
Matheuristics for the Periodic Vehicle Routing
Problem with Time Windows?

Sandro Pirkwieser and Günther R. Raidl

Institute of Computer Graphics and Algorithms
Vienna University of Technology, Vienna, Austria

{pirkwieser,raidl}@ads.tuwien.ac.at

Abstract. We investigate two matheuristic strategies using the periodic
vehicle routing problem with time windows as a testbed. Two different
metaheuristics are suitably combined with parts of a developed column
generation approach: On the one hand a variable neighborhood search
(VNS) acts as the sole provider of columns for a set covering model, hence
realizing a pure metaheuristic column generation. Hereby, the VNS and
the resolving of the model are performed in an intertwined way. On the
other hand the solution to the linear programming (LP) relaxation of the
set covering model, i.e. the columns (routes) and their respective (accu-
mulated) LP values, found by a classical column generation approach
are successfully exploited in a subsequent evolutionary algorithm. Both
matheuristics often yield significantly better results than their pure meta-
heuristic counterparts. These approaches are applicable to other classes
of combinatorial optimization problems as well.

1 Introduction

In the course of our current research project we aimed at investigating dif-
ferent promising hybrids of (meta-)heuristics and mathematical programming
techniques, especially integer linear programming (ILP) methods. The testbed
for these hybrids is the periodic vehicle routing problem with time windows
(PVRPTW), where customers must be served several times in a given planning
period instead of only once on a single day. In literature, this variant has not been
covered to a great extent before, although its practical applicability is evident.

The PVRPTW, as considered here, is defined on a complete directed graph
G = (V,A) with V = {0, 1, . . . , n} being the set of vertices and A = {(i, j) |
i, j ∈ V, i 6= j} the set of arcs. A planning horizon of t days, referred to by
T = {1, . . . , t}, is considered. Vertex 0 represents the depot with time window
[e0, l0] at which are based m vehicles having capacity Q. Each vertex i ∈ VC ,
with VC = V \ {0}, corresponds to a customer and has associated a demand
qi ≥ 0, a service duration di ≥ 0, a time window [ei, li], a service frequency fi,
and a non-empty set Ci ⊆ {T ′ | T ′ ⊆ T, |T ′| = fi} of allowed combinations

? This work is supported by the Austrian Science Fund (FWF) under contract number
P20342-N13.

2 Sandro Pirkwieser and Günther R. Raidl

of visit days. Each arc (i, j) ∈ A has assigned a travel time (cost) cij ≥ 0. The
challenge consists of selecting one visit combination per customer and finding
(at most) m vehicle routes on each of the t days on G such that

– each route starts and ends at the depot,
– each customer i belongs to fi routes over the planning horizon,
– the total demand of each route does not exceed vehicle capacity Q,
– the service at each customer i begins in the interval [ei, li] and every

vehicle leaves the depot and returns to it in the interval [e0, l0], and
– the total travel cost of all vehicles is minimized.

Arriving before ei at a customer i implies a waiting time until this start of
the time window (without further cost). Contrary, arriving later than li is not
allowed, i.e. we assume hard time window constraints.

After discussing related work in Section 2, we first present a column gener-
ation approach for the PVRPTW based on a set covering model in Section 3,
giving details on the master problem as well as on the corresponding pricing
subproblem. Next, Sections 4 and 5 deal with a variable neighborhood search
(VNS) and an evolutionary algorithm (EA), respectively. In Section 6 we present
two matheuristics combining the before mentioned methods: On the one hand
the VNS acts as sole provider of columns for the set covering model, and on
the other hand the solution to the linear programming relaxation of the set
covering model found by classical column generation is successfully exploited in
the EA. Comparative experimental results of the matheuristics and their pure
counterparts are given in Section 7. Finally, Section 8 finishes with conclusions.

2 Related Work

The PVRPTW first appeared in [1], where a tabu search algorithm is proposed
for solving it. Recently we suggested a variable neighborhood search (VNS),
outperforming the former tabu search [2]. It will also be used in the present
work. Related VNS metaheuristics exist for the multi-depot VRPTW [3] and
the periodic vehicle routing problem (PVRP) [4].

Evolutionary algorithms for the VRPTW are subject of [5], yet we know of
no application to periodic routing problems, albeit some references for similar
problem variants (e.g. the multi-depot case) can be found in [6].

One of our considered matheuristics is also presented in [7], whereas a more
sophisticated variant of it can be found in [8]. Here we want to face it with
another matheuristic especially from the methodical point of view. A similar idea
as in [7] was recently applied to a ready-mixed concrete delivery problem [9].

Apart from our works we are not aware of other exact or hybrid methods
for the PVRPTW, yet similar PVRPs (partly with other objectives) are dealt
with in [10] and [11], where in [11] Mourgaya and Vanderbeck also apply column
generation, yet exploit it in another way via a rounding heuristic. Finally a
more general survey of different PVRP variants and solution methods is given
in [12], whereas for a more general overview on ILP/metaheuristic hybrids we
refer to [13, 14].

Matheuristics for the PVRPTW 3

3 Column Generation Approach

Among the most successful solution approaches for VRPs in general, at least of
moderate size, are algorithms based on column generation [15]. There the initial
basis is a restricted master problem gradually enriched by new columns via itera-
tively solving pricing subproblems. In the following we present a suitable master
problem with its corresponding pricing subproblem; more details, especially on
the latter, can be found in [16].

First we formulate the integer master problem (IMP) for the PVRPTW as a
set covering model:

min
∑
τ∈T

∑
ω∈Ω

γω χωτ (1)

s.t.
∑
r∈Ci

yir ≥ 1 ∀i ∈ VC (2)

∑
ω∈Ω

χωτ ≤ m ∀τ ∈ T (3)∑
ω∈Ω

αiω χωτ −
∑
r∈Ci

βirτ yir ≥ 0 ∀i ∈ VC ; ∀τ ∈ T (4)

yir ∈ {0, 1} ∀i ∈ VC ; ∀r ∈ Ci (5)

χωτ ∈ {0, 1} ∀ω ∈ Ω; ∀τ ∈ T (6)

Here the set of all feasible routes visiting a subset of customers is denoted
by Ω. Obviously, this set is exponentially large w.r.t. the instance size. For each
route ω ∈ Ω, let γω be the corresponding costs. We introduce binary variables
χωτ indicating whether or not route ω is used on day τ , ∀ω ∈ Ω, τ ∈ T .
Furthermore, for each customer i ∈ VC , binary variables yir indicate whether or
not visit combination r ∈ Ci is chosen. The objective function (1) corresponds
to the total costs of all selected routes. Cover constraints (2) guarantee that at
least one visit day combination is selected per customer, fleet constraints (3)
restrict the number of daily routes to not exceed the available vehicles m, and
visit constraints (4) link the routes and the visit combinations, whereas αiω and
βirτ are binary constants indicating whether or not route ω visits customer i
and if day τ belongs to visit combination r ∈ Ci of customer i, respectively.

