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Abstract. We present a Lagrangian decomposition approach for the
Knapsack Constrained Maximum Spanning Tree problem yielding upper
bounds as well as heuristic solutions. This method is further combined
with an evolutionary algorithm to a sequential hybrid approach. Exper-
imental investigations, including a comparison to a previously suggested
simpler Lagrangian relaxation based method, document the advantages
of the new approach. Most of the upper bounds derived by Lagrangian de-
composition are optimal, and together with the evolutionary algorithm,
large instances with up to 12000 nodes can be either solved to provable
optimality or with a very small remaining gap in reasonable time.

1 Introduction

The Knapsack Constrained Maximum Spanning Tree (KCMST) problem has
been introduced by Yamamato and Kubo [1]. It arises in practice in certain
situations where the aim is to design a profitable communication network under
a strict limit on total costs for cable laying or similar resource constraints.

We are given an undirected connected graph G = (V,E) with node set V
and edge set E ⊆ V × V representing all possible connections. Each edge e ∈ E
has associated a weight we ∈ Z+ (corresponding to costs) and a profit pe ∈ Z+.
In addition, a weight limit (capacity) c > 0 is specified. A feasible KCMST
is a spanning tree T ⊆ E on G, i.e. a cycle-free subgraph connecting all nodes,
whose weight

∑
e∈T we does not exceed c. The objective is to find a KCMST with

maximum total profit
∑

e∈T pe. More formally, we can introduce binary variables
xe, ∀e ∈ E, indicating which edges are part of the solution, i.e. xe = 1 ↔ e ∈ T
and xe = 0 otherwise, and write the KCMST problem as:

max p(x) =
∑
e∈E

pexe (1)



2 Sandro Pirkwieser, Günther R. Raidl, and Jakob Puchinger

s. t. x represents a spanning tree (2)∑
e∈E

wexe ≤ c (3)

xe ∈ {0, 1} ∀e ∈ E (4)

Obviously, the problem represents a combination of the classical minimum span-
ning tree problem (with changed sign in the objective function) and the classical
0–1 knapsack problem due to constraint (3). Yamada et al. [2] gave a proof for
the KCMST problem’s NP-hardness.

After summarizing previous work for this problem in the next section, we
present a Lagrangian decomposition approach in Section 3. It is able to yield
tight upper bounds as well as lower bounds corresponding to feasible heuristic so-
lutions. Section 4 describes an evolutionary algorithm for the KCMST problem
utilizing the edge-set representation. Section 5 explains how this evolutionary
algorithm can be effectively combined with the Lagrangian decomposition ap-
proach in a sequential manner. Experimental results are presented in Section 6.
They document the excellent performance of the whole hybrid system, which
is able to solve almost all test instances with graphs of up to 12000 nodes to
provable optimality or with a very small gap in reasonable time.

2 Previous Work

While numerous algorithms and studies exist for the standard minimum span-
ning tree problem, the 0–1 knapsack problem, and various related constrained
network design problems, we are only aware of the following literature specifically
addressing the KCMST problem.

Yamamato and Kubo [1] introduced this problem, but neither proved NP-
hardness nor presented any solution algorithms. This was first done by Yamada
et al. [2]. They described a Lagrangian relaxation approach in which the knapsack
constraint (3) is relaxed, yielding the simple maximum spanning tree problem
which can be solved efficiently. The Lagrangian dual problem of finding a best
suited Lagrangian multiplier for the relaxed weight constraint is solved by a
simple bisection method. The Lagrangian relaxation approach also yields feasible
heuristic solutions, which are further improved by a 2-opt local search. In order
to also determine provable optimal solutions for instances of restricted size, the
Lagrangian relaxation is embedded in a branch-and-bound framework. While the
approach is able to optimally solve instances with up to 1000 nodes and 2800
edges when edge weights and profits are uncorrelated, performance degrades
substantially in the correlated case.

The only other work for the KCMST problem we are aware of is the first
author’s master thesis [3]. It formed the basis for this article, and we refer to it
for further details, in particular for more computational results.

