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Abstract. We present a Lagrangian decomposition approach for the
Knapsack Constrained Maximum Spanning Tree problem yielding up-
per bounds as well as heuristic solutions. This method is further com-
bined with an evolutionary algorithm to a sequential hybrid approach.
Thorough experimental investigations, including a comparison to a previ-
ously suggested simpler Lagrangian relaxation based method, document
the advantages of our approach. Most of the upper bounds derived by
Lagrangian decomposition are optimal, and when additionally applying
local search (LS) and combining it with the evolutionary algorithm, large
and supposedly hard instances can be either solved to provable optimal-
ity or with a very small remaining gap in reasonable time.

1 Introduction

The Knapsack Constrained Maximum Spanning Tree (KCMST) problem arises
in practice in situations where the aim is to design a profitable communication
network under a strict limit on total costs, e.g. for cable laying or similar resource
constraints.

We are given an undirected connected graph G = (V,E) with node set V
and edge set E ⊆ V × V representing all possible connections. Each edge e ∈ E
has associated a weight we ∈ Z+ (corresponding to costs) and a profit pe ∈ Z+.
In addition, a weight limit (capacity) c > 0 is specified. A feasible KCMST is a
spanning tree GT = (V, T ), T ⊆ E on G, i.e. a cycle-free subgraph connecting
all nodes, whose weight

∑
e∈T we does not exceed c. The objective is to find a

KCMST with maximum total profit
∑
e∈T pe.

More formally, we can introduce binary variables xe, ∀e ∈ E, indicating
which edges are part of the solution, i.e. xe = 1↔ e ∈ T and xe = 0 otherwise,
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Fig. 1. Exemplary KCMST instance and its solution.

and write the KCMST problem as:

max p(x) =
∑
e∈E

pexe (1)

s. t. x represents a spanning tree on G (2)∑
e∈E

wexe ≤ c (3)

xe ∈ {0, 1} ∀e ∈ E (4)

Obviously, the problem represents a combination of the classical minimum span-
ning tree (MST) problem (with changed sign in the objective function) and the
classical 0–1 knapsack problem due to constraint (3). Yamada et al. [1] gave a
proof for the KCMST problem’s NP-hardness. An exemplary instance and its
solution are shown in Fig. 1.

After summarizing previous work for this problem in the next section, we
present a Lagrangian decomposition approach in Sect. 3. It is able to yield tight
upper bounds as well as lower bounds corresponding to feasible heuristic solu-
tions. The latter are gained via a Lagrangian heuristic including local search.
Section 4 describes an evolutionary algorithm for the KCMST problem utilizing
the edge-set representation. Section 5 explains how this evolutionary algorithm
can be effectively combined with the Lagrangian decomposition approach in a
sequential manner. Computational results are presented in Sect. 6. The results
document the excellent performance of the whole hybrid system, which is able
to solve many test instances with planar graphs of up to 12000 nodes and com-
plete graphs up to 300 nodes to provable optimality or with a very small gap in
reasonable time.

This article extends our previous conference contribution [2] in various ways:
more algorithmic details are presented, in particular concerning the volume al-
gorithm for solving the Lagrangian dual; a new comparison of the Lagrangian
decomposition with a previously proposed simpler Lagrangian relaxation is per-
formed; and substantially more computational results for a larger variety of
differently structured test instances are included.
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2 Previous Work

In the literature, the KCMST problem is known under several different names
and as minimization and maximization variants. As the minimization problem
can trivially be transformed into a maximization variant, we ignore this differ-
ence in the following. Aggarwal et al. [3] were the first describing this problem
and called it MST problem subject to a side constraint. They proved its NP-
hardness and proposed a branch-and-bound approach for solving it. Jörnsten
and Migdalas [4] (MST network subject to a budget constraint) describe a La-
grangian relaxation (LR) in which the knapsack constraint (3) is relaxed, yielding
a simple minimum spanning tree problem which can be solved efficiently. They
further document the superiority of Lagrangian decomposition, and subsequently
solving each subproblem to optimality, for generating valid bounds. An approx-
imation algorithm also based on LR and a method to reduce the problem size
is suggested in [5] (constrained MST problem). The later articles from Xue [6]
(weight-constrained MST ) and Jüttner [7] (constrained minimum cost spanning
tree problem) deal with two similar primal-dual algorithms. Recently, Yamada
et al. [1] (KCMST problem) also described a LR approach, which yields feasible
heuristic solutions, too. These are further improved by a 2-opt local search. In
order to determine provable optimal solutions for instances of restricted size, the
LR is embedded in a branch-and-bound framework. While the approach is able
to optimally solve instances with up to 1000 nodes and 2800 edges when edge
weights and profits are uncorrelated, performance degrades substantially in the
correlated case. Our Lagrangian decomposition approach was introduced in the
first author’s master thesis [8]. Finally, the recent master thesis of Henn [9] gives
an overview on previous work, introduces a way to reduce the problem size and
presents another exact branch-and-bound scheme.

