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1 Introduction

The periodic vehicle routing problem with time windows (PVRPTW) is a generalized variant of the
classical vehicle routing problem with time windows (VRPTW) where customers must be served
several times in a given planning period instead of only once on a single day. Such a setting occurs
in many real-world applications as in courier services, grocery distribution or waste collection.

The PVRPTW is defined on a complete directed graph G = (V,A), where V = {0, 1, . . . , n} is
the vertex set and A = {(i, j) : i, j ∈ V, i 6= j} is the arc set. The considered planning horizon
shall be t days, also referred to as T = {1, . . . , t}. Vertex 0 represents the depot with time window
[e0, l0] at which are based m vehicles having capacities Q1, . . . , Qm and maximal daily working
times D1, . . . , Dm. Each vertex i ∈ VC , with VC = V \ {0}, corresponds to a customer and has an
associated demand qi ≥ 0, a service duration di ≥ 0, a time window [ei, li], a service frequency fi
and a set Ci of allowable combinations of visit days. Finally, each arc (i, j) ∈ A is assigned a travel
time (cost) cij ≥ 0. The problem then consists of selecting a single visit combination per customer
and designing (at most) m vehicle routes on each of the t days on G such that:

1. each route starts and ends at the depot,
2. each customer i belongs to fi routes over the planning horizon,
3. the total daily demand of the route for vehicle k does not exceed capacity limit Qk,

and its daily duration does not exceed the maximal daily working time Dk,
4. the service at each customer i begins in the interval [ei, li] and every

vehicle leaves the depot and returns to it in the interval [e0, l0], and
5. the total travel cost of all vehicles is minimized.

Arriving before ei at customer i incurs a waiting time at no additional cost, arriving later than
li is not allowed, i.e. we assume “hard time windows”. In the remainder we further assume a
homogeneous vehicle fleet, i.e. Q1, . . . , Qm = Q and D1, . . . , Dm = D.
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In this work we exploit the capabilities of a suitable integer linear programming (ILP) for-
mulation of the problem solved with a generic ILP solver to boost the performance of a variable
neighborhood search metaheuristic. We refer to related work in Section 2. The variable neighbor-
hood search is described in Section 3, an ILP formulation in Section 4, and the proposed hybrid
method in Section 5. Experimental results are given in Section 6, and finally, Section 7 finishes the
work with concluding remarks.

2 Related Work

The PVRPTW was first mentioned in [1], where a tabu search algorithm is described for it. In our
previous work [9] we applied a variable neighborhood search (VNS), outperforming the former tabu
search. Related VNS metaheuristics exist for the Multi-Depot VRPTW [10] and the Periodic VRP
(PVRP) [6]. We are not aware of other exact or hybrid methods for the PVRPTW, yet similar
PVRPs are dealt with in [3] and [8]. A more general survey of different PVRP variants and solution
methods is given in [4]. A similar approach as the one followed in this work was recently applied
for ready-mixed concrete delivery [13]. Our work also extends this by highlighting further aspects
of this kind of hybridization. In a somewhat related work Danna et al. [2] apply an ILP solver for
deriving (better) integer solutions during a branch-and-price procedure. Finally, the emerging field
of hybrid methods is covered in [12].

3 VNS for the PVRPTW

Variable neighborhood search (VNS) [5] is a metaheuristic applying random steps in neighborhoods
with growing size for diversification, referred to as shaking, and using a local search component for
intensification. In the following we will describe our VNS for the PVRPTW in short; see [9] for
more details.

The VNS uses a penalized cost function to smooth the search space, taking into account the
excess of vehicle load, route duration, and time window violation. The creation of the initial solution
was kept quite simple by selecting a visit combination per customer at random and afterwards
partitioning the customers—according to the angle they make with the depot—at each day into
routes, only allowing load or duration constraints to be violated for the last route on each day,
whereas all routes might violate time window constraints.

In the shaking phase we utilize three different neighborhood structures, each with six moves of
increasing perturbation size: (i) randomly changing several visit combinations with greedy insertion
for the new visit days, (ii) moving a random segment of a route to another one on the same day, and
(iii) exchanging two random segments between two routes on the same day. In the latter two cases
the segments are occasionally reversed. Here we only consider a fixed shaking neighborhood order.

For intensification we apply the well-known 2-opt intra-route exchange procedure in a best
improvement fashion, only considering routes changed during shaking. Additionally each new in-
cumbent solution is subject to a 2-opt∗ inter-route exchange heuristic [11]. Hereby for each pair of
routes of the same day all possible exchanges of the routes’ end segments are tried.

