
Multiple Variable Neighborhood Search
Enriched with ILP Techniques for the Periodic
Vehicle Routing Problem with Time Windows?

Sandro Pirkwieser and Günther R. Raidl

Institute of Computer Graphics and Algorithms
Vienna University of Technology, Vienna, Austria
{pirkwieser|raidl}@ads.tuwien.ac.at

Abstract. In this work we extend a VNS for the periodic vehicle rout-
ing problem with time windows (PVRPTW) to a multiple VNS (mVNS)
where several VNS instances are applied cooperatively in an intertwined
way. The mVNS adaptively allocates VNS instances to promising areas
of the search space. Further, an intertwined collaborative cooperation
with a generic ILP solver applied on a suitable set covering ILP formu-
lation with this mVNS is proposed, where the mVNS provides the exact
method with feasible routes of the actual best solutions, and the ILP
solver takes a global view and seeks to determine better feasible route
combinations. Experimental results were conducted on newly derived in-
stances and show the advantage of the mVNS as well as of the hybrid
approach. The latter yields for almost all instances a statistically signifi-
cant improvement over solely applying the VNS in a standard way, often
requiring less runtime, too.

1 Introduction

The periodic vehicle routing problem with time windows (PVRPTW) is a general-
ized variant of the classical vehicle routing problem with time windows (VRPTW)
where customers must be served several times in a given planning period instead
of only once on a single day. Applications exist in many real-world scenarios as
in courier services, grocery distribution, or waste collection.

The PVRPTW is defined on a complete directed graph G = (V,A) with
V = {0, 1, . . . , n} being the set of vertices and A = {(i, j) | i, j ∈ V, i 6= j}
the set of arcs. A planning horizon of t days, referred to by T = {1, . . . , t}, is
considered. Vertex 0 represents the depot with time window [e0, l0] at which are
based m vehicles having capacities Q1, . . . , Qm and maximal daily working times
D1, . . . , Dm. Each vertex i ∈ VC , with VC = V \ {0}, corresponds to a customer
and has associated a demand qi ≥ 0, a service duration di ≥ 0, a time window
[ei, li], a service frequency fi, and a set Ci ⊆ T of allowed combinations of visit
days. Each arc (i, j) ∈ A has assigned a travel time (cost) cij ≥ 0. The challenge

? This work is supported by the Austrian Science Fund (FWF) under contract number
P20342-N13.



2 Sandro Pirkwieser and Günther R. Raidl

consists of selecting one visit combination per customer and finding (at most)
m vehicle routes on each of the t days on G such that
– each route starts and ends at the depot,
– each customer i belongs to fi routes over the planning horizon,
– for each vehicle k = 1, . . . ,m, the total demand of each route does not exceed

capacity limit Qk, and its daily duration does not exceed the maximal daily
working time Dk,

– the service at each customer i begins in the interval [ei, li] and every
vehicle leaves the depot and returns to it in the interval [e0, l0], and

– the total travel cost of all vehicles is minimized.
Arriving before ei at a customer i implies a waiting time until this start of the
time window (without further cost). Arriving later than li is not allowed, i.e.
we assume hard time window constraints. In this work, we further assume a
homogeneous vehicle fleet with Q1, . . . , Qm = Q and D1, . . . , Dm = D.

This article introduces a multiple variable neighborhood search (VNS) vari-
ant, where several cooperative VNS instances are running in an intertwined way.
To obtain even better results, we further consider an integer linear programming
(ILP) approach based on a set covering formulation and a column generation
algorithm and hybridize it in a collaborative way with the multiple VNS.

We refer to related work in Section 2. The variable neighborhood search and
its multiple variant are described in Section 3, the ILP formulation in Section 4,
and the proposed hybrid method in Section 5. Experimental results are given in
Section 6, and Section 7 finishes the work with concluding remarks.

2 Related Work

The PVRPTW was first addressed in [1], where a tabu search algorithm is de-
scribed for it. In our previous work [2] we suggested a variable neighborhood
search (VNS), outperforming the former tabu search. Related VNS metaheuris-
tics exist for the multi-depot VRPTW [3] and the periodic vehicle routing prob-
lem (PVRP) [4]. Earlier results of our current work, where only a standard VNS
(i.e. a single search trajectory) has been combined with a column generation
approach and a different cooperation mechanism was used, have been described
in [5]. We are not aware of other exact or hybrid methods for the PVRPTW,
yet similar PVRPs are dealt with in [6] and [7].

A more general survey of different PVRP variants and solution methods is
given in [8]. A similar idea as the one followed in this work was recently applied
to a ready-mixed concrete delivery problem [9]. Our work also extends this by
highlighting further aspects of this kind of hybridization. In a somewhat related
work Danna and Le Pape [10] apply an ILP solver for deriving improved integer
solutions during a branch-and-price procedure. For a more general overview on
ILP/metaheuristic hybrids we refer to [11].

Although we do not explicitly consider parallelization in this work, our in-
tertwined approach shares features with the replicated parallel VNS variant in-
troduced among other approaches in [12] and also applied in [13].



Multiple VNS Enriched with ILP Techniques for the PVRPTW 3

3 VNS for the PVRPTW

Variable neighborhood search (VNS) [14] is a metaheuristic that applies random
steps in neighborhoods with growing size for diversification, referred to as shak-
ing, and uses an embedded local search component for intensification. It has been
successfully applied to a wide range of combinatorial optimization problems.In
the following we give a rather short overview on our VNS for the PVRPTW as
it has been already described in detail in [2].

To smooth the search space, the VNS relaxes the vehicle load, route duration,
and time window restrictions and adds penalties corresponding to the excess of
these constraints to the cost function. (All three kinds of penalty terms are
weighted by a constant factor of 100.) The creation of the initial solution was
kept quite simple by selecting a single visit day combination per customer at
random and afterwards partitioning the customers at each day into routes. This
partitioning is performed by sorting the customers according to the angles they
make with the depot—ties are broken using the center of the time windows
(ei + li)/2—and inserting the customers in this order and a greedy fashion into
at most m routes. This insertion is performed in such a way that all but the last
routes of each day will comply to the load and duration constraints, while time
window constraints might be violated by all routes. The procedure is similar to
those introduced in [1].