The problem also exists in its minimization version [4], for which Jörnsten
and Migdalas document the superiority of Lagrangian decomposition, and sub-
sequently solving each subproblem to optimality, for generating valid bounds
[5].
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3 Lagrangian Decomposition for the KCMST Problem

Lagrangian relaxation is a commonly used technique from the area of mathe-
matical programming to determine upper bounds for maximization problems.
Though the solutions obtained are in general infeasible for the original problem,
they can lend themselves to create feasible solutions and thus to derive lower
bounds, too. For a general introduction to Lagrangian relaxation, see [6–8]. La-
grangian Decomposition (LD) is a special variant that can be meaningful when
there is evidence of two or possibly more intertwined subproblems, and each of
them can be efficiently solved on its own by specialized algorithms.

As the KCMST problem is a natural combination of the maximum spanning
tree problem and the 0–1 knapsack problem, we apply LD by aiming at such a
partitioning. For this purpose, we split variables xe, ∀e ∈ E, by introducing new
variables ye and including linking constraints, leading to the following equivalent
reformulation:

max p(x) =
∑
e∈E

pexe (5)

s. t. x represents a spanning tree (6)∑
e∈E

weye ≤ c (7)

xe = ye ∀e ∈ E (8)
xe, ye ∈ {0, 1} ∀e ∈ E (9)

The next step is to relax the linking constraints (8) in a Lagrangian fashion using
Lagrangian multipliers λe ∈ R, ∀e ∈ E. By doing so we obtain the Lagrangian
decomposition of the original problem, denoted by KCMST-LD(λ):

max p(x) =
∑
e∈E

pexe −
∑
e∈E

λe(xe − ye) (10)

s. t. x represents a spanning tree (11)∑
e∈E

weye ≤ c (12)

xe, ye ∈ {0, 1} ∀e ∈ E (13)

Stating KCMST-LD(λ) in a more compact way and emphasizing the now inde-
pendent subproblems yields

(MST) max {(p− λ)T x | x =̂ a spanning tree, x ∈ {0, 1}E} + (14)
(KP) max {λT y | wT y ≤ c, y ∈ {0, 1}E}. (15)

For a particular λ, the maximum spanning tree (MST) subproblem (14) can
be efficiently solved by standard algorithms. In our implementation we apply
Kruskal’s algorithm [9] based on a union-find data structure when the underlying
graph is sparse and Prim’s algorithm [10] utilizing a pairing heap with dynamic
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insertion [11] for dense graphs. The 0–1 knapsack subproblem (15) is known
to be weakly NP-hard, and practically highly efficient dynamic programming
approaches exist [12], whereas we apply the COMBO algorithm [13].

It follows from Lagrangian relaxation theory that for any choice of La-
grangian multipliers λ, the optimal solution value to KCMST-LD(λ), denoted
by v(KCMST-LD(λ)), is always at least as large as the optimal solution value of
the original KCMST problem, i.e., KCMST-LD(λ) provides a valid upper bound.
To obtain the tightest (smallest) upper bound, we have to solve the Lagrangian
dual problem:

minλ∈RE v(KCMST-LD(λ)). (16)

This dual problem is piecewise linear and convex, and standard algorithms like
an iterative subgradient approach can be applied for (approximately) solving it.
More specifically, we use the volume algorithm [14] which has been reported to
outperform standard subgradient methods in many cases including set covering,
set partitioning, max cut, and Steiner tree problems [15]. In fact, preliminary
tests on the KCMST problem also indicated its superiority over a standard sub-
gradient algorithm [3]. The volume algorithm’s name is inspired by the fact that
primal solutions are considered and that their values come from approximating
the volumes below the active faces of the dual problem.

3.1 Strength of the Lagrangian Decomposition

According to integer linear programming theory, Lagrangian relaxation always
yields a bound that is at least as good as the one obtained by the corresponding
linear programming (LP) relaxation. The Lagrangian relaxation’s bound can
be substantially better when the relaxed problem does not fulfill the integrality
property, i.e., the solution to the LP relaxation of the relaxed problem – KCMST-
LD(λ) in our case – is in general not integer.