Due to the huge amount of variables it is not possible to directly solve this ILP
formulation for instances of practical size. Therefore we assume having an initial
restricted master problem (RMP), i.e., we start with a small set Ω′ ⊂ Ω, and
subsequently determine the linear programming (LP) relaxation of it. We then
proceed by solving the so-called pricing subproblem, delivering new, potentially
improving columns to enter the master problem. For the PVRPTW, as for most
vehicle routing problems, the subproblem can be formulated as an elementary
shortest path problem with resource constraints (ESPPRC) [17], whereat we are
searching for negative reduced cost paths (routes) from a start to an end depot
(a duplicate of the former) using reduced costs based on the dual values of
the LP solution. All constraints regarding single routes are thus shifted to the

4 Sandro Pirkwieser and Günther R. Raidl

subproblem. However, this comes at a price, especially when forcing elementary
paths in this context (having negative cost arcs/cycles): the problem becomes
NP hard, although in prospect of better lower bounds.

For our purposes, which will be detailed in Section 6, it suffices to find some
negative reduced cost columns and not necessarily the most negative one(s).
Following recent trends we tackle the subproblem heuristically and with an exact
approach. The heuristic is similar to the tabu search method described in [18]
and performs better than the one applied previously in [16]. We denote it by “re-
use heuristic” since it exploits currently active columns in the master problem
as initial paths. For diversification it randomly perturbs them to some extent
and subsequently applies a first-improvement random local search consisting
of inserting, deleting, moving, replacing, and exchanging customers. The exact
method in use is a label correcting dynamic programming algorithm. However,
for practical reasons we only use it in a truncated and thus also heuristic way via
applying an aggressive dominance rule potentially filtering out (near) optimal
least cost paths. The execution is further stopped if a specified amount of new
columns were generated; see [16] for more details on the applied algorithm.

New columns generated for one of the daily subproblems are inserted for all
days and the LP of the RMP is re-solved. This strategy leads to a substantial
speed-up compared to only inserting the columns on the corresponding day. In
the following iteration the same daily subproblem is solved again. This process
continues until a full iteration over all days yields no new columns.

4 Variable Neighborhood Search

Variable neighborhood search (VNS) [19] is a metaheuristic that applies random
steps in neighborhoods with growing size for diversification, referred to as shak-
ing, and uses an embedded local search component for intensification. It has been
successfully applied to a wide range of combinatorial optimization problems. In
the following we give a rather short overview on our VNS for the PVRPTW as
it has been already described in more detail in [2].

To smooth the search space, the VNS relaxes the vehicle load and time win-
dow restrictions and adds penalties corresponding to the excess of these con-
straints to the cost function, whereat both kinds of penalty terms are weighted
by a constant factor of 100. The creation of the initial solution was kept quite
simple by selecting a single visit day combination per customer at random and
afterwards partitioning the customers at each day into routes. This partitioning
is performed by sorting the customers according to the angles they make with
the depot—ties are broken using the center of the time windows (ei+ li)/2—and
inserting the customers in this order and a greedy fashion into at most m routes.
This insertion is performed in such a way that all but the last routes of each
day will comply to the load constraints, while time window constraints might be
violated by all routes. The procedure is similar to the one introduced in [1].

In the shaking phase we utilize three different neighborhood structures, each
with six moves of increasing perturbation size, yielding a total of 18 shaking

Matheuristics for the PVRPTW 5

neighborhoods of fixed order: (i) randomly changing up to six visit combinations
with greedy insertion for the new visit days, whereat we also allow reassigning the
same visit combination, (ii) moving a random segment of up to six customers
of a route to another one on the same day, and (iii) exchanging two random
segments of up to six customers between two routes on the same day. In the
latter two cases the segments are occasionally reversed.

For intensification we apply the well-known 2-opt intra-route exchange pro-
cedure in a best improvement fashion, only considering routes changed during
shaking. Additionally each new incumbent solution is subject to a 2-opt∗ inter-
route exchange heuristic [20]. Hereby for each pair of routes of the same day all
possible exchanges of the routes’ end segments are tried.

To enhance the overall VNS performance not only better solutions are ac-
cepted, but sometimes also solutions having a worse objective value. This is
done in a systematic way using the Metropolis criterion like in simulated an-
nealing [21]. A linear cooling scheme is used and the acceptance rate of worse
solutions is almost zero in the last iterations.

5 Evolutionary Algorithm

Contrary to the single search trajectory followed by the VNS of the previous
section an evolutionary algorithm (EA) [22] is a population-based metaheuristic
inspired by the evolutionary process observed in nature. Although the following
EA was designed already having the specific hybridization in mind, it achieves
relatively good solutions on its own and is the first of its kind for periodic
routing problems. Our intention was that the EA should mainly operate with
whole (feasible) routes, however it turned out very quickly that an appropriate
combined repair/local search component is vital.

The initial population of the stand-alone EA is created by repeatedly apply-
ing the initialization procedure described in Section 4. Also the same penalized
objective function is used, however, this time with a penalty weight of 1000 to
almost enforce the selection of feasible solutions only.

For recombination we have three different operators affecting different as-
pects, whereat in each case a standard uniform crossover is used. The first ap-
plies recombination solely on the visit combinations; the other two exclusively
consider routes: either whole days including all routes are exchanged or, more
fine-grained, single routes of a specific day are exchanged.

Mutation causes following changes: removal of a route, swapping of two routes
of differing days, greedy addition of a random customer on a random day, removal
of one occurrence of a random customer, or the change of one visit combination.