In the shaking phase we utilize three different neighborhood structures, each
with six moves of increasing perturbation size, yielding a total of 18 shaking
neighborhoods (i.e. kmax = 18) : (i) randomly changing up to six visit com-
binations with greedy insertion for the new visit days, whereas we also allow
reassigning the same visit combination, (ii) moving a random segment of up to
six customers of a route to another one on the same day, and (iii) exchanging
two random segments of up to six customers between two routes on the same
day. In the latter two cases the segments are occasionally reversed. In this work
we only consider a fixed shaking neighborhood order.

For intensification we apply the well-known 2-opt intra-route exchange pro-
cedure in a best improvement fashion, only considering routes changed during
shaking. Additionally each new incumbent solution is subject to a 2-opt∗ inter-
route exchange heuristic [15]. Hereby for each pair of routes of the same day all
possible exchanges of the routes’ end segments are tried.

To enhance the overall VNS performance not only better solutions are ac-
cepted, but sometimes also solutions having a worse objective value. This is
done in a systematic way using the Metropolis criterion like in simulated an-
nealing [16]. A linear cooling scheme is used in a way such that the acceptance
rate of worse solutions is nearly zero in the last iterations.

3.1 Multiple VNS

We extend the traditional VNS, which only has a single search trajectory, by
considering multiple cooperating VNS instances performed in an intertwined
way. Thus, our concern here is to investigate the possible benefits of a sequential



4 Sandro Pirkwieser and Günther R. Raidl

Algorithm 1: Multiple VNS: #VNS refers to the number of VNS in-
stances, #sec to the number of sections per VNS instance, and itermax is
the total number of allowed iterations.
for i = 1 to #VNS do

initialize VNS[i];
itersec ← ditermax/(#VNS ·#sec)e;
for sec = 1 to #sec do

for i = 1 to #VNS do
execute VNS[i] for itersec iterations;

x← best solution of all VNS instances;
Replace solution of worst VNS instance by x;

Return best solution of all VNS instances;

cooperative multistart search. This new VNS variant is denoted as multiple VNS
(mVNS).

Although it would be straight-forward to parallelize this approach, paral-
lelization is not the issue we want to focus on here. A somewhat related approach
is replicated parallel VNS [12, 13], in which multiple VNS instances are performed
independently in parallel; the overall best solution is finally returned. In this
case, the gain in performance is (almost) entirely due to the parallelization. In
contrast, we aim at achieving better results within the same total CPU-time as
required by a simple VNS run.

The multiple VNS algorithm is shown in Algorithm 1. We initialize each VNS
instance independently by performing the method for creating a random solution
100 times and taking the best solution. This way each VNS instance most likely
starts with a different initial solution. In the following the VNS instances are
executed section-wise by setting an appropriate iteration limit given the total
iteration limit and the number of sections. After each block of section-wise ex-
ecutions the actual best solution is determined and replaces the solution of the
worst VNS instance. The latter is the cooperative part, where, considered locally,
a worse performing VNS is supported by the best one, and seen from a global per-
spective, the search is intensified in the neighborhood of the so far best solution.

In some sense VNS instances can be said to be adaptively allocated to promis-
ing areas of the search space: If a solution is best after one iteration of the outer
loop, one additional search trajectory is started from it. If the solution remains
the incumbent over further iterations, more VNS instances are restarted from
this point and a corresponding stronger intensification takes place. If, however,
a new incumbent is found, no further VNS instances will be restarted from the
previous one. Of course, in the unlucky event of a very captious local optimum
this behavior could lead to a situation where all VNS instances are restarted
from the same solution and no further progress is achieved, though this would
be no worse than in the single VNS instance case.



Multiple VNS Enriched with ILP Techniques for the PVRPTW 5

In Section 6 we will experimentally compare this multiple VNS to a standard
VNS execution and see the advantages w.r.t. final solution quality. The next
section introduces a column generation based ILP approach for the PVRPTW
problem with which we hybridize the multiple VNS in Section 5 to achieve even
better results.

4 Set Covering ILP Model for the PVRPTW

We express the PVRPTW by the following set covering model:

min
∑
τ∈T

∑
ω∈Ω

γω χωτ (1)

s.t.
∑
r∈Ci

yir ≥ 1 ∀i ∈ VC (2)

∑
ω∈Ω

χωτ ≤ m ∀τ ∈ T (3)∑
ω∈Ω

αiω χωτ −
∑
r∈Ci

βirτ yir ≥ 0 ∀i ∈ VC ; ∀τ ∈ T (4)

yir ∈ {0, 1} ∀i ∈ VC ; ∀r ∈ Ci (5)
χωτ ∈ {0, 1} ∀ω ∈ Ω; ∀τ ∈ T (6)

The set of all feasible routes (satisfying the first, third, and fourth condition
from our problem definition in Section 1) visiting a subset of customers is denoted
by Ω. Obviously, this set is exponentially large w.r.t. the instance size. For each
route ω ∈ Ω, let γω be the corresponding costs. We introduce binary variables
χωτ indicating whether or not route ω is used on day τ , ∀ω ∈ Ω, τ ∈ T .
Furthermore, for each customer i ∈ VC , binary variables yir indicate whether or
not visit combination r ∈ Ci is chosen. The objective function (1) corresponds
to the total costs of all selected routes. Cover constraints (2) guarantee that at
least one visit day combination is selected per customer, fleet constraints (3)
restrict the number of daily routes to not exceed the available vehicles m, and
visit constraints (4) link the routes and the visit combinations, whereas αiω and
βirτ are binary constants indicating whether or not route ω visits customer i
and if day τ belongs to visit combination r ∈ Ci of customer i, respectively.

Due to the huge amount of variables it is not possible to directly solve this
ILP formulation for instances of practical size. Column generation, however, pro-
vides a reasonable way to approach such situations [17]: One starts with a small
set of initial variables (routes, corresponding to columns in the matrix notation
of the ILP) and iteratively extends this set by adding potentially improving vari-
ables. In each iteration, the linear programming (LP) relaxation of this reduced
problem is (re-)solved in order to finally obtain the solution to the whole LP and
thus a lower bound for the original ILP.

This procedure can in principle be combined with branch-and-bound to de-
rive integer solutions, too (and eventually prove their optimality). However, this



6 Sandro Pirkwieser and Günther R. Raidl

start

better solutions by combining available routes

model/solver
I L P

mVNS/ILP Hybrid

multiple VNS

actual best solution

feasible routes of current solutions

Fig. 1. Information exchange between multiple VNS and the ILP model/solver.

is another line of research followed by us which turns out to be applicable in a
reasonable time to relatively small instances only (roughly about 30 customers
at the time of writing). Here, we use the multiple VNS as the sole provider of
columns for the set covering model, and restricted ILPs are solved via the general
purpose ILP solver CPLEX. This hybrid method is explained in the next section.