For seeing whether or not this condition is fulfilled here, we have to consider
both independent subproblems. Compact models having the integrality property
exist for MST, see e.g. [16]. Furthermore, the integrality property is obviously
not fulfilled for the knapsack subproblem. Thus, we may expect to obtain bounds
that are better than those from the linear programming relaxation of KCMST.

In comparison, in the Lagrangian relaxation approach from [2] the knapsack
constraint is relaxed and only the MST problem remains. This approach therefore
fulfills the integrality property and, thus, is in general weaker than our LD.

We further remark that the proposed LD can in principle be strengthened by
adding the cardinality constraint

∑
e∈E ye = |V |−1 to the knapsack subproblem.

The resulting cardinality constrained knapsack problem is still only weakly NP-
hard, and pseudo-polynomial algorithms based on dynamic programming are
known for it [12]. Our investigations indicate, however, that the computational
demand required for solving this refined formulation is in practice substantially
higher and does not pay off the typically only small quality increase of the
obtained bound [3].
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3.2 Deriving Lower Bounds

In some iterations of the volume algorithm, the obtained spanning tree is feasible
with respect to the knapsack constraint and can be directly used as a lower
bound, hence resulting in a simple Lagrangian heuristic. In order to further
improve such solutions this heuristic is strengthened by consecutively applying
a local search based on the following edge exchange move.

1. Select an edge (u, v) ∈ E \ T to be considered for inclusion (see below).
2. Determine the path P ⊆ T connecting nodes u and v in the current tree.

Including e in T would yield the cycle P ∪ {(u, v)}.
3. Identify a least profitable edge ẽ ∈ P that may be replaced by (u, v) without

violating the knapsack constraint:

ẽ = minarg
{
pe | e ∈ E ∧ w(T )− we + w(u,v) ≤ c

}
, (17)

where w(T ) =
∑

e∈T we. In case of ties, an edge with largest weight is chosen.
4. If replacing ẽ by (u, v) improves the solution, i.e. pẽ < p(u,v) ∨ (pẽ = p(u,v) ∧

wẽ > w(u,v)), perform this exchange.

For selecting edge (u, v) in step 1 we consider two possibilities:

Random selection: Randomly select an edge from E \ T .
Greedy selection: At the beginning of the local search, all edges are sorted

according to decreasing p′e = pe − λe, the reduced profits used to solve the
MST subproblem. Then, in every iteration of local search, the next less
profitable edge not active in the current solution is selected. This results in
a greedy search where every edge is considered at most once.

Since Lagrangian multipliers are supposed to be of better quality in later phases
of the optimization process, local search is only applied when the ratio of the
incumbent lower and upper bounds is larger than a certain threshold τ . Local
search stops after ρ consecutive non-improving iterations have been performed.

4 A Suitable Evolutionary Algorithm

Evolutionary algorithms (EAs) have often proven to be well suited for finding
good approximate solutions to hard network design problems. In particular for
constrained spanning tree problems, a large variety of EAs applying very different
representations and variation operators have been described, see e.g. [17] for an
overview.

Here, we apply an EA based on a direct edge-set representation for heuris-
tically solving the KCMST problem, since this encoding and its corresponding
variation operators are known to provide strong locality and heritability. Fur-
thermore, variation operators can efficiently be applied in time that depends
(almost) only linearly on the number of nodes. In fact, our EA closely follows
the description of the EA for the degree constrained minimum spanning tree
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problem in [17]. Only the initialization and variation operators are adapted to
conform with the knapsack constraint.

The general framework is steady-state, i.e. in each iteration one feasible off-
spring solution is created by means of recombination, mutation, and eventually
local improvement, and it replaces the worst solution in the population. Dupli-
cates are not allowed in the population; they are always immediately discarded.
The EA’s operators work as follows.