Each newly derived chromosome is subject to a procedure which eventually
adjusts the visit combinations according to the routes, i.e. the visit combina-
tions are independently chosen s.t. the least under-covering occurs, breaking
ties w.r.t. the least over-covering. Though this is not applied if recombining
the visit combinations, also visit combinations changed during mutation are left
out. Afterwards, over-covering is tackled via removing redundant customers in

6 Sandro Pirkwieser and Günther R. Raidl

a random sequence, followed by a 2-opt intra-route improvement on the altered
routes. Finally, missing customers are added in a greedy way and subsequently
2-opt improvement is applied again. Adding missing customers is the most criti-
cal part potentially rendering a solution infeasible, most likely because of a time
window violation. Due to this we initially adjust the visit combinations to re-
duce the amount of necessary insertions. Similar to the VNS each new incumbent
solution is subject to the mentioned 2-opt∗ procedure.

The EA applies a steady-state reproduction with a population of 100 indi-
viduals, using binary tournament selection with replacement, and accepting no
duplicates (based on the objective function). All different recombination as well
as mutation operators are applied with equal probability.

6 Matheuristic Variants

Having the components introduced before, we come to the actual core of this
contribution: the hybridizations of the metaheuristics and parts of the ILP-based
column generation approach, which can be of interest in a more general sense
for other problems, too.

Our first matheuristic concerns a rather high-level combination of the VNS
and the set covering ILP formulation (denoted as VNS-ILP). Hereby the VNS
acts as the sole provider of columns for the set covering model, thus we have a
novel pure metaheuristic column generation. The VNS and the ILP solver are
applied in an intertwined way, always executing some VNS iterations to obtain
new columns followed by solving the actual ILP model with the general purpose
solver CPLEX. The crucial points here are which routes should enter the model,
how many of them, and in which way. To increase the ILP solver’s chance of
finding an improved solution paired with a limited (accumulated) runtime we
chose (and recommend) to consider only a few (between 5 and 10) either im-
proved or at least above average intermediate VNS solutions and insert their
(feasible) routes on the corresponding day only; for a comparison to the variant
of inserting them on all days we refer to the results reported in [7]. If solving the
ILP model yields an improved solution, its redundant customers are removed
and the whole solution is transferred to the VNS, undergoing 2-opt∗ local im-
provement. The best incumbent solution also acts as a starting solution for the
ILP solver to gain some speed.

As said, this is a rather high-level hybridization since the components basi-
cally exchange whole solutions, it could further be classified as an intertwined
collaborative combination [13].

Our second matheuristic is a combination of the column generation approach
and the EA (denoted as CG-EA). We were motivated by the fact that columns
created when solving the LP relaxation of the problem often lend themselves
to good primal solutions when the resulting model is subsequently solved with
an ILP solver. This led us to think about ways of exploiting these columns and
more generally the LP information derived when performing column generation.
First we apply an artificial start of the RMP by inserting slack variables having

Matheuristics for the PVRPTW 7

a high penalty (set to 500) and allowing to visit no customers yet to meet
the visit constraints. Next we apply the re-use heuristic until it either does
not find new columns or the amount of new columns decreased in the last five
iterations. Afterwards we switch to the dynamic programming algorithm applied
in a heuristic way. Each time the RMP is solved we keep track of the LP values
of the columns (routes). Since in the end we want to have a predictable running
time, we limit the runtime for solving the LP relaxation. Finally we exploit the
obtained data for initializing the EA. The number of nonempty routes per day
is set to the rounded down sum of the LP values of all active routes of that day.
These are then set to routes corresponding to active columns of that day in the
last solved LP relaxation of the RMP, whereat we apply a binary tournament
selection for each route according to the accumulated LP values and prefer those
having a higher value, i.e. those which have proven suitable. Currently, this
procedure is applied to half of the initial chromosomes, the remaining ones are
initialized as described before. Although a solution created in such a way is most
likely not feasible due to over- and/or under-covering, it presumably includes
high quality routes advantageous for the whole gene pool.

Since we can expect that the initially created solutions will change quite
soon, it seems desirable to have an ongoing exploitation of the column genera-
tion data. Preliminary experiments turned out that a simple yet effective way
of achieving this is via mutation: CG-EA can additionally replace a route by
another one selected from a given pool of routes. The latter is created per day
and contains all corresponding routes that were at least once active in a solution
to an LP relaxation of the RMP. Again, we apply a binary tournament selection
using the accumulated LP values as a decision criterion. Though more sophisti-
cated operations would certainly be possible (e.g. a more advanced initialization,
exploiting the column pool in a local search, or applying re-initializations) we
rather aim here at a proof of concept that the data from column generation (i.e.,
generated variables and their (accumulated) LP values) can be successfully used
to boost a metaheuristic.

We deem this hybridization as lower-level since specific information of the
column generation is exploited in the EA, and classify it as a sequential collab-
orative combination [13].

To some extent the counterpart of both presented matheuristics is to apply
column generation and subsequently solve the final RMP to integrality by a
general purpose ILP solver both possibly with a certain time limit. In general,
this is often referred to as a column generation based heuristic. For comparison
purposes, we examine this approach also here and denote it as CG-ILP. As for
CG-EA we only consider at least once active routes. Finally having a solution to
the ILP we remove redundant customers and apply our 2-opt procedure on all
routes. This repair process is repeated several times (100×) for the same initial
solution with a randomized customer removal, keeping the best solution found.

8 Sandro Pirkwieser and Günther R. Raidl

7 Experimental Results

The algorithms have been implemented in C++, compiled with GCC 4.3 and
executed on a 2.83 GHz Intel Core2 Quad Q9550 with 8 GB RAM. We derived
new PVRPTW instances from the Solomon VRPTW benchmark instances1 by
evenly assigning the available visit combinations to the customers at random.
We did so for the first five instances of type random (R), clustered (C), and
mixed random and clustered (RC) for a planning horizon of four, six, and eight
days, denoted by p4, p6, and p8, respectively. For p4 the customers need to be
visited either 1, 2, or 4 times, for p6 either 1, 2, 3, or 6 times, and for p8 either
1, 2, 3, 4, or 8 times. The number of vehicles m was altered (reduced) in such a
way that few or none empty routes occur in feasible solutions, yet it is not too
hard to find feasible solutions quite early in the solution process. All instances
contain 100 customers and the capacity constraint was left untouched.