5 Hybridizing the Multiple VNS with the ILP Approach

The motivation for the hybrid method is to exploit feasible routes of VNS solu-
tions to derive a new and better solution by applying an ILP solver on the set
covering ILP model of Section 4 enriched by these routes. Therefore a pool of
solutions’ routes is gathered at certain times and provided to the ILP model.
This ILP is solved by a branch-and-bound based generic ILP solver, gradually
fixing the visit combination (5) and route variables (6). A similar approach was
introduced in [9], where the authors highlight the “global view” property of such
an exact model. For a set of solutions’ routes the ILP solver might be able to
derive a more favorable combination and provide a better (less costly) solution
in this way. Obviously the potential of the ILP solver depends on the routes
contained in the model since it is neither able to alter routes nor to create some
on its own. Hence it is crucial to provide (i) a suitable amount of routes, (ii)
cost-effective routes, and (iii) diverse enough routes. Adding not enough or only
weak routes usually will prevent the ILP solver from finding a better solution
at all; on the other hand, a too large set naturally increases the runtime, which
might also prevent finding better solutions quickly enough in case a time limit
is given. Therefore routes to be added to the model must be carefully selected.

We apply the following hybrid scheme, which can be regarded an intertwined
collaborative cooperation [11]; see Figure 1 and Algorithm 2. Concerning the
hybridization with the multiple VNS a natural and suitable way is to apply
the ILP solver after a block of section-wise executions. This way the number of
solutions is given by the number of VNS instances, from which we use the actual
best solutions. Due to different search trajectories these solutions’ routes are



Multiple VNS Enriched with ILP Techniques for the PVRPTW 7

assumed to be diverse enough. Hence, conditions (i)–(iii) are fulfilled. Contrary
to [9] we restrict ourselves to the actual best solutions, but we have more VNS
instances available. The ILP solver is allotted the same amount of CPU-time
than the multiple VNS.

The application of the ILP solver can in some way be regarded as a recom-
bination operator taking into account all available solutions provided by the
“population” of the VNS instances. In case a solution is not feasible as a whole,
its feasible routes are added anyway, whereas the ILP solver is only applied if
at least one feasible solution exists. An additional point of concern is the route
injection scheme: It is possible to either add the route for the corresponding day
only or for all days. The latter scheme would produce significantly larger ILP
models (of factor t) which might yield better solutions at the expense of longer
runtimes to solve the ILP model. However, preliminary results as well as results
in our previous work [5] suggest to inject routes for the corresponding day only.
Further, the ILP solver is always initialized with the current best solution to
speed up the process.

If the ILP solver is able to improve on the current best solution this new
solution is transferred to the multiple VNS, where as usual the solution of the
worst VNS instance is replaced. Before such a transfer eventually over-covered
solutions are repaired by choosing exactly one visit combination (the first active)
and omitting customers from following routes if they are already covered or do
not need to be visited on this day. This over-covering might happen since we use
a set covering model. In contrast, a set partitioning model (derived by turning
inequalities (2) and (4) into equalities) would yield only feasible solutions but at
the same time exclude many potentially improving combinations. Finally, before
injecting this solution the previously mentioned 2-opt∗ improvement procedure
is also applied to it. In case routes were altered during this transfer process,
corresponding new columns are also added to the ILP model.

There are also two options regarding the lifetime of the routes added to
the ILP model: Either we only consider the actual solutions’ routes, i.e. they are
discarded afterwards, or we keep all inserted routes and the ILP model gradually
grows, i.e. realizing a long term memory. However, it is clear that a model of
continuously increasing size in general demands more and more computation
time to be solved, which could in turn lead to worse solutions when setting a
time limit as in our case although the larger search space might also contain
better solutions. If routes are kept then the ILP solver is only applied if non-
existing routes could be added after a multiple VNS section. Both variants are
examined in Section 6.

6 Experimental Results

The algorithms have been implemented in C++, compiled with GCC 4.1 and
executed on a 2.83 GHz Intel Core2 Quad Q9550 with 8 GB RAM. We derived
new PVRPTW instances from the Solomon VRPTW benchmark instances1 by
1 available at http://web.cba.neu.edu/~msolomon/problems.htm



8 Sandro Pirkwieser and Günther R. Raidl

Algorithm 2: Multiple VNS / ILP Hybrid: #VNS refers to the number
of VNS instances, #sec to the number of sections per VNS instance and
to the maximal number of ILP solver applications, and itermax is the total
number of allowed iterations.
Ω′ ← ∅; // start with empty model
for i = 1 to #VNS do

initialize VNS[i];
itersec ← ditermax/(#VNS ·#sec)e;
for sec = 1 to #sec do

Ω′sec ← ∅;
for i = 1 to #VNS do

execute VNS[i] for itersec iterations;
add VNS[i] solutions’ routes to Ω′sec; // gather columns

x∗ ← actual best solution;
Ω′ ← Ω′ ∪Ω′sec; // enrich ILP model
x← apply ILP solver on Ω′, initialized with x∗;
Replace solution of worst VNS instance by x;

Return best solution of all VNS instances;

evenly assigning the possible visit combinations to the customers at random. We
did so for the first five instances of type random (R), clustered (C), and mixed
random and clustered (RC) for a planning horizon of four (t = 4) and six days
(t = 6), denoted by p4 and p6, respectively. For a planning horizon of four days
the customers need to be visited either once, two, or four times, for a planning
horizon of six days once, two, three, or six times. The number of vehicles m
was altered (reduced) in such a way that few or none empty routes occur in
feasible solutions, yet it is not too hard to find feasible solutions quite early
in the solution process. All instances contain 100 customers and the capacity
constraint was left untouched.

For the standard VNS we set an iteration limit of either 106 or 2 · 106,
an initial temperature of 10 and apply linear cooling every 100 iterations. The
multiple VNS as well as the mVNS/ILP hybrid are also allowed 106 VNS iter-
ations in total and #sec is consistently set to 10 (as determined by preliminary
tests); i.e. they apply ten sequences of #VNS VNS instances, each one running
for 106/(#VNS · 10) iterations per section. For solving the ILP model in the
mVNS/ILP hybrid we apply the general purpose MIP solver ILOG CPLEX 11.2.

