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Abstract

This master thesis describes an algorithm for creating high-school timetables. In the
history of high-school timetabling, interchangeable and common instances were missing.
Most scientists restricted their work to basic problem definitions, or to instances gathered
from schools nearby. In 2007, the School Benchmarking Project was launched to correct
this issue. A common XML file format and an evaluation function was defined, and scien-
tists of various countries contributed real-world instances. However, the format, evaluation
function and instances are still under development. We are going to test our algorithm using
these instances.

Our approach is to pick a non-full timeslot. We will then grade the favorability of all
meetings that can be held in this timeslot: All hard constraints and the goal of completely
filling the timetable have to be considered, as well as the soft-constraints, to obtain valid
solutions with low penalties. This information - the meetings and their grades, as well
as which meetings can be held simultaneously - is represented as a weighted graph. We
perform a heurisitc maximum weight clique search on this graph. If there are meetings
with open roles, one out of a certain set of resources shall be assigned, e.g. any english
teacher. This introduces an additional constraint to the maximum-weight clique search.
Before assigning the found clique - a hopefully favorable set of meetings - to the given
timeslot, all open roles are closed with a maximum-cardinalty maximum weight matching.

On top of this basic procedure, we are going to implement higher-level solving strate-
gies. We try to improve the quality of the timteable by partly refilling it or by reassigning
resources and meetings that cause penalty. There are various parameters that influence the
grading of constraints to construct the weighted graph for the clique search. As the suit-
ability of the parameters depends on the given instance, we are going to use a hill climbing
procedure to search for appropriate values for these parameters.

This work describes the given approach in detail. The advantages and disadvantages of
this timeslot-based algorithm will be discussed by evaluating it using the before-mentioned
instances. We are also going to present and discuss the results, which are the first results
published based on the School Benchmarking Project, as well as specifics of the format and
instances.
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Kurzfassung

Die vorliegende Masterarbeit beschreibt einen Algorithmus zur Erstellung von Schul-
Stundenplänen. Austauschbare, internationale Problem-Instanzen waren in der Geschichte
des “high-school timetabling” oder “Berechnung von Schul-Stundenplänen” genannten Ge-
bietes kaum vorhanden. Viele Wissenschaftler beschränkten ihre Arbeit auf simplifizierte
Problemdefinitionen oder Instanzen aus Schulen der Umgebung. 2007 wurde das “School
Benchmarking Project” ins Leben gerufen, um diesen Mißstand zu beseitigen. Ein ein-
heitliches XML-Format sowie eine klare Evaluierungsfunktion wurden definiert, und dank
der Zusammenarbeit von Wissenschaftern verschiedenster Ländern sind heute eben diese
internationalen, austauschbaren Instanzen vorhanden. Diese Instanzen, die wir für die
Evaluierung unseres Algorithmus verwenden, sind teilweise noch ungetestet und in En-
twicklung.

Im von uns verfolgten Ansatz werden wiederholt einzelne Stunden mit Unterrichtsein-
heiten (Meetings) gefüllt. Zuerst werden alle in der jeweiligen Stunde vorhandenen Meet-
ings anhand ihrer Dringlichkeit und der vorhandenen Randbedingungen, wie z.B. der Ver-
meidung von Freistunden, gewichtet. Dabei werden sowohl verpflichtenden Randbedingun-
gen (hard-constraints), und die Notwendigkeit einen kompletten Stundenplan zu erstellen,
als auch Wünsche (soft-constraints) berücksichtigt. Die vorhandenen und gewichteten Meet-
ings werden in einem gewichteten Graph dargestellt, bei dem Meetings verbunden sind
wenn diese gleichzeitig abgehalten werden können. Auf diesem Graph führen wir eine
heuristische Suche nach einer Clique mit dem maximalen Gewicht durch. Diese stellt eine
Menge von Meetings dar, deren Zuweisung zu der gegebenen Stunde dringlich und wün-
schenswert ist. Bei der Cliquen-Suche müssen gegebenenfalls auch offene Rollen berück-
sichtigt werden, die eine weitere Randbedingung darstellen: Offene Rollen bedeuten, dass
eine beliebige Ressource aus einer Menge an Ressourcen - zB ein beliebiger Englischlehrer
- einem Meeting zugeordnet werden muss. Beim Zuweisen der Meetings zu einer Unter-
richtsstunde werden alle offenen Rollen mit einem maximum-cardinalty maximum weight
matching - derjenigen größten Paarung die das höchste Gewicht aufweist - geschlossen.
Auf diese Basisprozedur setzen generellere Algorithmen auf. Der Stundenplan wird teil-
weise neu gefüllt, indem beispielsweise problematische Ressourcen oder Meetings neu
zugeteilt werden. Gute Werte für die Parameter der Bewertungsfunktion von Meetings
sind von der jeweiligen Instanz abhängig. Um geeignete Parameter zu finden wird ein “hill
climbing“-Algorithmus angewendet.

In dieser Arbeit wird der Unterrichtsstunden-basierte Algorithmus im Detail vorgestellt.
Die Vor- und Nachteile dieses Ansatzes werden anhand der Evaluierung an den zuvor er-
wähnten Instanzen präsentiert. Neben den Resultaten, welche die ersten veröffentlichten
Ergebnisse dieser Instanzen darstellen, werden auch länder- und instanzabhängige Spezi-
fika sowie das XML-Format im Allgmeinen diskutiert.
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CHAPTER 1
Introduction

The seemingly ordinary task of creating a high-school timetable causes disputes and dissatis-
faction in almost every school around the world. Either the teachers and students are unpleased
with their timetable, or the person responsible for the creation - often an honorable natural sci-
ence teacher - is close to desperation in view of the multitude of wishes and requirements he
should consider. Altough nowadays this work is partly supported by computer programs, many
schools still create their timetable manually. Dependent on the size of the school, the creation
of a timetable can take everything from a troublesome meeting just before or even after the new
school year starts up to a team working full-time for weeks, often during the summer holidays.

Hence, it does not surprise that the problem of High-School Timetabling, also called Class-
Teacher Timetabling Problem (CTTP) has been frequently revisited within the last decades -
not only by the before mentioned honorable natural science teachers, but also by the scientific
world. Despite the multitude of published articles, there was little cooperation between scien-
tists of different countries. The reason is that the requirements of institutions and countries vary
drastically. This often makes tailormade algorithms that work perfectly for specific institutions
completely useless for most other schools.

The basic task of high-school timetabling is to assign class-teacher meetings to rooms and
timeslots of a weekly schedule (the terminology is explained in the glossary, section 1.1). Aside
from this basic task, the specific requirements and problems vary broadly: Some schools do not
pre-define teachers to meetings. Instead, the teachers have to be assigned to the meetings in a
way that one teacher should always teach the same subject to a school-class, considering a spe-
cific workload (total number of working hours) each teacher has to obtain. Other schools have
meetings of several hours which should be split to sub-meetings of certain allowed durations. In
Italy, one school requires that certain timeslots contain at least one out of a group of meetings.
A finnish schools requires 39 of the 40 timeslots a room is available to be filled - with meetings
of varying duration, and of course no meeting is allowed to overlap two days.
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Because of this diversity, much scientific work was either limited to a very basic problem
definition or to specific institutions close to where the author lives, ignoring demands of other
countries. Some efforts were made to introduce common instances (an instance is a problem-
definition for a specific schol and year) - for example the timetable specification language TTL
[20], or finnish1 and brazil instances [30]. None of theses projects was accepted broadly in the
scientific world, and mostly, only instances of one country were provided.

Great ideas were introduced, but much practical work up to now is not compareable. Sci-
entists had to limit themselves to country-specific instances, because the instances of different
countries were available in different formats, and also the evaluation-functions for solutions
differed. Some authors created their instances synthetically [25][12], or left out parts of the
problem [15][23][35]. Therefore, most practical work is only of limited general relevance, and
often not comparable. Instead, the most interesting and useful papers are rather of theoretical
nature.
In 2007, the School Benchmarking Project was launched to correct this issue. A general file for-
mat was introduced, and scientists of various countries contributed instances of nearby schools
and earlier work. We use these instances (described in detail in chapter 2) for our work, altough
the file format and some instances are still under development. During our work, we stumbled
upon a range of sloppy or errorous definitions, i.e. one instance is even unsolvable. Two month
after we started the implementation, fundamental changes - which we do not fully endorse - were
introduced with version 9 of the file format. The problems we encountered, as well as comments
and suggestions to the format, can be found in section 2.6.
Considering the complexity of the problem, the variety of constraints, originating countries and
previous formats, such errors are perfectly understandable in the initial phase of this project.
The benefit of helping spread the instances by contributing results and some suggestions clearly
outweights the drawbacks caused by changes and errors in the format and instances.

The approaches of computationally creating high-school timetables are as manifold as the
requirements and contraints. Virtually every problem solving technique of modern computer
science has been applied to timetabling, partly to real-world problems, partly to cut-down basic
instances. The methods that are of influence to our approach are described in section 1.4.
Most practival relevant software-tools use any kind of a constructive heuristic algorithm in com-
bination with backtracking or local search techniques. They usually pick the most urgent meet-
ing and assign this meeting to the timetable, afterwards picking the next most urgent of the
remaining meetings and so on. A meeting is urgent when the room it has to be in is almost fully
booked, or the teacher holding the meeting has only few free timeslots left regarding his pending
meetings.

The algorithm we present in this article (see chapter 3) can also be considered a constructive
heuristic algorithm. The difference to the before mentioned technique is the following: We first
chose a non-full timeslot. Then, all pending meetings will be evaluated (graded) according to
their urgency. Afterwards, we construct a so-called constraint graph, which represents which

1http://www.samk.fi/sttp
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meetings can be held together in this timeslot. Within this graph we search for the best-graded
(most urgent) set of meetings. We assign this set to the current timeslot, and go on with the next
timeslot. As far as we know, this approach has not yet been implemented.

Altough our algorithm is a general one which can be applied to all instances of the School
Benchmarking Project, we do not obtain valid solutions for all instances (which up to now no
algorithm does), and the quality of the obtained solutions varies. We present and discuss our
results in chapter 4, and analyze the advantages and disadvantages of our approach.

This first chapter starts with a basic glossary in section 1.1. Then, we formally define the
problem of high-school timetabling in section 1.2, followed by describing the complexity of this
problem in section 1.3. In the last part, section 1.4, work that is related to our algorithm will be
presented.

1.1 Glossary

The terminology we introduce here will be defined more exactly in the formal definition (chapter
1.2).

Resources are normally school-classes, teachers or rooms. Also other resource-types are pos-
sible. Resources can be assigned to meetings.

Meetings normally represent reunions of school-classes and teachers that take place in rooms.
As these objects are abstracted to the term resource, a meeting will just require a set of
resources. Assigning meetings to the timetable is the main scheduling task. A set of
meetings can be united to a course.

Courses usually are a combination of a school-class and a subject. A course consists of a
set of meetings, which not necessarily require the same resources: In example, different
meetings of a course can take place in different rooms.

Instance As instance we understand a problem-definition of a specific school and year. It nor-
mally describes the existing teachers, rooms and classes, and the courses/meetings that
have to be held. Moreover, it contains the the constraints that should be considered.

Constraints are requirements or wishes that a solution has to (hard-constraints) or should (soft-
constraints) fulfill respectively. I.e., a teacher does not have to teach more than 6 hours a
day, or wishes to not teach on fridays.

Timeslots are the smallest time-object that meetings can be assigned to. Usually timeslots
represent one hour and belong to a certain day.

Solution A solution is a finished timetable for an instance. A solution is called valid solution
if it has all necessary meetings assigned in a way that not violates any hard-constraint.

3



Penalty or Cost A solution is validated with an evaluation-function. All constraints are checked
for validity: If any hard-constraint is violated, the solution is infeasible / invalid. Soft-
constraint violations result in a penalty: The penalty of a solution is the sum of all those
penalties.

1.2 Formal definition

We limit the definition to the basic problem as it appears in the instances described in chapter
2.1. The notations we use base on formulations and notations used in [35] and [29].
Because of the flexibility of the format, the typical case we describe here may not be appropriate
to represent all future instances. For example, the format gives the possibility to use one resource
multiple times within one timeslot - which is currently not used by any instance. The detailed
definition of the constraints can be found in chapter 2.1.

In the following notations we make use of matrices, ordered sets and functions:
Matrices will be represented by upper case italics marked with accents, i.e bars: M̄ . Unavailability-

matrices (i.e. of meetings) are always marked by tildes: M̃ ; Matrices that represent (part of) a
solution are always marked with a dot: Ṡ.

Sets are upper case italics without accents, i.e. X , and elements of sets lowercase italics
x. The set of all Booleans is defined by B := {true, false}. For natural numbers we use N to
include zero, and N to not include zero. P(X) denotes the powerset of a set X .

Functions are of the kind FS , where F is the name of its range, and S of its domain.

Timeslots and Time groups

• T : finite set of Timeslots

• D: finite set of time groups (which are often Days)

• DT : D → T , where DT (d) denotes the set of all timeslots that belong to time group d

• TD : T → D, where TD(t) denotes the set of all time groups that timeslot t belongs to

Resources and Resource groups

• R: finite set of Resources

• R̃|R|×|T |: Resource-unavailability: R̃rt =

{
1 if resource r available in timeslot t
0 otherwise

• G: finite set of resource Groups

• GR : G→ R, where GR(g) denotes the set of resources that belong to resource group g

4



Meetings

• M : finite set of Meetings

• Ā|M |: Amount-matrix of timeslots each meeting has to be assigned to: Ām denotes the
total number of timeslots that meeting m has to be assigned to

• ML : M → L where L ∈ P(N): Allowed lengths (durations) of meetings
ML(m) denotes the set of allowed lengths of meeting m
The length or duration of a meeting is the number of subsequent timeslots a meeting has
to occupy when it is assigned. This entails that the timeslots a meeting is assigned to do
not necessarily have to be subsequent.