Generally, LR is a commonly used technique from the area of mathematical
programming to determine upper bounds for maximization problems. Though
the solutions obtained are in general infeasible for the original problem, they
can lend themselves to create feasible solutions and thus to derive lower bounds,
too. For a general introduction to LR, see [10–12].

Since LR plays a fundamental role in the mentioned previous work, we briefly
present its straight-forward application to the KCMST problem. We denote it
as KCMST-LR(λ):

max p(x) =
∑
e∈E

xe(pe − λwe) + λc (5)

s. t. x represents a spanning tree (6)
xe ∈ {0, 1} ∀e ∈ E (7)

In order to find a best suited Lagrangian multiplier λ ≥ 0 for the relaxed weight
constraint, one has to solve the Lagrangian dual problem:

minλ≥0 v(KCMST-LR(λ)), (8)

where the objective value of the optimal solution of KCMST-LR(λ) is denoted
by v(KCMST-LR(λ)).
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3 Lagrangian Decomposition for the KCMST Problem

Lagrangian decomposition (LD) is a special variant of LR that can be meaningful
when there is evidence of two or possibly more intertwined subproblems, and each
of them can be efficiently solved on its own by specialized algorithms.

As the KCMST problem is a natural combination of the maximum spanning
tree problem and the 0–1 knapsack problem, we apply LD with the aim of such a
partitioning. For this purpose, we duplicate variables xe, ∀e ∈ E, by introducing
new, corresponding variables ye and including linking constraints, leading to the
following equivalent reformulation:

max p(x) =
∑
e∈E

pexe (9)

s. t. x represents a spanning tree (10)∑
e∈E

weye ≤ c (11)

xe = ye ∀e ∈ E (12)
xe, ye ∈ {0, 1} ∀e ∈ E (13)

The next step is to relax the linking constraints (12) in a Lagrangian fashion
using Lagrangian multipliers λe ∈ R, ∀e ∈ E. By doing so we obtain the La-
grangian decomposition of the original problem, denoted by KCMST-LD(λ):

max p(x) =
∑
e∈E

pexe −
∑
e∈E

λe(xe − ye) (14)

s. t. x represents a spanning tree (15)∑
e∈E

weye ≤ c (16)

xe, ye ∈ {0, 1} ∀e ∈ E (17)

Stating KCMST-LD(λ) in a more compact way and emphasizing the now inde-
pendent subproblems yields

(MST) max {(p− λ)Tx | x =̂ a spanning tree, x ∈ {0, 1}E} + (18)
(KP) max {λT y | wT y ≤ c, y ∈ {0, 1}E}. (19)

For a particular λ, the maximum spanning tree (MST) subproblem (18) can
be efficiently solved by standard algorithms. In our implementation we apply
Kruskal’s algorithm [13] based on a union-find data structure when the under-
lying graph is sparse and Prim’s algorithm [14] utilizing a pairing heap with
dynamic insertion [15] for dense graphs. The 0–1 knapsack subproblem (19) is
known to be weakly NP-hard, and practically highly efficient dynamic program-
ming approaches exist [16]; we apply the COMBO algorithm [17].