Both mVNS variants were initially run with 5, 10, and 15 VNS instances,
these are denoted by mVNS#VNS ,#sec and mVNS/ILP#VNS ,#sec . Each algo-
rithm setting is run 30 times per instance and we report average results, stating
the average travel costs (avg.), corresponding standard deviations (sdv.) and
average CPU-times in seconds (t[s]).

The results of the standard VNS are given in Table 1, where we also state the
number of vehicles m; this information is omitted in the remaining tables. As
expected, the double amount of iterations also approximately doubles the CPU-



Multiple VNS Enriched with ILP Techniques for the PVRPTW 9

time, and for all but instances p4r103 and p6r105 improvements are achieved. In
the following the newly introduced algorithm variants will be compared to this
“baseline”.

Table 1. Results of standard VNS on derived periodic Solomon instances with
a planning horizon of four and six days.

Instance VNS (106) VNS (2 · 106)

Id m avg. sdv. t[s] avg. sdv. t[s]

p4r101 14 4141.04 22.52 22.6 4134.47 18.81 44.9
p4r102 13 3759.61 19.43 23.5 3756.77 15.45 46.6
p4r103 10 3191.59 13.56 24.2 3194.75 14.84 47.9
p4r104 7 2613.83 15.76 27.2 2604.74 12.94 54.1
p4r105 11 3697.78 13.84 24.0 3692.96 14.74 47.7

p4c101 10 2910.72 0.53 22.1 2910.53 0.37 44.0
p4c102 8 2963.50 34.01 24.7 2960.70 37.37 48.8
p4c103 7 2806.39 40.13 27.5 2793.80 30.71 54.6
p4c104 7 2481.58 18.14 26.4 2476.27 19.95 52.5
p4c105 8 3025.67 82.95 24.3 2973.57 42.71 48.3

p4rc101 10 4003.77 12.01 25.6 4001.34 14.66 50.7
p4rc102 10 3814.02 19.59 25.3 3798.00 17.47 50.5
p4rc103 8 3500.84 29.40 27.5 3494.06 23.22 55.0
p4rc104 7 3069.41 16.62 27.9 3058.48 18.83 55.4
p4rc105 11 4008.80 25.16 24.5 4001.89 20.06 48.9

p6r101 14 5418.76 10.31 25.9 5417.67 20.27 51.4
p6r102 12 5276.07 23.34 27.0 5261.35 17.65 53.7
p6r103 9 4035.13 28.85 28.8 4014.16 21.37 57.7
p6r104 8 3389.61 16.03 29.5 3380.17 13.35 58.8
p6r105 9 4355.02 27.43 28.3 4355.28 31.80 56.6

p6c101 7 4084.67 36.86 30.1 4076.20 34.75 59.8
p6c102 7 3888.96 20.98 29.7 3876.88 17.27 59.2
p6c103 6 3616.61 44.79 33.8 3583.02 33.04 66.9
p6c104 6 3295.32 18.09 32.8 3291.93 16.76 64.6
p6c105 7 4164.39 64.90 29.9 4139.66 53.95 59.3

p6rc101 10 5846.32 24.69 27.4 5833.84 26.41 54.5
p6rc102 9 5483.15 26.63 28.2 5473.67 24.34 56.1
p6rc103 7 4370.85 25.63 32.2 4360.17 21.22 64.1
p6rc104 7 4147.69 26.00 31.4 4127.46 23.06 63.0
p6rc105 9 5340.30 22.08 28.9 5330.60 19.67 57.7

Tables 2 and 3 show the results of the mVNS as well as the mVNS/ILP hy-
brid for the p4 and p6 instances, with the setting of storing all injected routes.
At the bottom of each table we additionally state how often the hybrid variant
was significantly better or worse than the multiple VNS, as well as how many



10 Sandro Pirkwieser and Günther R. Raidl

times both variants were significantly better or worse than the standard VNS
variants, whereas we used a Wilcoxon rank sum test with an error level of 5%
for testing statistical significance. Best average results are marked bold. Looking
at the mVNS it is already quite often better than the standard VNS with 106

iterations (up to 80% for p4 instances and 73% for p6 instances) as well as the
VNS with 2 ·106 iterations (p4: 60%, p6: 33%), achieving this without additional
CPU-time consumption. However, combining the mVNS with ILP techniques in
the mVNS/ILP hybrid consistently yields even more satisfying results. In case of
mVNS/ILP5,10 this is also possible without considerable increase in CPU-time.
Although for the variants with #VNS set to 10 and 15 the runtime approaches
that of the VNS with 2 · 106 iterations (which is per setting the upper limit) for
some instances, and thus the comparison to this latter VNS variant is fairer in
some sense. For the p4 instances this still results in a 100% success rate, whereas
for the p6 instances mVNS/ILP10,10 performs best and is 9 times (60%) better
and once worse (6.6%) than VNS with 2 ·106 iterations. Looking at the results of
the p6 instances, we decided to fine-tune the number of VNS instances, assuming
that the performance peak is somewhere between 5 and 10 instances. Therefore
we conducted experiments with #VNS ranging from 6 to 9; see Table 4. As can
be observed the best results are obtained with mVNS/ILP8,10, which is, among
other settings, always better than the pure mVNS—of course also consuming
more CPU-time—and is 12 times (80%) better than the VNS with 2 · 106 it-
erations, and again only once worse (6.6%). In general, the mVNS/ILP hybrid
achieves to a large extent significantly better results than the latter standard
VNS yet it still consumes very often less CPU-time.

So far we only considered the strategy to keep all routes in the model once
they were added. The results of the hybrid algorithm when resetting the columns
after each application of the ILP solver are given in Table 5. Due to space
limitations we only state the results of the statistical significance tests. For the
p4 instances there is clearly no gain, whereas not storing the routes has the
greatest impact when using 15 VNS instances, i.e. when most columns are added.
Here, the reduced size of the model leads to more improvements in the limited
time. Nevertheless, apart from less runtime in total for obvious reasons, it seems
generally better to work with an ILP model of increasing size and hence exploit
information from the search trajectory.