To enhance the overall VNS performance not only better solutions are accepted, but sometimes
also solutions having a worse objective value. This is done in a systematic way using a Metropolis
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criterion like in simulated annealing [7]. We use a linear cooling scheme such that the acceptance
rate of worse solutions is nearly zero in the last iterations.

4 Set Covering ILP Model for the PVRPTW

The prerequisite for hybridizing the VNS described in Section 3 with ILP based techniques is a
suitable formulation of the problem facilitating the desired combination.
We express the PVRPTW by the following set covering model:

min
∑
τ∈T

∑
ω∈Ω

γω χωτ (1)

s.t.
∑
r∈Ci

yir ≥ 1 ∀i ∈ VC (2)

∑
ω∈Ω

χωτ ≤ m ∀τ ∈ T (3)∑
ω∈Ω

αiω χωτ −
∑
r∈Ci

βirτ yir ≥ 0 ∀i ∈ VC ; ∀τ ∈ T (4)

yir ∈ {0, 1} ∀i ∈ VC ; ∀r ∈ Ci (5)
χωτ ∈ {0, 1} ∀ω ∈ Ω; ∀τ ∈ T (6)

The set of all feasible routes (satisfying restrictions 1, 3, and 4 in Section 1), which is exponentially
large, is denoted by Ω, and for each route ω ∈ Ω its cost is γω. Variable χωτ is the number of times
route ω is selected on day τ ∈ T . For each customer i ∈ VC , variables yir indicate whether or not visit
combination r ∈ Ci is chosen. Following constraints are used: Cover constraints (2) guarantee that
at least one visit day combination is selected per customer, fleet constraints (3) restrict the number
of daily routes to not exceed the available vehicles m, and finally visit constraints (4) link the routes
and the visit combinations, whereas αiω and βirτ are binary constants indicating whether or not
route ω visits customer i and if day τ belongs to visit combination r ∈ Ci of customer i, respectively.

In general, such an ILP formulation is the basis of a column generation approach, where one
starts with a small set of initial columns (routes) and gradually increases it by adding potentially
improving columns to determine a valid lower bound. This can be combined with branch-and-bound
to derive integer solutions, too (and eventually prove their optimality). However, this is another
line of research followed by us which turns out to be applicable to relatively small instances only.
Here, we use the VNS as the sole provider of columns for the set covering model, which is then
solved via a generic ILP solver. This hybrid method is explained in the next section.

5 VNS and ILP Hybrid

In the following the ILP model of the preceding section is used to boost the performance of the VNS
of Section 3. This is achieved by introducing feasible VNS solutions into the set covering model, i.e.
by adding the single routes of these solutions as new columns. This way the feasibility of the model
is guaranteed. The resulting ILP is solved by a (basically) branch-and-bound based generic ILP
solver, gradually fixing the visit combination (5) and route variables (6). A similar approach was
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VNS/ILP Hybrid
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Figure 1: Information exchange between VNS and the ILP model/solver.

introduced in [13], where the authors highlight the “global view” property of such an exact model.
For a set of solutions’ routes the ILP solver might be able to derive a more favorable combination
and provide a better (less costly) solution in this way. Obviously the potential of the ILP solver
depends on the routes contained in the model since it is neither able to alter routes nor create ones
on its own. Hence it is crucial to provide (i) a suitable amount of routes, (ii) cost-effective routes,
and (iii) diverse enough routes. Adding not enough or only weak routes might prevent finding a
better solution at all, on the other hand a too large set naturally increases the runtime, which might
also prevent finding better solutions quickly enough in case a time limit is given. Therefore solutions
should not be added arbitrarily to the model. Only finding new combinations of routes constituting
a feasible solution is not sufficient, the solution should also improve on the current incumbent in
terms of travel costs. This is dealt with by primarily adding improved and feasible solutions found
by the VNS (i.e. solutions that improved on the current best solution at the time they were derived),
as it is done in [13]. However, we found it often not enough to solely add such improved solutions,
since in case the VNS gets stuck for a while no improved solutions are available at all and no further
solving of the ILP is meaningful. In order to be able to still exploit the power of the ILP solver
we propose to further add some “intermediate” VNS solutions, i.e. feasible solutions derived in an
iteration but not improving on the best solution. For ensuring a certain quality, we define a maximal
deviation ε from the current best solution (at the time of checking), and avoid duplicates.

