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1 Introduction

Transportation problems appear in many practically highly relevant areas of our daily life. In
this work we deal with a generalized variant of the classical Vehicle Routing Problem (VRP),
namely the Periodic Vehicle Routing Problem with Time Windows (PVRPTW), for which only
few specific solution techniques have been described in the literature. The basis forms the VRP
which is defined on a complete graph G = (V,A), where V = {v0, v1, . . . vn} is the vertex set
and A = {(vi, vj) : vi, vj ∈ V, i 6= j} is the arc set. Vertex v0 represents the depot at which
are based m vehicles having capacities Q1, . . . , Qm. Each vertex of V \ {v0} corresponds to a
customer and has an associated demand qi ≥ 0 as well as a service duration di ≥ 0. For each
arc (vi, vj) ∈ A there are further given travel times or costs cij ≥ 0. The first generalization is
due to additionally specifying a time window [ei, li] per customer and the depot, where ei and
li are nonnegative integers and denote the earliest as well as latest beginning of the service,
respectively. The second generalization concerns the extension to a planning horizon of t days:
Each customer has defined a service frequency fi and a set Ci of allowable combinations of
visit days, thus a customer has to be visited periodically. The whole PVRPTW then consists
of selecting a single visit combination per customer and designing (at most) m vehicle routes
on each of the t days on G such that

(1) each route starts and ends at the depot,

(2) each customer i belongs to fi routes over the horizon,

(3) the total demand of the route for vehicle k does not exceed Qk,
and its total duration does not exceed a preset value Dk,

(4) the service at customer i begins in the interval [ei, li] and
every vehicle leaves the depot and returns to it in the interval [e0, l0], and

(5) the total travel cost of all vehicles is minimized.

∗This work is funded by the Austrian Science Fund (FWF) under contract number P20342-N13.
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In the following we will report on our work of solving the PVRPTW with a Variable
Neighborhood Search (VNS) metaheuristic. In Section 2 we refer to related work. All parts
composing the VNS are reported in Section 3. Comparative results are given in Section 4 and
concluding remarks in Section 5.

2 Related Work

Although numerous (meta-)heuristics have been described for the classical version of the
VRP [3], and also the VRP with Time Windows (VRPTW) is covered to quite an extent [2],
the PVRPTW is to our knowledge only dealt with in the works by Cordeau et al. [4, 5]. They
developed a Tabu Search (TS) heuristic and applied it to the VRPTW and two generalizations,
among those also the PVRPTW. Related VNS metaheuristics were described by Polacek et
al. [10] for the Multi-Depot VRPTW and by Hemmelmayr et al. [8] for the Periodic VRP. Our
VNS for the PVRPTW adequately combines, adapts, and extends concepts of these works for
considering time windows and periodicity at the same time.

3 Variable Neighborhood Search for the PVRPTW

The VNS metaheuristic [6] is a well-established heuristic search technique and was successfully
applied to a plethora of different problems [7]. Diversification is accomplished by applying
shaking, i.e. random moves in larger neighborhoods, while in the basic VNS a local search
component is included for intensification. Below we report on the parts composing our VNS.

3.1 Penalized Cost Function

To help the VNS finding a good feasible solution we explicitly allow infeasible solutions during
the search process, thus smoothing the search space, by relaxing conditions (3) and (4) of the
problem definition. For a solution s, we denote the total travel cost by c(s), the total violations
of the load, duration, and time window constraints by q(s), d(s), and w(s), respectively. While
q(s) and d(s) are calculated on a route basis considering the values of Qk and Dk, w(s) is
determined by

∑n
i=1 max{0, ai − li}, where ai is the arrival time at customer i. The cost

function is defined as f(s) = c(s) + αq(s) + βd(s) + γw(s), where α, β, and γ are positive
weights which could be adapted in a dynamic way during the search. However, according to
preliminary tests we settled on a common fixed value of 100, which was also the case in [10].

3.2 Initial Solution

Our initialization method is based on those introduced in [4] with a few modifications. First
we randomly choose a visit combination per customer, thus assigning customers to the days
of the planning horizon. In case of Euclidean instances all customers are ordered according
to the angle they make with the depot; ties are broken choosing the customer with the earlier
center of its time window (ei + li)/2 first. An arbitrary ordering can be used otherwise. Next a
customer j ∈ {1, . . . , n} is chosen at random. At most m routes per day are then constructed
by running the following procedure for each day of the planning horizon:
2 EU/MEeting 2008 - Troyes, France, October 23–24, 2008
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1. Set k ← 1.
2. For each customer i = j, j + 1, . . . , n, 1, . . . , j − 1 do:

(a) If the insertion of customer i into route k would result in the violation of load or
duration constraints, set k ← min{k + 1,m}.

