
A Column Generation Approach for the Periodic
Vehicle Routing Problem with Time Windows1

Sandro Pirkwieser∗ Günther R. Raidl∗

∗Institute of Computer Graphics and Algorithms, Vienna University of Technology
Favoritenstraße 9-11/1861, A-1040 Vienna, Austria

{pirkwieser|raidl}@ads.tuwien.ac.at

Abstract
We present a column generation approach for obtaining strong lower bounds to the periodic ve-

hicle routing problem with time windows (PVRPTW) where customers must be served several times
during a planning period. For this a set-covering model is introduced whose linear programming re-
laxation is solved. The pricing subproblem, responsible for generating new columns, is an elementary
shortest path problem with resource constraints. The latter is solved by a label correcting dynamic
programming algorithm for which we introduce appropriate label resources, extension functions, and
dominance rules. Different settings for this algorithm are suggested and applied in combination to
tune its behavior. We further propose a greedy randomized adaptive search procedure (GRASP) to
solve the pricing subproblem. Experimental results on test instances differing in size, time windows
and period length indicate strong lower bounds for many instances and the advantage of applying the
metaheuristic in combination with the dynamic programming algorithm to save computation time on
larger instances.

Keywords: Periodic Vehicle Routing Problem with Time Windows, Column Generation, Dynamic
Programming, Heuristic Pricing, Hybridization

1 Introduction
Periodic vehicle routing problems (PVRPs) are generalized variants of the classical vehicle routing prob-
lem (VRP) where customers must be served several times for a given planning period. They occur in
real world applications as in courier services, grocery distribution or waste collection. We contribute to
the Periodic Vehicle Routing Problem with Time Windows (PVRPTW), a PVRP variant deserving more
attention.

The PVRPTW is defined on a complete directed graph G = (V,A), where V = {v0, v1, . . . vn} is the
vertex set and A = {(vi, vj) : vi, vj ∈ V, i 6= j} is the arc set. The considered planning horizon shall be t
days, also referred to as T = {1, . . . , t}. Vertex v0 represents the depot with time window [e0, l0] at which
are based m vehicles having capacities Q1, . . . , Qm and maximal working times D1, . . . , Dm. Each vertex
i ∈ VC , with VC = V \ {v0}, corresponds to a customer and has an associated demand qi ≥ 0, a service
duration di ≥ 0, a time window [ei, li], a service frequency fi and a set Ci of allowable combinations of
visit days. For each arc (vi, vj) ∈ A there are further given travel times (costs) cij ≥ 0. The problem then
consists of selecting a single visit combination per customer and designing (at most) m vehicle routes on
each of the t days on G such that:

1This work is supported by the Austrian Science Fund (FWF) under contract number P20342-N13.

1



(1) each route starts and ends at the depot,
(2) each customer i belongs to fi routes over the planning horizon,
(3) the total daily demand of the route for vehicle k does not exceed capacity limit Qk,

and its daily duration does not exceed the maximal working time Dk,
(4) the service at each customer i begins in the interval [ei, li] and every

vehicle leaves the depot and returns to it in the interval [e0, l0], and
(5) the total travel cost of all vehicles is minimized.

Arriving before ei at customer i incurs a waiting time at no additional cost, arriving later than li is not
allowed.

Related work is mentioned in Section 2, an integer linear programming (ILP) formulation and the
solution of its linear programming (LP) relaxation in order to get lower bounds is presented in Section 3,
followed by experimental results in Section 4. Concluding remarks are given in Section 5.

2 Related Work
The PVRPTW was first mentioned in [3], where a tabu search algorithm is described for it. In our
previous work [10] we applied a variable neighborhood search, outperforming the former tabu search. To
our knowledge this specific problem has not been tackled by exact methods so far. This stays in contrast
to the related VRPTW, for which a lot of exact approaches have been published; an overview is given
in [8]. A more general survey of different PVRP variants and solution methods is reported in [6].