Initialization. To obtain a diversified initial population, a random spanning
tree construction based on Kruskal’s algorithm is used. Edges are selected
with a bias towards those with high profits. The specifically applied technique
is exactly as described in [17]. In case a generated solution is infeasible with
respect to the knapsack constraint, it is stochastically repaired by iteratively
selecting a not yet included edge at random, adding it to the tree, and
removing an edge with highest weight from the induced cycle.

Recombination. An offspring is derived from two selected parental solutions
in such a way that the new solution candidate always exclusively consists of
inherited edges: In a first step all edges contained in both parents are imme-
diately adopted. The remaining parental edges are merged into a single can-
didate list. From this list, we iteratively select edges by binary tournaments
with replacement favoring high-profit edges. Selected edges are included in
the solution if they do not introduce a cycle; otherwise, they are discarded.
The process is repeated until a complete spanning tree is obtained. Finally,
its validity with respect to the knapsack constraint is checked. An infeasi-
ble solution is repaired in the same way as during initialization, but only
considering parental edges for inclusion.

Mutation. We perform mutation by inserting a randomly selected new edge
and removing another edge from the introduced cycle. The choice of the edge
to be included is biased towards high-profit edges by utilizing a normally-
distributed rank-based selection as described in [17]. The edge to be removed
from the induced cycle is chosen at random among those edges whose removal
would retain a feasible solution.

Local Search. With a certain probability, a newly derived candidate solution
is further improved by the local search procedure described in Section 3.2.

5 Hybrid Lagrangian Evolutionary Algorithm

Preliminary tests clearly indicated that the EA cannot compete with the perfor-
mance of LD in terms of running time and solution quality. However, following
similar ideas as described in [15] for the price-collecting Steiner tree problem, we
can successfully apply the EA for finding better final solutions after performing
LD. Hereby, the EA is adapted to exploit a variety of (intermediate) results from
LD. In detail, the following steps are performed after LD has terminated and
before the EA is executed:
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1. If the profit of the best feasible solution obtained by LD corresponds to the
determined upper bound, we already have an optimal solution. No further
actions are required.

2. For the selection of edges during initialization, recombination, and mutation
of the EA, original edge profits pe are replaced by reduced profits p′e = pe−λe.
In this way, Lagrangian dual variables are exploited, and the heuristic search
emphasizes the inclusion of edges that turned out to be beneficial in LD.

3. The edge set to be considered by the EA is reduced from E to a subset E′

containing only those edges that appeared in any of the feasible solutions
encountered by LD. For this purpose, LD is extended to mark these edges.

4. The best feasible solution obtained by LD is included in the EA’s initial
population.

5. Finally, the upper bound obtained by LD is passed to the EA and exploited
by it as an additional stopping criterion: When a solution with a correspond-
ing total profit is found, it is optimal and the EA terminates.

6 Experimental Results

The described algorithms have been tested on a large variety of different problem
instances, and comparisons have been performed in particular with the previous
Lagrangian relaxation based method from [2]. This section summarizes most
important results; more details can be found in [3]. All experiments were run on
a 1.6GHz Pentium M PC with 1.25GB RAM.

As in [2], we consider instances based on random complete graphs K|V |γ and
planar graphs P|V |,|E|γ . Since we could not obtain the original instances, we
created them in the same way by our own. In addition we constructed larger
maximal planar graphs P|V |γ . Parameter γ represents the type of correlation
between profits and weights:

uncorrelated (‘u’): pe and we, e ∈ E, are independently chosen from the
integer interval [1, 100];

weakly correlated (‘w’): we is chosen as before, and pe := b0.8we+vec, where
ve is randomly selected from [1, 20];

strongly correlated (‘s’): we is chosen as before, and pe := b0.9we + 10c.

For details on the methods used to construct the (maximal) planar graphs, we
refer to [2, 3]. In case of complete graphs, the knapsack capacity is c = 20·|V |−20,
in case of (maximal) planar graphs c = 35 · |V |. For each combination of graph
type, graph size, and correlation, 10 instances have been considered.

