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EXACT METHODS AND METAHEURISTIC APPROACHES FOR DERIVING HIGH 
QUALITY FULLY RESOLVED CONSENSUS TREES

*

Sandro Pirkwieser1, Rubén Ruiz-Torrubiano2 and Günther R. Raidl¹

The consensus tree problem primarily arises in the domain of phylogenetics and  
seeks to find for a given collection of trees a single tree best representing it. Such  
a tree collection is usually obtained by biologists for a specific taxa set either via  
different  phylogenetic  inference  methods  or  multiple  applications  of  a  non-
deterministic procedure. Existing consensus methods often have the disadvantage  
of being very strict, limiting the resulting consensus tree in terms of its resolution  
and/or precision. A reason for this typically is the coarse granularity of the tree  
metric used. Hence we both utilize the fine-grained TreeRank similarity measure  
within  metaheuristics  and  apply  exact  methods  based  on  appropriate  integer  
linear programming (ILP) models to find fully resolved (binary) consensus trees  
of  high  quality.  We  further  give  results  on  several  real  and  new  artificially  
generated data.

1. Introduction

The consensus tree problem [1] mostly occurs in phylogenetics [12], whereas the phylogeny 
problem is to infer a phylogenetic tree modeling the evolutionary relationship between a set L 
of  related  objects  called  taxa.  For  practical  reasons  (e.g.  using  different  phylogenetic 
inference methods or multiple applications of a non-deterministic procedure [14]) it is likely 
that a biologist ends up with a collection T of several different and partly contradictory trees 
for one and the same taxa set L. In this work we will only consider rooted unweighted binary 
trees, i.e. there exists a single distinguished root node being the common ancestor of all taxa, 
the relations represented by the tree are not weighted by any means, and each inner node 
always has exactly two direct descendants.

This leads to the consensus tree problem (CTP), which seeks to find for a given collection of 
trees  a  single tree over  L “best”  representing it.  On the one hand the meaning of “best” 
depends on the desired information to retain in the consensus tree, and on the other hand the 
possible consensus tree is literally restricted by the degree of strictness of the applied method 
as well as the granularity of the tree metric used, see also [4]. Figure 1 shows a schematic 
representation of this circumstance. Generally,  a strict method and a coarse-grained metric 
rather  lead  to  poorly  resolved  trees  with  few  inner  nodes  having  high  degrees,  and  a 
substantial portion of the information contained in the input trees is lost. In contrast, we aim at 
deriving  fully  resolved  (thus,  binary)  high-quality  consensus  trees  inheriting  as  much 
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information as possible. Our approach is therefore based on maximizing more specific fine-
grained measures, primarily the so-called TreeRank score [20].

Figure 1: Consensus tree depending on method and metric

In Section 2 we report on previous as well as related work and define the TreeRank measure. 
The developed exact models and solution methods are presented in Section 3, followed by the 
metaheuristic approaches in Section 4. Experimental results on real and artificially generated 
CTP instances are given in Section 5, followed by concluding remarks in Section 6.

2. Previous and Related Work

Several consensus tree methods have already been proposed, see [4] for a good overview and 
comparison. Unfortunately, most methods have the drawback of being relatively strict, such 
as restricting the consensus tree to common substructures, and that the used tree metric is 
often coarse-grained, finally producing a quite poorly resolved or less intuitive solution tree. 
Prominent  examples  are  the  strict  and majority  consensus  methods  operating  on  clusters. 
Further to mention is that the classical methods do not make use of any sophisticated search 
procedures and rely,  if at all, on simple greedy approaches (e.g. the greedy consensus tree 
method available in PHYLIP [9]).

