the amount delivered to a customer, which is a potential
problem if the amount has to be increased due to given vehicle load constraints.
At least we alleviate this problem by introducing constraints (18) and (19),
reducing the chance of a conflict by forcing a certain amount to be delivered
per customer (and chosen visit combination), with d′nj denoting the amount
delivered to customer n in route j. If all fails, the customer is tried to be added
in a feasibly way via greedy insertion. Finally, also over-covered customers need
to be dealt with: we simply remove all but their first occurrence.

The model of V2 is created for a given set of feasible solutions, again using the
solution’s routes for the corresponding day only. This solution set always con-
tains the current incumbent solution as well as a preferred number of optional
solutions which are selected via binary tournament from the set of all improved
solutions (found during the run up to that time). This way of handling it has the
advantage of keeping a certain diversity (assuming enough available solutions)
yet still favoring good solutions, as well as having to store no additional solutions.
The current incumbent further acts as a starting solution for the ILP solver.

Basically, this model could be applied as the master problem of classical col-
umn generation as well [23], of course a suitable subproblem for generating new
columns would have to be defined. However, our intention is to have a (relatively)
fast supplementary neighborhood. Therefore we restrict ourselves to producing
the columns (routes) with the VNS only, i.e. having a pure metaheuristic column
generation. Regarding runtime, there is the possibility to restrict the number of
depots a route can be located to (the x% least costly ones), whereas the routes
of the best solution in the given set are allowed to be located at any depot.

4.2 VLNS Operating on Customers

Our second type of VLNS (denoted by V3) operates on the customer level, it
is therefore responsible for finer-grained optimization, yet it bears quite some
resemblance with V2 in that it also makes use of a set covering formulation. It is
similar to the so-called ILP-based refinement heuristic presented by De Franceschi
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et al. [14]. The idea is to extract sequences of customers from given routes, re-
connect the disconnected route parts, and then find an optimal allocation of
these sequences to the possible insertion points, i.e. between any two (remain-
ing) consecutive customers. Whenever sequences’ customer sets are not disjoint,
this neighborhood is hard to solve and an ILP formulation as a set covering
model is appropriate. A suitable one for our setting is the following:

min
∑
j∈R

CR
j +

∑
s∈S

∑
i∈Is

CI
si xsi (21)

subject to
∑

s∈S:n∈s

∑
i∈Is

xsi ≥ 1 ∀n ∈ VC (22)

∑
s∈S:i∈Is

xsi ≤ 1 ∀i ∈ I (23)

Lj +
∑
s∈S

∑
i∈Is∩I(j)

L′s xsi ≤ Q ∀j ∈ R (24)

∑
j∈R(i)

Lj +
∑
s∈S

∑
i∈Is∩I(j)

L′s xsi ≤Wi ∀i ∈ VD (25)

xsi ∈ {0, 1} ∀s ∈ S; ∀i ∈ Is (26)

The objective (21) is to minimize the insertion costs CI
si of the sequences

s ∈ S in their possible or allowed insertion points i ∈ Is. Each extracted customer
must be covered by at least one of the sequences containing it (22). Further, each
insertion point can hold at most one sequence (23). Constraints (24) and (25)
are responsible to enforce limits on vehicle and depot load, respectively. Here,
Lj again denotes the load of route j and L′s is the load of sequence s, I(j) are all
insertion points provided by route j, and R(i) are all routes located at depot i.

Several methods were proposed in the literature for similar or related neigh-
borhoods to extract customers from given routes. Among them to pick the cus-
tomers inducing the greatest detour [24], select a seed node and neighbored
nodes, to select all odd or even customers of a route, or just select them at ran-
dom on a per route basis; refer to [14] for more details. Here we settle for a simple
model: select the customers independent of the actual routes, since it is to be ex-
pected that no selection scheme is generally better as all others, and preliminary
results showed no great difference, too. Therefore we proceed in the following
way: choose a preferred number of consecutive iterations iterV3

of V3, randomly
partition all customers into equally sized sets Ni with |Ni| = n/iterV3