(b) Insert customer i into route k so as to minimize the increase of the cost function.

Using this procedure only the last route of each day might violate load or duration con-
straints, whereas all routes might violate time window constraints.

3.3 Shaking

In our VNS we make use of three different neighborhood structures utilized in the shaking
phase. For each of these structures we define six moves with increasing maximal perturbation
size δ, hence resulting in a total of 18 shaking neighborhoods. A move chooses the amount of
change randomly in the interval [1, δ].

(a) Change up to δ visit combinations randomly: Remove a customer from previous visit
combination days and insert it in corresponding days of the new visit combination so as
to minimize the increase of the cost function. It turned out to be beneficial to also allow
“changing” the visit combination of customers offering only one combination, thus removing
and inserting the customer on the same days. Due to the greedy insertion the latter operation
can be regarded as a local search.

(b) Move a random segment of maximal length δ, if δ ∈ [1, 5], or bounded by the route size
in case δ = 6 from a route to another one, i.e. perform a customer relocation. Thereby reverse
the segment with a small probability prev.

(c) Exchange two random segments of varying maximal length (as in the previous move
operator) between two routes, performing a CROSS exchange move. Reverse the segments
with a small probability prev, occasionally performing an iCROSS exchange move [1].

We set prev for both (b) and (c) to 0.1 according to preliminary tests.

3.3.1 Shaking Neighborhood Order

According to findings in [8] we considered one VNS variant with a fixed neighborhood order
of change combination, move segment, and finally exchange segments. The six moves of a
specific neighborhood structure are arranged in increasing order according to δ.

In addition to this we investigated variants of adaptive orderings, since we believe an a
priori fixed ordering might not fit well all instances and each phase of the heuristic search. In
our experiments a random VNS (RVNS) outperformed all other variants. This RVNS starts
with a random neighborhood ordering and generates a new one each time a full VNS iteration
finishes.

3.4 Local Search Procedures

We apply local search on each tour changed during the shaking phase. Thereby we make use
of the well-known 2-opt neighborhood, where a single move corresponds to exchanging two
edges within a tour, inverting a segment. The neighborhood is searched in lexicographic order
and the search is repeatedly applied until no more improvement is possible. Extensive tests
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revealed that the best improvement variant clearly outperforms a first improvement strategy,
both in terms of solution quality and runtime.

Additionally each new incumbent solution is subject to a 2-opt∗ inter-route exchange heuris-
tic [11]. Hereby for each pair of routes of the same day all possible exchanges of the routes’ end
segments are tried. Again this local search iterates until no further improvement is possible
and all days are considered. For 2-opt∗ the first improvement version yielded slightly better
results, so only these are reported in Section 4.

3.5 Acceptance Decision

To avoid that the VNS becomes too easily trapped in local optima, due to the cost function
guiding towards feasible solutions and most likely complicating the escape of basins surrounded
by infeasible solutions, we also allow to accept worse solutions under certain conditions. This
is accomplished by utilizing a Metropolis criterion like in simulated annealing [9] for inferior
solutions s′ and accept them with a probability of e−(f(s′)−f(s))/T , depending on the cost
difference to the actual solution s of the VNS process and the temperature T . We apply a
linear cooling scheme and decrease T every τT iterations by an amount of (T ∗τT )/τmax, where
τmax denotes the maximal VNS iterations. Preliminary tests showed a satisfying performance
when setting τT = 100 and using an initial temperature value of T0 = 10.