A  recently  proposed  tree  similarity  measure,  the  TreeRank  measure [20],  originally 
introduced  to  handle  database  queries  for  similar  trees  in  TreeBASE3,  allows  for  more 
sophisticated procedures due to its fine granularity.  This measure utilizes the quadratic Up 
matrix  U which states  for  each  pair  of  taxa  (a,  b) the number  U[a,  b] of  necessary up-
traversals to reach from taxon a the least common ancestor of both taxa; see Figure 2 for an 
example. It can be derived in O(|L|2) [20]. The authors also defined the Down matrix D in an 
analogous way, but since  U = DT it is redundant and the Up matrix is also called UpDown 
matrix. Having the matrices  UT1 and UT2  for two trees  T1 and T2, respectively, and assuming 
equal taxa sets, one can calculate the UpDown distance between them by

3 See http://www.treebase.org
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Figure 2: Exemplary tree and its Up matrix

This distance is finally the basis for the TreeRank (TR) score:

For the general case of different taxa sets in T1  and T2  see [20]. The TreeRank score is thus a 
measure of the topological relationships in T1  that are found to be the same or similar in T2. It 
is  bounded  above  by 100% but  has  no  lower  limit,  which  can  be  shown by  comparing 
perfectly balanced and maximal unbalanced trees.

The first metaheuristic approaches applied to the consensus tree problem using the TreeRank 
measure  have  been described  by Cotta  [5].  He presented  several  evolutionary  algorithms 
(EAs) differing in the adopted evolution model and whether or not applying mutation and 
crossover. Tests on real-world instances indicate that solely applying the well-known prune-
delete-graft recombination operator [16] in combination with a steady-state model performs 
best. This recombination operator selects a subtree of the first parent at random, removes its 
leaves in the second parent and grafts the subtree therein at a random position. It is further 
important to include the given input tree collection T in the initial population, otherwise the 
results are significantly worse. As fitness function the average TreeRank score of a candidate 
solution to the set of input trees is used: 

A solution tree is encoded in a direct way via a pre-order traversal always stating the middle 
node followed by the nodes of the left and the right subtrees in a recursive way, yielding for 
the tree in Figure 2 (-1, -1, -1, A, B, C, D), whereas an inner node is represented by -1. This  
EA  also  forms  the  basis  for  our  extension  to  a  memetic  algorithm  (MA)  and  for  the 
combination with the VNS, reported in Section 4.

While we are not aware of other metaheuristics to identify consensus trees, there exist quite a 
few of such approaches for phylogenetic inference: EAs similar to the aforementioned are 
described in [7, 16], and in [8] a MA additionally applies a local search based on subtree 
rotations. Further to mention are a greedy randomized adaptive search procedure (GRASP) 
and  a  VNS  with  embedded  VND  [2],  basically  utilizing  the  neighborhood  structures 
described  later  in  Section  4.  Hence  in  our  work  we  adopt  some  of  these  well  working 
strategies  originally  proposed for  phylogenetic  inference  to  also  solve  the  consensus  tree 
problem in better ways.

3. Exact Methods

The TreeRank measure is not (directly) applicable as objective function for an ILP model, 
since  it  is  highly  non-linear.  An  alternative  measure  to  be  minimized is  the  previously 
introduced UpDown distance, which is a linear function on the values of the UpDown matrix. 
Nonetheless,  an  ILP  model  with  this  measure  as  objective  function  requires  too  much 
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computational  effort  to  be solved, even for very small  instancess.  A much more efficient 
measure can be defined by representing a tree using rooted triplets [4]. A rooted triplet is a list 
(a,  b|c) of  three  taxa  a,  b,  c  ∈ L in  which  the  least  common ancestor  of  a and  b is  a 
descendant of the least common ancestor of a,  b and c. A solution tree composed of rooted 
triplets can be easily represented by means of binary variables ta,b|c ∈ {0, 1}, where ta,b|c = 1  
states  that  the  triplet  (a,  b|c) is  present.  The  consensus  tree  can  be  defined  as  the  one 
maximizing the number of common rooted triplets in the whole input tree collection. Let R(T) 
be  the  set  of  rooted  triplets  defining  tree  T.  Following  this,  the  Weighted  Triplet (WT) 
measure is defined by:

where each coefficient wa,b|c  corresponds to the number of input trees in which triplet (a, b|c) 
is present. This measure also is linear, and easy to calculate. Moreover, weights can be easily 
assigned  to  the  input  tree  collection  representing  the  confidence  on  each  phylogenetic 
inference method used. 