For the standard VNS we set an iteration limit of 106, an initial temperature
of 10, and apply linear cooling every 100 iterations. The intertwined VNS-ILP
consists of 10 major iterations of the VNS (with 105 iterations each) and we insert
the feasible routes of 8 improved and/or intermediate solutions (lying within the
range of 5% of the actual incumbent) in the ILP model on the corresponding day
only. The accumulated runtime of the ILP solver is bounded by that of the VNS.
The EA always applies recombination and performs mutation following a Poisson
distribution with λ = 1, running for 2 · 105 iterations. To have equal conditions
CG-EA and CG-ILP are based on the same runs of column generation, limiting
the latter to 20 seconds, which suffices for many of the instances considered.

Each algorithm setting is run 30 times per instance and we report average
results, stating the average travel costs (avg.), corresponding standard deviations
(sdv.) and average CPU-times in seconds (t[s]). For the EA, CG-EA, and CG-
ILP we also state the number of runs yielding a feasible solution.

Tables 1, 2, and 3 give results for instances having a planning horizon of four,
six, and eight days, respectively. In the bottom line we state the number of times
standard VNS is significantly better than VNS-ILP and vice versa, and the same
for EA and CG-EA. Significantly better results are further underlined, whereat
we used a Wilcoxon rank sum test with an error level of 5% for testing statistical
significance. As can be observed the matheuristics very often yield significantly
better results than their pure metaheuristic counterparts, in fact on up to 80%
of the instances. The relative improvement of CG-EA is even more consistent
than the one of VNS-ILP, which is interesting from a methodical point of view.
However, comparing the absolute results would clearly be in favor of VNS-ILP,
since VNS is also clearly superior to the EA. What should not be neglected is the
longer runtime of the matheuristics due to the “overhead” of the corresponding
exact method. For VNS-ILP the increase in runtime is often negligible, and its
benefit even when compared to the VNS consuming at least the same runtime
is documented in [7] as well as for a somewhat similar setting in [8]. For CG-EA
we also compared the results to additional pure EA runs with 3 · 105 iterations,

1 available at http://web.cba.neu.edu/~msolomon/problems.htm

Matheuristics for the PVRPTW 9

i.e. an increase of 50%, which in contrast results often in (much) more allotted
runtime especially for smaller instances. Nevertheless, CG-EA was still signifi-
cantly better in 13, 8, and 12 cases (instead of 12, 10, and 12 cases with the
shorter EA runs; see the bottom line of the tables) and the prolonged pure EA
did never outperform CG-EA.

Finally we compare the matheuristics to CG-ILP: The latter only is sig-
nificantly better as VNS-ILP for instance p4c102 and as CG-EA for instances
p4r101, p4c102, and p4c104. Essentially, it is only meaningful when the resulting
ILP model is not too large, otherwise its performance deteriorates quickly.

8 Conclusions

We investigated two new variants of matheuristics using the periodic vehicle
routing problem with time windows as a testbed. Two different metaheuristics
were combined with parts of a developed column generation approach: On the
one hand a VNS acts as the sole provider of columns for a set covering model,
realizing a pure metaheuristic column generation. On the other hand the solution
to the LP relaxation of the set covering model, determined by classical column
generation, is successfully exploited in a subsequent EA. Both matheuristics
often yield significantly better results on newly derived instances when compared
to their pure metaheuristic counterparts. They also clearly outperform a column
generation based heuristic. It is to be noted that these matheuristics not only
seem promising for other variants of routing problems, but their concept can
fairly easily be applied to other classes of combinatorial optimization problems
as well.

References

1. Cordeau, J.F., Laporte, G., Mercier, A.: A unified tabu search heuristic for vehicle
routing problems with time windows. Journal of the Operational Research Society
52 (2001) 928–936

2. Pirkwieser, S., Raidl, G.R.: A variable neighborhood search for the periodic vehicle
routing problem with time windows. In Prodhon, C., et al., eds.: Proceedings of
the 9th EU/MEeting on Metaheuristics for Logistics and Vehicle Routing, Troyes,
France (2008)

3. Polacek, M., Hartl, R.F., Doerner, K., Reimann, M.: A variable neighborhood
search for the multi depot vehicle routing problem with time windows. Journal of
Heuristics 10 (2004) 613–627

4. Hemmelmayr, V.C., Doerner, K.F., Hartl, R.F.: A variable neighborhood search
heuristic for periodic routing problems. European Journal of Operational Research
195(3) (2009) 791–802

5. Bräysy, O., Dullaert, W., Gendreau, M.: Evolutionary algorithms for the vehicle
routing problem with time windows. Journal of Heuristics 10(6) (2004) 587–611

6. Gendreau, M., Potvin, J.Y., Bräysy, O., Hasle, G., Løkketangen, A.: Metaheuristics
for the vehicle routing problem and its extensions: A categorized bibliography. [23]
143–169

10 Sandro Pirkwieser and Günther R. Raidl

7. Pirkwieser, S., Raidl, G.R.: Boosting a variable neighborhood search for the pe-
riodic vehicle routing problem with time windows by ILP techniques. In Caserta,
M., Voß, S., eds.: Proceedings of the 8th Metaheuristic International Conference
(MIC 2009), Hamburg, Germany (2009)

8. Pirkwieser, S., Raidl, G.R.: Multiple variable neighborhood search enriched with
ILP techniques for the periodic vehicle routing problem with time windows. In
Blesa, M.J., et al., eds.: Proceedings of Hybrid Metaheuristics – Sixth International
Workshop, HM 2009, Udine, Italy, October 16–17, 2009. Volume 5818 of LNCS.,
Springer (2009) 45–59

9. Schmid, V., Doerner, K.F., Hartl, R.F., Savelsbergh, M.W.P., Stoecher, W.: A
hybrid solution approach for ready-mixed concrete delivery. Transportation Science
43(1) (2009) 70–85

10. Francis, P., Smilowitz, K., Tzur, M.: The period vehicle routing problem with
service choice. Transportation Science 40(4) (2006) 439–454