We apply the following hybrid scheme, which can be regarded an intertwined collaborative
cooperation [12]; see Figure 1. The hybrid algorithm divides the execution of a VNS run in several
equally long sections S, and after each section the current ILP model is solved. The latter is
gradually enriched by columns extracted from selected feasible VNS solutions. For this we choose
a number nsol of overall solutions to consider and first try to insert only the most current improved
VNS solutions. In case less than nsol such solutions are provided by the previous VNS section
we select the remaining ones from the set of intermediate solutions (also accumulated during the
previous VNS section) at random, in order to obtain a set of diverse solutions. Further, the ILP
solver is always initialized with the current best solution to speed up the process. If the ILP solver
is able to improve on the current best solution this new solution is transformed and transferred
to the VNS. During transformation over-covered solutions are repaired by choosing exactly one
visit combination (the first active) and omitting customers from following routes if they are already
covered or do not need to be covered on this day. This over-covering might happen since we use a
set covering model. In contrast, a set partitioning model (derived by turning inequalities (2) and (4)
into equalities) would yield only feasible solutions but at the same time exclude many potentially
improving combinations. Finally, when injecting this solution into the VNS it is also subject to
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the previously mentioned 2-opt∗ improvement procedure. In case routes were altered during these
procedures, corresponding new columns are also added to the ILP model.

What we did not mention so far is the applied route injection scheme, which is also of concern
in the classical column generation approach. Basically it is possible to either add the route for the
corresponding day only or for all days. The latter scheme produces significantly larger ILP models
(of factor t) which might yield better solutions at the expense of longer running times to solve the
ILP model. We compare these alternatives in our experimental results. For both variants we allow
the ILP solver the same overall amount of CPU-time as the VNS, though it is expected that the
former variant consumes only a fraction of it.

6 Experimental Results

The algorithms have been implemented in C++, compiled with GCC 4.1 and executed on a 2.2 GHz
Dual-Core AMD Opteron 2214 PC with 4 GB RAM. We derived new PVRPTW instances from the
Solomon VRPTW benchmark instances1 by evenly assigning the possible visit combinations to the
customers at random. We did so for the first five instances of type random (R), clustered (C),
and mixed random and clustered (RC) for a planning horizon of four and six days. The number
of vehicles m was altered (reduced) in such a way that few or none empty routes occur in feasible
solutions, yet it is not too hard to find feasible solutions quite early in the solution process.
For the VNS we set an iteration limit of either 106 or 2 · 106, an initial temperature of 10 and apply
linear cooling every 100 iterations. The VNS/ILP hybrid is also based on a VNS run with 106

iterations and S is set to 10, i.e. it applies ten sequences of 105 VNS iterations with a subsequent
ILP solving phase each. For the latter we apply the sophisticated ILOG CPLEX 11.2 generic MIP
solver, which potentially also adds cutting planes to speed up the process.

We performed tests with three settings of ε (0%, 5%, and 10%, whereas 0% implies that
no intermediate VNS solutions are considered) and two settings of nsol (5 and 10), denoted by
VNS/ILPnsol,ε. The solutions’ routes are mainly added for the corresponding day only (single
day strategy VNS/ILPs), some experiments are done with insertion for all days (all days strategy
VNS/ILPa). Each algorithm setting is run 30 times per instance and we report average results,
stating the average travel costs (avg.), corresponding standard deviations (sdv.) and average CPU-
times in seconds (t[s]). The results for the instances with a planning horizon of four (t = 4) and six
days (t = 6) and a single day strategy are given in Table 1 and 2, respectively. Here we compare the
performance of the mentioned hybrid variants to the VNS with 106 iterations. We mark all results
of the hybrid variants with an underline that yield a significant improvement over the VNS, whereas
we use a Wilcoxon rank sum test with an error level of 5%. Among the hybrid variants there is
rarely a single one significantly outperforming all others, therefore we will compare the number of
times the methods improved over the VNS. In case a hybrid variant needs considerably more CPU-
time when compared to the VNS (> 20%), we omit it from the row-wise comparison and put it in
parentheses. As can be seen it is generally beneficial to also consider intermediate VNS solutions,
yielding twice as many significant improvements. Regarding the quality of these solutions, there is
a slight advantage when using better ones (ε = 5%). While the performance of the hybrid method
is nearly the same when adding 5 or 10 solutions at a time for instances having a planning horizon
of four days, the performance notably degrades for a planning horizon of six days. This is mainly