The proposed ILP model includes both uab  variables representing the values in the UpDown 
matrix of the final solution tree, and  ta,b|c variables representing the presence or absence of 
each possible triplet. The purpose of this is to allow the use of an objective function based on 
the values of the UpDown matrix (more realistic), and at the same time obtain the tree defined 
by the triplet  variables,  in order to avoid the conversion from the UpDown matrix to the 
triplet variables (this algorithm is not yet known, and can be a topic of future investigation).  
Consistency of the UpDown matrix also requires that the ta,b|c are used. Following constraints 
are used together with one of the objective functions to define the ILP model to be solved:

The distance from a taxon to itself is zero (2), and the distance between two different taxa is at 
least one and at most the number of taxa minus one (3), since the latter is the largest depth of 
a binary tree having n leaves. Inequality (11) ensures that only one triplet (a, b|c), (b, c|a), or 
(a,  c|b) is realized and inequalities (4)-(9) that the UpDown matrix is consistent.  In these 
constraints M is a constant such that M >> n, where n is the number of taxa. This ensures that 
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the constraints are activated only when the triplet (a, b|c) is present (ta,b|c = 1). Constraints (8)-
(9) are called path constraints. They ensure that the values themselves of the UpDown matrix, 
and not only the relative distances, are consistent. The row-min constraints (10) ensure that 
no  “artificial”  inner  nodes  may  be  added  to  lower  specific  taxa,  which  might  otherwise 
happen,  depending on the  objective  function  used.  Inequalities  (12)  and (13)  express  the 
triplet transitivity and telescopic conditions, which are used in order to derive new necessary 
triplets from other ones; see [21] in case of quartets. Finally, equality (14) state that triplets 
(a, b|c) and (b, a|c) are equivalent. This model has Θ(n3) variables and Θ(n4) constraints. Note 
that the WT measure (1) as objective function together with inequalities (11)-(14) represents a 
completely independent model, which can be used when obtaining the UpDown matrix is not 
the main concern. This reduced model has the advantage of being very efficient, since the 
objective function is easy to calculate. Moreover, intensive computational tests are possible, 
and larger instances can be solved in practice. Hence this model will be subsequently used.

3.1. Lazy Constraints

When solving an ILP problem, it is often the case that some constraints are very unlikely 
violated. These are normally consistency constraints, which must be satisfied by any feasible 
solution. In this case, the elimination of these constraints from the model could be considered: 
Fewer constraints usually mean higher efficiency. The method, of course, would no longer be 
exact, and the feasibility of the solution obtained after solving the model to optimality should 
be checked after every optimization. To solve these inconvenients, and at the same time speed 
up the computations required, the constraints can be treated as  lazy constraints: These are 
constraints which are initially not included in the optimization process, but they are added as 
soon as it is detected that they are violated by the current candidate solution. Depending on 
the problem, this can dramatically improve the performance of the algorithm.

3.2. Heuristic Generation of Variables

Instead of reducing the number of constraints the optimization algorithm has to deal with, the 
number  of  variables considered  for  solving  the  problem  can  also  be  restricted  at  the 
beginning. Triplet variables ta,b|c corresponding to triplets (a, b|c) for which it is assumed that 
they are not present in the final solution are eliminated from the problem. This step is referred 
to as pruning the variable set. The important question is: How is the variable set to be pruned, 
so as not to discard the optimal solution? Since there is no theorical background to answer this 
question, the variable set is heuristically pruned: variables with a low probability of appearing 
in the optimal solution are pruned. These are the triplets  not appearing in any input tree. 
Since the tree which best summarizes the information contained in the input trees is sought, it  
is expected that triplets not appearing in any input tree will not be present in the final solution.