• M̄|M |×max(A): Required amount of meeting-lengths

M̄ml =

{
x > 0 if meeting m has to have exactly x assignments of length l
0 if meeting m does not constrain number of assignments of length l

• M̃|M |×|T |×max(A): Meeting-unavailability for lengths (durations), where

M̃mtl =

{
1 if start holding meeting m with length l is allowed in timeslot t
0 otherwise

• MR : M → R, where MR(m) denotes the set of resources that meeting m requires

• OpenRole : M ×G× N→ B: Open roles (resource groups) of meetings, where

OpenRole(m, g, i) =

{
true if meeting m requires a resource of group g with ID i

false otherwise

In each timeslot this meeting is assigned to, a resource out of the resource group g has to be
assigned to this meeting, see section 1.2 for details. Open resource groups are additionally
identified by an ID, to enable assigning a resource to a specific open resource group.

To avoid having duplicate IDs i within a meeting, the following condition has to hold:

∀m ∈M : ∀(i, g1) | OpenRolem,g1,i = true : // For every ID of an open role of a meeting

@g2 ∈ (G \ g1) | OpenRolem,g2,i = true // No other open role of this meeting has the same ID

The maxmimum value for IDs can be limited to |R| + 1: If a meeting requires more
resources with its open roles than there are available, no valid solution exists.

Solution

A solution can be represented as follows:

• Ṡ|T |×|M |: Start-slots of meetings, where Ṡtm = l denotes that in timeslot t meeting m
starts with length (duration) l.

5



• Ṫ|R|×|T |×|M |: Resource-assignments to meetings in timeslots

Ṫrtm = i =


0 if resource r is assigned to meeting m in timeslot t: r ∈MR(m)

> 0 if resource r fills open resource group g with ID i

−1 if resource r is not assigned to meeting m in timeslot t

A solution is usually called valid if it respects all conditions described above, and furthermore
fulfills the following criteria:

• All meetings are assigned to as many timeslots as required:
∀m ∈M :

∑t=|T |
t=0 Ṡtm = Ām

• No resource is assigned to more than one meeting in any timeslot:
∀(r, t) ∈ R× T :

∑|M |
m=0(Ṫrtm > −1) <= 1

• All required resources and open resource groups of meetings are respected:
∀(ti,...,i+l−1,m) | Ṡim = l > 0 : // In every timeslot a meeting is assigned to:

∀r ∈MR(m) : Ṫrtm = 0 // all its resource-requirements are respected

∀(g, i) | OpenRole(m, g, i) = true : // for every open resource group of the meeting:

∃r ∈ (GR(g) \MR(m)) | Ṫrtm = i // a resource of this resource group is assigned

• All resource-unavailabilities are respected:
∀(r, t) | R̃rt = 0 :

∑|M |
m=0 Ṫrtm = 0

• All applied meeting-lengths are allowed:
∀(m, l) | (Ṡtm > 0) : l ∈ML(m)

• All required meeting-lengths are fulfilled:
∀(m, l, x) | M̄ml = x, x > 0 :

∑|T |
t=0(Ṡtm = l) = x

• All meeting-unavailabilities for durations are respected:
∀(m, t, l) | M̃mtl = 0 : Stm 6= l

1.3 Complexity

The basic Class-Teacher Timetabling Problem (CTTP) as described by Gotlieb [14] defines that
each meeting has exactly one teacher and one school-class, and shall be assigned to a certain
amount of timeslots. This problem is known to be NP-hard if there are any teacher/room/student-
unavailabilities [11], and can be solved in polynomial time when no unavailabilities exist. This
was shown in 1971 by Dominique de Werra [9], using flow algorithms.

Relaxing the restrictive definition of meetings and adding some common constrains leads to
a range of NP-complete subproblems, as shown by Kingston [20] in 1996 for five cases. Wille-
men [35] extended this work in 2002, and proofed NP-completeness in seven independent cases.
Page 51 of his thesis gives a summary of the seven cases.
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We will briefly describe the NP-complete problems that were most challenging during the
creation of our algorithm, and mention the instances where the respective problem is most rele-
vant.

Assigning Meetings to Timeslots As mentioned before, this basic timetabling task is NP-
complete as soon as unavailabilities are introduced. It is relevant (altough not necessarily NP-
complete) in every timetabling instance.

Assigning tight Resources to Timeslots This problem is equivalent to the bin packing prob-
lem, which was proved to be NP-complete by Garey and Johnson [16] in 1979. Resources are
assigned to meetings of varying duration (bin packing: items of different size). They have to
be assigned to the days (bin-packing: bins), so that all total resource-workload is considered
(all items are packed into any bin). We further describe bin packing of resources in section
3.1. This concerns resources of all types, and is contained in every instance that has differing
event-durations, but especially is a bottleneck and challenge in the finnish instances.

Assigning Teachers to Meetings This problem also is equivalent to bin packing. Given meet-
ings that do not have teachers preassigned, suitable teachers should be assigned in a way that
their total number of meeting-durations does not exceed their desired/required workload. This
problem is one of the main challenges in the australian instances.

Spreading Meetings over Days NP-completeness is introduced when meetings of a course
should be split over different days while considering resource unavailabilities. Possible sources
are the clusterBusyTimes-, limitBusyTimes and spreadEvents-constraint, so this is relevant for
all given instances.

Another source of NP-complete subproblems is assigning students to subject groups with
a given capacity. This again is bin-packing equivalent, and solvable in polynomial time if no
capacity constraint is given, as shown by Willemen [35].

1.4 Related work

There exist various solving methods: Graph-algorithms as decomposition, graph-coloring or
flow-algorithms, Contraint-Satisfaction Programming, neural networks, Mixed and Integer Lin-
ear Programming, Logics and SAT solving, as well as constructive and Meta-Heuristics. We will
present some papers that are similar to our approach or of other influence or interest. For more
extensive reviews of existing methods, the reader is refered to well-known surveys [6][31] and to
the international conferences and books [7][5] of Practice And Theory of Automated Timetabling
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(PATAT)2 as well as the EURO working group on automated timetabling EURO-WATT3.

Our approach presented in chapter 3 can be considered a depth-first search heuristic using
graph-algorithms.
Schmidt and Ströhlein [32] described a similar approach in 1979, and point out the similarity to
graph-coloring:
They consider a timetabling-problem of P , M and H as the sets of participants, meetings and
hours (timeslots). Participants of meetings can be teachers T and schoolclasses C. Then, the
following instance is created: There are 3 hours, 7 participants (3 teachers and 4 schoolclasses),
and 9 meetings given. Teacher 4 is unavailable in hour 1, teacher 1 in hour 2, and teacher 2 in
hour 3. Figure 1.1 represents the problem as a set of graphs, one for each timeslot: The nodes
are the classes and the teachers. teachers (T) and schoolclasses (C) are connected if they can
have a meeting in this timeslot and are both available. The bold marked edges represent a valid
solution.

Figure 1.1: Representation of the CTTP as a set of graphs; example taken from Schmidt and Ströhlein [32]

The solution for a timeslot is a matching. The solution of the whole problem is an appropriate
matching for each timeslot that sums up to cover all necessary meetings.
The similarity to edge-coloring is shown in figure 1.2: The left part presents the same problem
as described above. Edges m1 to m7 represent the meetings. The unavailabilities have to be
introduced by forbidding some colors for certain edges. The right part presents the same solution
as in figure 1.1

To directly integrate unavailabilities into the graph, the problem can be represented by a
vertex coloring problem. In this case, all hours and meetings are introduced as nodes. First, all
pairs of different hours get connected. Second, all meetings are connected with the hours where
they are not available. Third, all meetings with resource-conflicts get connected. Figure 1.3 is
the equivalent vertex-coloring problem (left) and the solution (right).

Converting CTTP-Constraints into a graph-coloring problem is challenging and may not be
possible for all instances. To represent rooms or linked meetings as edge-coloring, hypergraphs

2http://www.asap.cs.nott.ac.uk/patat/patat-index.shtml
3http://www.asap.cs.nott.ac.uk/watt/
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Figure 1.2: Problem-instance as edge-coloring (left) and solution (right) The color (style) of the edges represents to
which hour they are assigned. Hour 1: black (solid), hour 2: blue (dotted), hour 3: red (dashed).

Figure 1.3: Problem-instance as vertex-coloring (left) and solution (right) The color (style) of the nodes represents
to which hour they are assigned. Hour 1: black (bullet), hour 2: blue (circles), hour 3: red (crosses)

are necessary. Problems arise with meetings of longer duration, especially if it is not determined
how a course should be split exactly (see chapter 2.1 for the particular constraint). In the case
of vertex-coloring, not only the weight and possible colors of edges would change during the
solving-procedure, but also the existence of vertices.

There are still efforts to solve CTTPs via graph-coloring, as described in [3]. Results are
competitive, but not as good as results achieved some years ago [34] with a GRASP, refining
filled timetables with a tabu search. Tabu search algorithms in general seem to be very suitable
for solving CTTPs, as they help escaping from local minima and so to diversify the search.

Because of the absence of common benchmark-instances it is hard to tell which solving
method is the most suitable for the field of class-teacher timetabling. Perhaps the most suitable
solving method depends on the characteristics of the instance.
For sure one of the most successful methods nowadays are construction heuristics in combina-
tion with backtracking. These heuristics also use depth-first search. They do not take timeslots
but meetings as basis, as described in the dissertation of Michael Marte [24]: A meeting is
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chosen and assigned to the timetable, so that no hard-constraint is violated. If for any pending
meeting there is no timeslot available anymore, the conflict-resolution or backtracking starts:
One or more meetings are removed from the timetable, so that the before not schedulable meet-
ing can be assigned to a timeslot. The meetings that are deleted are chosen by the density and
importance of their constraints. Also when adding meetings, those with more and denser con-
straints are prefered.
The general approach described can be implemented in different ways, as directly implemented
construction heuristic using backtracking, or - as in the mentioned dissertation - as Constraint
Satisfaction Programming.
One of the most successful commercial software for school-timetabling is GP-Untis: “14,000
users of all schooltypes in over 80 countries are using gp-Untis.” [15] This software uses a
construction-heuristic as described above, optimizing the filled timetable with local search based
on neighborhood-swaps.
A free alternative, FET - Free Educational Timetabling (see chapter 2), also uses the same prin-
ciple, based on the already mentioned dissertation [24].

The most relevant works on complexity issues, already mentioned in section 1.3, are [20]
and [35]. We highly recommend reading them to anyone interested in the field of CTTP. They
analyze practical problems and deduct NP-completeness for 5 respectively 7 sub-problems of
the CTTP. The mentioned sub-problems are not just of theoretical nature, but mostly present
practical, real challenges and bottlenecks when creating high-school timetables.

Finally, we refer to [28], in which the XML file format of the instances we are going to use
is introduced. An updated, extended paper was released in 2010 [27]. As the project is evolving,
it is advisable to also check the prject website4 for changed instances and further information.
As noted, the website http://opt-kd.cse.dmu.ac.uk/www/ contains a brief overview
of the topic, and may some day contain a comparison of existing results.

4http://www.utwente.nl/ctit/hstt/
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CHAPTER 2
Instances

Two different sources for instances were of question:

Free Educational Timetabling (FET) The first is Free Educational Timetabling1. On its
website, various different instances from distinct countries are available. The format is easily
understandable and stable in the sense that it is already in use for some years. Unfortunately, up
to now it is not considered at all by the scientific world.

School Benchmarking Project (SBP) The second source was the School Benchmarking Project
(SBP) [28]. Those instances are the opposite: Still in development and undergoing rather fun-
damental changes. However, the instances are contributed by scientists from different countries,
and are much more likely to play a fundamental role in the future of high-school timetabling.

We chose to use the instances of the School Benchmarking Project. This hopefully helps
spreading the usage of the instances, and so getting compareable results of different approaches.
Since December 2009, a converter for FET-instances to the XML format of the School Bench-
marking Project is available at http://opt-kd.cse.dmu.ac.uk/www/.
In this chapter we describe the instances and their constraints. The terminology used up to
section 2.3 arises from the official documentation of the SBP, which is available on the project
Website2. When the instances are parsed, the data is transformed into internal datastructure and
objects. To describe the internal data, a different terminology is introduced, starting with Sec-
tion 2.4. In this thesis we always refer to the terminology, constraints, instances, documentation
and evaluation-function of the School Benchmarking Project version 10, released in November
2009.
Up to now there does not exist a complete formal definition of the instances. We therefore only

1Free Educational Timetabling (FET), an open-source software to solving high-school timetabling problems
http://www.lalescu.ro/liviu/fet/

2http://www.utwente.nl/ctit/hstt/
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provide the formal definition of the basic problem, given in chapter 1.2. The constraints are
described informally.

2.1 SBP: Official Terminology

The terminology presented here is given by the documentation of the School Benchmarking
Project. For a more detailed documentation we refer to the project-website.

We use different terms for similar or equivalent objects to distinguish between different defini-
tions, presented in table 2.1:
- General Definition are the terms we use in the glossary in chapter 1.1 and the formal definition
in chapter 1.2
- School-Benchmarking Project means the official terminology used by this project
- Internal Datastructure denotes the names of objects we use in our internal datastructure
Terms that do not change in name and meaning (i.e. timeslots or resources) are not mentioned.

General Definition School Benchmarking Project Internal Datastructure
meeting event lesson
course - 1 session
open role open role open resource group
day time group time group

Table 2.1: Names of similar/equivalent objects within the distinct terminologies
1 The SBP does not explicitly define courses

Resources

Resources are generalized objects which can be assigned to events. Each resource has a certain
ResourceType. Recommended resourcetypes are Room, SchoolClass, Student and Teacher.
Using these recommended types is not obligatory; other types can be created, i.e. the Italy-
instance used a type called ’School’. This issue will be discussed in chapter 2.6.
The usage and assignment of resources can be constrained by the resource-constraints described
in chapter 2.1.