1available at http://web.cba.neu.edu/~msolomon/problems.htm
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20.00
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2990.91
59.02
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33.34

4005.68
17.78
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11.01
36.23
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12.51

36.05
3983.69
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37.72
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14.43

37.42
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3815.51
20.00

33.47
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22.06
34.05

3806.21
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3797.11

16.26
36.26
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18.71
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3804.03

32.14
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36.66
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21.17
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38.65

3499.13
29.05
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29.38
39.91

3496.25
27.83
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16.64
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3054.05

19.02
37.79

3045.37
18.22

40.46
3052.38
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40.31

3050.05
17.55

44.29
(3047.55

18.93
44.87)

p4rc105
4017.37

28.11
32.62

3998.70
30.43

32.99
3996.14

17.61
36.18

3995.71
21.62

36.20
4000.55

33.11
36.64

3994.90
26.07

36.57
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than
V
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S

5×
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)
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9×
(60%

)
10×

(66%
)

7×
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)
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due to the too large run time when the ILP solver consumes more of the allotted time, leading to
an exclusion of these variants for some instances (e.g. happening six times for VNS/ILPs

10,[5%,10%]).
However, for many variants and instances the overall execution time of the ILP solver itself is very
short (a few seconds), often solving the ILP to optimality in fractions of a second. The remaining
overhead compared to solely running the VNS is mainly due to the information exchange, especially
for storing the intermediate VNS solutions and avoiding duplicates. It can be noted that the least
improvement occurs for the clustered instances.

Now we will also have a look at the all days strategy, applied with nsol = 5 and ε = 5%, since
this setting yielded good results in the former tests. To be fair, its performance must be compared
to the VNS with 2 · 106 iterations, since its time consumption is basically bounded by taking twice
the run time of the VNS with 106 iterations, plus the overhead for the information exchange. The
results are shown in Table 3, alongside with the best performing single day strategy of each instance
(see Table 1 and 2), whereas no variants need to be excluded due to too high time consumption this
time. Again, significant improvements are underlined. It can be observed that the all days strategy
is generally worse than the single day strategy, though still yielding a significant improvement for
11 of the 30 instances (36%). Most notably the best runs of the single day strategy improve the
results in 14 cases (46%), although the CPU-time consumption is considerably less than that of both
competitors. All in all one of the single day strategies either performs better or at least comparable
to the VNS with 2 · 106 iterations.

7 Conclusions

We hybridized a VNS for the periodic vehicle routing problem with time windows (PVRPTW)—
yielding satisfying results on its own—with a generic ILP solver applied to a proposed set covering
ILP formulation of the problem. This formulation proved suitable for the desired combination,
which can be classified as an intertwined collaborative cooperation where the VNS supplies the
exact method with feasible solutions’ routes and the current best solution, and the ILP solver takes
a global view and seeks to determine better feasible route combinations. For testing we derived
new PVRPTW instances from the Solomon VRPTW benchmark instances. Experimental results
show the advantage of the hybrid approach, yielding for two third of all instances a statistically
significant improvement over solely applying the VNS. It was further clearly beneficial to consider
both improved and intermediate VNS solutions of a certain quality for enriching the ILP model.
Generally, it is better to include not too much solutions to keep the runtime for solving the ILP
small and increase the chance of finding an improved solution in limited time, as well as rather to
include the solutions’ routes for the corresponding day only, instead for all days. This way the hybrid
method still performs significantly better for almost half of the instances even when compared to
VNS runs with twice the iteration limit, additionally requiring considerably less CPU-time.

Further work could include better handling of intermediate VNS solutions (reducing overhead
and probably increasing overall quality and diversity), some sort of column management for the ILP
to be able to include more solutions (probably for all days) without performance degradation via
discarding unpromising columns over time, or adding problem specific cuts to the ILP. It might also
be possible to use such a hybrid method for finding initial feasible solutions by combining several
partly-feasible ones. Based on the current algorithm, we could also investigate the effect of differing
numbers of VNS/ILP sequences and ILP solver time limits, as was done in [13].
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43.10
p6rc102