The idea of beginning with a reduced set of variables is closely related to column generation 
[15]  algorithms,  which  is  a  very  powerful  technique  to  solve  ILP  problems  with  many 
variables. First, a meaningful subset of variables is chosen to begin with. The optimal solution 
(if  a feasible  solution exists)  to this  subproblem is  found, and the variables  are  priced:  a 
reduced  cost  is  calculated  for  each  variable,  which  is  based  on  the  solution  of  the  dual 
problem (which is also a linear problem). If this reduced cost is positive for all variables, then 
the solution is provably optimal. If not, the variable with the most negative reduced cost is 
added  to  the  model.  A  column  generation  algorithm  embedded  in  a  branch-and-bound 
approach is called a  branch-and-price algorithm. Since for the CTP the pricing problem is 
both difficult  to state and to solve, we propose a heuristic method in which variables are 
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added when in an incumbent a new variable appears. For this purpose, a rounding procedure 
is  applied  to  each  non-integer  candidate  solution,  so  that  a  feasible  tree  is  found.
We call this method heuristic column generation. In this approach, the initial set of variables 
is chosen by the previous pruning approach.

4. Metaheuristic Approaches

Contrary to problem specific heuristics, metaheuristics operate on a higher level and guide 
one or more of these heuristics so as to escape local minima. Thereby they try to maintain an 
appropriate  balance between intensification and diversification [3]. In this section we will 
extend the EA mentioned in Section 2 (for more details see the original work [5]) by a local  
search  component  obtaining  a  memetic  algorithm  [17].  Thus  additional  intensification  is 
added with the aim to get solutions of higher quality. This local search component as well as 
the  VNS  with  VND,  described  later  on,  are  based  on  the  following  tree  neighborhood 
structures:  Step,  Swap,  Rotate and SPRr, see [2] for an overview of these (with the general 
SPR) for unrooted trees. The corresponding neighborhoods are defined for a given solution to 
be those solutions reachable via one move of the specific neighborhood structure.

Two of them operate on single taxa: a Step move removes a taxon with its predecessor node 
and reinserts them at some other branch in the tree or as new root, whereas a Swap move 
consists  of  two  related  Step  moves  that  exchange  two  taxa  but  keep  the  tree  structure 
otherwise unchanged. The other two deal with whole subtrees:  a Rotate move performs a 
rotation within a tree, i.e. rotating a subtree, finally a SPRr move is a restricted variant of a 
subtree prune and re-graft (SPR) move selecting a nontrivial subtree, pruning it from the tree, 
and re-grafting it at some other branch.

The best performing local search component for the MA resembles those detailed in [10]. In 
the first  third of  the MA—either  w.r.t.  an iteration  or time limit—we apply a  Step local 
search, followed by Swap in the second third, and finally Rotate in the last third, whereas the 
local search performs a random move and accepts improving solutions until a certain number 
of consecutive non-improving moves is reached; we chose 100 to be this limit. An additional 
restriction is to apply the local search only after a new incumbent solution has been found, 
which saves a lot of computational effort.

Next we briefly describe the VNS with embedded VND, for more details see [11]. The basic 
idea  of  VND is  to  use  several  neighborhood structures  with  an appropriate  ordering  and 
systematically switch between them. Thus if no better solution could be found in the actual 
neighborhood go to the next one, otherwise start with the first again. We chose the ordering to 
be  Rotate,  Swap,  Step  and SPRr,  due  to  the  size  and  related  evaluation  effort.  All  four 
neighborhood structures are searched in a deterministic  way applying a first-improvement 
strategy, i.e. always immediately accepting the first solution yielding a better TreeRank score 
than the current. Whereas the VND can obviously intensify the search, the VNS is responsible 
for adequately adding diversification. This is done via so-called shaking moves, which is in 
our  case  accomplished  by  making  a  certain  number  of  Step  moves  selected  at  random. 
Shaking is applied whenever the VND’s last neighborhood led to no improvement.

Following the recent practice of hybridizing metaheuristics [18] to exploit the advantages of 
different  simpler  optimization  techniques  yielding  an  improved  overall  performance,  we 
combine the EA/MA and the VNS (with the embedded VND) in two ways. First, we run the 
EA and the VNS sequentially starting with the EA which initializes the VNS afterwards with 
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the best solution found. Using the MA instead of the EA in this setting leads to an overall  
inferior performance due to the MA’s stronger focus on locally optimal solutions. The second 
hybrid method is to apply the EA/MA and the VNS in an intertwined fashion by dividing the 
execution time into slots and execute both algorithms alternately. Thereby the EA/MA retains 
its population throughout all cycles, whereas the VNS always restarts using the so far best 
solution.