Events

Events are the equivalent of meetings described in the glossary and the formal definition: They
usually describe schoolclass-teacher-meetings that take place in rooms. Assigning them to the
timetable is the main scheduling task. Events have a duration, which is the total number of
timeslots they will occupy. If the duration is higher than 1, events can be split into subevents
which do not have to be assigned consecutively. In this case, an event would rather represent a
course.
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Events have resources (as teacher, room etc.) assigned. If any resource out of a specific set
of resources should be assigned (i.e. any English-teacher, or any Gym-room), this is called an
“open role” (see formal definition, chapter 1.2). Normally, all open roles have to be filled to
obtain a valid solution.
Sets of events can be grouped to form an event group.

Event groups and Courses

Event groups exist only to organize (group) events. They do not have any implicit meaning,
and mainly exist for applying a constraint to a set (group) of events.
Courses have exactly the same meaning and appliance. They are just a synonym for event
groups.

Constraints

Different to many other definitions, all constraints mentioned can be either hard (required) or
soft (not required). We will briefly introduce all existing constraints here. “All constraint start
with a verb, and describe how the constraint is not violated.” [28].
For a detailed description or details of the evaluation we refer to chapter 3.1, or to the official
documentation.

Scheduling-Constraints:

AssignResourceConstraint For all events constrained, assign a resource to the open role
(also defined in the formal definition in chapter 1.2, see meetings→ OpenRole)

AssignTimeConstraint Assign each mentioned event to a timeslot

SplitEventsConstraint Forbid or penalize the splitting of events

Resource-Constraints:

AvoidClashesConstraint Do not assign resources more than once to any timeslot

AvoidUnavailableTimesConstraint Consider unavailabile timeslots of resources

LimitIdleTimesConstraint The idle times of a resource can be constrained to lie between a
minimum and a maximum

ClusterBusyTimesConstraint Limit the number of time groups a resource should be used (as-
signed at least once). Usually, the time groups are days: This constraint can i.e. be used
to prevent teachers from having (few) classes on many different days.

LimitBusyTimesConstraint Limit the usage (number of timeslots assigned) of a resource within
one time group (usually days)
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LimitWorkloadConstraint Events can have a workload defined - by absence of this definition
the workload is the duration: This helps distinguishing between events that require more
preparation or corrections (language-classes) or less preparation (i.e. gym-classes). It
sometimes is not predefined which teacher gives which lessons (meetings), but the total
workload of the teacher is limited: This is defined by this constraint.

Event-Constraints:

DistributeSplitEventsConstraint If an event is allowed to be split, this constraint can adjust
how this should be done: Minimum- or maximum-amounts for each (sub-)duration can be
defined.

PreferResourcesConstraint Define preferences for resources that open roles should be filled
with

PreferTimesConstraint Assigning events to timeslots not mentioned here will lead to penalty
or infeasability. The constraint is applied to the start-slot of events: If slot 6 is forbidden,
it is legal to assign an event of duration 2 to slot 5.

AvoidSplitAssignmentsConstraint For a set of events, the open role should be filled with the
same resource

SpreadEventsConstraint The assignment of events within one or more time groups should
lie between the given minimum and maximum (checked/evaluated for each time group
mentioned)

LinkEventsConstraint Events should be held at the same time

Cost-Functions (Penalty)

Violating soft-constraints results in a cost (penalty). Each soft-constraint returns either one sin-
gle deviation or a list of deviations, which represent the times the constraint has been violated.
For example, the LimitBusyTimesConstraint returns a list of deviations, with one entry for each
time group it is applied to. This deviation(list) is evaluated by a CostFunction, which converts
the (list of) deviations to a single deviation-value. The existing costcunctions are: SumStep,
StepSum, Sum, SumSquares, SquareSum (italic explanations taken from SBP [28]), demon-
strated with the deviation-list [2, 0, 1]:

SumSteps The value is the number of strictly positive deviations
[2, 0, 1]→ (1 + 0 + 1) = 2

StepSum The value is 1 if one of the deviations is strictly positive, and 0 otherwise
[2, 0, 1]→ 1

Sum The value is the sum of the (positive) deviations
[2, 0, 1]→ (2 + 0 + 1) = 3
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SumSquares The value is the sum of the squared (positive) deviations
[2, 0, 1]→ 22 + 02 + 12 = 5

SquareSum The value is the square of the summed (positive) deviations
[2, 0, 1]→ (2 + 0 + 1)2 = 9

This single deviation-value is then combined with the weight: cost = deviation · weight

2.2 Parsing the Instances

When parsing the XML-format of the instances, several changes have to be performed internally.
The given information is merged from the files - the larger one with about 100.000 lines - into
the desired datastructure to gain reliable, quickly accessible information. The newly introduced
terminology from now on refers to this internal datastructure.

2.3 Resource Groups

Open resource groups are the equivalent of open roles described in section 2.1. A resource group
is the set of resources an open resource group (open role) can be filled with. The resources
openRoles can be filled with are not only constrained by the given resourcetype. Also, the Pre-
ferResourcesConstraint (described in chapter 2.1) can further cut down the possible resources.
Resource groups combine the information given by the resourcetype and the PreferResource-
Constraint.
Resource groups are used to fill open roles with a correct resource. Also, they are necessary
during the clique-search: They avoid finding a clique that requires more resources of a resource
group than there are available.
Resource groups are created initially when parsing an instance. For each distinct set of resources
an open role can be filled with, a new resource group is created. The “open roles” of the instance
are converted to open resource group in the internal datastructure.
For each event, it is stored which open resource group it has, and which resource group it “fills”:
Assigning an event and its resources to a timeslot reduces the number of available resources
of some resource group. This are the resource group an event fills. Each resource of an event
will reduce all resource group it belongs to by one. Also, each open resource group will reduce
exactly this open resource group by one, because a resource of this resource group has to be
assigned. It can happen that the assigned resource belongs to more than one resource group.
This problem is described in section 3.4.

2.4 Sessions

Using events as main objects to schedule has the disadvantage of being slow. Some events
should be further split, some obligatory held together, others are already fixed to a specific
timeslot. Instead of repeatedly searching all events when looking for available events in a given
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timeslot, this information is precalculated: Sessions “group” similar events. Often, a session will
represent a course. Grouping events of a course helps grading them more accurately, especially
concerning the calculation of the session-urgency described in section 3.1.
An event is added to an existing session if it fulfills the following criteria (always comparing
with the events that already belong to the session):

• Has same resource- and open resource group-requirement

• Not preassigned to a timeslot

• None of the event groups it belongs to can make only this event unavailable (keeping the
other events of the session available): this is the case for hard-constrained SpreadEvents-
constraints and for hard AvoidSplit-constraints.

• The forbidden start-timeslots of each duration the event can possibly have (see Prefer-
TimesConstraint in section 2.1) equal the forbidden start-timeslots of the session.

If any of this criteria is violated, a new session will be created. Otherwise, the event(s) is/are
added to the session: It/They will form a new iteration of this session. A session consists of one
or more iterations, which themselves contain one or more events. Table 2.2 shows an example
of a session containing the Mathematics-events of a school-class.

Session 1
Iteration 1 Event: 1a_mathematics_1
Iteration 2 Event: 1a_mathematics_2
Iteration 3 Event: 1a_mathematics_3

Table 2.2: A session and its iterations

In practice, some events are defined to be obligatory held at the same time: Such events
would belong to the same iteration of one session.
Different iterations are allowed to have different durations. This supports representing the reality
in an accurate way, because it allows that the meetings of a course have differing durations.
Allowing differing durations is unavoidable if we do not want to create more than one session
out of a single event: With SBP version 10, the possibility of splitting events was introduced
(described in section 2.1). It can be part of scheduling how those events should be split exactly.
An event of duration 5 can i.e. be split to sub-events of duration 2-1-1-1 or 1-1-1-1-1. This
forces that within one iteration of a session, different possible durations exist.

Having sessions defined this way, one can precalculate which sessions (of a certain duration)
and therefore which events are available for a specific timeslot. Another advantage is that the
session-peers can be precalculated: This are sessions that can be held at the same time without
any resource-conflicts. To keep the session-peers up to date, they have to be recalculated for
a session in case of assigning or deleting resources from a role that is constrained by a hard
AvoidSplit-constraint.
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When trying to fill a timeslot, first the available sessions are picked. Then, lessons are
created out of these sessions.

2.5 Lessons

Lessons are sessions with a fixed duration. For each possible duration of a session, one lesson
will be created. If a session consists of more than one iteration, only the best-graded iteration
will be instantiated.
The lessons described here are similar to the meetings mentioned in the glossary, but can con-
tain additional information: First, they can still have open resource groups. Second, a lesson
described here can contain more than one schoolclass-teacher-meeting, if those meetings have
to be held at the same time.
If a hard AvoidSplit-constraint exists and a resource has already been assigned, the lesson in-
herits this information from the session: The open resource group of the lesson (and event) gets
filled. Otherwise the resource group stays open.
A lesson is always created for a specific timeslot. It gets graded according to how urgent and
suitable its events and resources are for the given timeslot. If a lesson is chosen to be assigned
to a timeslot, we fill all of its open resource group during this assignment-process, which is
described in chapter 3.4.

Deepness

The deepness is an approach to determine the size and importance of a lesson. This information
is required during the clique-search, see section 3.3. If a lesson contains many teachers and
schoolclasses, it will automatically get a higher grade. Considering the deepness helps to not
favour such lessons during the clique-search.
The deepness is calculated by summing up the number of rooms and teachers a lesson requires.
This is only possible if the instance considers the recommendation of using the resource-types
“Teacher” and “Room”. Unfortunately, the australian instances already (slightly) disregard the
recommended resource-types by using the plural: “Teachers” and “Rooms”.

If the resource-types do not contain reliable information, we have to estimate the deep-
ness: Just counting the required resources is torpedoed by some instances including students
as resources. Experiments showed that in most cases the total number of soft-constraints the
resources of a lesson are constrained with would be a good (but still rough) substitute.

2.6 Discussion

The School Benchmarking Project aims at generally defining high-school timetabling problems.
This is of extreme importance for the field of class-teacher timetabling problems, as it is exactly
what has been missing for decades: Compareable, interchanged instances that support problem-
definitions of various countries, and allow comparing the solutions of different approaches. In
this respect, the School Benchmarking Project is one of the most important contributions to this
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field.
To be able to support many different problem-definitions and constraints, the formulation of the
instances was kept abstract. This generality directly reduces the readability and easy understand-
ability of the instances. It takes some time to get familiar with the signification of the terms and
constraints, which are sometimes not easily understandable. The benefit is that the format itself
possibly supports a broad variety of applications.

In this chapter, we will describe some problems encountered, and give suggestions of how
to improve the definitions. Having not as much insight as the authors of the format, we still hope
that some of our suggestions will be of help.
All suggestions were given to the authors of the School Benchmarking Project during the cre-
ation of this thesis.

Instances under Construction

The instances are (partly) still under heavy development. At the moment (July 12., 2010), some
instances still contain errors or misleading definitions:

• In all finnish instances available, the last two timeslots of each day are part of the time
group “Monday”. As all teachers have a LimitIdleTimes-constraint, solving this instance
without manually correcting the time group-assignments does not make much sense.

• The finnish instances of the SBP differ from their original definition given at http:
//samk.fi/sttp. No valid solution exists for the SBP-instance “FinArtificialSchool”,
because for all rooms of the group “gr_Rooms_Z“, a workload of 140 should be assigned
to 20 timeslots without a clash. This error perhaps arose by misunderstanding assigning
resource groups (gr_Rooms_Z) to events: Not one resource of this group gets assigned,
but all resources.
The Instance ”FinSecondary” has differing resource-availabilities, further described in
section 2.6.

• The italian instance allows (unpenalized) clashes for a resource called “School”. This
resource is then constrained by the ClusterBusyTimesConstraint: Each timeslot is defined
as a time group which contains exactly this single timeslot. The usage of the resource
“School” is fixed to exactly 1 per time group by listing all 24 time groups (which are
timeslots in fact) and fixing the minimum- and maximum-usage to exactly 24. Of course
this is perfectly legal according to the Constraints. However, the SpreadEventsConstraint
can be applied with the same effect, and without the necessity of split-resources:

– Define each timeslot as its own time group (as done before)

– Group all events requiring the “School”-resource into one event group

– Constrain the event group with an SpreadEventsConstraint that has a minimum-
assignment of 1 in each timeslot(group)
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This proposal was already incorporated by the authors on 16.8.2010, the current instance
does not require clash-resources any more.

• The AvoidClashes-constraint is not yet implemented by all instances

• The brasilian instances of version 10 (except instance 1 and 7) were released in autumn
2010, shortly before handing in this work. We include them in our algorithmic tests,
altough thorough tests were left out due to lack of time. They derive from the brazil
instances used in literature earlier, as [30].

Because of the abstract and general definition, considering all possible peculiarities - as appear-
ing in the Italy-instance - is a lot of programming effort when parsing the instances. The datas-
tructure we use does not support resource-clashes, and currently we do not know of any case
where doing so would be necessary. The re-formulation of the italy-instance showed another
problem: The algorithm presented in chapter 3 has problems when dealing with a spreadEvents-
constraint of a minimum-assignment in only one timeslot, as appears in the new formulation.
This is not a disadvantage of the instances but of our approach, and will be discussed in chapter
4.6.

Vague Information

When parsing the instances, much programming effort is necessary to extract reliable informa-
tion out of the abstractly defined instances. We will present two problems here, and propose
changes to improve the definitions.