7 Conclusions

We extended our previously introduced (standard) VNS for the periodic vehicle
routing problem with time windows (PVRPTW) to a multiple VNS (mVNS)
where several VNS instances are applied cooperatively in an intertwined way.
This mVNS puts emphasis on the so far best solution found within a major
iteration by restarting the worst performing VNS instances with it. In this way,
mVNS investigates multiple search trajectories from incumbent solutions, and
from a global perspective it can be seen to adaptively allocate VNS instances to
promising areas of the search space. Further an intertwined cooperative combina-



Multiple VNS Enriched with ILP Techniques for the PVRPTW 11

T
ab

le
2.

R
es

ul
ts

of
m

V
N

S
an

d
m

V
N

S/
IL

P
on

pe
ri

od
ic

So
lo

m
on

in
st

an
ce

s
w

it
h

a
pl

an
ni

ng
ho

ri
zo

n
of

fo
ur

da
ys

.

In
st

an
ce

m
V

N
S 5
,1

0
m

V
N

S/
IL

P
5
,1

0
m

V
N

S 1
0
,1

0
m

V
N

S/
IL

P
1
0
,1

0
m

V
N

S 1
5
,1

0
m

V
N

S/
IL

P
1
5
,1

0

av
g.

sd
v.

t[
s]

av
g.

sd
v.

t[
s]

av
g.

sd
v.

t[
s]

av
g.

sd
v.

t[
s]

av
g.

sd
v.

t[
s]

av
g.

sd
v.

t[
s]

p4
r1

01
41

19
.8

8
16

.7
5

22
.9

41
14

.0
1

13
.8

9
23

.3
41

21
.5

5
12

.4
2

23
.1

40
96

.0
9

10
.4

9
26

.5
41

18
.6

0
12

.0
7

23
.2

40
90

.0
9

5.
29

29
.0

p4
r1

02
37

44
.4

0
6.

12
23

.8
37

44
.6

5
8.

15
24

.3
37

41
.7

9
5.

01
24

.1
37

35
.8

5
4.

00
26

.6
37

42
.8

5
5.

03
24

.2
37

32
.3

4
1.

94
30

.9
p4

r1
03

31
86

.1
4

11
.1

9
24

.3
31

74
.9

8
8.

97
25

.3
31

84
.8

3
9.

37
24

.8
31

71
.4

8
8.

44
28

.4
31

86
.7

0
7.

27
24

.8
31

65
.7

2
6.

95
33

.9
p4

r1
04

26
02

.1
5

11
.1

0
27

.7
26

00
.8

9
10

.4
9

28
.9

26
02

.8
7

8.
63

27
.9

25
95

.4
4

8.
20

42
.7

26
05

.3
6

8.
81

28
.3

25
98

.1
8

10
.6

2
56

.0
p4

r1
05

36
88

.6
4

12
.8

6
24

.1
36

81
.2

3
10

.0
5

27
.3

36
87

.9
4

8.
92

24
.5

36
79

.6
6

11
.9

3
48

.5
36

90
.2

9
8.

24
24

.6
36

86
.1

4
9.

16
49

.3
p4

c1
01

29
10

.1
7

0.
26

22
.2

29
10

.2
4

0.
27

22
.9

29
10

.0
6

0.
44

22
.6

29
09

.7
2

0.
67

23
.7

29
09

.9
1

0.
72

22
.7

29
09

.3
9

0.
76

24
.7

p4
c1

02
29

29
.7

6
17

.8
8

24
.7

29
34

.8
8

23
.1

1
25

.2
29

30
.7

8
19

.6
3

25
.3

29
17

.4
6

18
.2

5
28

.7
29

21
.3

2
20

.0
2

25
.4

29
05

.1
6

14
.3

8
36

.4
p4

c1
03

27
86

.6
9

31
.7

8
27

.8
27

74
.6

1
23

.0
1

28
.5

27
83

.9
1

28
.6

1
28

.4
27

62
.3

8
18

.4
7

38
.6

27
77

.3
0

20
.1

8
28

.7
27

59
.7

8
13

.8
2

51
.8

p4
c1

04
24

65
.7

0
11

.6
5

26
.9

24
59

.1
9

8.
17

27
.8

24
68

.1
4

10
.7

2
27

.0
24

59
.5

2
7.

60
41

.9
24

71
.8

3
11

.2
4

27
.1

24
54

.6
9

12
.3

2
49

.2
p4

c1
05

29
62

.1
7

34
.3

4
24

.6
29

57
.9

7
36

.6
8

24
.8

29
52

.6
6

27
.7

8
24

.8
29

24
.5

5
19

.2
6

31
.6

29
42

.2
6

29
.0

5
25

.0
29

06
.6

9
15

.5
5

37
.6

p4
rc

10
1

39
88

.6
9

11
.6

1
25

.8
39

89
.7

5
9.

45
26

.3
39

92
.1

5
10

.2
9

26
.1

39
78

.4
8

8.
95

33
.7

39
96

.6
0

11
.9

2
26

.2
39

74
.0

9
6.

40
46

.8
p4

rc
10

2
38

06
.2

4
17

.1
1

25
.6

37
96

.0
9

17
.0

8
26

.4
38

02
.6

5
16

.0
2

26
.1

37
78

.2
3

14
.7

1
33

.9
38

01
.0

1
14

.7
4

26
.1

37
64

.9
9

6.
76

43
.4

p4
rc

10
3

34
94

.6
2

18
.5

5
27

.9
34

84
.7

6
18

.9
7

28
.5

35
00

.2
7

17
.0

8
28

.2
34

75
.9

5
16

.5
8

31
.0

35
02

.1
8

23
.9

4
28

.3
34

66
.9

9
12

.0
1

34
.7

p4
rc

10
4

30
42

.8
6

11
.5

2
29

.1
30

36
.3

9
10

.5
6

30
.2

30
48

.2
3

11
.9

7
29

.2
30

36
.6

1
12

.4
3

54
.1

30
51

.1
9

11
.5

3
29

.3
30

31
.4

9
17

.1
5

57
.0

p4
rc

10
5

39
95

.5
6

13
.4

9
25

.1
39

91
.0

6
17

.1
8

25
.5

39
97

.5
5

12
.1

0
25

.2
39

76
.1

6
8.