5. Experimental Results

All  approaches  have been implemented  in  C++ and were compiled  with GCC 4.1.2.  The 
experiments were performed on a 2.2 GHz DC AMD Opteron 2214 PC with 4GB RAM.

5.1 Exact Methods

The ILP-based methods proposed in Section 3 are compared when used to solve the model 
(11)-(14)  with  Triplet  Score  as  objective  function  (eq.(1)),  since  this  approach  allows 
intensive computational tests to be performed. In the experiments, both real (mammals20 
and  mammals34) and  random  instances  (instancex_r)  are  included.  The  random 
instances are expected to have quite dissimilar input trees, on the other hand real instances are 
expected to include highly similar input trees. The ILP solver CPLEX 10.0 was used for the 
first approach (lazy constraints), while the open-source alternative COIN-BCP with CPLEX 
as LP solver was used for branch-and-price, since the feature of adding new variables is not 
available in CPLEX.

Table 1: Results obtained with lazy constraints

As Table 1 shows, the performance of the solver using lazy constraints is generally good. In 
this table, the second column shows the numbers of taxa, while the third, fourth and fifth 
columns show the best WT scores, their corresponding TR values and the TR values of the 
best  input  trees,  respectively.  Overall  times  to  solve  the  problem  with  and  without 
initialization step (i.e. initializing the model) are listed in the next two columns. Finally, the 
last  two  columns  show  the  total  numbers  of  lazy  constraints,  and  the  numbers  of  lazy 
constraints which are added to the problem formulation. The largest real instance (34 taxa) is 
solved in less than eight seconds, while the largest random instance (25 taxa) is solved in less 
than  nine  seconds.  Nonetheless,  the  solver  requires  more  than  fifty  seconds  to  solve 
instance7_r, because it takes longer to find the first integer feasible solution than in the 
other  20  taxa  instances  and  more  lazy  constraints  (4182)  had  to  be  added  to  the  initial  
formulation. In the other 20 taxa instances only about 2000 lazy constraints had to be added. 
The same behaviour can be observed in the 15 taxa instances. It is remarkable that in real 
instances no lazy constraints nedded to be added, since the input trees are quite similar. As 
can be seen, both WT score and TR measure are quite uncorrelated: the best WT tree is in 
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most cases worse than the best input tree regarding TR, except in case of the  mammals20 
instance where the optimal tree regarding both measures is one of the input trees. 

Table 2: Results obtained with heuristic column generation

Table 2 shows the results using the heuristic  column generation approach with BCP. The 
values obtained are therefore not necessarily optimal. An additional column labeled “Time 
BCP” shows the total time required without column generation by the standard BCP solver. 
The  column  “Pruning”  shows  the  percentages  of  remaining  variables  after  the  pruning 
procedure.  The  quality  of  the  solutions  obtained  seems  to  be  near  optimal.  In  the  real 
instances, and in two random instances (instance3_r and  instance4_r) the optimal 
solution is already found (in the real instances, no additional variables are needed). In general, 
using this approach represents an improvement in execution time when compared to normal 
BCP. More pruning takes place in real instances, mainly due to the similarity among the input 
trees, than in random instances, where input trees are expected to be more dissimilar. The 
number of added variables is not particularly high, taking into account that a great number of 
variables was eliminated. This can have two possible explanations: either few variables need 
to be added in order to find a solution of reasonably good quality, or the rounding heuristic is 
not  able  to  better  identify which variables  need to  be added in order  to  find the optimal 
solution. Since BCP generally needs more time than CPLEX does, even the CPU times of 
Tables 1 and 2 without considering the initialization time cannot be directly compared.