Courses

As course we understand the combination of a schoolclass and a subject. Semantically, there do
not exist courses. The term exists, but its meaning is equivalent to event groups. Currently, there
are two ways to define a course:

• Define a set of events which belong to the same event group

• Define one event that has to be split

It is necessary that a course can consist of different events, because there are courses whose
events require distinct resources, i.e. have to be held in different rooms.
Allowing splits of events was introduced in version 10. The necessity arises because some
schools define the total duration of a course, i.e. 6 hours, but not how it has to be split exactly.
There is the possibility to constrain the sub-events to a minimal and maximal duration, or require
a certain amount of one duration. This splitting could not be represented with the events defined
in version 9.

We think that it would be more natural to split a course into events instead of splitting some
events into sub-events. Because of this - and the absence of the usage of a course - we propose
the following change:
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• Events should never be allowed to split. They again should be defined as in version 9.

• To define the current splitEvents, the term course should be introduced

• All constraints for events and event groups should be able to be applied to courses

• Splitting of courses can be constrained as currently the splitting of events (using the Dis-
tributeSplitEventsConstraint and SplitEventsConstraint)

The existing event-constraints that would have to be adapted to be applied to courses are: Dis-
tributeSplitEventsConstraint, PreferResourcesConstraint, PreferTimesConstraint, AvoidSplitAs-
signmentsConstraint, SpreadEventsConstraint and LinkEventsConstraint.
According to our proposal, a course can then be defined as follows:

• If its events always requires the same resources, it can be defined as a course - regardless
whether it is known how to split it or not

• If its events require different resources, it has to be defined as now: a set of events that is
part of one event group

Still one could also define a course whose events require the same resources as events of one
event group. This would be no change to the current definition, which also allows both defini-
tions.
We are aware that this would be a fundamental change. It would also require changing the defini-
tion of solutions: Not only events, but also courses could then be assigned to a timeslot. We hope
that this change would not be more profound than the change from version 9 to 10 where the pos-
sibility of splitting events was introduced, but improve the availability of reliable information. It
would not change the possibility which courses can be defined, but rather make the definitions
easier understandable, and so perhaps lower the barreer of working with the instances.

Resource-Types

By abstracting teachers, schoolclasses and rooms to the term “Resource”, information is omitted:
One cannot be sure anymore which resource he is dealing with. In case of the clique-search
described in chapter 3.3, we want to know how many teachers and rooms are used by a specific
event. This is necessary to estimate its size and importance.
In the documentation there exists the recommendation to use the resource-types Room, Teacher
and SchoolClass. As mentioned, the australian instances disregard the recommendation by using
the plurals “Rooms” and “Teachers” - a minor deviation that still can have a big influence on
algorithms that overlook it.
Checking the usage of the recommended resource-types, i.e. by checking new instances with an
xml-schema, would be an easy and effective step to prevent losing information.
Still, there exists the possibility of defining resources of another type if necessary, so this change
would not affect the generality of the file-format.
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Constraints

The instances and the constraints are built in a way that everything is allowed as long as it is not
forbidden/constrained. The target is consistence: “all constraints start with a verb, and describe
how the constraint is not violated.” [28].

This approach leads to some peculiarities: By default, resources can be used by more than
one events within a single timeslot. All events can be split into sub-events if they have a duration
higher than 1. Open roles only have to be filled when they are constrained by the AssignRe-
sourceConstraint, and events do not have to be assigned to the timetable at all unless they are
constrained by the AssignTimeConstraint. This approach forces all Instances (and authors of
instances) to consider constraints which are possibly not relevant for them.
In example, it is clear that in the task of timetabling, all defined (sub-)events of an instance have
to be assigned to the timetable. We consider such constraints as implicit or immanent to the
problem. The authors of the School Benchmarking Project may discuss the following proposals,
which would violate the mentioned consistence, but possibly help making the instances easier
to construct and read:

• Leave out AssignTimeConstraint: Define that solutions are only valid if all events have
a time assigned

• Leave out AssignResourceConstraint: Define that solutions are only valid if all open
roles are filled

• Leave out AvoidClashConstraint (unless a case where its usage is necessary is known)

• Invert necessity of SplitEventsConstraint: Forbid splitting of events unless it is wanted
explicitly (or implement the proposal of chapter 2.6)

• Reduce necessity of AvoidUnavailableTimesConstraint, time groups and event groups:
Define that solutions are only valid if every compact (sub)event (an event that must not be
split any more) has all its duration within just one day-timegroup (see below)

The philosophy of allowing everything unless it is constrained increases the need for event
groups, time groups and constraints. As everything is allowed, one could assign a 2-hour gym
lesson to the last slot of monday and the first slot of tuesday. To avoid this, many instances de-
fine event groups containing events of a certain duration. Then, the AvoidUnavailableTimes-
constraints is applied to new time groups which just include the last slots of (day) time groups.
For the given event groups, some durations are forbidden in Slots where their assignment would
entail overlapping to the next (day) time group (i.e. duration 2 in the last slot of each day).
Currently, such overlapping assignments are theoretically allowed (not hard-constrained) by the
instance Brazil7.
An alternative that does not violate the current philosophy is introducing an AvoidOverlap-
constraint. Events this constraint is applied to are forbidden/penalized to be assigned in a way
that their duration spans over more than one day-timegroup.
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The current file-format allows weights of hard-constraints. Implementing the proposals de-
scribed above would make weighting hard-constraints impossible for the mentioned constraints,
which we consider to be of minor relevance.

The naming of the PreferTimesConstraint and the AvoidUnavailableTimesConstraint
could be adapted: The first only can be applied to events, and the latter one only to resources.
Names like “EventAvoidTimeConstraint” and “ResourceAvoidTimeConstraint” would be more
self-descriptive.

The current definition of the LimitWorkloadConstraint seems unnatural:
“If the event is split each sub-event will have the original workload.” [28]
Assuming we have an event of total duration 2, which can possibly split to two events of duration
1. Further assume that this event has a workload of 4: If the event is not split, this would result
in a workload of 4. If it is split, the workload would be 8.
Normally the LimitWorkloadConstraint is applied to teachers. The fact that holding 2x1 lesson
is twice as much work as holding one lesson of duration 2 seems to not represent the reality. The
appliance and semantics of this constraint is already planned to be changed in future versions.

The LimitWorkloadConstraint currently aims at being applied for teachers. It could also
be applied to students or schoolclasses, to not have too many tough subjects within one day.
This is not possible at the moment, because the constraint cannot be limited to time groups: it is
always calculated for the whole timetable.
For the currently available instances this was not necessary, however, it may be so for future
instances.

Other proposals

Documentation As the SBP is an evolving, growing project, the documentation partly was
not accurate or contained obsolete parts. More detailed descriptions of how to apply constrains
would have been helpful, as well as having more examples of calculating the deviation. In
example, the SpreadEventsConstraint is described to return a list of deviations. It is not described
whether this deviation-list is grouped by the event groups or the time groups of the constraint.
The current definition of the constraints is available at http://www.it.usyd.edu.au/
~jeff/hseval.cgi?op=spec.

Information about instances It would be helpful to have more information as the size and
constraints of each instance in advance, altough some country-specific issues are described on
the project website. As a first step, an overview of the constraints and other basic information of
all instances can be found in appendix A.1.

A website showing the best results of different approaches available would be helpful, like
there exists for the International Timetabling Competition of University Course Timetabling3.

3http://tabu.diegm.uniud.it/ctt
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Such a website was started in autumn 2009: http://opt-kd.cse.dmu.ac.uk/www/
Its development is stopped at the moment, and it unfortunately does not contain any results by
now. Still, the “Algorithms” and “Academic History” give an interesting overview of the topic.

As currently no official result-comparison exists, Mr. Nurmi refered me to http://www.
samk.fi/sttp during my search for existing results. After month of not even coming close
to the results mentioned there, we examined the instances, starting with “S3 Secondary School”.
The best result mentioned on the website is a penalty of 2 without having any hard-constraint
violations. The instance-description4 gives an overview of the unavailability of resources. In the
derived instance of the SBP a soft idle times constraint is applied, with a desired maximum of 0
idle times. This is also mentioned in the instance-description available on the web site:
Each class should have as few idle (leap) periods as possible: Yes
Each teacher should have as few idle (leap) periods as possible: Yes.

The resource (school class) “S8D” has a maximum of 18 consecutive slots over all days,
and a workload of 22. The optimal assignment for this resource entails violating the idle times
constraint by 4. The cost function of the SBP-instance is ’SumSquares’, so the penalty would be
16. This also applies to resources S8E (workload 20, having 18 consecutive slots) and resource
S8C. Thus, given the described conditions, no valid result with a penalty of 2 can exist. Mr.
Nurmi confirmed the validity of the results, but unfortunately was not able to examine them in
detail before handing in this thesis. Possible reasons for the divergence are a differing evaluation
function, an incorrect documentation of the availability or an allowed minimum of idleTimes-
violations.
Also, in the SBP-instance of the FinSecondarySchool, resource “S8D” has more unavailable
slots (i.e. Slot 2-5) than the instance described on the website. It has exactly 22 slots available
for its workload of 22, and so forces an idletimes-violation of 7 with a squared penalty of 49.
To avoid having problems when comparing results, a central website that publishes verified re-
sults would be of great help. Another possibility is to deliver the instances with the best known
solution.

To emphasize the development of as well general but also specialized algorithms, further
analyzing the instances, i.e. with graph-algorithms, would be of advantage. Revealing possible
bottlenecks of instances in advance will especially be of importance when having a larger num-
ber of instances:

“Timetabling Problems are numerous: they differ from each other not only by the types of
constraints which are to be taken into account, but also by the density (or the scarcity) of the
constraints; two problems of the same “size”, with the same types of constraints may be very
different from each other if one has many tight constraints and the other has just a few. The so-
lution methods may be quite different, so the problems should be considered as different.” [10]

4http://www.bit.spt.fi/cimmo.nurmi/sttp/S3-Secondary-School.pdf
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Limit Weights It would be nice to have a limit of how high the weight of a soft-constraint can
be. Currently, no instance has a higher weight than 1000. Knowing that this will be true for all
future instances would reduce the necessity of checking for exceeding datatype-limits.

Concluding, we think that the current definition of the instances is too abstract and vague.
The format is in between being tailor-made for school-benchmarking and being abstract enough
to describe all kind of timetabling problems, currently clearly tending to the latter.
Given school-benchmarking instances, this often unnecessarily complicates creating and pars-
ing the instances. Splitting off the immanent constraints of section 2.6 from the instances would
reduce the number of group-definitions and constraints within the instances, and hopefully facil-
itate creating and parsing the instances. The drawback would be giving up the policy of allowing
everything unless it is constrained.
During the last month, some points mentioned here were already settled or improved, and oth-
ers are under construction. Also, the information about the instances and the project itself is
becoming more extensive and reliable. As the format is evolving and the number of instances
increasing, we hope and believe that the School Benchmarking Project will play a key role in
upcoming investigations and possibly also applications in the field of high-school timetabling.
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CHAPTER 3
Solution Methods

In this chapter our algorithm will be presented in detail. Figure 3.1 shows the basic procedure:

Figure 3.1: The basic procedure of our approach

This procedure is similar to the approach presented by Schmidt and Ströhlein [32] in chapter
1.4. We also construct a solution for the timetable out of solutions for each timeslot. We pick an
empty timeslot and grade all lessons that are available, see section 3.1. Then, instead of creating
a (hyper)graph with weighted edges as Schmidt and Ströhlein did, we chose to create a graph
where the meetings (lessons) are weighted nodes, which is described in chapter 3.2. Meetings
without resource-conflicts are interconnected; Figure 3.2 shows the graph we would construct
out of the first timeslot of the problem they described in their work (which can also be found in
chapter 1.4).

Having the constraint-graph constructed, we then search for the maximum-weight clique
(chapter 3.3). Chapter 3.4 describes filling the open roles (resource groups) of the clique we
found. The higher-level solving strategies can be found in chapter 3.5.
As noted in the introduction, we will first pick a not entirely full timeslot out of the timetable.
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Figure 3.2: Left: The initial graph of hour one by Schmidt and Ströhlein
Right: The equivalent constraint-graph we would create in our approach.
Meetings mi are edges in the initial graph, and nodes in our graph.

3.1 Grading

We basically calculate two different kinds of grades:

• Penalties: How much penalty would an assignment to the current timeslot entail

• Urgencies: How urgent is an assignment to the current timeslot

Grades are calculated for and applied to objects of timetabling, i.e. resources or lessons/sessons.
Whereas the penalties are calculated according to the official evaluation-function (see chapter
2.1: Constraints and Cost), the main challenge is finding suitable urgencies. Two kinds of
urgencies exist:

1. Constraint-urgencies aim at avoiding constraint-violations

2. Filling-urgencies aim at filling the timetable (assigning all events to timeslots)

For each urgency, a ratio is calculated that represents this urgency. For example, the session-
urgency aims at assigning all sessions to the timetable, and will prefer sessions with dense as-
signments or few possibleSlots. Its ratio is a comparison of the pending assignments and the
possible slots: ratio = pendingAssignmens

possibleSlots
All ratio-calculations were constructed and evaluated using a set of test-cases extracted from

the instances. The target was to maintain the relation to the official evaluation: An urgency-ratio
of 1 means that by assigning this i.e. resource, a deviation of 1 can be avoided. Ratios can also
be negative if an assignment is unfavorable, or higher than 1 if they would avoid a deviation
higher than 1.
To avoid disturbing the grades by currently unassignable sessions or resources, urgency-ratios
can be limited to a range from -1 to 1.
The final urgency is always calculated as follows:

urgency = ratioexponent · weight · externalWeight (3.1)
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The exponent in (3.1) can be used to convert the ratios from a linear function to either a con-
vex one (exponent > 1) or a concave one (exponent <1). This allows adjusting the sensitivity
of this urgency, by either squeezing or straddling ratio-differences. The weight denotes the
weigth that this constraint is given within the instance, whereas the externalWeight is a pa-
rameter we set to define the importance of this constraint compared to other urgencies. For
hard-constraints we use the self-defined parameter hardConstraint instead of weight. The
value of hardConstraint can be adjusted dependent on the difficulty of assigning all events to
timeslots: The higher it is compared to other weights occuring in the instance, the more likely
it gets to make assignments despite their penalty. This helps filling the timetable at the cost of
increased penalty.
The duration is the amount of consecutive slots of the lesson this urgency will be applied to,
as defined in chapter 1.2. If a penalty or urgency changes with the duration, we calculate an
urgency/penalty for each possible duration.