11. Mourgaya, M., Vanderbeck, F.: Column generation based heuristic for tactical
planning in multi-period vehicle routing. European Journal of Operational Re-
search 183(3) (2007) 1028–1041

12. Francis, P.M., Smilowitz, K.R., Tzur, M.: The period vehicle routing problem and
its extensions. [23] 73–102

13. Raidl, G.R., Puchinger, J.: Combining (integer) linear programming techniques
and metaheuristics for combinatorial optimization. In Blum, C., et al., eds.: Hybrid
Metaheuristics: An Emerging Approach to Optimization. Volume 114 of Studies
in Computational Intelligence. Springer (2008) 31–62

14. Puchinger, J., Raidl, G.R., Pirkwieser, S.: MetaBoosting: Enhancing integer pro-
gramming techniques by metaheuristics. In Maniezzo, V., et al., eds.: Matheuris-
tics: Hybridizing Metaheuristics and Mathematical Programming. Volume 10 of
Annals of Information Systems. Springer (2010) 71–102

15. Desrosiers, J., Lübbecke, M.E.: A primer in column generation. [24] chapter 1 1–32
16. Pirkwieser, S., Raidl, G.R.: A column generation approach for the periodic vehicle

routing problem with time windows. In Scutellà, M.G., et al., eds.: Proceedings of
the International Network Optimization Conference 2009, Pisa, Italy (2009)

17. Irnich, S., Desaulniers, G.: Shortest path problems with resource constraints. [24]
chapter 2 33–65

18. Desaulniers, G., Lessard, F., Hadjar, A.: Tabu search, partial elementarity, and
generalized k-path inequalities for the vehicle routing problem with time windows.
Transportation Science 42(3) (2008) 387–404

19. Hansen, P., Mladenović, N.: Variable neighborhood search. In Glover, F., Kochen-
berger, G., eds.: Handbook of Metaheuristics. Kluwer Academic Publishers, Boston
MA (2003) 145–184

20. Potvin, J.Y., Rousseau, J.M.: An exchange heuristic for routeing problems with
time windows. Journal of the Operational Research Society 46 (1995) 1433–1446

21. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated anneal-
ing. Science 220(4598) (1983) 671–680

22. Alba, E., Cotta, C.: Evolutionary algorithms. In Olariu, S., Zomaya, A.Y., eds.:
Handbook of Bioinspired Algorithms and Applications. Chapman & Hall/CRC
(2006) 3–19

23. Golden, B., et al., eds.: The Vehicle Routing Problem: Latest Advances and New
Challenges. Springer US (2008)

24. Desaulniers, G., et al., eds.: Column Generation. Springer (2005)

Matheuristics for the PVRPTW 11

T
a
b
le

1
.

R
es

u
lt

s
o
f

st
a
n
d
a
rd

a
n
d

h
y
b
ri

d
iz

ed
m

et
h
o
d
s

o
n

d
er

iv
ed

p
er

io
d
ic

S
o
lo

m
o
n

in
st

a
n
ce

s
w

it
h

a
p
la

n
n
in

g
h
o
ri

zo
n

o
f

fo
u
r

d
ay

s.

In
st

a
n

ce
V

N
S

V
N

S
-I

L
P

E
A

C
G

-E
A

C
G

-I
L

P

Id
m

av
g
.

sd
v
.

t[
s]

av
g
.

sd
v
.

t[
s]

av
g
.

sd
v
.

t[
s]

fe
a
s

av
g
.

sd
v
.

t[
s]

fe
a
s

av
g
.

sd
v
.

t[
s]