It follows from LR theory that for any choice of Lagrangian multipliers λ,
the optimal solution value to KCMST-LD(λ), denoted by v(KCMST-LD(λ)), is
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always at least as large as the optimal solution value of the original KCMST
problem, i.e., KCMST-LD(λ) provides a valid upper bound. To obtain the tight-
est (smallest) upper bound, we have to solve the Lagrangian dual problem:

minλ∈RE v(KCMST-LD(λ)). (20)

3.1 Solving the Lagrangian Dual Problem

The dual problem (20) is piecewise linear and convex, and standard algorithms
like an iterative subgradient approach can be applied for (approximately) solving
it. More specifically, we use the volume algorithm [18] which has been reported to
outperform standard subgradient methods in many cases including set covering,
set partitioning, max cut, and Steiner tree problems [19, 20]. Our preliminary
tests on the KCMST problem also indicated its superiority over a standard sub-
gradient algorithm [8]. The volume algorithm’s name is inspired by the fact that
primal solutions are considered and that their values come from approximating
the volumes below the active faces of the dual problem. See Algorithm 1 for a
pseudocode description.

The derived upper and lower bounds are stored in variables zUB and zLB,
respectively. The primal vectors of the two subproblems, which represent an
approximation to a primal solution, are denoted by xP and yP, the Lagrangian
multiplier vector is λ.

At the beginning in line 1 an initial solution is created by solving the MST
problem using edge values ve = pe/we, if this fails ve = 1/we. In this way, either
we derive a feasible solution or the problem instance is infeasible. In line 4 the
Lagrangian multipliers are initialized to λe = 0.5pe. We remark that this as
well as some other specific settings in the volume algorithm may influence the
final solution quality significantly. Our choices are based on preliminary tests
partly documented in [8] and the primary intention to find a relatively simple
and generally robust configuration. The primal vectors are initialized in line 8.
The target value T is always estimated by T := 0.95zLB with the exception
T := 0.95T if zUB < 1.05T . Parameter f is initialized with 0.1 and multiplied by
0.67 after 20 consecutive red iterations (i.e. no better upper bound was found)
when f > 10−8 and is multiplied by 1.1 after a green iteration (i.e. a better upper
bound was found and vt · (xt − yt) ≥ 0) when f < 1. These two parameters
influence the step size, which determines the amount of change of the Lagrangian
multipliers. Factor α controls the update of the primal vectors. It is initialized
with 0.01 and periodically checked after every 100 iterations: if the upper bound
decreased less than 1% and α > 10−5 then α := 0.85α. These initializations
are done in line 9 and the update in line 31. The volume algorithm terminates
when either the lower and upper bounds become identical and, thus, an optimal
solution has been reached, or when the upper bound did not improve over the
last 300 iterations, i.e. stepsmax is set to 300 in line 12. All these update rules
are similar to those used in [20].

In each iteration the current subgradients vt, the step size s, and the new
multipliers λt are determined. Using these multipliers both subproblems are
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Algorithm 1: Volume Algorithm applied to KCMST
Result: best lower bound zLB, best upper bound zUB and best solution

found solbest

(sol, p(sol))← getInitialSolution();1

solbest ← sol;2

zLB ← p(sol);3

choose initial values for λ;4

(z0
MST,x

0)← solve MST(p− λ); // see (18)5

(z0
KP,y

0)← solve KP(λ); // see (19)6

zUB = z0
MST + z0

KP;7

(xP,yP) = (x0,y0); // initialize primal values8

initialize T , f and α accordingly;9

t = 0; // iteration counter10

steps = 0;11

while zLB 6= bzUBc and steps 6= stepsmax do12

t = t+ 1;13

vt = xP − yP; // determine actual subgradients14

s = f(zUB − T )/||vt||2; // determine step size15

λt = λ+ svt; // determine actual multipliers16

(ztMST,x
t)← solve MST(p− λt);17

(ztKP,y
t)← solve KP(λt);18

zt = ztMST + ztKP; // actual upper bound19

LagrangianHeuristic(xt); // see Sect. 3.320

// update zLB and solbest

(xP,yP) = α(xt,yt) + (1− α)(xP,yP); // update primal values21

if zt < zUB then // better (lower) upper bound found22

if zt < bzUBc then23

steps = 0;24

else25

steps = steps + 1;26

zUB = zt; // update best upper bound27

λ = λt; // update multipliers28

else // no improvement, red iteration29

steps = steps + 1;30

update T , f and α accordingly;31

solved and the upper bound zt is calculated. Furthermore, a Lagrangian heuris-
tic, described in Sect. 3.3, is applied to the solution of the MST subproblem,
if necessary updating the lower bound and the best solution so far. Afterwards
the primal values are updated using α; they are a convex combination of the
preceding dual solutions x0,y0 to xt and yt. Only in case a better (i.e. lower)
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upper bound is found, the multipliers are set to the new values, and steps is
reset to 0 iff zt < bzUBc.