, and fi-
nally perform V3 iterV3

times, for each iteration i using set Ni as customers to
be extracted as well as considering a specific set of feasible solutions. The latter
is created as for V2 described in Section 4.1. The routes of the current incumbent
represent the considered set of routes R, and together with the sequences con-
tained therein they are used as a starting solution for the ILP solver. Initially all
possible sequences from the given solutions’ routes are extracted adhering to the
pre-selected customers, and the potential insertion points are determined while
processing routes of set R. This way we omit the costly generation of sequences
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via making use of the linear programming dual values as in [14], yet (most likely)
also obtain non-disjoint sequences, hence like for V2 we again exploit the infor-
mation of several solutions. Additionally, for each sequence of length more than
one we create all possible sequences containing one of the customers each. Again,
a customer is only accepted in the resulting solution on its first occurrence. Note
that V3 is applied on a per day basis only, which has to be considered when using
it for the PLRP. The possible insertion points Is per sequence s are determined
by taking the x% least costly ones, also omitting infeasible pairings.

5 Experimental Results

The algorithms have been implemented in C++, compiled with GCC 4.3 and
executed on a single core of a 2.83 GHz Intel Core2 Quad Q9550 with 8 GB
RAM. The general purpose MIP solver CPLEX version 12.1 is used to solve the
VLNS’ ILP models.

For both problem variants we took freely available benchmark data sets com-
prising 30 instances each, provided by Caroline Prodhon [25]. The instances differ
in the number of customers n, depots m, and clusters, as well as in the vehicle
capacity (’a’ denotes low, and ’b’ high) and are named: n-m-#clusters[a,b]. The
PLRP instances further span a working week, i.e. five working days and two
idle days and customers must be visited one, two, or three times, offering five,
three, and one visit combinations, respectively. We refer to [25, 10] for comput-
ing the daily demands djlr. More details about the instances can be found in [6]
regarding the LRP and in [10] for the PLRP.

VNS is always run for 105 iterations, setting an initial temperature of 500
and apply linear cooling every 100 iterations. The combination with the VLNS
variants is performed in the following way: V1 is applied on each new incumbent
solution since it can be considered quite fast (denoted by VNS+V1). The other
two, more demanding VLNS are executed at fixed times, namely after every 104

iterations of the VNS, resulting in 10 applications per run. Thereby we either
solely apply V2 (resulting in VNS+V1,2) or V2 directly followed by V3 (denoted
by VNS+V1,2,3). Naturally, more combinations would be possible, but for now we
solely investigated the effect of gradually adding all neighborhoods. The number
of additional feasible solutions used for V2 is three and five for V3, iterV3

is set
to four. For both, possible depots for routes as well as possible insertion points
for sequences we only consider the set of the least costly 33%, whereas the initial
depot location is always retained. Basically, the runtime per application of each
VLNS is restricted to two seconds, although this limit is seldom reached. Each
new VLNS incumbent is subject to 2-opt∗, those of V3 also to 3-opt.

For each algorithm setting we perform 30 runs per instance, and state the av-
erage costs (avg.), the corresponding standard deviations in percentage (sdv.[%]),
and the runtimes in seconds (t[s]). The results for the LRP are shown in Table 3,
those for the PLRP in Table 4. Furthermore, %-gap min, BKS and %-gap avg., BKS

state the average gap to the so far best known solutions (mostly up to date val-
ues can be found at [25], some newer values for the LRP were taken from [5]) of
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Table 3. Results of VNS and VNS plus VLNS combinations on the LRP.

Instance
VNS VNS+V1 VNS+V1,2 VNS+V1,2,3

avg.
sdv. t

avg.
sdv. t

avg.
sdv. t

avg.
sdv. t

[%] [s] [%] [s] [%] [s] [%] [s]