09
30

.1
40

00
.9

8
10

.7
6

25
.3

39
70

.4
9

5.
67

45
.0

si
gn

ifi
ca

nt
ly

be
tt

er
/w

or
se

th
an

co
rr

es
po

nd
in

g
m

V
N

S
7×

/0
×

15
×

/0
×

15
×

/0
×

si
gn

ifi
ca

nt
ly

be
tt

er
/w

or
se

th
an

V
N

S
(1

06
)

12
×

/0
×

15
×

/0
×

12
×

/0
×

15
×

/0
×

12
×

/0
×

15
×

/0
×

si
gn

ifi
ca

nt
ly

be
tt

er
/w

or
se

th
an

V
N

S
(2
·1

06
)

7×
/1
×

12
×

/0
×

9×
/0
×

15
×

/0
×

7×
/0
×

15
×

/0
×



12 Sandro Pirkwieser and Günther R. Raidl

T
ab

le
3.

R
esults

of
m

V
N

S
and

m
V

N
S/IL

P
on

periodic
Solom

on
instances

w
ith

a
planning

horizon
of

six
days.

Instance
m

V
N

S
5
,1

0
m

V
N

S/IL
P

5
,1

0
m

V
N

S
1
0
,1

0
m

V
N

S/IL
P

1
0
,1

0
m

V
N

S
1
5
,1

0
m

V
N

S/IL
P

1
5
,1

0

avg.
sdv.

t[s]
avg.

sdv.
t[s]

avg.
sdv.

t[s]
avg.

sdv.
t[s]

avg.
sdv.

t[s]
avg.

sdv.
t[s]

p6r101
5402.01

8.78
26.4

5399.76
9.80

27.8
5404.53

7.85
26.6

5390.21
6.10

37.8
5402.38

6.81
26.8

5385.03
3.33

49.0
p6r102

5255.09
14.27

27.5
5244.59

12.11
32.5

5252.94
11.79

27.9
5249.80

13.81
55.3

5255.77
13.88

28.0
5249.56

14.74
55.6

p6r103
4011.33

20.59
29.4

3991.46
12.83

32.5
4006.43

13.54
29.6

3996.78
16.43

58.0
4015.02

14.71
30.0

4008.83
18.72

59.8
p6r104

3376.35
12.41

30.0
3373.36

12.14
34.3

3377.63
10.21

30.4
3372.81

9.75
59.1

3382.94
9.40

30.5
3381.98

12.65
60.1

p6r105
4340.76

15.94
28.8

4337.54
18.15

31.3
4346.55

15.84
29.2

4337.64
17.22

58.2
4350.98

15.18
29.0

4353.84
18.24

59.4
p6c101

4078.48
27.72

30.6
4060.83

37.72
31.4

4049.95
24.47

30.9
4055.21

25.91
59.2

4054.29
20.17

31.1
4050.81

26.17
61.8

p6c102
3867.79

16.38
30.6

3868.96
13.08

32.2
3866.77

13.95
30.6

3861.91
10.82

58.7
3861.62

10.81
30.8

3861.86
8.69

62.2
p6c103

3584.92
23.11

34.6
3583.20

29.79
37.5

3589.74
24.60

34.7
3576.50

21.80
67.6

3587.16
16.01

35.1
3580.92

18.52
70.3

p6c104
3286.67

15.15
33.5

3284.07
15.72

37.5
3287.39

15.14
33.6

3289.73
13.06

65.6
3293.76

17.19
34.1

3291.96
11.87

68.0
p6c105

4124.30
33.03

30.5
4112.89

38.21
31.4

4115.20
27.39

30.8
4119.17

39.47
60.0

4118.48
29.05

30.6
4104.31

23.19
61.5

p6rc101
5830.37

13.51
28.0

5831.77
13.67

31.7
5833.97

15.10
28.3

5821.63
14.27

56.2
5839.42

14.70
28.5

5833.46
16.74

57.0
p6rc102

5449.68
23.63

29.0
5466.58

25.31
33.0

5468.39
31.07

29.2
5446.00

25.84
58.5

5474.09
27.07

29.6
5460.70

30.92
59.0

p6rc103
4366.40

14.85
32.6

4351.50
18.34

35.6
4373.90

19.24
33.0

4359.78
18.02

65.1
4373.31

15.87
33.2

4366.85
13.43

66.1
p6rc104

4130.70
17.69

31.9
4132.90

21.11
38.3

4146.00
17.74

32.0
4139.72

16.05
63.8

4154.20
18.96

32.3
4149.87

15.64
64.2

p6rc105
5331.66

22.97
29.5

5321.82
17.66

32.4
5339.50

14.64
29.5

5329.84
18.28

59.2
5346.52

16.70
30.0

5340.75
15.67

59.7

significantly
better/w

orse
than

corresponding
m

V
N

S
4×

/1×
9×

/0×
4×

/0×
significantly

better/w
orse

than
V

N
S

(10
6)

11×
/0×

15×
/0×

10×
/0×

13×
/0×

7×
/0×

10×
/0×

significantly
better/w

orse
than

V
N

S
(2
·10

6)
5×

/0×
8×

/0×
4×

/3×
9×

/1×
4×

/3×
6×

/2×



Multiple VNS Enriched with ILP Techniques for the PVRPTW 13

T
ab

le
4.

R
es

ul
ts

of
m

V
N

S
an

d
m

V
N

S/
IL

P
on

pe
ri

od
ic

So
lo

m
on

in
st

an
ce

s
w

it
h

a
pl

an
ni

ng
ho

ri
zo

n
of

si
x

da
ys

.

In
st

an
ce

m
V

N
S 6
,1

0
m

V
N

S/
IL

P
6
,1

0
m

V
N

S 7
,1

0
m

V
N

S/
IL

P
7
,1

0
m

V
N

S 8
,1

0
m

V
N

S/
IL

P
8
,1

0
m

V
N

S 9
,1

0
m

V
N

S/
IL

P
9
,1

0

av
g.

sd
v.

t[
s]

av
g.

sd
v.

t[
s]

av
g.

sd
v.

t[
s]

av
g.

sd
v.

t[
s]

av
g.

sd
v.

t[
s]

av
g.

sd
v.

t[
s]

av
g.

sd
v.

t[
s]

av
g.

sd
v.

t[
s]

p6
r1

01
54

03
.4

2
8.

92
26

.2
53

97
.9

3
7.

14
27

.9
54

02
.4

2
7.

19
26

.2
53

95
.8

8
5.

64
28

.7
54

00
.6

8
7.

10
26

.3
53

92
.5

2
5.

13
30

.6
54

06
.0

9
7.

49
26

.3
53

91
.9

3
5.