3 A Set-Covering Formulation for the PVRPTW
Among the most successful solution approaches for VRPs are algorithms based on column generation [4],
where the initial basis is a restricted master problem gradually enriched by new columns by iteratively
solving pricing subproblems. Therefore we focus on an ILP formulation suitable for such an approach.

We formulate the integer master problem (IMP) for the PVRPTW as a set-covering model, since such
an approach also led to strong bounds in case of the VRPTW [1]:

min
∑
τ∈T

∑
ω∈Ω

γω χωτ (1)

s.t.
∑
r∈Ci

yir ≥ 1 ∀i ∈ VC (2)

∑
ω∈Ω

χωτ ≤ m ∀τ ∈ T (3)∑
ω∈Ω

αiω χωτ −
∑
r∈Ci

βirτ yir ≥ 0 ∀i ∈ VC ; ∀τ ∈ T (4)

yir ∈ {0, 1} ∀i ∈ VC ; ∀r ∈ Ci (5)
χωτ ∈ {0, 1} ∀ω ∈ Ω; ∀τ ∈ T (6)

The set of all feasible routes, which is exponentially large, is denoted by Ω, and for each route ω ∈ Ω
its cost is γω and χωτ is the number of times route ω is selected on day τ . For each customer i ∈ VC ,
variables yir indicate whether or not visit combination r ∈ Ci is chosen. Following constraints are used:
Cover constraints (2) guarantee that at least one visit day combination is selected per customer, fleet
constraints (3) restrict the number of daily routes to not exceed the available vehicles m, and finally visit
constraints (4) link the routes and the visit combinations, whereas αiω and βirτ are binary constants and
indicate whether route ω visits customer i and if day τ belongs to visit combination r ∈ Ci of customer
i, respectively. In the following we want to derive a good lower bound for the IMP by solving its LP
relaxation. Therefore conditions (5) and (6) are replaced by yir ≥ 0 and χωτ ≥ 0, yielding the (linear)

2



master problem (MP). Due to the large number of variables (columns) corresponding to routes, this LP
cannot be solved directly. Instead, we restrict ourself to a small number of initial columns Ω′ ⊂ Ω. The
corresponding LP is referred to as restricted master problem (RMP). Additional columns (routes) that
are able to improve the current LP solution are generated by iteratively solving the so-called pricing
subproblem.

3.1 Pricing Subproblem
The pricing subproblem resembles a shortest path problem with resource constraints (SPPRC) [7]. Re-
garding the quality of the theoretically obtainable lower bound it is beneficial to restrict the search to
elementary paths, hence only considering the elementary SPPRC (ESPPRC). Unfortunately, this con-
dition renders the problem NP hard. Following ESPPRC pricing subproblem holds for each day τ ∈ T
and is solved on the auxiliary graph G′ = (V ′, A′), with V ′ = V ∪{vn+1} and A′ = {(v0, i), (i, vn+1) : i ∈
VC} ∪ {(i, j) : i, j ∈ VC , i 6= j}, where vn+1 is a copy of the (starting) depot v0 and acts as target node,
we further assume a homogeneous fleet of vehicles:

min
∑
i∈V ′

∑
j∈V ′

ĉijτ xij (7)

s.t.
∑
j∈VC

x0j = 1 (8)

∑
i∈V ′

xik −
∑
j∈V ′

xkj = 0 ∀k ∈ VC (9)

∑
i∈VC

xi,n+1 = 1 (10)

∑
i∈VC

∑
j∈V ′

qi xij ≤ Q (11)

an+1 − w0 ≤ D (12)
ai + wi + di + cij −Mij(1− xij) ≤ aj ∀(i, j) ∈ A′ (13)

ei ≤ (ai + wi) ≤ li ∀i ∈ V ′ (14)
wi ≥ 0 ∀i ∈ V ′ (15)
ai ≥ 0 ∀i ∈ V ′ \ {v0} (16)
a0 = 0 (17)
xij ∈ {0, 1} ∀(i, j) ∈ A′ (18)

Variables xij , ∀(i, j) ∈ A′ denote which arcs from A′ are used, and ĉijτ is the reduced cost of using arc
(i, j) on day τ :

ĉijτ =

{
cij − ρτ if i = v0, j ∈ VC
cij − πiτ if i ∈ VC , j ∈ V ′

with ρτ and πiτ being the corresponding dual variable values of constraints (3) and (4), respectively.
Constraints (8)–(10) are the flow constraints, (11) and (12) guarantee feasibility regarding capacity and
duration constraints, respectively. Finally, (13) and (14) are time constraints, with variable ai denoting
the arrival time at customer i and wi being the waiting time occurring after this visit.