fe
a
s

p
4
r1

0
1

1
4

4
1
4
1
.0

4
2
2
.9

0
2
2
.6

4
1
1
9
.9

9
2
5
.5

3
2
2
.8

4
1
9
9
.1

4
4
5
.0

0
2
8
.7

3
0

4
1
6
2
.5

4
3
5
.9

2
3
1
.4

3
0

4
1
1
9
.5

4
1
5
.5

6
2
8
.2

3
0

p
4
r1

0
2

1
3

3
7
5
9
.6

1
1
9
.7

6
2
3
.5

3
7
4
7
.5

7
1
3
.2

8
2
4
.5

3
7
8
4
.3

1
3
3
.1

4
2
7
.1

3
0

3
7
8
0
.5

0
2
4
.5

2
3
1
.7

3
0

3
7
7
7
.6

3
2
9
.3

7
3
0
.0

3
0

p
4
r1

0
3

1
0

3
1
9
1
.5

9
1
3
.8

0
2
4
.2

3
1
8
8
.4

1
1
1
.6

2
2
6
.1

3
2
4
8
.0

5
3
1
.5

0
2
6
.9

3
0

3
2
1
7
.3

1
2
4
.8

4
3
3
.9

3
0

3
2
5
8
.9

2
4
4
.1

3
3
3
.4

3
0

p
4
r1

0
4

7
2
6
1
3
.8

3
1
6
.0

3
2
7
.2

2
5
9
9
.5

6
1
0
.0

7
3
0
.1

2
6
9
1
.6

6
3
6
.4

8
2
8
.7

3
0

2
6
7
3
.0

9
2
9
.8

5
4
0
.7

3
0

2
7
8
0
.1

0
6
4
.7

0
4
0
.2

2
1

p
4
r1

0
5

1
1

3
6
9
7
.7

8
1
4
.0

8
2
4
.0

3
6
7
9
.8

8
1
5
.4

6
3
7
.2

3
7
7
7
.9

0
3
4
.1

0
2
6
.7

3
0

3
7
4
5
.0

0
2
8
.8

2
2
9
.7

3
0

3
8
0
1
.9

9
3
3
.8

0
2
9
.3

3
0

p
4
c1

0
1

1
0

2
9
1
0
.7

2
0
.5

3
2
2
.1

2
9
1
0
.1

3
0
.3

8
2
3
.3

2
9
1
8
.4

7
1
2
.0

2
3
0
.8

3
0

2
9
2
1
.0

8
2
2
.1

1
3
5
.0

3
0

2
9
1
7
.9

1
6
.3

2
1
1
.9

3
0

p
4
c1

0
2

8
2
9
6
3
.5

0
3
4
.5

9
2
4
.7

2
9
6
0
.8

0
3
2
.1

6
2
6
.3

3
0
3
2
.2

3
4
9
.4

1
3
0
.1

3
0

2
9
6
3
.2

8
4
2
.3

2
4
4
.7

3
0

2
9
2
5
.0

1
4
9
.3

3
4
1
.2

3
0

p
4
c1

0
3

7
2
8
0
6
.3

9
4
0
.8

1
2
7
.5

2
8
0
1
.5

9
3
7
.2

6
3
0
.5

2
8
7
4
.9

9
5
4
.8

0
3
1
.0

3
0

2
8
2
5
.0

1
4
2
.3

3
4
3
.9

3
0

2
9
7
3
.9

4
8
9
.6

5
4
3
.6

1
8

p
4
c1

0
4

7
2
4
8
1
.5

8
1
8
.4

5
2
6
.4

2
4
7
4
.1

9
2
0
.8

5
3
1
.2

2
5
4
2
.4

6
2
4
.3

9
2
9
.2

3
0

2
5
1
8
.9

0
3
2
.9

0
4
6
.7

3
0

2
4
7
9
.8

0
2
4
.7

6
4
6
.3

3
0

p
4
c1

0
5

8
3
0
2
5
.6

7
8
4
.3

7
2
4
.3

2
9
9
7
.4

4
5
7
.1

6
2
4
.8

3
0
7
2
.7

9
8
6
.0

4
2
9
.6

3
0

2
9
7
7
.4

5
5
4
.8

2
3
8
.1

3
0

2
9
9
1
.2

4
7
7
.1

3
3
7
.6

3
0

p
4
rc

1
0
1

1
0

4
0
0
3
.7

7
1
2
.2

2
2
5
.6

3
9
8
0
.5

1
1
2
.0

4
2
6
.2

4
0
8
1
.7

7
4
4
.3

6
2
6
.9

3
0

4
0
4
7
.8

7
3
2
.4

4
3
1
.4

3
0

4
0
8
7
.8

0
4
3
.8

0
3
1
.0

3
0

p
4
rc

1
0
2

1
0

3
8
1
4
.0

2
1
9
.9

3
2
5
.3

3
7
9
5
.8

7
1
5
.9

6
2
6
.0

3
9
0
4
.3

3
5
6
.0

9
2
8
.3

3
0

3
8
6
9
.2

1
5
3
.2

8
3
2
.1

3
0

3
8
7
0
.0

2
3
5
.3

0
3
1
.6

3
0

p
4
rc

1
0
3

8
3
5
0
0
.8

4
2
9
.9

0
2
7
.5

3
4
8
5
.3

3
2
6
.1

1
2
9
.0

3
5
9
6
.0

8
4
5
.3

2
2
8
.2

2
9

3
5
4
9
.1

3
3
3
.5

4
3
4
.9

2
9

3
6
7
0
.7

3
6
0
.1

7
3
4
.5

1
8

p
4
rc

1
0
4

7
3
0
6
9
.4

1
1
6
.9

0
2
7
.9

3
0
4
7
.9

0
2
3
.5

4
3
1
.9

3
1
4
2
.7

9
3
7
.9

9
2
9
.4

3
0

3
1
1
4
.5

1
3
6
.4

6
3
9
.4

3
0

3
1
8
5
.1

4
4
2
.4

6
3
8
.9

2
1

p
4
rc

1
0
5

1
1

4
0
0
8
.8

0
2
5
.5

9
2
4
.5

3
9
8
8
.6

8
2
4
.2

1
2
6
.1

4
0
5
2
.7

8
4
2
.0

9
2
8
.7

3
0

4
0
4
0
.3

2
2
2
.1

1
3
0
.8

3
0

4
0
4
7
.3

9
4
0
.2

9
3
0
.3

3
0

#
si

g
n

.
b

et
te

r
0

1
1

0
1
2

12 Sandro Pirkwieser and Günther R. Raidl

T
a
b
le

2
.

R
esu

lts
o
f

sta
n
d
a
rd

a
n
d

h
y
b
rid

ized
m

eth
o
d
s

o
n

d
eriv

ed
p

erio
d
ic

S
o
lo

m
o
n

in
sta

n
ces

w
ith

a
p
la

n
n
in

g
h
o
rizo

n
o
f

six
d
ay

s.

In
sta

n
ce

V
N

S
V

N
S

-IL
P

E
A

C
G

-E
A

C
G

-IL
P

Id
m

av
g
.

sd
v
.

t[s]
av

g
.

sd
v
.

t[s]
av

g
.

sd
v
.

t[s]
fea

s
av

g
.

sd
v
.

t[s]
fea

s
av

g
.

sd
v
.