3.2 Strength of the Lagrangian Decomposition

According to integer linear programming theory, LR always yields a bound that
is at least as good as the one obtained by the corresponding linear programming
(LP) relaxation, providing the Lagrangian dual problem is solved to optimality.
The LR’s bound can be substantially better when the relaxed problem does not
fulfill the integrality property , i.e., the solution to the LP relaxation of the
relaxed problem – KCMST-LD(λ) in our case – is in general not integer.

To see whether or not this condition is fulfilled here, we have to consider
both independent subproblems. For the MST problem, compact models having
the integrality property exist, see e.g. [21]. For the knapsack problem, however,
the integrality property is not fulfilled. Thus, we may expect to obtain bounds
that are better than those from the linear programming relaxation of KCMST.

In comparison, in the LR approach from [1, 7] the knapsack constraint is
relaxed and only the MST problem remains. This approach therefore fulfills the
integrality property and, thus, is in general weaker than our LD.

We further remark that the proposed LD can in principle be strengthened by
adding the cardinality constraint

∑
e∈E ye = |V |−1 to the knapsack subproblem.

The resulting cardinality constrained or exact k-item knapsack problem is still
only weakly NP-hard, and pseudo-polynomial algorithms based on dynamic
programming are known for it [16]. Our investigations indicate, however, that the
computational demand required for solving this refined formulation is in practice
substantially higher and does not pay off the typically only small improvement
of the obtained bound [8].

3.3 Deriving Lower Bounds

In some iterations of the volume algorithm, the obtained spanning tree is feasible
with respect to the knapsack constraint and can be directly used as a lower
bound. Hence, we have already a trivial Lagrangian heuristic . In order to further
improve such solutions this heuristic is strengthened by consecutively applying
a local search based on the following edge exchange move.

1. Select an edge (u, v) ∈ E \ T to be considered for inclusion.
2. Determine the path P ⊆ T connecting nodes u and v in the current tree.

Including e in T would yield the cycle P ∪ {(u, v)}.
3. Identify a least profitable edge ẽ ∈ P that may be replaced by (u, v) without

violating the knapsack constraint:

ẽ = minarg
{
pe | e ∈ E ∧ w(T )− we + w(u,v) ≤ c

}
, (21)

where w(T ) =
∑
e∈T we. In case of ties, an edge with largest weight is chosen.

4. If replacing ẽ by (u, v) improves the solution, i.e. pẽ < p(u,v) ∨ (pẽ = p(u,v) ∧
wẽ > w(u,v)), perform this exchange.
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For selecting edge (u, v) in step 1 we consider two possibilities:

Random selection: Randomly select an edge from E \ T .
Greedy selection: At the beginning of the local search, all edges are sorted

according to decreasing p′e = pe − λe, the reduced profits used to solve the
MST subproblem. Then, in every iteration of local search, the next less
profitable edge not active in the current solution is selected. This results in
a greedy search where every edge is considered at most once.

Since Lagrangian multipliers are supposed to be of better quality in later phases
of the optimization process, local search is only applied when the ratio of the
incumbent lower and upper bounds is larger than a certain threshold τ . Local
search stops after ρ consecutive non-improving iterations have been performed.

4 A Suitable Evolutionary Algorithm

Evolutionary algorithms (EAs) have often proven to be well suited for finding
good approximate solutions to hard network design problems. In particular for
constrained spanning tree problems, a large variety of EAs applying very different
representations and variation operators have been described, see e.g. [22] for an
overview.

Here, we apply an EA based on a direct edge-set representation for heuris-
tically solving the KCMST problem, since this encoding and its corresponding
variation operators are known to provide strong locality and heritability. Fur-
thermore, variation operators can efficiently be performed in time that depends
(almost) only linearly on the number of nodes. In fact, our EA closely follows
the description of the EA for the degree constrained minimum spanning tree
problem in [22]. Only the initialization and variation operators are adapted to
conform with the knapsack constraint.