The ESPPRC subproblem is solved by a dynamic programming approach based on [2, 5]. We use
a label correcting algorithm and expand the partial paths from the depot v0 to the target node vn+1,
thereby retaining only non-dominated labels. Due to space limitations we only describe the label and
the dominance criteria suitable for our problem setting in more detail, which are an important part of
the whole algorithm. We are faced both with the existence of time windows and restrictions on route
duration. To our knowledge this combination was not part of any work in the context of this algorithm

3



before, though it is highly relevant in practice. Due to these constraints it is a non-trivial task to find
non-dominated paths, since on the one hand partial paths arriving earlier might be beneficial regarding
following time windows, whereas on the other hand partial paths arriving later might be able to reach
more customers afterwards.

To minimize route duration we adhere to the concept of forward time slack [12] and maximize the
initial waiting time w0 at the (start) depot without introducing a time window violation. When building
a path we need to determine the minimum of this time slack, also used to calculate the minimal route
duration.

A label associated with a partial path p at node vi holds the following resource information: ac-
cumulated cost Ci, load Li, and overall waiting time Wi, as well as the arrival time Ai, the actual
minimal forward time slack Fi, and a set Vi(p) containing already visited nodes and those unreachable
due to the numerous restrictions. Having this information, we define two more resources which are cal-
culated on-the-fly: the start of service time Si = max{Ai, ei} and the current minimal route duration
Di = Si −min{Fi,Wi}.

When moving from node vi to node vj the label resources are updated as follows:
• Cj = Ci + cij

• Lj = Li + qi

• Aj = Ai + wi + cij + di

• Wj =Wi + max{0, ej −Aj}
• Fj = min{Fi,Wj + (lj − Sj)}

When a path reaches the target node vn+1 the initial waiting time at the depot is set to w0 = Fn+1 in
order to yield the overall minimal route duration Dn+1.

Finally, based on these resources we define three different dominance rules stating whenever partial
path p1 dominates partial path p2, both ending at the same node vi:
R1: C1i ≤ C2i ∧ D1

i ≤ D2
i ∧ L1

i ≤ L2
i ∧ A1

i ≤ A2
i

R2: C1i ≤ C2i ∧ D1
i ≤ D2

i ∧ L1
i ≤ L2

i ∧ A1
i ≤ A2

i ∧ Vi(p1) ⊆ Vi(p2)
R3: C1i ≤ C2i ∧ D1

i ≤ D2
i ∧ L1

i ≤ L2
i ∧ A1

i ≤ A2
i ∧ Vi(p1) ⊆ Vi(p2) ∧ F1

i ≥ F2
i

A dominated partial path is discarded from further consideration. Dominance rule R1 is quite simple
and fast, a similar one was used in [2]. However, it sometimes also filters out (near) optimal least cost
paths. Contrary to rule R1, rules R2 and R3 are more refined and also consider sets Vi(p1) and Vi(p2).
Especially, rule R3 additionally takes the actual forward time slack into account, which is the critical
resource connecting the arrival time and the duration. Due to rules R1 and R2 being too strict and
therefore of heuristic nature, rule R3 must be applied at last to guarantee finding all least cost paths. In
order to decrease computation time we apply the following sequential dominance rule scheme:
(a) use rule R1 as long as more than 100 new columns could be found, else switch permanently to (b)
(b) use rule R2 until no new columns could be found, then switch to (c)
(c) finally use rule R3, returning to (b) in the next run whenever new columns could be found; terminate

the column generation otherwise.
The dynamic programming algorithm can also be stopped after a certain number of negative cost paths
have been found, i.e. applying a “forced early stop” [9].