4 Computational Results

The algorithm has been implemented in C++, compiled with GCC 4.1 and executed on a
2.2 GHz Dual-Core AMD Opteron 2214 PC with 4 GB RAM. All VNS variants are run 30 times
per instance for 106 iterations and average results are reported. These Euclidean instances
were introduced in [4], they range from 48 to 288 customers, 3 to 20 homogeneous vehicles, and
have a planning horizon of 4 or 6 days. Instances 1a–10a and 1b–10b have narrow and larger
time windows, respectively. Table 1 shows the results of VNS and RVNS without and with
additional 2-opt∗ improvement as described. The second column states the previously best
known solution values from the TS in [4]. For the VNS variants, best and average solution
values (travel costs) as well as corresponding standard deviations are printed. Statistical
Wilcoxon rank sum tests with an error-level of 5% confirm that RVNS often outperforms VNS,
both without and with 2-opt∗, and the variants utilizing 2-opt∗ outperform the corresponding
ones without on many instances, especially in case of the normal VNS. All considered VNS
variants consistently outperform the TS in terms of the best solution found. The last line
denotes average CPU-times. They reveal that RVNS takes less than 10% longer than VNS (due
to repeatedly generating random orderings as well as applying more costly shaking moves more
frequently); using the 2-opt∗ improvement procedure incurs nearly no increase in runtime at
all. In Table 2 we additionally give the relative percentage deviations (RPD) to the previously
best known solutions.

4.1 Improved Route Evaluation

So far we implicitly assumed that each vehicle arrives as early as possible at the first customer
j served by simply setting the waiting time at the depot to max{e0, ej − c0j}. An improved
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Table 2: Improvements of (R)VNS w.r.t. the best known solutions from [4] and [5].

No. TS [4] (R)VNS RPD(%) using forward time slack [12]
TS [5] (R)VNS RPD(%)

1a 3007.84 2989.58 -0.61 2911.03 2909.02 -0.07
2a 5328.33 5127.98 -3.76 5055.05 5036.27 -0.37
3a 7397.10 7260.37 -1.85 7229.73 7138.70 -1.26
4a 8376.95 8089.15 -3.44 7953.08 7882.06 -0.89
5a 8967.90 8723.63 -2.72 8593.00 8492.45 -1.17
6a 11686.91 11063.00 -5.34 10927.45 10713.75 -1.96
7a 6991.54 6917.71 -1.06 6825.07 6787.72 -0.55
8a 10045.05 9854.36 -1.90 9748.36 9721.25 -0.28
9a 14294.97 13891.03 -2.83 13614.47 13463.96 -1.11

10a 18609.72 18023.62 -3.15 17735.59 17650.89 -0.48

Avg. 9470.63 9194.04 -2.66 9059.28 8979.61 -0.81

1b 2318.37 2289.17 -1.26 2294.03 2277.44 -0.72
2b 4276.13 4149.96 -2.95 4257.40 4137.45 -2.82
3b 5702.07 5608.67 -1.64 5648.76 5575.27 -1.30
4b 6789.73 6534.12 -3.76 6594.54 6476.67 -1.79
5b 7102.36 6995.87 -1.50 7054.95 6970.33 -1.20
6b 9180.15 8895.31 -3.10 8928.37 8819.32 -1.22
7b 5606.08 5517.71 -1.58 5505.23 5504.67 -0.01
8b 7987.64 7712.40 -3.45 7875.31 7729.32 -1.85
9b 11089.91 10944.59 -1.31 10889.77 10885.93 -0.04

10b 14207.64 14065.16 -1.00 13980.55 13943.61 -0.26

Avg. 7426.01 7271.30 -2.16 7302.89 7232.00 -1.12

Avg. 8448.32 8232.67 -2.41 8181.09 8105.80 -0.97

method involves the concept of forward time slack introduced in [12]. This was already applied
to the PVRPTW by the TS heuristic [5]. The idea is to postpone leaving the depot as late as
possible without increasing the time window violation, resulting in minimization of the route
duration and probably rendering previously infeasible routes and thus solutions feasible. Due
to limited space we cannot present all results, but we state at least the RPD with regard to
the previously best known solutions, shown in the right half of Table 2. Since the different
VNS variants exhibit a very similar behavior than before, the relative performance differences
stay the same.

5 Conclusions

We presented a Variable Neighborhood Search (VNS) metaheuristic for the so far barely treated
Periodic Vehicle Routing Problem with Time Windows (PVRPTW), a generalized variant of
the classical VRP. For this we considered other successful VNS solution approaches devel-
oped for similar problems and combined and adapted some of their concepts. In addition we
found out that a random VNS often yielded significantly better results than a VNS using a
reasonable fixed ordering of the shaking neighborhoods. Furthermore, a selectively applied
simple inter-route improvement procedure, 2-opt∗, was shown to considerably improve both
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VNS variants at nearly no computational cost at all. Finally, the good performance of our
method is demonstrated when comparing our best solution values to the previously best known
solution values of a Tabu Search heuristic, yielding an average improvement of around 1–3%,
and in some cases even more.
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