The general framework is steady-state, i.e. in each iteration one feasible off-
spring solution is created by means of recombination, mutation, and eventually
local improvement, and it replaces the worst solution in the population. Dupli-
cates are not allowed in the population; they are always immediately discarded.
The EA’s operators work as follows.

Initialization. To obtain a diversified initial population, a random spanning
tree construction based on Kruskal’s algorithm is used. Edges are selected
with a bias towards those with high profits. The specifically applied technique
corresponds to that in [22]. In case a generated solution is infeasible with
respect to the knapsack constraint, it is stochastically repaired by iteratively
selecting a not yet included edge at random, adding it to the tree, and
removing an edge with highest weight from the induced cycle.

Recombination. An offspring is derived from two selected parental solutions
in such a way that the new solution candidate always exclusively consists of
inherited edges: In a first step all edges contained in both parents are imme-
diately adopted. The remaining parental edges are merged into a single can-
didate list. From this list, we iteratively select edges by binary tournaments
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with replacement favoring high-profit edges. Selected edges are included in
the solution if they do not introduce a cycle; otherwise, they are discarded.
The process is repeated until a complete spanning tree is obtained. Finally,
its validity with respect to the knapsack constraint is checked. An infeasi-
ble solution is repaired in the same way as during initialization, but only
considering parental edges for inclusion.

Mutation. We perform mutation by inserting a randomly selected new edge
and removing another edge from the introduced cycle. The choice of the edge
to be included is biased towards high-profit edges by utilizing a normally-
distributed rank-based selection as described in [22]. The edge to be removed
from the induced cycle is chosen at random among those edges whose removal
would retain a feasible solution.

Local Search. With a certain probability, a newly derived candidate solution
is further improved by the local search procedure described in Sect. 3.3.

5 Hybrid Lagrangian Evolutionary Algorithm

Preliminary tests clearly indicated that the EA cannot compete with the perfor-
mance of LD in terms of running time and solution quality. However, following
similar ideas as described in [20] for the price-collecting Steiner tree problem, we
can successfully apply the EA for finding better final solutions after performing
LD. Hereby, the EA is adapted to exploit a variety of (intermediate) results from
LD. In detail, the following steps are performed after LD has terminated and
before the EA is executed:
1. If the profit of the best feasible solution obtained by LD corresponds to the

determined upper bound, we already have an optimal solution. No further
actions are required.

2. For the selection of edges during initialization, recombination, and mutation
of the EA, original edge profits pe are replaced by reduced profits p′e = pe−λe.
In this way, Lagrangian dual variables are exploited, and the heuristic search
emphasizes the inclusion of edges that turned out to be beneficial in LD.

3. The edge set to be considered by the EA is reduced from E to a subset E′

containing only those edges that appeared in any of the feasible solutions
encountered by LD. For this purpose, LD is extended to mark these edges.

4. The best feasible solution obtained by LD is included in the EA’s initial
population.

5. Finally, the upper bound obtained by LD is passed to the EA and exploited
by it as an additional stopping criterion: When a solution with a correspond-
ing total profit is found, it is optimal and the EA terminates.

An outline of the collaboration is given in Fig. 2.

6 Computational Results

The described algorithms have been tested on a large variety of different problem
instances, and comparisons regarding the strength of the Lagrangian dual have
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KCMST−LD

best solution

updated edge−profits and reduced edge list

KCMST−EA
upper bound

Hybrid Lagrangian EA

Fig. 2. Information exchange in the hybrid approach.

been performed in particular with the previous LR based primal-dual method
of [7]. This section includes several representative results; further details can be
found in [8]. All experiments were performed on a 2.2 GHz AMD Athlon 64 PC
with 2 GB RAM.

We show and compare results for the Lagrangian relaxation (LR) based
on [7], our Lagrangian decomposition with the simple primal heuristic (LD)
and optionally local search (LD+LS), and the combination of LD and the EA
(LD+LS+EA).