We further use a metaheuristic to generate new columns which can be regarded a greedy randomized
adaptive search procedure (GRASP) [11]: In each iteration we start with the “empty” path (v0, vn+1)
with zero cost and successively try to add arcs with negative cost, always selecting one at random in
case there are more available; afterwards we apply up to ten random moves out of the set of inserting,
deleting, moving, replacing and exchanging customers; finally, we perform a local search also based on
these moves, whereas they are applied in a random fashion and we always accept the first improving
change. Whenever an iteration results in a negative cost path it is stored and returned at the end of the
heuristic.

As soon as new columns are generated for one of the daily subproblems they are inserted in all days
and the LP of the RMP is re-solved. This strategy leads to a substantial speed-up compared to only
inserting the columns in the corresponding day. In the following iteration the same daily subproblem is
solved again. This process continues until a full iteration over all days yields no new columns.

4



Table 1: Experimental results of different subproblem algorithm settings.

Instance
UB LB %-gap DP DPS GRASP+DP

No. n m t t[s] t[s] min t[s] med t[s]
1a 48 3 4 2909.02 2882.01 0.94 10.10 5.60 9.44 14.65
2a 96 6 4 5032.06 4993.48 0.77 112.93 58.67 55.15 58.64
3a 144 9 4 7138.65 6841.44 4.34 787.67 399.88 319.92 404.92
4ar1 160 10 4 6929.84 6641.67 4.34 1920.73 1422.78 823.79 900.33
7a 72 5 6 6784.71 6641.39 2.16 29.95 20.40 17.32 21.52
9ar1 96 7 6 8545.80 8035.09 6.36 278.77 121.24 97.28 103.83
9ar2 120 8 6 8598.40 8140.15 5.63 1822.78 994.40 730.27 829.76
8a 144 10 6 9721.25 9153.79 6.20 1493.19 720.00 418.85 505.83
2br1 32 2 4 2709.15 2682.52 1.00 53.43 49.93 42.91 76.43
1b 48 3 4 2277.44 2258.85 0.82 189.32 159.54 103.84 127.84
2br2 64 4 4 2771.68 2733.55 1.40 209.66 232.45 166.73 217.94
3br1 72 4 4 3306.86 3241.90 2.00 543.81 618.91 496.99 548.20
7br1 24 2 6 3776.25 3677.21 2.70 0.71 0.69 1.98 2.25
8br1 36 2 6 3640.79 3476.43 4.73 13.39 9.00 10.75 13.16
7br2 48 3 6 3723.18 3599.72 3.43 45.93 35.75 34.37 39.01
8br2 60 3 6 4606.17 4324.87 6.50 2084.47 1448.49 1163.47 1586.17

4 Experimental Results
The test instances were taken from [3]. They are divided in types ‘a’ and ‘b’ having narrow and large
time windows, respectively. We reduced some of them by selecting only a random subset of the customers
and appropriately adapting the number of vehicles; in this case we give a subscript denoting the index
of the reduced instance. The initial set of columns is provided by taking the routes of feasible solutions
of our metaheuristic reported in [10]. The algorithms have been implemented in C++, compiled with
GCC 4.1 and executed on a single core of a 2.2GHz Dual-Core AMD Opteron 2214 PC with 4GB
RAM. Ilog CPLEX 11.2 was used as LP solver. The ESPPRC subproblem is solved in three ways:
dynamic programming (DP), dynamic programming with forced early stop after generating more than
1000 columns (DPS), and a hybrid method composed of the GRASP-based metaheuristic with up to
10000 iterations—in case it did not find new columns in the first 1000 iterations—as long as it finds more
than 100 new columns and applying DP afterwards (GRASP+DP). In Table 1 we state the instances,
the initially provided upper bounds (UB), the derived lower bounds (LB), the percentage gaps between
them, i.e. %-gap = (UB−LB)/LB ·100%, the CPU times of settings DP and DPS, as well as the minimal
and median times of setting GRASP+DP over 10 runs. It can be observed that applying a forced early
stop (DPS) is in general faster than using none, especially for instances with narrow time windows where
the runtime is often halved. Using the GRASP+DP hybrid is beneficial for larger instances, when the
faster heuristically generated columns outweigh the probably higher quality columns of the DP algorithm.
Again, this difference is more obvious for instances having narrow time windows. The resulting gaps are
clearly smaller for instances with a period of four days, though this is also affected by the method
providing the initial solutions.