To get the final weight of a lesson, all (negative) penalties and urgencies are summed up,
which themselve are derived from the resources, events and event groups that the lesson consists
of. All penalties and urgencies arising from soft-constraints are multiplied with the parameter
softConstraintLevel, as is described in chapter 4.1.
There are cases where a penalty exists, but neverthless an assignment is desired: The urgency
will then compensate the penalty as well as express the favorability of an assignment. The first
constraint (AvoidUnavailableTimesConstraint, section 3.1) includes a complete examples of the
urgency- and penalty-calculation respecting the exponent and the weights.

In the following chapter we will first present constraint-urgencies (always having the name
of the constraint, i.e. ClusterBusyTimesConstraint, as caption), and second the filling-urgencies.
We omit code that aims at avoiding divions by zero, and code that distinguishes between the
different cost-functions. The cost-functions are respected according to the official evaluation
described in chapter 2.1. The notations are based on the formal definition of chapter 1.2.

AvoidUnavailableTimesConstraint

This constraint forbids or penalizes assigning resources to certain timeslots. We are using this
constraint implicitly to represent a resource-urgency, which aims at assigning all the resource-
workload to the timetable. The basic idea is to compare the possible timeslots with the pending
resource-workload pW . The formula to calculate the ratio is simple:

ratio =
pW

slotsLeft
(3.2)

pendingWorkload (pW ) Table 3.1 shows the calculation of pW of a resource r. We sum up
the duration of all pending meetings the resource is assigned to (considering open roles).

slotsLeft considers available slots and their penalty. For each slot where the resource and one
of its sessions is available, we increase slotsLeft by 1 − weight

hardConstraint , where weight is the
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Variable Calculation/Explanation
workload =

∑|M |
m=0 Ām | r ∈MR(m)

openRoles =
∑|M |

m=0

∑|G|
g=0

∑|R|+1
i=0 (Ām· 1

|GR(g)|) |OpenRole(m, g, i) = true ∧ r ∈ GR(g)

assignment =
∑|T |

t=0

∑|M |
m=0(Ṫrtm >= 0)

pW = workload + openRoles − assignment

Table 3.1: Calculation of pendingWorkload (pW ) of resource r

penalty of assigning the resource to this timeslot (0 if not constrained).

Mo Tu
1
2
3 -500 -500
4 -1000 -1000
5

Table 3.2: AvoidUnavailableTimesConstraint,
calculation of slotsLeft: values are penalties;
black slots mark unavailability

Example: Urgency Assume a resource-availability
and penalty given in table 3.2. Further assume having
the following variables:
pW = 5
hardConstraint = 2000
externalWeight = 0.5
exponent = 2

Except from pW , these variables are parame-
ters we can adjust. We will now calculate
the slotsLeft, and following the ratio and ur-
gency:

slotsLeft = 4 + 2 · (1− 500
2000) + 2 · (1− 1000

2000) = 6.5
ratio = 5

6.5 = 0.77

The weight or penalty of slots was considered when counting the slotsLeft. As noted above,
we are then going to use hardConstraint instead of the weight:
urgency = ratioexponent · hardConstraint · externalWeight

This leads to a final urgency of urgency = 0.772 · 2000 · 0.5 = 592.9. This urgency is indepen-
dent on the slot we are grading.

Mo Tu
1 592.9 592.9
2 592.9 592.9
3 92.9 92.9
4 -407.1 -407.1
5

Table 3.3: Sum of urgency and penalty of the
AvoidUnavailableTimesConstraint

Combining urgency with penalty Table 3.3 contin-
ues the example using the penalties and variables intro-
duced above. It shows the sum of the penalty and ur-
gency we calculated: Slots 1 and 2 are not constrained,
assignments to them are favored by the urgency we cal-
culated above (592.9). Assignments to slot 3 are still
favored, but the weight (penalty) of 500 will be sub-
stracted: We so have a sum of 92.9. Slot 4 is weighted
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with 1000, so the sum will be -407.1, and the assign-
ment unfavorable. This is appropriate because there are
enough other slots to assign the pending workload.
All lessons that require this resource will obtain the sum of urgency and penalty of the timeslot
that we currently grade.

ClusterBusyTimesConstraint

The ClusterBusyTimes-constraint is applied to resources: It aims at assigning a resource to a
certain amount of time groups (which are usually days). A resource r is assigned in time group
d if ∃t∃m | t ∈ DT (d),m ∈M : Ṫrtm > −1

A minimum and maximum can be defined, and the number of time groups used should lie
in between. The ratios we describe here do not consider the case that the constraint is only ap-
plied to a subset of all (day-)time groups, which up to now does not appear in any instance. We so
can define the current time group as the intersection of the time groups the current timeslot t (the
timeslot we are currently grading) belongs to: TD(t), and the time groups the ClusterBusyTimes-
constraint is applied to.
Table 3.4 shows the variables we are using to calculate the ratio. pW and workload are calcu-
lated as introduced in section 3.1.

Variable Explanation
slotsLeft . . . Sum of all slots left in any time group with assignment
SLCG . . . Slots Left in Current Timegroup
avgWorkload . . . Average workload we have to fill in in one time group when using the

allowed maximum of time groups: workload
maximum

overflow . . . Number of possible timeslots of the current time group compared to the
average workload we have to assign: SLCG− avgWorkload

dayLength . . . Nr of slots a normal day has
pressureExpo . . . Parameter for exclusively spreading pressure (default: 2.5)
weightOverflow . . . Weight of overflow (default: 1.5)
pendingGroups . . . maximum−

∑
Timegroups with assignment

Table 3.4: ClusterBusyTimesConstraint: variables used for calculating the ratio

Maximum: No resource-assignment in current time group
If a resource is not yet assigned to a time group, we will try to find out whether an assignment

to the current time group will help not reaching the maximum . This will be the case when there
are many possibilities of assigning the resource within this time group. The ratio of equation
(3.3) consists of 2 basic components:

• rawRatio: Does the current time group offer enough possible assignments to avoid vio-
lating the maximum

29



• pressure: Difficulty of the constraint: Number of assignments compared to the typical
day-length

rawRatio =
overflow · weightOverflow

dayLength

pressure =
avgWorkload · 2
dayLength

ratio = rawRatio · pressurepressureExpo (3.3)

Maxmimum: >0 Resource-Assignments in current Time group

If there already exists a resource-assignment, we compare the pending workload with the number
of slots that can be assigned without assigning the resource to more thanmaximum time groups.
The pressure is calculated as in the case without assignment in the current time group.
The divisor of the ratio in equation (3.4) represents the number of possible slots when using
maximum time groups. We assume that in each pendingGroup we will be able to assign
the avgWorkload - an estimation that could be made more exact by analyzing the number of
timeslots in time groups without assignment.

ratio =
pW

pendingGroups·avgWorkload
pressure + slotsLeft

(3.4)

Minimum

The ratio to avoid minima is calculated by comparing the pendingWorkload pW with the pend-
ingGroups (as defined in “Maximum: No Resource-Assignment in current time group“, section
3.1):

ratio =
pW

pendingGroups
(3.5)

If the resource is assigned to the current time group, the ratio is substracted to avoid further
assignments, and added to favour its assignment if the resource is not yet assigned.

LimitBusyTimesConstraint

The number of timeslots a resource is assigned to within a time group should lie between a
minimum and maximum - or the resource is not assigned at all to this time group.
The minimum of this constraint is the only case where we do not apply the penalty directly:
Given i.e. minimum = 4, the first assignment in a time group would always be highly penal-
ized. We instead calculate a subsitute for the penalty within the urgency.
Minimum and maximum have to be considered together to not interfere. The urgency and
penalty is calculated differentiating between three distinct cases. The variables we use are de-
fined in Table 3.5. Again, see section 3.1 for the exact definition of pW .
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Variable Explanation/Calculation
assignment . . . assigned slots in the current time group
pW . . . pending resource-Workload
openMin . . . Sum of resource-assignments (assigned slots) below minimum in all

time groups exept the current
sL . . . slotsLeft (maximum of further assignments) in current time group
sLAG . . . slotsLeft in Assigned timeGroups

(all time groups with a resource-assignment >0)
slotsLeftForMaximum . . . nr of timeslots left in all time groups without violating maximum
pWcm := pW − openMin // pendingWorkload considering minimum

sLAGcm := sLAG − openMin // sLAG considering minimum

sLrm := min(maximum− assignment, sL)
// slots Left in current time group respecting maximum

Table 3.5: LimitBusyTimesConstraint: variables used for calculating the ratio

1. Resource not assigned to current time group

If the resource is not yet assigned to the time group (for the definition please refer to chapter
3.1), we look whether the minimum of the time group can be fulfilled. slack is the amount of
possible resource-assignments in the current time group, below or above the minimum:

slack = min(pWcm, sLrm)−minimum

ratio =


slack if slack < 0

−0.5 if slack = 0 and sLAG > pW
slack

min(sL,pWcm)) if slack > 0

(3.6)

2. Current Resource-Assignment below minimum

We will just try to make resource-assignments more urgent, dependent on how many possibilities
for resource-assignments there still are. Line 3 in algorithm 3.1.1 is the general urgency of filling
the open minimum of the current time group: The dividend, minimum − assignment, is the
open minimum of the current time group, and the divisor, min(sL, pWcm) represents the still
pending possibilities of filling the open minimum.
Starting with line 4 we treat the case where the open minimum of the current time group is
overfilled by assigning a resource with a too large duration: We penalize such assignments if
they make filling the openMin of the other time groups impossible.
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Algorithm 3.1.1 Ratio-calculation of LimitBusyTimes when the current assignment is below
the minimum

1: // input-arguments: minimum,assignment,openMin,sLrm,pWcm,duration

2: // output: ratio

3: ratio = minimum−assignment
min(sLrm,pWcm)

4: overfill := duration− (minimum− assignment)
5: if overfill > 0 and openMin > 0 then
6: currentViolation = openMin + (minimum− assignment)− pW
7: newViolation = min(openMin, (duration− pWcm))
8: ratio = ratio + currentViolation− newViolation
9: end if

10: return [ratio]

3. Current Resource-Assignment fulfills minimum

If the minimum of the current time group is already filled, we estimate whether further assign-
ing the resource will increase or decrease the possibility of future violations. We again have to
distinguish three different cases, and will demonstrate the ratio-calculation with algorithm 3.1.2.
If the maximum is not explicitly considered (as i.e. done with the fulfilled minimum when pW
fits into assigned time groups), we add its penalty seperately according to the official evaluation.
In any case we add an urgency for not violating the maximum:

ratio =
pW

max(0.5, slotsLeftForMaximum)
(3.7)
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Algorithm 3.1.2 Ratio-calculation of LimitBusyTimes-minimum when the minimum of the cur-
rent time group is fulfilled

1: // input-arguments: pWcm,sLAGcm,sL,sLrm,minimum,maximum,assignment,duration

2: // output: ratio

3: ratio := 0
4: currentMaxDev := max(0, assignment−maximum) // current violation of maximum

5: newMaxDev := assignment + duration−maximum // new violation of maximum

6: minDev := max(minimum− pWcm, 0) // deviation by violating minimum of new time group

7: if pWcm < duration then
8: // Pending openMin would be impossible to fill

9: ratio = pWcm− duration
10: else if pWcm ≤ sLAGcm then
11: // pW completely fits into time groups with assignments

12: if newMaxDev > 0 then
13: ratio = ratio− (newMaxDev− currentMaxDev)
14: else if pWcm < minimum then
15: ratio = minDev

sLAGcm / pWcm
16: end if
17: else if pWcm > sLAGcm then
18: // pW too large to fit in assigned time groups

19: if pWcm > (sLAGcm + (sL− sLrm)) then
20: // opening new time group necessary also when violating maximum

21: if newMaxDev > 0 then
22: ratio = ratio− (newMaxDev− currentMaxDev)
23: end if
24: if (pWcm− sLAGcm) < minimum then
25: pWcmas := pWcm− duration // pWcm after assignment of current duration

26: sLAGcmas := sLAGcm− duration
27: ratio = ratio− minimum−(pWcmas−sLAGcmas)

1+sLAGcmas
28: end if
29: else
30: // opening new time group can be avoided by violating maximum

31: maxDev := max((duration− (maximum− assignment), (pWcm− sLAGcm))
32: additionalDev := maxDev−max(0, assignment−maximum)
33: ratio = ratio− additionalDev + minDev
34: end if
35: end if
36: return [ratio]

LimitIdleTimesConstraint

An idle time exists if within a time group (day), a resource is assigned to previous and subsequent
timeslots, but not to the current one. As there is no instance available that has a LimitIdleTimes-

33



constraint with a minimum > 0, we only calculate the urgency for the maximum.
The constraint sums up the deviation of all time groups it is applied to. Table 3.7 explains the
variables we are going to use. The unconstrained slots uS are the number of timeslots which
the resource can be assigned to without necessarily increasing the deviation. This can change by
assigning the resource to the current timeslot.