16
33

.2
p6

r1
02

52
50

.6
2

13
.7

2
27

.4
52

47
.8

8
14

.1
5

40
.2

52
51

.8
3

14
.7

3
27

.3
52

47
.9

6
15

.0
5

50
.3

52
56

.1
4

14
.3

4
27

.4
52

44
.0

0
13

.1
8

53
.7

52
51

.9
5

13
.1

2
27

.5
52

52
.0

2
15

.6
0

54
.8

p6
r1

03
40

04
.6

1
15

.3
5

29
.0

40
02

.8
6

16
.6

9
35

.3
40

09
.2

2
15

.9
3

29
.1

39
96

.5
7

11
.5

6
39

.3
40

10
.6

8
10

.5
1

29
.1

39
98

.2
3

16
.1

3
48

.2
40

14
.8

7
17

.7
0

29
.5

39
96

.2
3

14
.5

2
54

.2
p6

r1
04

33
76

.9
4

7.
32

29
.8

33
75

.0
7

10
.2

1
36

.4
33

81
.9

3
11

.7
6

29
.8

33
72

.6
9

10
.2

0
44

.3
33

78
.8

2
10

.8
8

29
.8

33
70

.8
2

11
.5

3
50

.0
33

83
.1

1
13

.6
8

30
.0

33
79

.3
4

10
.8

0
56

.4
p6

r1
05

43
42

.1
8

16
.2

7
28

.8
43

34
.2

4
15

.1
8

33
.5

43
44

.4
8

17
.9

4
28

.7
43

28
.4

5
16

.3
4

41
.2

43
43

.2
2

17
.4

8
28

.9
43

38
.2

8
14

.9
2

52
.3

43
44

.8
3

16
.6

9
28

.8
43

35
.1

5
20

.6
8

55
.1

p6
c1

01
40

66
.6

6
25

.8
4

30
.4

40
59

.0
6

24
.1

2
32

.6
40

51
.9

5
31

.8
3

30
.4

40
56

.3
2

23
.0

1
38

.9
40

55
.4

9
25

.7
0

30
.4

40
58

.6
2

33
.5

8
43

.4
40

59
.6

6
25

.4
9

30
.5

40
52

.3
2

26
.9

6
51

.9
p6

c1
02

38
71

.1
6

15
.5

5
30

.2
38

70
.1

0
14

.6
9

37
.5

38
68

.4
0

11
.0

6
30

.4
38

64
.4

1
11

.4
7

39
.0

38
66

.2
5

12
.3

0
30

.4
38

64
.9

4
12

.4
6

46
.4

38
68

.4
0

15
.0

5
30

.4
38

67
.1

3
11

.6
7

54
.2

p6
c1

03
35

81
.1

4
21

.9
5

34
.3

35
75

.8
0

24
.1

7
41

.0
35

93
.0

4
28

.0
2

34
.2

35
79

.9
5

23
.8

8
48

.7
35

89
.5

0
22

.2
5

34
.5

35
74

.9
8

24
.8

1
54

.6
35

79
.4

5
19

.3
4

34
.6

35
78

.3
0

22
.8

7
61

.9
p6

c1
04

32
91

.5
5

21
.7

7
33

.1
32

82
.6

5
16

.6
2

39
.6

32
87

.6
1

13
.5

4
32

.9
32

80
.1

7
14

.4
2

46
.3

32
78

.9
2

18
.6

9
33

.4
32

82
.5

4
15

.4
9

52
.8

32
88

.5
6

16
.0

1
33

.2
32

88
.1

7
15

.7
0

60
.1

p6
c1

05
41

24
.7

6
28

.0
6

30
.2

41
13

.9
8

27
.7

4
34

.8
41

10
.2

7
26

.8
8

30
.2

41
11

.1
9

26
.0

9
40

.9
41

12
.7

6
25

.3
8

30
.2

41
08

.2
5

27
.2

2
47

.8
41

11
.9

1
26

.6
7

30
.2

41
22

.3
0

30
.3

3
57

.7
p6

rc
10

1
58

32
.3

6
14

.0
5

27
.7

58
23

.0
2

12
.6

7
40

.2
58

30
.7

9
13

.4
8

28
.0

58
21

.8
5

13
.3

1
50

.0
58

34
.8

7
10

.5
3

28
.0

58
15

.8
0

16
.7

8
53

.7
58

34
.1

9
14

.6
6

28
.0

58
20

.9
7

17
.1

5
55

.4
p6

rc
10

2
54

64
.5

0
23

.6
9

28
.8

54
47

.0
6

25
.8

5
37

.8
54

64
.6

0
25

.5
6

28
.8

54
40

.5
5

27
.7

8
44

.1
54

61
.5

6
25

.4
5

28
.9

54
48

.1
1

30
.0

7
53

.0
54

60
.1

0
22

.0
1

29
.0

54
42

.7
8

23
.8

2
56

.9
p6

rc
10

3
43

69
.6

8
15

.2
9

32
.7

43
56

.5
0

15
.6

8
37

.5
43

65
.6

3
19

.7
9

32
.6

43
52

.6
3

19
.5

6
45

.8
43

67
.2

9
14

.2
2

32
.6

43
53

.0
6

19
.4

3
54

.2
43

68
.7

3
16

.7
0

32
.7

43
57

.1
5

17
.5

2
60

.8
p6

rc
10

4
41

36
.3

2
17

.9
8

31
.6

41
34

.8
9

20
.0

2
46

.7
41

46
.6

5
15

.4
5

31
.4

41
39

.7
0

18
.3

4
55

.1
41

46
.4

9
14

.8
8

31
.6

41
36

.0
9

19
.1

7
62

.3
41

42
.9

3
14

.3
9

31
.8

41
43

.0
3

17
.6

7
62

.9
p6

rc
10

5
53

26
.7

1
17

.6
3

29
.2

53
24

.0
4

19
.8

9
37

.4
53

31
.0

0
20

.3
3

29
.4

53
23

.6
0

22
.4

1
46

.4
53

37
.3

5
16

.0
3

29
.3

53
18

.6
9

16
.9

9
54

.8
53

38
.3

4
18

.6
1

29
.5

53
25

.3
3

22
.5

8
58

.0

si
gn

ifi
ca

nt
ly

be
tt

er
/w

or
se

th
an

co
rr

es
po

nd
in

g
m

V
N

S
7×

/0
×

15
×

/0
×

15
×

/0
×

15
×

/0
×

si
gn

ifi
ca

nt
ly

be
tt

er
/w

or
se

th
an

V
N

S
(1

06
)

12
×

/0
×

15
×

/0
×

9×
/0
×

14
×

/0
×

11
×

/0
×

15
×

/0
×

9×
/0
×

13
×

/0
×

si
gn

ifi
ca

nt
ly

be
tt

er
/w

or
se

th
an

V
N

S
(2
·1

06
)

2×
/2
×

10
×

/1
×

5×
/2
×

11
×

/1
×

6×
/1
×

12
×

/1
×

6×
/1
×

8×
/1
×



14 Sandro Pirkwieser and Günther R. Raidl

Table 5. Results of mVNS/ILP on periodic Solomon instances with a planning
horizon of four and six days when resetting the columns.