We show and compare results for the Lagrangian relaxation (LR), Lagrangian
relaxation with local search (LR+LS), and associated branch-and-bound (B&B)
from [2], our Lagrangian decomposition with the simple primal heuristic (LD)
and optionally local search (LD+LS), and the combination of LD and the EA
(LD+LS+EA).

Robust settings for strategy parameters have been determined by preliminary
tests. For the results presented here the following setup has been used.
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The volume algorithm within the LD approach terminates when either the
lower and upper bounds become identical and, thus, an optimal solution has been
reached, or when the upper bound did not improve over the last 500 iterations
in case of planar graphs and 1000 iterations in case of complete graphs. For
completeness, we provide the following further details for the volume algorithm
based on its description in [14]: The target value T always is updated by T :=
0.95LB and T := 0.475(LB +UB) for planar and complete graphs, respectively,
with the exception T := 0.95T iff UB < 1.05T . Parameter f is initialized with
0.1 and multiplied by 0.67 after 20 consecutive red iterations when f > 10−8 in
case of planar graphs and f > 10−6 for complete graphs and is multiplied by
1.1 after a green iteration when f < 1. Factor α is initialized with 0.1 and it is
checked after every 100 and 200 iterations in case of planar and complete graphs,
respectively, if the upper bound decreased less than 1%; if so and α > 10−5 then
α := 0.85α. All these update rules are similar to those used in [15].

For the optional local search, greedy edge selection is used for complete
graphs and random edge selection for all others. The application threshold is set
to τ = 0.99. As maximum number of iterations without improvement, ρ = 200 is
used in case of uncorrelated and weakly correlated planar graphs, and ρ = 100
in all other cases.

For the EA, the population size is 100, binary tournament selection is used,
and recombination and mutation are always applied. For the biasing towards
edges with higher profits, parameters α and β (see [17]) are both set to 1.5.
Local search is performed with random edge selection for each new candidate
solution with a probability of 20% with ρ = 50 and a maximum of 5000 total
iterations for graphs having less than 8000 nodes and 10000 total iterations for
larger graphs.

Results on planar and complete graphs are shown in Table 1. For LR, LR+LS,
and B&B, they are adopted from [2]. Average values based on 10 different in-
stances are printed. Columns LB show obtained lower bounds, i.e. the objective
values of the best feasible solutions. Upper bounds (UB) are expressed in terms
of the relative gap to these lower bounds: gap = (UB−LB)/LB; corresponding
standard deviations are listed in columns σgap . Columns Opt show numbers of
instances (out of 10) for which the gap is zero and, thus, optimality has been
proven. Average CPU-times for the runs are printed in columns t in seconds,
and the average numbers of iterations of the volume algorithm in columns iter.

With respect to the CPU-times listed for branch-and-bound, we remark that
they were measured on an IBM RS/6000 44P Model 270 workstation, and there-
fore, they cannot directly be compared with the times from our methods. The
maximum time limit for B&B was 2000 seconds.

Most importantly, we can see that LD obtains substantially smaller gaps
than both, LR and LR+LS. In fact, LD’s average gaps are never larger than
0.063%, and for a large number of instances, optimality is already proven. On
the remaining instances, enhancing LD by applying local search is beneficial; in
most cases gaps are significantly reduced, and a few more instances could be
solved to proven optimality. Overall, only 40 out of 330 instances remain, for
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Table 1. Results of Lagrangian algorithms on planar and complete graphs.

Instance

Yamada et al.[2]
LD LD+LSLR LR+LS B&B

gap gap
t[s] Opt t[s] iter LB

gap σgap Opt t[s] iter LB
gap σgap Opt[·10−5] [·10−5] [·10−5] [·10−5] [·10−5] [·10−5]