Mo Tu
1
2
3
4
5
6

Table 3.6: Calculation of unconstrained slots:
grey slots indicate resource-assignment, black
slots mark unavailability; white slots are
assignable.

Table 3.6 shows how the currently unconstrained slots,
uSOld , and the unconstrained slots after an assignment,
uSNew , are calculated: uSOld are three slots on Mon-
day (MO1, MO3, MO4). For Tuesday we do not yet
have an assignment, so we take the size of the largest
contiguous block of Slots. This are 4 slots (TU3 - TU6),
so we have uSOld = 7.
If our current slot is TU1, we would have uSNew = 4.
Slots TU3 - TU6 would not be assignable without a de-
viation any more, but TU1 would be: We do not really
assign the resource when counting the slots.
Having MO6 as start would so lead to uSNew = 8.
The urgency that is calculated this way is independent
from the duration.

Variable Explanation
pW . . . pending Workload of Resource
uSOld . . . unconstrained Slots: Number of slots where unconstrained resource-

assignment is possible (in all time groups)
uSNew . . . uSOld considering the assignment in the current timeslot
assignment . . . Nr of used slots in the current time group
currentDev . . . current deviation: Nr of idle times in all time groups
newDev . . . new deviation: Nr of idle times in all time groups when assigning to the

current timeslot
cost(x) . . . Function that calculates the cost of deviation x respecting the costFunc-

tion of the constraint
currentCost := cost(currentDev)
increaseCost := cost(currentDev + 1)− currentCost

Table 3.7: LimitIdleTimesConstraint: variables used for calculating the ratio

If the deviation is below maximum, some of the following calculations would fail because
they base on currentCost, which is 0 in this case. We define a parameter p where 0 < p < 1 for
adjusting the weight of increasing deviation below the maximum. After this initial calculation,
the main ratio is calculated with algorithm 3.1.3.
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Algorithm 3.1.3 Considering a deviation below maximum
1: // input-arguments: ratio,currentDev,newDev,maximum,p

2: // output: ratio

3: ratio := 0
4: devGain := newDev− currentDev
5: if devGain > 0 and newDev ≤ maximum then
6: ratio = ratio− p · devGain
7: else if devGain > 0 and currentDev < maximum then
8: ratio = ratio + p · devGain
9: end if

10: return [ratio]

Assigning the resource to the current timeslot, we distinguish three main cases regarding the
deviation:

Decreasing Deviation

When the deviation decreases, the penalty will be negative - and so make the assignment favor-
able by itself. We do not a calculate additional urgencies.

Unchanged Deviation

An unchanged deviation means that we can assign a resource without increasing the deviation,
which is desired normally.
Equation (3.8) shows the ratio-calculation in case that the resource is already assigned to the
current time group:

ratio =
pW

uSOld
· increaseCost (3.8)

If there is no resource-assignment in the current time group, we again distinguish several
cases which are shown in algorithm 3.1.4.
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Algorithm 3.1.4 Ratio-calculation of LimitIdleTimes with unchanged deviation
1: // input-arguments: pW,uSOld,uSNew,currentDev,newDev,increaseCost

2: // output: ratio

3: ratio := 0
4: if usOld = uSNew then
5: // Assignment is in the largest block: favorize

6: prevCost := cost(currentDev− 1)
7: ratio = pW

uSOld ·max(currentCost− prevCost, 1)
8: else
9: // Assignment is not in the largest block: penalize

10: // Slack is uS compared to pW: nr of slots too much/less for pW

11: // slackLoss is the percentage of slack we lose by assignment to current timeslot

12: oldSlack := uSOld− pW
13: newSlack := uSNew− pW
14: if oldSlack ≤ 0 then
15: slackLoss := oldSlack−newSlack

uSNew
16: else
17: slackLoss := min(1− newSlack

oldSlack , 1)
18: end if
19: ratio = −slackLoss · increaseCost
20: end if
21: return [ratio]

Increasing Deviation

An increasing deviation will always be penalized by the penalties. We use the urgency to modify
and fine-tune this penalty. The ratio-calculation is shown in algorithm 3.1.5.
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Algorithm 3.1.5 Ratio-calculation of LimitIdleTimes with increasing deviation
1: // input-arguments: pW,uSOld,uSNew,currentDev,newDev,currentCost,increaseCost

2: // output: ratio

3: ratio := 0
4: if uSOld = uSNew and (pW− 1) ≥ (currentDev− newDev) then
5: // the now opened gap can still be closed: reduce penalty by generating urgency

6: ratio = pW
uSOld · increaseCost

7: else if pW > uSOld then
8: // The currently created gap can not be closed

9: // The pW is too high to fit into the currently available Slots (uS)

10: if pW ≤ uSNew then
11: // The slots gained by the current violation allow assigning all pW

12: ratio = increaseCost
13: else
14: // The slots gained are still not enough; another violation would be unavoidable

15: // Further increase the penalty by this future violation with a negative urgency

16: unavoidableCost := cost(newDev + 1)
17: ratio = currentCost− unavoidableCost
18: end if
19: end if
20: return [ratio]

SpreadEventsConstraint

The purpose of the SpreadEvents-constraint is to spread events of an event group over different
days. More formally, the number of events of an event group that are assigned to a certain time
group should lie between a minimum and maximum. Assigning an event of duration > 1 still
counts as one assignment.
Again, the current time group is the intersection of the time groups the constraint is applied
to, and time groups the timeslot we are currently grading belongs to. Table 3.8 explains the
variables we are going to use.

Variable Explanation
cA . . . current Assignment: nr of assignments in current time group
pendingAssignments . . . nr of pending event-assignments of the constrained event group
possibleAssignments . . . possible assignment in all time groups (also current) without violat-

ing the maximum, and considering the duration of the events of
possibleAssignments

pACG . . . possible assignments in current timegroup
openMinCG . . . open (unfulfilled) minimum of the current timegroup
openMinOG . . . open minimum of other timegroups (all but the current one)

Table 3.8: SpreadEventsConstraint: Variables used for calculating the ratio
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Maximum The maximum-urgency is only applied if the maximum is not yet reached (cA ≥
maximum). Equation (3.9) shows the calculation. The left part pendingAssignmentspossibleAssignments is indepen-
dent on the current time group and can be considered as a general urgency/pressure: It compares
the number of pending assignments with the slots they can be assigned to without violating the
maximum. The right part min(maximum−cApACG , 1) represents the urgency of assigning to the cur-
rent time group: It relates the assignments missing to reach the maximum with the number of
timeslots that are available for such assignments.

ratio =
pendingAssignments

possibleAssignments
·min(

maximum− cA
pACG

, 1) (3.9)

If there are more possibleDurations left for any event that should be split, we assume the one
that results in the largest number of subevents, and thus in the highest possibleAssignments.
Having more possibleAssignments makes it more difficult to not violate a maximum, so we
anticipate this case.

Minimum The only instance that contains a (hard) minimum is the changed italian instance
that incorporates the proposal of section 2.6.
Handling minima is difficult with our approach: Having an assignment below the minimum, we
normally would favorize all lessons that possibly fill the minimum. This leads to assigning too
many lessons, and so prevents the minima of other time groups from being filled. Only favoring
some of those lessons conflicts with the idea of leaving the decision of which lessons to pick to
the clique-search.
Fortunately the constraint of the Italy-instance is hard, which allows respecting it apart from
the grading, whithin the clique-search (chapter 3.3): We count the open minima of all time
groups. When filling any timeslot, we only allow assigning so many lessons that filling the other
open minima is still possible. We do so by creating a new resource group: All lessons of the
event group have to be modified to fill this new resource group. Then, we set a limit for this
resource group (see chapter 3.2), according to the open minima: limit = pendingEvents −
openMinOG. Soft-constraints (which up to now are not used by any instance) cannot be con-
sidered this way.
Additionally, we apply an urgency when the assignment is below minimum. The ratio-calculation
is given by equation (3.10). nrSessions is the amount of sessions which are available in any of
these timeslots, slotsLeft is the number of pending timeslots of the current time group.

ratio =
openMinCG

slotsLeft · nrSessions
(3.10)

Other Constraints

For the LimitWorkloadConstraint, only the penalty is calculated: First, our approach is in
general less suitable for the australien instances, see section 4.6. This constraint only occurs in
the australian instances. Second, the definition and evaluation of the LimitWorkloadConstraint
is going to change, because its current definition causes some problems, see section 2.6.
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All other constraints are either considered implicitly by unavailabilities and urgencies calcu-
lated above, or calculated later when filling the open resource groups (see section 3.4). We will
briefly mention the not yet treated constraints and explain why no urgency is necessary. All but
the AvoidSplitAssignmentsConstraint only occur as hard-constraints.

LinkEventsConstraint linked events get joined to one iteration of a session

AssignResourceConstraint considered by filling open resource groups

AssignTimeConstraint considered implicitly (main task)

SplitEventsConstraint we only instanciate lesson-durations that do not violate this constraint

DistributeSplitEventsConstraint as SplitEventsConstraint

AvoidSplitAssignmentsConstraint considered when grading and filling open resource groups

The urgencies described from now on do not focus on avoiding constraint-violations, but on
filling the timetable.

Bin-Packing

This urgency is intended to facilitate gapless resource-assignments. Some instances define re-
sources that have very few or no ”slack-slots“ compared to their workload, i.e. room R301 of the
FinCollege-instance has a workload of 39, and 40 timeslots available. The events that require
this room have a duration of 2 and 3. Such problems are known as bin-packing, and are one
of the NP-complete problems described by Kingston [20]: We have to pack the items of size
(duration) 2 and 3 into 5 bins (days) of size 8 (number of timeslots).
We implemented an algorithm inspired by the First Fit Decreasing of Johnson [17]: Items are
assigned descending by their size; if an item does not fit in the current bin, it is assigned to a new
bin. As we do not assign the events resource-wise, we cannot fully implement this procedure.
Instead, we generally prefer large items (lessons). If an assignment would inhibit fully filling
the current day, we penalize it, and favor sizes that still keep the possibility of a complete filling.

Mo
1
2
3
4
5 -500
6

Table 3.9: Example for contiguous timeslots
of the bin-packing urgency: negative values
are penalties, black slots mark unavailability;
white slots are assignable

We distinguish hard and soft bin-packing as
shown in table 3.9: The hard bin-packing only
considers resource-unavailabilities, whereas the soft
bin-packing also considers penalties of resources
(AvoidUnavailableTimes). The timeslots to fill
are picked ascending, so we look for the num-
ber of contiguously assignable timeslots starting
with the current timeslot: grading timeslot 1
of table 3.9, we have 4 timeslots for the soft-
constraint (using the weight of -500), and 5
for the hard-constraint (using hardConstraint as
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weight).

The tricky part is to find out whether a duration of
a specific session would inhibit a gapless filling of the contiguous timeslots. We assume that
within one day, only one lesson of a session can be assigned - which is a simplification that
may not always be correct. We look for all possible session-starts and durations within the
contiguous slots. Then we calculate which session-durations still permit assigning the resource
gapless into the contiguous timeslots. Continuing the hard-constraint example with two sessions
and possible start-slots of table 3.10, two session-durations would be valid in slot 1: Duration 2
of session 1 (gapless filling by assigning session 2 with duration 3 in slot 3), and duration 3 of
session 2 (gapless filling by assigning session 1 with duration 2 in slot 4). Assigning session 2
with duration 2 would inhibit a gapless filling.
We apply the urgency only if the following conditions hold:

• the current slot offers more than one possible session for the resource, or at least one
session of the resource has more than one possible duration

• the session-durations that permit a gapless filling do not completely equal all session-
durations that are available

• there is at least one session-duration that allows a gapless filling

Session 1 Session 2
1 2 2, 3
2 2 2, 3
3 2 2, 3
4 2 2
5
6

Table 3.10: Example of possible start-slots of
sessions

The calculation of the ratio is simple - the tighter
the resource-workload, the higher the ratio. The
pendingWorkload pW is calculated as defined in 3.1;
slotsLeft is the number of timeslots where both the
resource and any of its sessions are available.

ratio =
pW

slotsLeft
(3.11)

When calculating the final urgency, see equation
(3.1), we recommend an exponent > 1 to not unnec-
essarily apply the bin-packing urgency to resources that
are not urgent. Additionally, to not disturb the aver-
age resource-grade and interfering with other urgencies, we add half of the final urgency if the
session-duration allows a gapless filling, and substract half of the final urgency if it does not.

Session-Urgency

As described in section 2.4, sessions can have lessons of differing duration. This can be courses
that have meetings of differing length. We calculate an urgency for each duration of a session
by comparing its pending assignments with the timeslots it can possibly be assigned to:

ratio =
pendingAssignments

possibleSlots
(3.12)
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We pick the durations of a session descending, and evaluate how often they can be assigned to
the timeslot. When examining the next-lower duration we consider the slots that are theoretically
occupied by higher durations.

Mo Tu We Th Fr
1
2
3
4

Table 3.11: Session-urgency with differing du-
rations. Grey timeslots indicate that all re-
sources of the session are available

Table 3.11 demonstrates how this is applied: As-
sume having a session consisting of 3 iterations with
the durations 2, 2 and 1.
We first examine duration 2. The two only start-
slots for duration 2 will be Tu-3 and We-1. We-2 is
not a possible slot, because we consider that assign-
ing to We-1 will occupy We-2. This leads to a ra-
tio of 1 (2 pendingAssignments, 2 possibleSlots).
Then we examine duration 1. There are 4 slots
left: Mo-3, Tu-1, We-3 and Th-4. The ratio will be
0.25.

After grading all lessons, we will search for the best-graded set of lessons that can be held
within the timeslot. We do this using a so-called constraint graph.