5.2. Metaheuristics

We test the metaheuristics on three types of larger instances: (1) trees resulting from three 
simple agglomerative clusterings: single-link and complete-link [13] as well as average-link 
[19], with M877 and M971 consisting of three trees and 134 and 158 taxa, respectively, (2) 
trees resulting from several runs of the scatter search approach in [6], with Onco9 consisting 
of nine and Onco10 of ten trees and 148 taxa each, and (3) new artificial trees. The latter are 
created by generating one initial random tree and deriving the actual input trees out of it by 
copying it and applying a series of perturbations in the neighborhoods described in Section 4: 
Random Step, Swap, Rotate,  and SPRr moves are equally likely performed.  To achieve a 
desired similarity of the resulting input trees, we defined minimum and maximum pairwise 
TreeRank scores and performed the perturbations  until  a derived tree achieves  a pairwise 
score w.r.t. the initial tree within these limits, whereas the initial tree itself is not included in 
the input tree collection.  An advantage of these artificially generated instances is that the 
known initial tree, although not necessarily the best possible consensus tree, lends itself as a 
reference solution. In case of these instances the name itself holds the information about the 
number of trees and taxa and also the TreeRank score upper bound used.



Error: Reference source not foundExact Methods and Metaheuristic Approaches for Deriving High Quality Fully Resolved Consensus 
TreesError: Reference source not found Seite 9

The results of the re-implemented version of the basic EA of [5] and those of the three hybrid 
variants are shown in Table 3. We set a CPU time limit per instance (time[s]), which was 
determined by running the pure EA for 500000 iterations.  Further we state  the TreeRank 
score of the best input tree (input), for the artificially created instances additionally the initial 
tree as a reference solution (init), and following TreeRank scores per algorithm and instance: 
the best result (best) and the mean value  (mean) with the corresponding standard deviation 
(sdv.) as well as the median value (med.). Overall best obtained mean values are printed bold.

As can be seen the hybrid variants achieve better results for all instances than the pure EA, 
which was also statistically verified by performing Wilcoxon rank sum tests with error levels 
of less than 5%. Looking at the different hybrids, the sequential variant tends to yield better 
results for the real-world instances whereas the intertwined variants seem to be better suited 
for the artificial instances. Of the latter variants, the intertwined MA/VNS hybrid shows for 
many instances a better performance when compared to the same variant utilizing the pure EA 
only, thus the additional intensification paid off.

Further  it  is  to  be  noted  that  the  artificially  generated  instances  allow  more  room  for 
improvement (ca. 5%) in contrast to our real instances (ca. 2%), and that in case of the former 
only the hybrid algorithms are consistently able to find consensus trees being better than or 
equal to the initial trees.

Table 3: Results of the metaheuristic approaches

6. Conclusions

In  this  work  we  proposed  metaheuristic  approaches  utilizing  the  fine-grained  TreeRank 
measure and exact integer linear programming models and solution methods. In general, the 
use of lazy constraints is the most successful approach which has been investigated to solve 
the problem by means of ILP techniques. It has also been investigated that by pruning the 
available variables, other near-optimal solutions can be obtained. Therefore, the assumption 
that triplets not appearing in any input tree are not likely to appear in an optimal solution can 
be considered as a reliable  pruning criterion.  The use of the heuristic  variable  generation 
technique is clearly beneficial for this problem, since both execution times and quality of the 
final solution are improved. More effort should be spent on finding new and efficient variable 
generation heuristics able to identify which variables should be added to the formulation in 
order  to  obtain  the  optimal  solution.  We further  introduced an  extension  of  a  previously 
presented EA to an MA as well as a VNS with an embedded VND based on four specific tree 
neighborhood  structures  to  better  solve  larger  CTP  instances.  Of  the  metaheuristics,  the 
hybrid approaches clearly exploit the benefits of the individual algorithms they combine and 
always  outperform  the  pure  EA.  Especially  the  intertwined  hybrids  yield  consistently 
excellent and in most cases the overall best solutions. Nevertheless, further tests on other and 
more diverse instances, a refined VND (e.g. regarding the neighborhood order) and a closer 
look at the hybridization might be future work on the metaheuristic side.
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