P50,127u 948.2 454.1 0.43 10 0.19 983 3558.5 62.56 89.70 3 0.30 976 3559.0 47.58 49.16 3
P100,260u 586.6 268.9 1.78 10 0.17 801 7222.9 6.76 13.17 7 0.37 817 7222.9 6.76 13.17 7
P200,560u 411.6 187.9 5.46 10 0.31 869 14896.7 3.98 5.60 6 0.55 822 14896.9 2.68 4.71 7
P400,1120u 128.3 70.4 24.44 10 0.55 880 29735.0 2.71 3.83 6 1.15 905 29735.1 2.36 3.20 6
P600,1680u 121.2 54.1 75.25 10 0.79 934 44836.2 1.11 1.17 5 1.52 854 44836.4 0.67 1.07 7
P800,2240u 296.2 124.9 466.37 10 0.79 766 59814.5 0 0 10 1.59 716 59814.5 0 0 10
P1000,2800u 166.0 73.3 592.77 10 0.99 764 74835.6 0 0 10 2.08 764 74835.6 0 0 10
P50,127w 4372.0 1243.3 0.81 10 0.15 745 2063.2 52.80 79.75 6 0.23 751 2063.6 33.57 50.59 6
P100,260w 2926.4 603.7 2.71 10 0.17 732 4167.9 9.67 16.94 7 0.36 724 4168.0 7.24 11.65 7
P200,560w 1064.0 266.3 13.11 10 0.28 730 8431.9 1.19 3.76 9 0.36 634 8432.0 0 0 10
P400,1120w 818.8 183.9 47.15 10 0.49 802 16794.3 3.58 6.42 7 0.77 721 16794.9 0 0 10
P600,1680w 824.0 167.6 371.84 8 0.65 779 25158.0 0.40 1.26 9 1.29 788 25158.0 0.40 1.26 9
P800,2240w 425.7 103.8 509.22 5 0.92 854 33540.2 0.89 1.99 8 1.76 762 33540.5 0 0 10
P50,127s 10282.5 161.0 2.84 10 0.16 815 2051.3 43.92 62.81 5 0.12 573 2052.2 0 0 10
P100,260s 19898.0 265.6 405.45 8 0.23 829 4115.1 9.72 12.54 6 0.18 641 4115.5 0 0 10
K40u 250.9 106.1 0.87 10 0.23 880 3669.3 5.50 11.59 8 0.28 884 3669.3 5.50 11.59 8
K60u 390.1 107.4 1.89 10 0.58 1164 5673.3 8.86 12.50 6 0.72 1189 5673.4 7.10 9.16 6
K80u 272.7 130.3 6.54 10 0.60 858 7672.8 0 0 10 0.69 847 7672.8 0 0 10
K100u 148.8 43.3 12.48 10 1.07 1062 9698.0 1.03 3.25 9 1.27 1055 9698.0 1.03 3.25 9
K120u 122.3 42.7 23.69 10 1.37 1012 11701.2 0 0 10 1.65 1052 11701.2 0 0 10
K140u 56.1 22.6 60.95 10 2.08 1184 13721.0 0 0 10 2.38 1162 13721.0 0 0 10
K160u 89.7 38.8 476.26 10 2.88 1260 15727.9 0 0 10 3.19 1213 15727.9 0 0 10
K180u 101.1 45.2 636.54 10 4.31 1488 17729.2 1.13 3.57 9 4.95 1470 17729.3 0.56 1.77 9
K200u 40.5 17.2 375.26 10 5.55 1502 19739.4 0 0 10 6.11 1446 19739.4 0 0 10
K20w 6186.9 991.7 0.25 10 0.11 720 618.9 17.01 53.79 9 0.12 698 618.9 17.01 53.79 9
K40w 4262.5 520.3 1.17 10 0.24 737 1320.6 7.55 23.87 9 0.19 613 1320.7 0 0 10
K60w 5700.5 529.2 6.09 10 0.51 891 2017.6 19.87 41.88 8 0.40 676 2018.0 0 0 10
K80w 4970.4 343.6 38.15 10 0.81 863 2720.4 3.68 11.63 9 0.67 732 2720.5 0 0 10
K100w 2413.3 172.9 377.61 8 1.10 879 3421.3 2.92 9.23 9 1.02 759 3421.4 0 0 10
K120w 3797.7 206.6 451.06 8 2.78 1527 4123.3 26.69 24.15 3 1.65 871 4124.3 2.43 7.68 9
K20s 22122.2 379.1 0.53 10 0.22 960 528.6 56.89 91.60 7 0.09 635 528.9 0 0 10
K30s 17032.9 322.2 99.63 10 0.31 1016 809.2 37.12 59.76 7 0.16 717 809.5 0 0 10
K40s 9492.7 137.7 226.30 6 0.34 902 1089.9 18.38 58.12 9 0.28 782 1090.1 0 0 10