3.2 Constraint Graph

We model which lessons of one timeslot can be held together using a constraint graph. In this
graph, each node represents a lesson. Two nodes (lessons) are connected when they can be held
simultaneously. They will not share any resource as room, teacher or school-class. Figure 3.1
shows an example of an constraint graph consisting of two rooms, two teachers and two classes.

Figure 3.1: Example of a constraint graph: All lessons that can be held simulteanously are connected
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A constraint graph is always constructed for a specific timeslot. The hard-constraints (such
as teacher-availability) are represented by the existance and connectedness of the lessons. The
soft-constraints are represented by the grades of the lessons.

Resource Group Limits

The initial idea was to instanciate each possible resource of an open resource group: If an event
can be held in three different rooms, this would lead to three distinct lessons. Unfortunately,
some instances contain events that have up 21 open roles, which makes instanciating each pos-
sible combination infeasible.

To avoid this problem, resource group limits were introduced: For each resource group we
search for the number of existing resources in a specific timeslot. This existing resources then
build the resource group limits. Having two gym-rooms available on the first timeslot on mon-
day means that the resource group “gym-rooms” will have the limit 2. The nodes (=lessons)
store how many resources of each resource group they will occupy. For any valid clique it is
obligatory that the sum of these occupied resource groups does not exceed the resource group
limits.
When having resource group limits, it cannot be guaranteed any more that it is possible to assign
resources to all open roles of the maximum-weighted clique. This case is further described in
section 3.4.

The final constraint graph contains the following information:

• Nodes (Lessons)

– weight (grade)

– occupies resource groups

– deepness

• Edges: lessons are connected if they can be held simultaneously

• Resource group limit

Having defined the constraint graph, the next task is to search for the best-graded set of
lessons that can be held simultaneously.

3.3 Search for Cliques: Maximum weight clique problem

Every clique in the constraint graph - for a specific timeslot - represents a set of lessons that can
be held simultaneously. A clique is a set of nodes that are all interconnected, see figure 3.1. The
interconnectedness means in our case that these lessons do not share any resources.

As we have graded (or weighted) lessons, we do not search for the maximum clique, but
for the clique that has the maximum weight: This problem is known as maximum weight clique
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Figure 3.1: Example of a clique: The red marked lessons are interconnected with each other and form the maximum
clique of this graph. They represent lessons that can be held simultaneously.

problem. It is a generalization of the maximum clique problem, which itself is known to be
NP-complete [18]. In some instances, another constraint is added: The open roles of events,
which are converted to open resource groups, result in a resource group limit which is described
in section 3.2.

Upper bound of the number of solutions for one Clique-Search

Let us assume having a search-problem of 550 nodes: 55 school-classes with each 10 different
subjects available in one timeslot.
In the first step there are 55 · 10 = 550 lessons available. Picking one lesson results in 54 · 10
possible solutions in the worst-case for the next step, and so on.
The upper bound of the number of possible solutions for one timeslot would then be (55 · 10) ·
(54 · 10) · ... · (1 · 10), see equation (3.13) - assuming that the school-classes are never split.

α . . . number of lessons
β . . . number of school-classes
L = α

β number of lessons per school-class

β! · Lβ (3.13)

In our example this would result in an upper bound of 55! ·1055 = 1.27 ·10128 possible solutions
for one single timeslot.
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Existing Methods

Kumlander [21] describes an exact algorithm which makes use of a vertex coloring. Initially
a vertex-coloring is created heuristically. Then, a depth-first search is performed by extending
previously sorted small cliques/nodes. Whenever a subgraph cannot be extended to a clique
that has a higher weight than the currently known maximum, it is pruned. The decision when
this is the case is the key point of each branch-and-bound algorithm. Instead of using multiple
color-classes per vertex as done in [1], Kumlander uses information gained by the initial vertex
coloring, having only one color per vertex. He estimates the potential maximum weight clique
by summing up the maximum weights per color of a subgraph. This sum is always equal or
higher than the maximum weight clique of a subgraph. The sum is combined with the weight of
the clique the subgraph is created of, and compared to the currently known maximum.
Kumlander combines his pruning with a backtracking introduced by Östergård [26]. On denser
graphs, Kumlander finds the optimum significantly faster than Östergård, and even further im-
proved the performance of his algorithm for dense graphs in 2006 [22].

Using genetic algorithms to heuristically solve maximum weight clique problems seems
appropriate: The genetic information is a boolean vector of all vertices, and the fitness function
is the weight of the clique it represents. Mutations are bit-flips of the vertex vector. The crucial
part is crossing individuals, and repairing invalid cliques if necessary. Balas and Niehaus [2]
cross two individuals by creating a subgraph induced by the union of the of their vertex sets. The
maximum weight clique of this subgraph is searched by inverting it and applying a maximum
flow algorithm, which is executable in polynomial time.

In 2006, Singh and Gupta [33] developed a hybrid evolutionary approach. Two parents
are crossed using a fitness-proportional approach, where the vertex of a parent is added to the
child with probability fitness of parent

fitness ofboth parents . As the child may not be a valid clique, it is re-
paired heuristically: single vertices are chosen randomly, and either the vertex itself or all vertex
not adjacent to it are deleted from the child. The resulting valid clique C is then extended
heuristically. One of the adjacent vertices is either added randomly or by chosing the best-
graded adjacent vertex u of clique C, until no more adjacent vertices exist. The grade of a
adjacent vertex is its weight w(u) multiplied with the number of vertices that are both adjacent
to u and to C, where Cad denotes all vertices adjacent to C, and E are all edges of the graph:
grade(u) = w(u) · |{t : t ∈ Cad ∧ (u, t) ∈ E}|.

Singh and Gupta report getting better results than the prior state-of-the-art approaches as the
quadratic formulation of Busygin [8] and the pivoting approach of Bomze et al. [4], which are
both based on the Motzkin-Straus theorem.

Having graphs with a density up to 0.968 percent and 950 nodes, exact algorithms are infea-
sible for our problem. Because of having an additional constraint (the resource group limits) and
additional information (the deepness of nodes), we implemented a custom heuristic. The main
targets were reliability and speed: As reliability we understand that the quality of the solution
should be independent on the structure of the graph and the deviation of the gradings. As we
iteratively delete and re-fill the timetable, speed is also crucial.

44



Terminology

To limit memory-usage, we define a clique-limit: It is the maximum number of cliques that we
hold in memory at any given time. If the existing cliques exceed this limit, some bad graded
cliques or cliques of small size (and deepness) are deleted.

A clique has peers: These are lessons that are themselves connected with all lessons of a
clique. Peers can be used to extend a clique.

Extending a clique means that we create new, larger cliques out of an existing clique and
each peer. Of course, the new clique must not violate the resource group limit.

One step means extending cliques until a certain amount of not yet existing cliques was
evaluated: We only count new cliques that do not violate the resource group limit.

The deepness of a clique is the sum of the deepnesses of the lessons it contains. The def-
inition of deepness can be found in section 2.5. This is the equivalent to the clique-size of the
standard maximum weight clique problem.

Basic Procedure

We start with cliques of size 1, each consisting of one single lesson. Then we iteratively search
for the most-promising existing clique, and further extend it. How promising a clique is depends
on its grade (weight), deepness, and on the peers it has.
Obviously, it is of extreme importance to choose the right cliques to extend. We therefore grade
the cliques again internally, dependent on their (raw) grade, their peers and deepness. With
increasing runtime, we shift our search-focus to larger cliques, taking the clique-deepnesses into
account.
With this procedure it is possible to repeatedly create an already existing clique by extending
different subsets of it. To avoid this we store each created clique, and only create a new clique if
it not already exists.
We often have to pick the best-graded clique, and also have to often insert new cliques. Therefore
we decided to use a heap as the main datastructure for storing the cliques.
Two different approaches were tried out: First, using one single heap that contains all exising
cliques, which is described by algorithm 3.3.1. Second, creating a heap for each deepness that
will only contain cliques of this certain deepness. In this case, the lessons at line 10 and the new
cliques at line 27 would be pushed into the heap of its particular deepness.
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Algorithm 3.3.1 Basic procedure of clique-search
1: // input-arguments: lessons, peers, stepCliqueMultiplier, abortAfterEmptySteps

2: // output: ratio

3: currentMax,maxBeforeExtending, stepsWithoutMax := 0
4: stepCliqueNr = stepCliqueMultiplier · |lessons|
5: maxClique := ()
6: cliqueHeap := empty heap
7: // initially insert lessons into cliqueHeap

8: for all lesson ∈ lessons do
9: calculate internGrade

10: cliqueHeap.push(internGrade,lesson)
11: end for
12: // start expanding cliques

13: while stepsWithoutMax < abortAfterEmptySteps do
14: maxBeforeExtending = currentMax
15: // beginning of one step

16: nrNewCliques := 0
17: while nrNewCliques < stepCliqueNr do
18: clique := cliqueHeap.pop()
19: for all peers of clique do
20: calculate newClique, cliquePeers, grade and internGrade
21: nrNewCliques← nrNewCliques + 1
22: if grade > currentMax then
23: maxClique = clique
24: currentMax = grade
25: end if
26: if |cliquePeers| > 0 then
27: cliqueHeap.push(internGrade,newClique) // insert new clique into heap

28: end if
29: end for
30: end while // end of one step

31: adaption of c // deepness-compensator; adaption dependent on strategy

32: if currentMax > maxBeforeExtending then
33: stepsWithoutMax← stepsWithoutMax + 1
34: else
35: stepsWithoutMax = 0
36: end if
37: end while
38: return [maxClique]
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Single Heap

Initially, only one heap was used: The internal grades of all cliques were re-calculated when the
deepness-compensation c was changed to focus on other (normally higher) deepnesses. Also,
not re-calculating the internal grades but just increasing c was tried out. This procedure does
almost not have any overhead, and extends most cliques in a certain time. Good results were
found quite fast, but this approach lacks a fine-grained control of the search-process. As this
is of big advantage for larger graphs, we also implemented search-procedures using a heap for
each deepness, called multiple heaps.

Multiple Heaps

Using multiple heaps - one for each deepness - has the advantage that the internal grades can
be adjusted more flexible when changing c. Re-calculations of all grades are not necessary any
more. For each existing deepness, only the intern grade of the best clique of this deepness is
calculated. Then, cliques of this heap are picked and extended. The extension is aborted when
the internal grade of the last chosen clique is worse than the best clique of any other deepness.
Then, the internal grades of the best clique of each heap are re-calculated. New cliques are not
considered immediately, but only after recalculating the internal grade. Repeatedly picking a
large amount of cliques from one single deepness means that we will ignore the newly created
cliques while doing so. When reaching the clique-limit at such a moment, there is the threat that
those newly created cliques get deleted immediately. To prevent this, chosing cliques from only
one heap is also aborted after a certain amount of extended cliques.

Intern Grades

The intern grade is the sort-criterium of cliques when picking the currently most promising
clique. Various calculations of the intern grade were tested. The parameters to construct the
intern grade of a clique are:

c . . . deepness-compensation
rawGrade . . .

∑
grade of lessons within the clique

deepness . . .
∑

deepness of lessons within the clique
peerDeepness . . .

∑
deepness of peers

gradePerDeepness . . . rawGrade
deepness

The deepness-compensation c is used to shift the focus to different deepnesses during the
search-process. The different grade-functions and the search-strategy they were implemented
for are presented in section 3.3. The results of the comparison can be found in section 3.3.

Search-Strategies

We implemented 4 different strategies for searching the maximum weight clique, which we will
present in the following sections.
Unfortunately, there do not exist commonly accepted instances for the maximum weight clique
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problem. Therefore, we created our own constraint-graphs to compare the four strategies: The
graphs were extracted out of the main solving-procedure, using different instances in in differ-
ently filled timetables, to diversify the constraint-graphs in terms of density, number of cliques,
and spread of the grades and deepnesses of lessons.
The results of the comparison of the strategies can be found in section 3.3.

Strategy 1: Single-Heap with recalculating Grades

The first strategy uses only one heap to store cliques of all sizes.
In each step, nrOfLessons·80 new cliques are evaluated. After each step, the initial value of the
deepness-compensation c is increased by a value dependent on the average grade of the lessons.
Then, the internal grades are re-calculated: This is necessary to re-establish a correct sorting
according to the current value of c. The search-procedure is aborted after no new maximum
was found for a certain number of steps. If the number of cliques exceeds the clique-limit, bad-
graded cliques are deleted until the number of cliques falls below the clique-limit.
Equation (3.14) shows the calculation of the intern grade in strategy 1:

internGrade =
rawGradec

deepness
(3.14)

Stragegy 2: Single-Heap without recalculating Grades

In the second strategy, again one heap was used for all cliques. The internal grades are only
calculated once when adding a new clique to the heap. This means that the cliques within the
heap were graded with different values of c. After each step, c was increased: Recently created
cliques profit from higher c-values, and get chosen more likely. The intern grade-calculation is
the same as in strategy 1 (equation (3.14)).
There exists almost no overhead in this extension-strategy. Many cliques are revised and ex-
tended, but the search lacks a finer control. Altough mostly not reaching known maxima, this
strategy leads to reasonably good results already after a short runtime.