6.1 Test Instances

Unfortunately, no test instances from previously published algorithms for the
KCMST problem are publicly available or could be obtained from the authors.
As in [1], we consider instances based on complete graphs K|V |,γ and planar
graphs P|V |,|E|,γ . Parameter γ represents the type of correlation between profits
and weights:
uncorrelated (“u”): pe and we, e ∈ E, are independently chosen from the

integer interval [1, 100];
weakly correlated (“w”): we is chosen as before, and pe := b0.8we + vec,

where ve is randomly selected from [1, 20];
strongly correlated (“s”): we is chosen as before, and pe := b0.9we + 10c.

For details on the methods used to construct the planar graphs, we refer to [1, 8].
Since we could not obtain the original instances, we created them in the same way
by our own. In addition we constructed larger maximal planar graphs P|V |,γ , i.e.
graphs that cannot be augmented by any further edge without violating planarity
(for |V | > 2 : |E| = 3|V |−6). In case of complete graphs, the knapsack capacity
is c = 20|V | − 20, in case of (maximal) planar graphs c = 35|V |.

In particular for larger strongly correlated instances, we recognized that they
are often easier to solve due to the relatively small number of possible profit and
weight values and the resulting high probability for edges having assigned ex-
actly the same profit/weight values. For example in case of our largest P8000,s

instances, there are 23994 edges but only 100 different profit/weight combi-
nations. In the expected case this leads to ≈ 240 edges sharing each possible
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profit/weight value pair. Therefore, we also created maximal planar graphs from
a profit (weight) interval of [1, 1000] and correspondingly scaled the correlations
and the knapsack capacity. We denote these refined instances as P∗|V |,γ .

We further created particularly challenging test instances according to the
description in [9]. They are based on random and complete graphs and the
following special profit/weight correlations.

outliers (“o”): pe and we lie with probability 0.9 in [1001, 2000] and with prob-
ability 0.1 in [1, 1000].

weakly correlated (“w2”): pe are uniformly distributed in [1, 1000] and
we = min{1000, X + 0.5pe} with X chosen randomly in [1, 1000].

strongly correlated (“s2”): pe are uniformly distributed in [1, 1000] and
we = pe + 20 + β with β uniformly in [−20, 20].

To determine capacity c, the weight of the profit-maximal tree W1 (in case of
several such trees, the one having the least weight is chosen) and the weight
of the weight-minimal tree W2 are computed. Then c is derived in one of the
following ways: c = (W1 + W2)/4 (low limit “l”), c = (W1 + W2)/2 (medium
limit “m”), or c = 3(W1 +W2)/4 (high limit “h”). The variant used is given as
additional subscript δ in the instance class name.

For each considered type, size, correlation, and capacity combination, 10
independent instances had been created.

6.2 Parameter Settings

In addition to the settings already described in Sect. 3.1 we are using the fol-
lowing setup for computing the results presented here.

For the optional local search, greedy edge selection is used for random and
complete graphs with an application threshold set to τ = 0.99 and random edge
selection with τ = 0.995 for the maximal planar graphs. In all cases ρ = 100
is used as maximum number of iterations without improvement. Heuristically
derived solutions are not used for updating the target value T , thus the local
search does not directly influence the volume algorithm.

For the EA, the population size is 100, binary tournament selection is used,
and recombination and mutation are always applied. For the biasing towards
edges with higher profits, parameters α and β (see [22]) are both set to 1.5. Local
search is applied with a probability of 20% for each new candidate solution in the
same manner as described before, except with ρ = 50. The maximum number
of iterations is 10000 for (maximal) planar graphs and 30000 for random and
complete graphs. In case of maximal planar graphs the edge set reduction was
applied.

6.3 Comparing LR and LD

To see the performance differences between Lagrangian decomposition and the
simpler Lagrangian relaxation, we compared our algorithm to a re-implementation



12 Sandro Pirkwieser, Günther R. Raidl, and Jakob Puchinger

Table 1. Comparison between Lagrangian relaxation and decomposition.