which LD+LS was not able to find optimal solutions and prove their optimality.
As already observed in [2], strongly correlated instances are typically harder to
solve than uncorrelated ones.

A comparison of the heuristic solutions obtained from LD+LS with solutions
from an exact approach3 further indicated that almost all of them are actually
optimal; LD+LS just cannot prove their optimality since the upper bounds were
not tight enough. As a consequence, additionally applying the EA after LD+LS
was not very meaningful for these instances. Tests not shown here confirmed
that only in rare cases, gaps could further be reduced by the EA.

Our LD is extremely fast, needing for none of these instances more than
seven seconds. The time overhead introduced by local search is also only very
moderate, in particular since the improved heuristic solutions implied a faster
convergence of the volume algorithm.

In order to investigate the usefulness of the proposed LD+LS+EA hybrid,
we now turn to the larger maximal planar graphs, for which Table 2 presents
3 We also implemented a not yet published exact branch-and-cut algorithm, which is

able to solve these instances to proven optimality.
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results. For the EA, we additionally list the average number of EA iterations
iterEA, the relative amount of edges discarded after performing LD red = (|E|−
|E′|)/|E| ·100%, and the number of optimal solutions OptEA, among Opt, found
by the EA.

Again, the solutions obtained by LD are already quite good and gaps are in
general small. The inclusion of local search clearly increases the number of opti-
mal solutions found, leaving only 21 out of all 180 instances for which optimality
is not yet proven. The hybrid approach (LD+LS+EA) works almost perfectly:
Gaps are reduced to zero, and thus proven optimal solutions are achieved for all
but three instances. The values in column OptEA document that the EA plays a
significant role in finally closing gaps. The three remaining instances are solved
with gaps less than 0.00003%.

In general, results of Tables 1 and 2 indicate that it is harder to close the
optimality gap for smaller than for larger instances. One reason seems to be
that with increasing graph size, more edges have the same profit and weight
values. Tests on other types of instances, with differently determined profits and
weights, are therefore interesting future work.

7 Conclusions

We presented a Lagrangian decomposition approach for the NP-hard KCMST
problem to derive upper bounds as well as heuristic solutions. Experimental re-
sults on large graphs revealed that the upper bounds are extremely tight, in
fact most of the time even optimal. Heuristic solutions can be significantly im-
proved by applying a local search, and many instances can be solved to provable
optimality already in this way.

For the remaining, larger instances, a sequential combination of LD with
an evolutionary algorithm has been described. The EA makes use of the edge-
set encoding and corresponding problem-specific operators and exploits results
from LD in several ways. In particular, the graph is shrunk by only considering
edges also appearing in heuristic solutions of LD, Lagrangian dual variables are
exploited by using final reduced costs for biasing the selection of edges in the
EA’s operators, and the best solution obtained from LD is provided to the EA
as seed in the initial population.

Computational results document the effectiveness of the hybrid approach.
The EA is able to close the gap and provide proven optimal solutions in almost
all of the remaining difficult cases. Hereby, the increase in running time one has
to pay is only moderate.

The logical next step we want to pursue is to enhance the branch-and-bound
method from [2] by also utilizing the more effective LD or even the hybrid LD/EA
instead of the simple Lagrangian relaxation.

In general, we believe that such combinations of Lagrangian relaxation and
metaheuristics like evolutionary algorithms are highly promising for many com-
binatorial optimization tasks. Future work therefore includes the consideration
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of further problems, but also the closer investigation of other forms of collabora-
tion between Lagrangian relaxation based methods and metaheuristics, including
intertwined and parallel models.
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