5487.18
24.34

37.70
5477.66

25.88
38.44

5468.09
29.44

42.23
5471.45

34.57
42.03

5463.50
26.65

44.17
5464.50

27.73
43.49

p6rc103
4382.03

26.68
42.94

4358.47
20.57

43.83
4356.26

21.69
46.72

4358.39
22.54

46.50
4344.02

19.31
48.71

4361.51
17.25

48.95
p6rc104

4142.07
23.93

41.71
4128.66

26.69
43.31

4128.70
20.94

47.65
4133.26

29.08
47.25

(4128.21
29.48

62.58)
(4122.25

21.93
60.63)

p6rc105
5343.05

24.38
38.54

5337.68
30.95

39.56
5328.62

24.46
42.05

5331.82
28.56

42.24
5321.55

20.96
42.96

5319.48
27.39

43.24

sign.
better

than
V

N
S

5×
(33%

)
10×

(66%
)

9×
(60%

)
5×

(33%
)

6×
(40%

)
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Table 3: Results of VNS and VNS/ILP hybrids on derived periodic Solomon instances with a
planning horizon of four and six days, inserting new routes for one or all days.

Instance VNS (2 · 106) best VNS/ILPs VNS/ILPa
5,5%

avg. sdv. t[s] avg. sdv. t[s] avg. sdv. t[s]
p4r101 4127.42 19.24 59.45 4112.11 18.70 33.60 4095.28 12.71 59.48
p4r102 3756.41 16.24 63.33 3742.11 9.51 36.00 3738.38 8.71 54.25
p4r103 3193.08 14.46 64.81 3182.65 11.98 36.06 3181.41 9.45 65.93
p4r104 2603.00 11.99 72.81 2599.43 13.06 39.97 2599.15 14.72 72.66
p4r105 3696.73 13.12 62.92 3675.09 16.22 59.09 3691.70 12.25 67.25

p4c101 2916.43 24.05 56.72 2910.17 0.16 33.98 2910.39 0.99 34.50
p4c102 2949.99 29.82 65.52 2951.60 35.15 35.29 2940.16 27.49 51.93
p4c103 2805.30 37.45 75.01 2804.11 34.12 40.05 2804.47 39.61 67.21
p4c104 2473.83 13.67 72.56 2473.77 19.26 39.16 2468.82 19.53 72.03
p4c105 2975.93 42.54 63.24 2990.91 59.02 34.17 2957.54 44.84 44.84

p4rc101 3996.97 9.69 66.59 3982.46 14.43 37.42 3981.48 10.16 68.42
p4rc102 3796.21 16.17 66.80 3797.11 16.26 36.26 3796.19 25.14 54.99
p4rc103 3486.83 21.52 73.35 3496.25 27.83 39.69 3485.47 31.89 71.63
p4rc104 3053.40 16.92 74.50 3045.37 18.22 40.46 3046.81 21.87 77.60
p4rc105 3995.62 16.23 65.36 3994.90 26.07 36.57 3985.82 19.36 62.64

p6r101 5412.93 12.74 68.60 5395.27 11.92 40.66 5389.07 6.59 75.22
p6r102 5265.78 18.39 72.04 5237.75 9.99 66.22 5267.80 21.54 75.26
p6r103 4024.17 26.05 78.19 4001.86 20.65 55.62 4025.26 28.44 77.89
p6r104 3376.56 14.08 80.47 3372.30 13.35 68.29 3382.73 13.88 87.33
p6r105 4350.44 25.16 74.75 4334.60 26.79 50.00 4360.48 31.13 80.01

p6c101 4064.57 38.93 77.96 4070.44 40.33 41.56 4087.26 48.51 82.01
p6c102 3880.12 20.69 79.83 3884.12 22.29 44.64 3877.56 19.98 84.85
p6c103 3601.82 48.59 91.46 3594.89 43.15 51.89 3604.09 45.23 96.55
p6c104 3292.57 16.47 89.86 3280.58 17.62 48.91 3291.90 25.13 95.58
p6c105 4138.61 57.90 78.01 4158.06 51.36 39.44 4159.95 51.79 83.05

p6rc101 5829.66 17.54 73.37 5824.73 19.31 43.81 5818.06 21.08 78.46
p6rc102 5474.10 28.45 75.65 5463.50 26.65 44.17 5467.22 34.58 81.23
p6rc103 4365.87 16.65 85.80 4344.02 19.31 48.71 4367.08 21.05 91.13
p6rc104 4128.83 23.68 84.26 4122.25 21.93 60.63 4141.07 26.66 89.55
p6rc105 5329.82 22.16 77.16 5319.48 27.39 43.24 5336.40 30.51 81.87

sign. better than VNS 14× (46%) 11× (36%)
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