Instances mVNS/ILP5,10 mVNS/ILP10,10 mVNS/ILP15,10

significantly better/worse than corresponding mVNS
p4 4×/0× 10×/0× 14×/0×
p6 2×/1× 4×/0× 9×/0×
significantly better/worse than VNS (106)
p4 14×/0× 15×/0× 14×/0×
p6 14×/0× 12×/0× 11×/0×
significantly better/worse than VNS (2 · 106)
p4 10×/0× 13×/0× 13×/0×
p6 6×/1× 6×/1× 8×/1×

tion of this mVNS and a generic ILP solver applied to a suitable set covering ILP
formulation was proposed. The mVNS provides the exact method with feasible
routes of the actual best solutions, and the ILP solver takes a global view and
seeks to determine better feasible route combinations. For testing we derived new
PVRPTW instances with a planning horizon of four and six days from the 100
customer Solomon VRPTW benchmark instances. Experimental results showed
the advantages of the mVNS as well as of the hybrid approach, the latter yielding
for 80%–100% of all conducted tests a statistically significant improvement over
solely applying the VNS in a standard way. It has become evident that keeping
the routes (columns) in the model once they were added is beneficial, though
one has to keep in mind the longer runtimes of this setting than when consid-
ering the actual best solutions’ routes only. Nevertheless, even the mVNS/ILP
hybrid with this continuously increasing ILP model—clearly performing best of
all variants—requires for most of the instances less CPU-time than the standard
VNS with more iterations.

As future work we might consider some sort of column management for the
ILP to have an additional option in-between resetting the columns or persistent
storage. Also of interest for the mVNS would be a special perturbation operator
(probably a more destructive shaking) in case the same local optimal solution is
injected more than once in a VNS instance. From a practical perspective, dealing
with customer demands depending on the visit day would be interesting, too.
Last but not least, we want to remark that the general approach described here
also might be promising for many other combinatorial optimization problems.

References

1. Cordeau, J.F., Laporte, G., Mercier, A.: A unified tabu search heuristic for vehicle
routing problems with time windows. Journal of the Operational Research Society
52 (2001) 928–936



Multiple VNS Enriched with ILP Techniques for the PVRPTW 15

2. Pirkwieser, S., Raidl, G.R.: A variable neighborhood search for the periodic vehicle
routing problem with time windows. In Prodhon, C., et al., eds.: Proceedings of
the 9th EU/MEeting on Metaheuristics for Logistics and Vehicle Routing, Troyes,
France (2008)

3. Polacek, M., Hartl, R.F., Doerner, K., Reimann, M.: A variable neighborhood
search for the multi depot vehicle routing problem with time windows. Journal of
Heuristics 10 (2004) 613–627

4. Hemmelmayr, V.C., Doerner, K.F., Hartl, R.F.: A variable neighborhood search
heuristic for periodic routing problems. European Journal of Operational Research
195(3) (2009) 791–802

5. Pirkwieser, S., Raidl, G.R.: Boosting a variable neighborhood search for the pe-
riodic vehicle routing problem with time windows by ILP techniques. In Caserta,
M., Voß, S., eds.: Proceedings of the 8th Metaheuristic International Conference
(MIC 2009), Hamburg, Germany (2009)

6. Francis, P., Smilowitz, K., Tzur, M.: The period vehicle routing problem with
service choice. Transportation Science 40(4) (2006) 439–454

7. Mourgaya, M., Vanderbeck, F.: Column generation based heuristic for tactical
planning in multi-period vehicle routing. European Journal of Operational Re-
search 183(3) (2007) 1028–1041

8. Francis, P.M., Smilowitz, K.R., Tzur, M.: The period vehicle routing problem and
its extensions. In Golden, B., et al., eds.: The Vehicle Routing Problem: Latest
Advances and New Challenges. Springer (2008) 73–102

9. Schmid, V., Doerner, K.F., Hartl, R.F., Savelsbergh, M.W.P., Stoecher, W.: A
hybrid solution approach for ready-mixed concrete delivery. Transportation Science
43(1) (2009) 70–85

10. Danna, E., Le Pape, C.: Branch-and-price heuristics: A case study on the vehi-
cle routing problem with time windows. In Desaulniers, G., et al., eds.: Column
Generation. Springer (2005) 99–129

11. Raidl, G.R., Puchinger, J.: Combining (integer) linear programming techniques
and metaheuristics for combinatorial optimization. In Blum, C., et al., eds.: Hybrid
Metaheuristics: An Emerging Approach to Optimization. Volume 114 of Studies
in Computational Intelligence. Springer (2008) 31–62

12. Garćıa-López, F., Melián-Batista, B., Moreno-Pérez, J.A., Moreno-Vega, J.M.: The
parallel variable neighborhood search for the p-median problem. Journal of Heuris-
tics 8(3) (2002) 375–388

13. Moreno-Pérez, J.A., Hansen, P., Mladenović, N.: Parallel variable neighborhood
search. In Alba, E., ed.: Parallel Metaheuristics: A New Class of Algorithms. John
Wiley & Sons, NJ, USA (2005) 247–266

14. Hansen, P., Mladenović, N.: Variable neighborhood search. In Glover, F., Kochen-
berger, G., eds.: Handbook of Metaheuristics. Kluwer Academic Publishers, Boston
MA (2003) 145–184

15. Potvin, J.Y., Rousseau, J.M.: An exchange heuristic for routeing problems with
time windows. Journal of the Operational Research Society 46 (1995) 1433–1446

16. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated anneal-
ing. Science 220(4598) (1983) 671–680

17. Desrosiers, J., Lübbecke, M.E.: A primer in column generation. In Desaulniers,
G., et al., eds.: Column Generation. Springer (2005) 1–32