20-5-1a 54881.27 0.56 1.1 54905.70 0.59 1.1 54873.67 0.51 1.2 54890.33 0.39 1.3
20-5-1b 39104.00 0.00 1.2 39104.00 0.00 1.2 39104.00 0.00 1.2 39104.00 0.00 1.3
20-5-2a 48920.13 0.12 1.1 48933.90 0.29 1.1 48932.53 0.27 1.1 48933.90 0.29 1.2
20-5-2b 37542.00 0.00 1.2 37542.00 0.00 1.2 37542.00 0.00 1.2 37542.00 0.00 1.4
50-5-1a 90732.47 1.05 1.5 90780.50 0.96 1.5 90684.70 0.92 1.6 90388.87 0.71 1.9
50-5-1b 64197.23 1.50 2.3 64348.83 1.07 2.2 64125.30 1.20 2.3 63471.57 0.67 2.7
50-5-2a 89931.77 0.89 1.6 89553.50 0.82 1.7 89484.20 0.93 1.7 89858.77 1.20 2.0
50-5-2b 68884.60 1.17 3.7 68060.00 0.79 3.4 68108.50 0.65 3.5 68013.17 1.00 3.7
50-5-2aBIS 84582.17 0.39 2.2 84500.33 0.33 2.2 84437.20 0.35 2.3 84208.23 0.26 2.6
50-5-2bBIS 52564.40 0.88 4.4 52350.83 0.76 4.4 52326.63 0.63 4.5 52131.20 0.64 4.9
50-5-3a 87216.20 0.83 1.3 87039.93 0.72 1.3 87095.17 0.96 1.5 86727.53 0.33 1.7
50-5-3b 62132.77 0.94 2.3 62236.80 0.95 2.3 62208.67 1.00 2.4 62095.30 0.75 2.6
100-5-1a 279817.40 0.52 3.6 279017.83 0.41 3.6 279038.27 0.34 3.8 278291.83 0.33 4.9
100-5-1b 217985.50 0.55 6.4 217940.50 0.57 6.5 218012.67 0.68 6.6 216285.93 0.50 8.0
100-5-2a 196410.30 0.58 2.4 196388.63 0.42 2.5 196147.17 0.41 2.7 195022.27 0.44 4.0
100-5-2b 158949.53 0.65 3.1 158355.97 0.45 3.2 158682.53 0.49 3.3 158217.13 0.56 4.5
100-5-3a 203481.40 0.65 2.4 202460.07 0.38 2.4 202131.23 0.51 2.7 201748.07 0.34 3.9
100-5-3b 156289.00 0.72 3.1 155749.70 0.93 3.1 155873.37 0.95 3.1 154917.30 0.64 4.4
100-10-1a 316581.83 1.67 4.2 292857.77 0.65 5.5 293227.17 0.68 7.3 291775.00 0.45 8.5
100-10-1b 268297.33 4.00 6.8 240989.67 1.26 6.8 241682.67 2.81 8.3 238058.60 0.98 9.8
100-10-2a 248775.67 0.67 3.5 246791.30 0.35 3.8 246363.47 0.44 4.6 245614.20 0.44 5.6
100-10-2b 208692.87 0.79 5.2 207346.30 0.68 5.3 206373.40 0.46 5.6 205718.67 0.64 6.9
100-10-3a 259271.30 0.52 3.5 256511.00 0.72 3.7 255896.97 0.66 5.2 255140.30 0.40 6.6
100-10-3b 209812.43 0.99 5.0 209047.90 0.76 5.1 208041.30 0.61 5.5 207410.27 0.68 6.7
200-10-1a 489068.47 0.71 11.8 483895.40 0.33 11.7 483788.30 0.53 11.7 481141.73 0.24 18.4
200-10-1b 387485.03 0.72 9.5 385752.33 0.70 8.7 385085.97 0.59 9.8 381516.50 0.28 16.2
200-10-2a 462234.10 0.88 10.7 454203.83 0.43 10.7 453625.67 0.28 11.6 452374.37 0.20 16.7
200-10-2b 387271.63 0.87 9.3 381417.83 0.47 8.8 380320.33 0.44 9.6 376836.03 0.27 15.5
200-10-3a 481857.00 0.58 10.4 477278.80 0.40 11.0 477010.47 0.38 13.2 475344.83 0.32 18.3
200-10-3b 377792.13 0.70 7.3 372415.27 0.69 6.7 370046.37 0.81 7.9 365705.17 0.34 15.2

%-gap min, BKS 0.65 0.28 0.18 0.01
%-gap avg., BKS 2.29 1.16 1.06 0.64

the best solutions obtained in the 30 runs each as well as of the average solution
values of these runs of the corresponding algorithm. Average results are marked
bold if they yield a significant improvement over solely applying the VNS; veri-
fied with a Wilcoxon rank sum test with an error level of 5%. We will start by
comparing our enhanced VNS methods to solely applying VNS, followed by a
comparison to leading methods of the corresponding problem variant.