t[s]
fea

s

p
6
r1

0
1

1
4

5
4
1
8
.7

6
1
0
.4

8
2
5
.9

5
4
0
4
.8

1
1
9
.5

5
2
7
.2

5
4
7
1
.2

3
3
3
.2

4
3
9
.7

3
0

5
4
5
3
.0

7
3
2
.6

0
4
1
.4

3
0

5
5
0
5
.0

8
4
2
.9

0
4
1
.0

3
0

p
6
r1

0
2

1
2

5
2
7
6
.0

7
2
3
.7

4
2
7
.0

5
2
3
9
.8

9
1
5
.2

9
4
0
.3

5
3
1
5
.0

3
3
1
.4

3
3
6
.8

3
0

5
3
1
8
.8

7
2
5
.7

6
4
3
.0

3
0

5
4
4
5
.3

5
4
0
.3

9
4
2
.6

3
0

p
6
r1

0
3

9
4
0
3
5
.1

3
2
9
.3

4
2
8
.8

4
0
0
4
.7

4
2
2
.0

0
3
6
.8

4
1
4
9
.5

7
4
1
.1

8
3
6
.9

3
0

4
1
2
0
.3

7
3
4
.4

6
4
8
.5

3
0

4
2
5
4
.4

0
6
7
.5

8
4
8
.1

3
0

p
6
r1

0
4

8
3
3
8
9
.6

1
1
6
.3

0
2
9
.5

3
3
7
1
.9

0
1
6
.1

0
4
0
.9

3
4
6
5
.4

6
2
8
.2

0
3
7
.1

3
0

3
4
4
1
.5

5
2
2
.0

4
5
3
.1

3
0

3
6
6
5
.0

1
6
2
.4

3
5
2
.6

3
0

p
6
r1

0
5

9
4
3
5
5
.0

2
2
7
.9

0
2
8
.3

4
3
4
8
.8

8
3
8
.6

2
3
2
.3

4
5
1
4
.9

5
4
6
.5

9
3
5
.8

3
0

4
4
5
7
.9

3
4
8
.4

6
4
4
.0

3
0

4
6
4
7
.5

9
1
1
2
.4

3
4
3
.6

2
8

p
6
c1

0
1

7
4
0
8
4
.6

7
3
7
.4

9
3
0
.1

4
0
8
4
.7

1
4
0
.4

5
2
9
.9

4
1
9
2
.2

4
7
7
.0

9
3
6
.8

3
0

4
1
6
2
.9

2
6
8
.3

3
5
0
.0

3
0

4
5
9
2
.3

8
1
9
4
.2

3
4
9
.6

4
p

6
c1

0
2

7
3
8
8
8
.9

6
2
1
.3

4
2
9
.7

3
8
8
4
.6

2
2
2
.6

5
3
2
.8

3
9
6
0
.8

9
5
6
.3

6
3
8
.9

3
0

3
9
5
0
.5

4
6
5
.9

2
5
5
.2

3
0

4
4
1
4
.4

8
2
0
8
.8

5
5
4
.7

1
9

p
6
c1

0
3

6
3
6
1
6
.6

1
4
5
.5

5
3
3
.8

3
6
0
9
.8

3
3
8
.1

0
3
7
.8

3
7
8
8
.6

8
6
3
.9

5
3
7
.3

3
0

3
7
1
9
.9

5
8
2
.2

0
5
5
.3

3
0

4
1
9
1
.7

5
1
7
0
.1

1
5
4
.8

1
3

p
6
c1

0
4

6
3
2
9
5
.3

2
1
8
.4

0
3
2
.8

3
2
8
5
.3

9
1
8
.7

8
4
0
.2

3
4
5
0
.3

1
5
4
.1

9
3
6
.5

3
0

3
4
2
2
.2

2
5
6
.0

5
5
4
.5

3
0

3
7
6
6
.9

4
9
2
.5

5
5
4
.0

1
8

p
6
c1

0
5

7
4
1
6
4
.3

9
6
6
.0

1
2
9
.9

4
1
7
3
.8

6
8
3
.1

4
3
0
.8

4
2
8
5
.7

9
8
4
.2

7
3
7
.1

3
0

4
1
8
1
.5

0
5
6
.1

5
5
3
.3

3
0

4
5
5
1
.3

9
1
8
7
.1

9
5
2
.9

1
3

p
6
rc1

0
1

1
0

5
8
4
6
.3

2
2
5
.1

1
2
7
.4

5
8
2
6
.9

8
1
9
.2

0
3
0
.6

5
9
3
2
.4

9
4
6
.3

8
3
4
.6

3
0

5
9
0
9
.6

3
4
0
.8

7
3
9
.4

3
0

6
1
2
8
.0

2
6
7
.0

0
3
9
.0

3
0

p
6
rc1

0
2

9
5
4
8
3
.1

5
2
7
.0

8
2
8
.2

5
4
7
3
.9

2
3
3
.2

0
3
1
.4

5
5
7
7
.5

0
5
4
.7

2
3
6
.0

3
0

5
5
5
3
.4

7
5
2
.5

4
4
2
.3

3
0

5
7
5
6
.8

3
8
3
.1

9
4
1
.8

3
0

p
6
rc1

0
3

7
4
3
7
0
.8

5
2
6
.0

7
3
2
.2

4
3
5
1
.6

5
2
1
.1

6
3
4
.3

4
5
2
1
.5

7
5
0
.3

4
3
5
.4

3
0

4
4
7
6
.4

4
4
5
.0

3
5
0
.5

3
0

4
6
9
9
.2

7
6
7
.3

0
5
0
.0

2
3

p
6
rc1

0
4

7
4
1
4
7
.6

9
2
6
.4

5
3
1
.4

4
1
3
3
.3

8
2
5
.9

8
4
0
.8

4
3
0
6
.3

0
5
2
.8

3
3
6
.1

3
0

4
2
6
7
.6

7
4
1
.2

6
5
0
.5

3
0

4
4
3
6
.6

9
8
5
.2

2
4
9
.9

3
0

p
6
rc1

0
5

9
5
3
4
0
.3

0
2
2
.4

6
2
8
.9

5
3
2
3
.0

0
2
1
.9

2
3
0
.6

5
4
6
7
.3

9
5
8
.0

6
3
5
.6

3
0

5
4
5
0
.1

0
4
4
.8

1
4
2
.3

3
0

5
5
8
2
.2

1
7
0
.6

6
4
1
.8

3
0

#
sig

n
.

b
etter

0
9

0
1
0

Matheuristics for the PVRPTW 13

T
a
b
le

3
.

R
es

u
lt

s
o
f

st
a
n
d
a
rd

a
n
d

h
y
b
ri

d
iz

ed
m

et
h
o
d
s

o
n

d
er

iv
ed

p
er

io
d
ic

S
o
lo

m
o
n

in
st

a
n
ce

s
w

it
h

a
p
la

n
n
in

g
h
o
ri

zo
n

o
f

ei
g
h
t

d
ay

s.