Instance
Jüttner [7] Our approach

LR LD
t[s] iter %-gapL %-gapU t[s] iter %-gapL %-gapU

P50,127,u <0.01 6 0.4046 0.1349 0.05 805 0.0140 0.0478
P50,127,w <0.01 6 1.0079 0.0485 0.09 704 0.0097 0.0291
P50,127,s <0.01 4 4.3953 0 0.11 741 0.0487 0
P100,260,u <0.01 7 0.2035 0.0249 0.10 726 0 0.0055
P100,260,w <0.01 7 1.8282 0.0144 0.12 730 0.0072 0.0072
P100,260,s <0.01 5 4.5438 0 0.16 746 0.0121 0
K20,u <0.01 6 0.5369 0.2684 0.04 708 0.0061 0.0732
K20,w <0.01 5 2.6822 0.1293 0.06 628 0.0485 0.0162
K20,s <0.01 4 13.5186 0 0.08 723 0.0378 0
K40,u <0.01 6 0.1935 0.0164 0.11 680 0.0055 0.0055
K40,w <0.01 7 1.5371 0 0.23 721 0 0
K40,s <0.01 4 5.6600 0 0.26 964 0.0459 0
K100,u 0.02 7 0.0454 0.0010 0.80 970 0 0.0010
K100,w 0.02 7 2.9257 0 1.32 978 0.0058 0
K100,s 0.01 4 5.7794 0 2.10 1529 0.0866 0
R100,1238,o,l <0.01 8 0.2208 0.0429 5.79 2443 0.0039 0.0096
R100,1238,o,m <0.01 8 0.0563 0.0068 0.87 1069 0.0012 0.0016
R100,1238,o,h <0.01 6 5.8593 0.0007 0.34 784 0 0.0002
R100,1238,w2,l <0.01 9 0.5505 0.0413 2.72 1591 0.0036 0.0126
R100,1238,w2,m <0.01 9 0.1772 0.0143 1.11 1024 0.0050 0.0051
R100,1238,w2,h <0.01 8 0.0315 0.0065 0.48 865 0.0010 0.0005
R100,1238,s2,l <0.01 8 1.9856 0.0035 3.66 1063 0.0106 0.0020
R100,1238,s2,m <0.01 7 2.1569 0.0008 3.57 973 0.0045 0.0004
R100,1238,s2,h <0.01 8 0.3101 0.0005 3.22 979 0.0027 0.0003
avg. values <0.01 6 2.3587 0.0314 1.14 964 0.0150 0.0090

of the method described in [7]. We made this choice since preliminary tests re-
vealed that this method combines the good upper bounds of the bisection method
in [1] and the good lower bounds of the primal-dual algorithm in [6] and, thus,
outperforms both. Results on planar, complete, and random graphs are shown
in Table 1; average values over 10 different instances are printed. Column t[s]
states the CPU-time in seconds, iter are the number of iterations. The table
further lists relative errors of the achieved lower bounds %-gapL =

p∗−p
p∗ · 100%

and those of the upper bound %-gapU = p−p∗
p∗ · 100%, with p and p being the

derived lower and upper bounds, respectively, and the optimal solution value p∗

was determined by an exact approach3.
Most importantly, we can see that LD achieves in almost all cases substan-

tially smaller gaps than LR and is never worse. In fact, LD’s %-gapU is never
larger than 0.073% and %-gapL is always below 0.087%, whereas the maxima of
LR are ≈0.27% and even ≈13.5%, respectively. Thus, in the course of solving LD
much more high-quality feasible solutions are derived. As already observed in [1],

3We also implemented a yet unpublished exact branch-and-cut algorithm, which is
able to solve these instances to proven optimality.
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strongly correlated instances are typically harder than uncorrelated ones, and
Henn [9] also considered those with low capacity limit to be more challenging.

Sometimes LD is able to solve the instances to optimality but cannot prove
their optimality since the upper bounds were not tight enough. In general, we
can conclude that LD already delivers excellent bounds in short time.

6.4 LD combined with LS and EA

In order to investigate the performance of the proposed LD+LS and the LD+LS+EA
hybrid, we turn to the larger maximal planar graphs, for which Table 2 presents
results. Average values over 10 instances and 10 runs per instance (for the
stochastic algorithms) are reported. If appropriate we state in the last row the
average of these values over all instances.

We state again t[s] and iter , but also the average lower bounds LB , i.e. the
objective values of the best feasible solutions. Upper bounds (UB) are expressed
in terms of the relative gap to these lower bounds: gap = (UB − LB)/LB ;
corresponding standard deviations are listed in columns σgap . Columns %-Opt
show percentage of instances for which the gap is zero and, thus, optimality has
been proven.