It can be observed that the VNS performs very well in general, but especially
on the PLRP. Adding V1 (VNS+V1) induces only a slight increase in runtime,
yet for the LRP the average gap is nearly halved, and for the PLRP the negative
gap is further decreased by 0.25%. Additionally applying V2 (VNS+V1,2) further
improves the results for both variants, this time showing a greater impact on
the PLRP, which was partly expected due to the incorporation of the periodic
aspect. Not surprisingly the increase in runtime is also greater for the PLRP, and
since the model’s size depends on the number of depots, this is especially notable
on the instances with m = 10. Finally, also using V3 (VNS+V1,2,3) increases the
runtimes contrary to before, since its model’s size depends on the number of cus-
tomers (per day), which mainly concerns the LRP, where longer routes appear
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Table 4. Results of VNS and VNS plus VLNS combinations on the PLRP.

Instance
VNS VNS+V1 VNS+V1,2 VNS+V1,2,3

avg.
sdv. t

avg.
sdv. t

avg.
sdv. t

avg.
sdv. t

[%] [s] [%] [s] [%] [s] [%] [s]

20-5-1a 79454.10 0.79 1.6 79411.53 0.67 1.6 79361.47 0.75 1.9 79282.57 0.72 2.1
20-5-1b 78343.80 2.18 1.6 79629.37 2.85 1.6 78318.60 2.53 1.8 78105.87 2.52 2.1
20-5-2a 79804.87 1.24 1.6 79556.57 1.36 1.5 79028.73 1.40 1.8 78970.33 1.27 2.1
20-5-2b 63257.53 0.90 1.5 63238.87 0.74 1.5 63223.27 0.80 1.8 63096.60 0.80 2.0
50-5-1a 152972.60 1.74 3.7 152477.50 1.58 3.9 152329.27 1.77 4.5 152177.43 1.00 5.0
50-5-1b 142449.97 1.52 3.8 142229.13 1.48 4.1 141794.13 1.64 4.8 141262.33 1.69 5.2
50-5-2a 143731.17 0.78 3.6 143547.83 1.37 3.6 142796.73 0.94 4.4 142491.27 0.92 4.8
50-5-2b 116350.80 1.09 3.4 116245.43 1.60 3.6 115572.63 1.67 4.2 114849.53 1.92 4.6
50-5-2aBIS 175978.60 1.68 3.0 176993.17 1.88 3.0 174541.90 1.55 3.5 175577.97 1.96 3.9
50-5-2bBIS 106017.00 2.19 3.2 104976.10 1.93 3.3 105021.07 2.32 3.6 105173.47 2.11 4.0
50-5-3a 157683.73 1.30 3.6 157828.03 1.20 3.7 156203.50 1.06 4.3 156515.37 1.02 4.7
50-5-3b 112633.10 1.65 3.6 112255.33 1.60 3.9 112791.17 1.96 4.3 112162.07 1.67 4.7
100-5-1a 356720.93 0.99 6.2 355023.53 1.18 6.3 355883.87 1.02 7.3 355150.70 1.25 8.1
100-5-1b 238598.30 1.50 7.0 237310.50 1.45 7.4 238005.00 1.51 8.7 237438.70 1.78 9.5
100-5-2a 272547.67 0.82 6.0 271416.67 1.05 6.0 269891.33 1.14 7.6 271363.50 1.28 8.1
100-5-2b 169677.70 1.74 6.0 169351.50 1.52 5.7 169601.23 1.46 6.9 170040.70 2.03 7.4
100-5-3a 227452.33 1.09 6.1 227125.63 1.15 6.3 225138.40 1.20 7.7 226444.73 1.45 8.2
100-5-3b 176998.30 1.71 7.5 176197.67 1.38 7.9 176313.03 1.48 9.1 176004.53 1.61 9.9
100-10-1a 268807.80 0.97 10.7 265693.07 1.19 12.3 263990.00 0.87 18.7 265438.37 0.94 19.9
100-10-1b 217358.80 1.47 9.8 216326.27 1.47 11.3 216803.00 1.46 17.5 217084.20 1.27 18.9
100-10-2a 267882.93 1.33 7.8 267811.00 1.27 8.9 267365.00 1.09 13.4 268575.77 1.22 13.6
100-10-2b 175829.90 1.58 8.0 175681.90 1.81 8.4 175196.30 1.66 11.1 176078.47 1.70 11.7
100-10-3a 265910.37 1.32 8.4 263870.90 1.34 9.9 264044.60 1.13 15.3 264714.53 1.47 15.0
100-10-3b 199922.63 1.67 9.3 198927.20 1.08 10.2 198500.53 1.64 13.8 199679.60 1.55 14.4
200-10-1a 453541.50 0.80 18.5 451017.47 1.02 20.0 448584.57 1.22 27.6 452401.77 0.94 29.6
200-10-1b 384547.63 1.07 20.0 384567.47 1.19 22.0 383839.33 0.89 29.9 386224.97 1.37 32.4
200-10-2a 397358.37 0.90 15.2 393325.00 0.98 15.5 391387.60 1.20 20.3 393316.83 0.75 22.3
200-10-2b 328169.77 1.27 16.3 327180.13 1.29 16.1 325184.10 1.17 20.8 329007.53 1.80 24.4
200-10-3a 557255.00 1.00 14.5 554921.90 1.03 16.5 555822.73 1.15 21.9 560297.17 1.00 25.0
200-10-3b 362268.50 1.47 16.5 361395.50 1.19 16.5 361268.60 1.38 22.0 365044.00 1.27 23.4