In
st

a
n
ce

V
N

S
V

N
S
-I

L
P

E
A

C
G

-E
A

C
G

-I
L

P

Id
m

av
g
.

sd
v
.

t[
s]

av
g
.

sd
v
.

t[
s]

av
g
.

sd
v
.

t[
s]

fe
a
s

av
g
.

sd
v
.

t[
s]

fe
a
s

av
g
.

sd
v
.

t[
s]

fe
a
s

p
8
r1

0
1

1
1

6
5
7
4
.9

2
3
6
.5

5
2
6
.2

6
5
5
7
.7

8
3
7
.2

6
2
9
.8

6
7
1
1
.5

0
4
6
.3

8
4
3
.8

2
1

6
6
9
6
.8

9
7
5
.0

6
5
3
.5

2
7

6
8
2
0
.3

3
6
8
.9

6
5
3
.0

3
0

p
8
r1

0
2

1
0

6
1
9
3
.6

2
9
9
.2

4
2
8
.3

6
2
0
5
.4

1
4
5
.6

6
3
0
.6

6
3
0
0
.3

3
4
9
.1

9
4
4
.7

2
0

6
3
1
3
.6

5
7
0
.2

0
6
0
.8

2
2

6
5
0
8
.5

9
1
2
5
.3

4
6
0
.4

2
9

p
8
r1

0
3

8
4
8
0
9
.7

3
2
6
.5

3
3
1
.9

4
8
0
6
.6

9
3
4
.2

4
3
6
.4

4
9
9
9
.8

7
6
7
.0

8
4
4
.2

3
0

4
9
3
0
.8

3
4
3
.1

4
6
1
.4

3
0

5
2
5
0
.3

9
1
1
4
.2

6
6
1
.0

2
9

p
8
r1

0
4

7
4
4
9
5
.3

6
2
8
.2

9
3
2
.8

4
4
7
7
.2

0
2
8
.8

9
4
3
.0

4
6
6
7
.3

9
5
2
.7

4
4
4
.3

3
0

4
5
9
8
.7

7
6
4
.2

3
6
2
.4

3
0

5
1
8
1
.3

3
1
1
7
.1

1
6
1
.9

2
6

p
8
r1

0
5

9
5
6
0
0
.7

1
3
9
.3

4
2
8
.5

5
5
8
5
.2

5
3
7
.5

9
3
5
.6

5
8
1
7
.4

3
6
9
.1

3
4
3
.1

3
0

5
7
4
4
.0

9
5
3
.3

6
5
8
.2

3
0

6
0
1
3
.3

8
1
0
5
.6

5
5
7
.7

2
7

p
8
c1

0
1

7
4
7
8
1
.0

5
4
1
.9

1
3
0
.2

4
7
8
6
.8

8
3
9
.1

1
3
2
.6

4
9
9
1
.1

5
1
1
9
.7

7
4
4
.3

3
0

4
9
0
0
.8

4
7
5
.4

1
6
2
.0

3
0

5
1
8
5
.6

7
1
3
1
.6

6
6
1
.5

1
9

p
8
c1

0
2

6
5
1
6
9
.8

8
7
1
.0

0
3
7
.8

5
1
8
8
.8

0
7
6
.6

8
3
9
.4

5
4
1
0
.2

5
1
2
1
.1

6
4
4
.7

3
0

5
3
0
8
.6

9
1
1
4
.2

7
6
4
.9

3
0

6
4
4
2
.4

0
0
.0

0
6
4
.5

1
p
8
c1

0
3

5
4
7
9
4
.7

0
5
0
.1

8
3
5
.9

4
7
8
8
.8

6
3
6
.4

9
4
0
.5

5
0
2
9
.6

4
1
0
5
.6

3
4
4
.3

3
0

4
9
6
5
.9

5
6
9
.9

2
6
2
.4

3
0

6
4
2
8
.7

6
2
7
2
.0

2
6
1
.9

1
3

p
8
c1

0
4

8
4
8
4
5
.0

2
7
1
.0

6
2
6
.4

4
8
5
3
.5

7
6
5
.8

8
3
7
.3

5
2
3
4
.1

8
7
9
.3

0
4
1
.5

3
0

5
2
0
2
.0

5
9
1
.4

2
6
0
.4

3
0

5
5
9
2
.4

8
2
5
4
.2

8
5
9
.9

5
p
8
c1

0
5

7
5
2
6
1
.7

9
5
8
.3

2
3
0
.9

5
2
3
7
.8

1
4
2
.5

8
3
3
.4

5
4
3
4
.1

7
9
1
.1

3
4
5
.6

3
0

5
3
8
4
.9

5
9
5
.3

6
6
1
.7

3
0

6
2
9
3
.3

6
2
5
4
.7

1
6
1
.2

1
4

p
8
rc

1
0
1

9
7
0
7
5
.8

0
7
5
.2

0
2
8
.5

7
0
3
5
.3

7
6
4
.9

8
3
1
.3

7
2
2
5
.0

4
9
8
.4

0
4
3
.2

3
0

7
1
3
4
.8

4
8
0
.0

9
5
5
.1

2
9

7
4
3
2
.9

3
1
5
2
.9

5
5
4
.6

2
0

p
8
rc

1
0
2

8
5
9
5
1
.3

6
4
7
.7

2
2
9
.9

5
9
5
4
.4

2
6
7
.2

7
3
2
.2

6
2
4
9
.9

5
1
0
2
.2

1
4
1
.8

3
0

6
1
6
3
.0

2
7
6
.3

7
6
0
.5

2
8

6
3
9
2
.3

3
1
4
9
.0

2
6
0
.1

2
3

p
8
rc

1
0
3

7
5
5
6
0
.4

2
3
4
.8

9
3
3
.1

5
5
5
2
.4

3
3
3
.6

9
3
4
.5

5
8
4
7
.7

9
9
5
.5

4
4
4
.7

3
0

5
7
7
8
.0

0
7
3
.8

0
6
1
.7

3
0

6
1
2
6
.2

4
1
2
8
.8

2
6
1
.3

8
p
8
rc

1
0
4

6
5
0
8
0
.8

4
3
5
.8

2
3
2
.1

5
0
7
1
.3

9
3
8
.9

6
3
8
.0

5
3
0
1
.0

8
5
2
.5

3
4
3
.2

3
0

5
2
7
7
.2

3
4
6
.5

9
6
0
.3

3
0

5
8
7
3
.2

0
1
4
4
.2

7
5
9
.9

2
5

p
8
rc

1
0
5

9
6
3
8
3
.6

0
4
3
.4

9
2
8
.6

6
3
5
8
.2

4
3
0
.2

8
3
0
.8

6
6
0
6
.7

8
7
9
.6

9
4
2
.9

3
0

6
5
3
0
.3

6
6
2
.9

4
5
8
.5

3
0

6
7
2
7
.7

8
1
2
0
.4

3
5
8
.0

3
0

#
si

g
n
.

b
et

te
r

0
4

0
1
2