5 Conclusions
In this work we presented an ILP formulation for the periodic vehicle routing problem with time win-
dows (PVRPTW) based on a set-covering model. The LP relaxation is solved via column generation,
whereas the pricing subproblem resembles an elementary shortest path problem with resource constraints

5



(ESPPRC) for which we apply an exact dynamic programming algorithm. An important issue are the
simultaneous restrictions on time windows as well as on route duration. For this purpose we proposed
suitable label resources, their extension function, and dominance rules, incorporating the concept of
forward time slack in order to minimize overall route duration. Furthermore a GRASP-based meta-
heuristic is proposed for the ESPPRC. Computational results indicate the advantage of applying a forced
early stop as well as the metaheuristic in combination with the dynamic programming algorithm to save
computation time on larger instances. For many instances only small remaining gaps were achieved.

We are already working on a a suitable column management to speed up the whole process, which is
especially appealing as we are adding multiple columns per iteration. Future work will be dedicated to
applying other (meta-)heuristics for solving the ESPPRC, adding suitable cuts, and designing appropriate
primal heuristics used during or after the column generation process. Finally, we intend to embed this
column generation approach in a branch-(and-cut)-and-price framework to narrow the resulting gap or
even find proven optimal solutions.

References
[1] J. Bramel and D. Simchi-Levi. On the effectiveness of set covering formulations for the vehicle

routing problem with time windows. Operations Research, 45:295–301, 1997.

[2] A. Chabrier. Vehicle routing problem with elementary shortest path based column generation.
Computers & Operations Research, 33(10):2972–2990, 2006.

[3] J.-F. Cordeau, G. Laporte, and A. Mercier. A unified tabu search heuristic for vehicle routing
problems with time windows. Journal of the Operational Research Society, 52:928–936, 2001.

[4] J. Desrosiers and M. E. Lübbecke. A primer in column generation. In G. Desaulniers et al., editors,
Column Generation, chapter 1, pages 1–32. Springer, 2005.

[5] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for the elementary shortest
path problem with resource constraints: Application to some vehicle routing problems. Networks,
44(3):216–229, 2004.

[6] P. M. Francis, K. R. Smilowitz, and M. Tzur. The period vehicle routing problem and its extensions.
In B. Golden et al., editors, The Vehicle Routing Problem: Latest Advances and New Challenges,
pages 73–102. Springer, 2008.

[7] S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In G. Desaulniers
et al., editors, Column Generation, chapter 2, pages 33–65. Springer, 2005.

[8] B. Kallehauge. Formulations and exact algorithms for the vehicle routing problem with time windows.
Computers & Operations Research, 35(7):2307–2330, 2008.

[9] J. Larsen. Parallelization of the Vehicle Routing Problem with Time Windows. PhD thesis, Technical
University of Denmark, 1999.

[10] S. Pirkwieser and G. R. Raidl. A variable neighborhood search for the periodic vehicle routing
problem with time windows. In C. Prodhon et al., editors, Proceedings of the 9th EU/MEeting on
Metaheuristics for Logistics and Vehicle Routing, Troyes, France, 2008.

[11] M. Resende and C. Ribeiro. Greedy randomized adaptive search procedures. In F. Glover and
G. Kochenberger, editors, Handbook of Metaheuristics, pages 219–249. Kluwer, 2003.

[12] M. W. P. Savelsbergh. The vehicle routing problem with time windows: Minimizing route duration.
ORSA Journal on Computing, 4:146–154, 1992.

6