%-gap min, BKS -4.35 -4.68 -4.92 -4.58
%-gap avg., BKS -1.99 -2.24 -2.54 -2.33

in general, too. However, perhaps due to this, and also the single day planning
horizon, an overall performance gain with V3 only occurs for the LRP, yielding
the best solutions on average. In case of the PLRP it even reduces the overall
solution quality. Taking a closer look shows that the performance is more or less
the same up to instances having 50 customers, whereas afterwards it deteriorates
and somehow seems to work against the optimization process. Probably it leads
to getting stuck in unfavorable local optima. However, the bad performance of
V3 for the PLRP is most likely also related to the structure of the instances con-
sidered, since they rather promote many small routes, offering less potential for
more sophisticated intra-route improvement. Anyway, this fact needs to be in-
vestigated further, probably applying tests on altered or newly created instances.
We remark that solely applying V2 would often lead to a considerably larger in-
crease in runtime, especially for the LRP this time. So it seems that V1 achieves
important preliminary work. Otherwise we deem the increase of runtime only
moderate and hence omitted to state additional VNS runs with more iterations.

The best found solutions of our algorithm variants over all runs performed
are compared to the so far best known solutions in Table 5, stating the individual
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Table 5. Comparison of previous best known solutions (BKS) and best results obtained
by our algorithm over all runs for the LRP and PLRP.

Instance
LRP PLRP

BKS best %-gap BKS best %-gap

20-5-1a 54793 54793 0.00 78851 78477 -0.47
20-5-1b 39104 39104 0.00 75727 76102 0.50
20-5-2a 48908 48908 0.00 80538 77784 -3.42
20-5-2b 37542 37542 0.00 62987 62133 -1.36
50-5-1a 90111 90111 0.00 157632 146360 -7.15
50-5-1b 63242 63242 0.00 142359 136454 -4.15
50-5-2a 88298 88298 0.00 152376 138391 -9.18
50-5-2b 67308 67308 0.00 119925 110043 -8.24
50-5-2aBIS 84055 84055 0.00 177649 168721 -5.03
50-5-2bBIS 51822 51822 0.00 102824 100836 -1.93
50-5-3a 86203 86203 0.00 162640 152863 -6.01
50-5-3b 61830 61830 0.00 114931 108790 -5.34
100-5-1a 275993 275813 -0.07 364324 341083 -6.38
100-5-1b 214392 213973 -0.20 239235 224307 -6.24
100-5-2a 194267 193671 -0.31 287093 260182 -9.37
100-5-2b 157173 157157 -0.01 174963 163191 -6.73
100-5-3a 200246 200160 -0.04 238031 214341 -9.95
100-5-3b 152528 152466 -0.04 181334 166726 -8.06
100-10-1a 290429 288540 -0.65 281896 256892 -8.87
100-10-1b 234641 232230 -1.03 224751 207326 -7.75
100-10-2a 243778 243677 -0.04 282437 257388 -8.87
100-10-2b 203988 203988 0.00 179047 166810 -6.83
100-10-3a 253344 251128 -0.87 272463 253617 -6.92
100-10-3b 204597 204706 0.05 208890 188678 -9.68
200-10-1a 479425 478349 -0.22 464596 431373 -7.15
200-10-1b 378773 378631 -0.04 401901 362143 -9.89
200-10-2a 450468 449571 -0.20 410514 380262 -7.37
200-10-2b 374435 375129 0.19 324121 310110 -4.32
200-10-3a 472898 471024 -0.40 574398 530195 -7.70
200-10-3b 364178 363907 -0.07 356618 342944 -3.83

average -0.13 -6.26

Table 6. Showing average relative runtimes of LRP solution approaches and average
percentage gaps to (previously) best known solutions.