For LD+LS+EA, the table also lists the overall time t[s], LB , corresponding
gap information, the percentage of overall optimal solutions %-Opt, and addi-
tionally the average number of EA iterations iterEA, the relative amount of edges
discarded after performing LD red = (|E|− |E′|)/|E| · 100%, and the percentage
of optimal solutions %-OptEA, among %-Opt, found by the EA.

The solutions obtained by LD are already quite good and gaps are in general
small. Applying the local search (LD+LS) always improves the average lower
bound and in some cases helps to find more provably optimal solutions, which
in turn reduces the number of iterations of the volume algorithm. The hybrid
approach (LD+LS+EA) further boosts the average solution quality in almost all
cases and substantially increases the numbers of solutions for which optimality
could be proven. As expected, the finer-grained P∗|V |,γ instances with larger profit
and weight ranges are for all algorithms significantly harder to solve than the
coarse-grained P|V |,γ instances. The possible edge-set reduction decreases with
increasing correlation and range. We remark that these large graphs are much
harder to solve than the ones used in [1], thus the results are very satisfying; for
LD+LS+EA, the gap is always less than 0.00023%.

Tests on random and complete graphs are shown in Table 3. The general re-
sults are quite similar than before, i.e. the local search as well as the EA are both
consistently improving the quality. Preliminary tests suggested not to reduce the
edge-sets on these type of instances; otherwise too many improving edges are
missing. In comparison to the results presented by Henn [9], our approach was
also highly successful on the challenging instances with outlier correlation (in-
stances R|V |,|E|,o,δ and K|V |,o,δ). In particular, LD+LS+EA was able to solve
larger instances (300 instead of 200 nodes) to proven optimality or with a very
small gap than could be tackled by Henn’s branch-and-bound. We further solved
nearly all strongly correlated graph instances to optimality (80 out of 90 with
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local search, and on average 86 out of 90 with the hybrid algorithm), which also
documents that the derived upper bounds are in fact almost always optimal.
In case of these graphs particularly the local search was highly effective. The
remaining gap of LD+LS+EA is never worse than 0.0026%. In particular for
R300,22425,s2,l and R300,22425,s2,h instances, our algorithm needed substantially
less CPU time than [9]4.

7 Conclusions

We presented a Lagrangian decomposition approach for the NP-hard KCMST
problem to derive upper bounds as well as heuristic solutions. Experimental re-
sults on large and diverse graphs revealed that the upper bounds are extremely
tight, in fact most of the time even optimal. Heuristic solutions can be signifi-
cantly improved by applying a local search, and many instances can be solved
to provable optimality already in this way.

For the remaining instances a sequential combination of LD with an evolu-
tionary algorithm has been described. The EA makes use of the edge-set en-
coding and corresponding problem-specific operators and exploits results from
LD in several ways. In particular, the graph can be shrunk by only considering
edges also appearing in heuristic solutions of LD, Lagrangian dual variables are
exploited by using final reduced costs for biasing the selection of edges in the
EA’s operators, and the best solution obtained from LD is provided to the EA
as seed in the initial population.

Computational results document the effectiveness of the hybrid approach.
The EA always improves the quality and sometimes is able to close the gap
and provide proven optimal solutions in many of the remaining difficult cases.
Hereby, the increase in running time one has to pay is mostly only moderate.

The logical next step we want to pursue is to embed the LD or even the
hybrid LD/EA into an exact branch-and-bound algorithm, similar to the one
in [1] which makes use of the simple Lagrangian relaxation. Another possibility
would be to employ the EA in an intertwined way with an exact method. This
would permit us to compare the results with other exact methods in a more
direct way.

In general, we believe that such combinations of Lagrangian relaxation and
metaheuristics like evolutionary algorithms are highly promising for many com-
binatorial optimization tasks. Future work therefore includes the consideration
of further problems, but also the closer investigation of other forms of collabora-
tion between Lagrangian relaxation based methods and metaheuristics, including
intertwined and parallel models.

4They used a roughly comparable test environment, a 2x 86 64 AMD Opteron
workstation.
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