n m
GRASP MAPM LRGTS GRASP+ELS

VNS VNS+V1,2,3
[2] [3] [6] [5]

50 5 1.00 1.00 1.00 1.00 1.00 1.00
100 5 10.87 9.10 5.11 29.76 1.45 1.79
100 10 17.33 8.46 16.00 32.52 1.95 2.66
200 10 207.79 87.88 73.11 188.26 4.07 6.05

%-gap 1×run, BKS 3.37 1.15 0.52
%-gap avg, BKS 2.29 0.64
%-gap min, BKS 0.84 0.65 0.01

and the average percentage gaps between them. The encouraging results clearly
show the potential of our method(s) for this problem variants.

A further interesting comparison is made with regard to the dependence
of runtime on instance size for previous, leading (P)LRP approaches and our
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Table 7. Showing average relative runtimes of PLRP solution approaches and average
percentage gaps to (previously) best known solutions.

n m IM[8] MAPM[9] ELS[10] VNS VNS+V1,2

50 5 1.00 1.00 1.00 1.00 1.00
100 5 8.01 11.26 5.50 1.85 1.88
100 10 17.97 13.45 10.15 2.58 3.56
200 10 145.14 250.78 60.95 4.82 5.65

%-gap 1×run, BKS 12.32 9.37
%-gap avg., BKS 1.45 -1.99 -2.54

VNS as well as the best performing VNS plus VLNS variant; these results are
shown in Table 6 for the LRP and in Table 7 for the PLRP. Here each algorithm’s
runtime is normalized by its average runtime on instances of type n = 50, m = 5,
yielding a better picture as using the smallest instances with n = 20, m = 5 for it.
Looking at the moderate increase of relative runtime our methods also seem very
promising with respect to tackling even larger instances. Comparing the absolute
runtimes with those of several LRP approaches presented in [5] using a similar
computing environment (or giving scaled runtimes) is also clearly in favor of our
methods. For completeness we also state in Tables 6 and 7 the overall average
percentage gaps to the (previously) best known solutions as given in Table 5. Due
to different practices of performing computational tests and/or presenting results
we are not able to compare the different methods in a more direct way. Hence we
denote the results where only a single run was executed with %-gap 1×run, BKS

(those methods were claimed to be robust), and those of the average as well as
best solution quality as before. We note that for GRASP+ELS[5] and ELS[10]
five runs were performed. Anyway, it is obvious that our methods are at least
competitive to leading LRP approaches, yielding 15 new best solutions for 30
instances, and clearly outperform previous solution approaches for the PLRP,
yielding new best solutions for 29 out of 30 instances.

6 Conclusions

We presented a variable neighborhood search (VNS) for the periodic location-
routing problem (PLRP) with capacitated vehicles and depots, which is also
directly applicable to the LRP, i.e. the special case when having only a single
day planning horizon The VNS is subsequently combined with integer linear
programming-based very large neighborhood searches (VLNS). Two of them op-
erate on a higher level via relocating whole routes to depots, considering all days
at once, with one being a more sophisticated version using a set covering model.
The third one deals with the location of customer sequences to insertion points
in routes of a single day. Two of the VLNS are further designed to exploit the
information contained in several solutions provided by the VNS. Experimental
results on available benchmark test data show the excellent performance of our



VNS Coupled with ILP-based VLNS for the (P)LRP 15

methods on the LRP and the PLRP when compared to corresponding leading
approaches, both in terms of solution quality and dependence of runtime on
instance size. The results further indicate almost always a gain in solution qual-
ity when gradually applying all VLNS, very often yielding significantly better
results as applying VNS alone.

Next, we want to incorporate the periodicity in a suitably enhanced version
of the third VLNS, as well as to especially test also on other available LRP data
sets as well as on new or modified PLRP instances. Since we used only a moder-
ate amount of iterations/runtime it would be interesting to allow more resources
and investigate the behavior of our methods.
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