Strategy 3: Multiple-Heap extending each Deepness

The target of the third strategy is finding the optimum. It picks and extends cliques only out of
the lowest deepness that currently exists. We stop extending cliques out of this deepness when
all pending cliques won’t be able to be better than the currently known maximum. Then we
delete all pending cliques of the lowest deepness, and switch to the next (new) lowest deepness
and extend cliques out of it.
The intern grade of this strategy is the theoretically reachable maximum weight of the clique.
As we extend the lowest existing deepness, there is no need for the deepness-compensation c:

internGrade = rawGrade+ gradePerDeepness · peerDeepness (3.15)

Having the grades sorted like this, and yet having found any maximum by using a faster heuristic,
one can adjust the search-parameters to find the optimum. We only extend a clique if inequation
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(3.16) is true. This ensures that we still can exceed the current maximum currentMax:

rawGrade+ gradePerDeepness · peerDeepness > currentMax (3.16)

As long as inequation (3.16) is true, the current clique can possibly lead to a clique that has
a higher grade than the current maximum. Extending all of these cliques ensures to find the
optimum: If any lower-graded clique of the same deepness possibly would be extendable to a
higher maximum, it would already have been picked and extended. This is ensured because
we choose the cliques to extend sorted by the intern grade, which represents the theoretically
reachable weight of a clique.

One would assume that considering the peer-grades of a clique would have a positive effect,
but the contrary is correct.
Figure 3.2 shows a sample graph which demonstrates the advantage of not taking into account
the peer-grades. The optimum consists of the green colored nodes (the vertices of the optimal
clique are left out). Currently, two sub-cliques which can find the optimum exist: A and B, each
consisting of 3 lessons.

Lets assume a deepness of 1 for each lesson and a currently known maximum of 100. The

Figure 3.2: The number within the nodes represent their weight. Green nodes are part of the maximum weight clique,
their edges have been omitted.

weight of the optimum is 104. We then get the grades in table 3.3. intern grade is the grade of
equation (3.15), sum of grades is calculated by just summing up the grade of the clique and all
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of its peers. Remind that all green colored lessons of figure 3.2 represent the optimum, and are
therefore interconnected. So, each lesson of B is a peer of clique A and vice versa.

Subset grade gradePerDeepness nr peers intern grade sum of grades
A 37 12.33 5 98.67 139
B 67 22.33 6 201 153

In case of choosing the intern grade of equation (3.15) as sort-criterium, we only will pick and
extend clique B. Clique A will not be chosen anymore, because its intern grade is below the
known maximum. Nevertheless we can be sure that the optimum will be reached, because the
higher-graded subsets of the optimum will get extended. This is also correct in the worst case, if
all lessons have an equal (rather low) grade: For each clique, there exists at least one subset (or
sub-clique) for which the intern grade (3.15) is higher or equal the clique-grade. This follows
directly out of the fact that not all sub-cliques of a clique can have a lower grade per deepness
than the original clique.

In case of using the sum of all grades, every subset will be extended because it can possibly
reach the optimum. It is only necessary to extend (at a given deepness) at least one sub-clique of
the optimum: At the next deepness this clique will be extended again until reaching the optimum.

The closer the yet-found maximum is to the optimum, the less cliques will be extended, and
the faster the algorithm will be. As small cliques tend to have a high number of peers, they get
high grades and are very likely to be extended. The stop-criterium of equation (3.16) only plays
a role for larger cliques, so we still get a very large amount of cliques. Really implementing
the current maximum as stop-criterium is only useful for examining small constraint graphs,
because it requires a lot of memory.

In the constraint graphs used for comparing the different strategies, this was only possible
for the two smallest instances (with the larger one having 81 vertices). To apply this strategy also
to larger graphs, the stop-criterium of possibly reaching the current maximum can be exchanged
with the total number of existing cliques (clique-limit). The lowest deepness will get deleted
when this limit is reached. This helps staying below our memory-limit of 4 GiB, but it cannot
be ensured anymore to find the optimum. Contrary to other strategies, we do not store the filled
resource groups, peers and the raw grade of each clique to save memory. Instead, we repeatedly
calculate this information before expanding a clique out of its nodes. This allows holding up to
12 mio. cliques in memory (dependent on the size of these cliques), at the cost of processor-time.

Strategy 4: Multiple-Heap using Window

The last strategy uses insights gained by implementing strategy 3. It was created with the aim
to cut down the runtime to create a reliable, robust search, which finds solutions close to the
optimum in a reasonable time. We try to focus the search on deepnesses slightly above the
currently lowest deepness of all existing cliques, using a search-window.

Search-Window As a search-window we define limiting the deepnesses out of which we pick
cliques to extend. Three parts of this window are defined, a lower, medium and higher part.
during the search, we try to pick most cliques out of the medium part. Dependent on where we
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currently picked the most cliques from, we adapt c by 5 % after each step to favour the medium
part of the window. This helps to spread the deepnesses we pick cliques from, and not only
considering a specific deepness which seems promising at the moment.

The search-procedure still consists of steps described in section 3.3. The stepsize of the
fourth strategy was reduced to 10, leading to a number of examined cliques per step of 10 ·
Nr of Lesssons .

A difficult and crucial task is to choose criteria when to delete the currently lowest deepness
with all its cliques, and lift the search-window. Deleting deepnesses too early means possibly
losing a maximum. Deleting them too late means wasting runtime. After testing out different
approaches, the combination of four criteria turned out to be useful to initiate deleting the lowest
deepness:

• Steps without deepness-change
After n steps without a change of the lowest deepness that contains cliques, we delete all
cliques of the lowest deepness. The finally used parameter was n = 5.

• Steps without finding a new maximum
After m steps without finding a new maximum, we delete the lowest deepness, if the
remaining number of cliques is above x percent of the current clique-limit. Finally used
values are: m = 10, x = 80

• Nr of existing cliques above clique-limit
As long as the number of existing cliques was above the clique-limit (defined in section
3.3), we delete cliques of the lowest deepness. As the focus of this approach was speed,
we do not hold many cliques in memory - only about 100.000, and are not close to the
memory-limit. When too many low deepnesses are deleted, there is the risk of deleting
newly created cliques that not yet had the opportunity to get extended. Having enough
memory left allowed us to limit the maximum number of deepnesses-deletions after one
step to 2, to avoid this effect.

• intern grade of lowest deepness below avg grade within the window
The intern grade rather favours smaller cliques because they have more peers. If the best
clique of the lowest deepness nevertheless is below the average grade within the window,
we delete all cliques of this deepness. This speeds up the search-procedure without having
much impact on the quality.

Decreasing Clique-Limit With time, we decrease the clique-limit - the maximum total amount
of cliques we hold in memory at a given time. It turned out that doing this slowly only slightly
affected the quality of the final result, but sharply reduced the runtime.

The intern grade of strategy 4 is based on strategy 3. For a heuristic, the intern grade of
equation (3.15) does not favour good clique-grades enough. We introduced a gradeMultiplier to
compensate this and emphasize the heuristic approach. Also, c had to be introduced again:

internGrade = (grade·gradeMultiplier+(peerDeepness·gradePerDeepness))1+c·deepness
(3.17)
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Strategy 1 Strategy 2 Strategy 3 Strategy 4
Nr heaps one one many many
Aware of peers no no yes yes
Limit deepnesses for picking cliques no no yes (one) yes (Window)
Maintains clique-sorting yes no yes yes
Reduces clique-limit no no no yes
Adaption of c hard-coded hard-coded not necessary automatic

Table 3.12: Overview of the search-strategies

Unfortunately, the quality of results depends on the gradeMultiplier. Suitable values lie between
2 and 10. They are not bound to the instance, but rather to the specific constraint-graph of one
timeslot. We did not find a direct correlation between the size, density or deviation of grades
and a good gradeMultiplier. The lowest deviation was achieved with a value of 3.

We also tried out other intern grades; Equation (3.18) shows the best alternative grade-
function we found. To retrieve results that are competitive with the intern grade of equation
(3.17), more cliques have to be evaluated, and longer runtimes are necessary. Moreover, the
variation of the result-quality is higher.

internGrade =
grade(1+nrOfPeers·peerExponent)·(1+c·deepness)

deepness
(3.18)

peerExponent was a value slightly above zero and c again is the deepness-compensation. The
average results (weight of best clique) were about 5 % below those using the intern grade of
equation (3.17) when adapting the parameters to having similar runtimes.

Table 3.12 presents the main differences of the strategies. Aware of peers indicates whether
the internal grades considers the number or deepness of peers. Limit deepnesses for picking
cliques is true when the cliques to extend can only be picked from specific deepnesses. Maintains
clique-sorting refers to the correct sorting of cliques according to c. Note that for multiple heaps,
the sorting is not correct for a short time because we consider newly created cliques only after
finishing a step. The last row, Adaption of c, indiates how c is adapted. “hard-coded” means that
after each step, c is increased by a fixed value (which is dependent on the number and grades
of lessons). The intern grade of strategy 3 does not use c, because it incrementally extend each
deepness. Strategy 4 automatically adapts c using the search-window, described in section 3.3

Results

As mentioned, we created our own test-samples of constraint graphs out of different instances
and timetable-states. We rather chose empty timetables, because the constraint graphs tended
to be larger and therefore harder to solve. The characteristics of the instances are given in
table 3.13. ”Filled slots” are the number of already filled slots of the timetable when creating
and extracting the constraint graph. The column ”Std-dev” is the standard-deviation of the
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deepness of the lessons within the constraint graph. A standard-deviation of 0 means that all
existing lessons are of equal deepness. The density of a graph is calculated by comparing the
existing edges with the total number of possible edges: density = edges

(|nodes|·(|nodes|−1))/2 . ”Size
of best solution” is the number of lessons of the best known maximum-weight clique. If the
best solution is the optimum, it is marked red (italic). Except FinCollege and FinSecondary, all
instances have a resource group limit.

Instance Filled slots Nodes Edges Density Std-dev Size of best solution
TES99 5 50 1134 0.93 2 8
BGHS98 3 135 8513 0.94 1.1 19
FinCollege 0 289 38438 0.92 0.6 29
FinSecondary 5 81 2575 0.79 0 9
KT2005-1 0 522 127689 0.94 4.9 29
KT2005-2 5 465 101212 0.94 3.7 31
StPaul 3 438 90960 0.95 6.1 54

Table 3.13: Characteristics of the search-instances used for comparing the different strategies

Table 3.14 shows the best results - the weight of the maximum-weighted clique - achieved
by each strategy. Again, optima are marked red (italic). The best solution can be higher than any
solution of strategies 1, 2 and 4, because it was achieved with other parameters that also lead to
longer runtimes.
Additional information about the search-process is given in table 3.15. The column ”Nr cliques”
denotes the number of examined cliques of KT2005-1, the biggest instance, to find the given re-
sult. ”avg deviation” is the average deviation of the best known result and the result that was
found by the strategy. “1” means that the average result by a strategy is 1% below the best
known solution. ”Runtime” is the sum of the runtimes for achieving the results of all 7 con-
straint graphs.

TES99 BGHS98 FinColl FinSec KT2005-1 KT2005-2 StPaul
Strategy 1 28665 30869 60239 5811 317390 41240 21593
Strategy 2 28665 30869 55583 5811 393271 50054 21650
Strategy 3 28917 - - 5811 - - -
Strategy 4 28665 30869 62850 5811 402712 51011 22322
known Solution 28917 30869 63870 5811 403897 52305 22333

Table 3.14: Clique-search: Results achieved by the different strategies. Optima are marked red (italic)

We also conducted some tests on the deepness, as setting the deepness of all lessons to 1,
or estimating the lesson-deepness, using their number of peers and the grade. While the latter
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Nr cliques avg deviation total runtime (s)
Strategy 1 585400 7.51 350
Strategy 2 500500 3.43 120
Strategy 3 - - -
Strategy 4 860000 0.78 260

Table 3.15: Additional Information about the search-process

lead to worse results in any case, for some instance better results were retrieved when setting
all deepnesses to 1. However, the average grade and the variance over all results got worse.
As the wrong estimation of deepnesses is bound to the instance and not to a specific timeslot,
we run two searches for the first timeslot, one with a deepness of 1, and one using the normal
deepnesses. For all later slots we use the setting that retrieved better results.

To find the best parameters for the finally used strategy 4, we created another set of 79
instances, which we tested using various parameter-combinations. The values of parameters
mentioned above were found running these tests.
We calculated the optimum for the 41 smallest instances. For search-instances having a re-
source group limit, we used our search-strategy 3. For all others, we used the exact algorithm of
Östergård [26], which is more memory-efficient. If we were unable to calculate the optimum in
reasonable time because of the size of the graph, we used the best result ever achieved for this
graph as the know maximum.
The above mentioned parameters were optimized in view of the sum of squared deviations of the
79 optima / known maxima. The best result was an average squared deviation from the optima
and known maxima of 1.045, and the non-squared average deviation 0.49. This included the
test of setting all lesson-deepnesses to 1. Always keeping the original lesson-deepness, the best
average squared deviation was 1.67, with an average deviation of 0.7.

Discussion and Conclusion

Interesting to see is the number of cliques examined to find the maximum. This demonstrates
the effectiveness of each approach of chosing promising cliques to extend. Not only a suitable
intern grade is important for this, but also the priority of focusing certain deepnesses, and the
choice of when to switch to a higher deepness.

Strategy 2 reached reasonable results in a very short time, whereas strategy 4, which was
built to close the gap between performance and quality, turned out to be realiable in terms of
finding a result close to the current maximum. Altough we still have the (minor) problem of not
reliably chosing the best gradeMultiplier (see chapter 3.3), we are applying this strategy for the
timetable-filling.

Strategy 3 is only interesting for examining instances to find the optimum of small instances,
or get a rough idea where the optimum could be for medium instances.

A possible improvement is considering the filling of resource groups in the intern grade. We
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implemented a first version: The filled groups of a clique was compared with the resource group
limit and the total resource group fillings of all lessons. The intern grade was then adapted:
Cliques that rather fill resource groups with loose limits were preferred. However, this first im-
plementation did not lead to any improvements.
The results of strategy 4 are mostly close to the optima (or known maxima). The intern grade
seems to be an appropriate sorting criterium. It could be further improved by analyzing the peers
of a clique - at the cost of processing time. This would be even more interesting for the exact
strategy 3, because it could cut down the number of cliques that are evaluated. Nevertheless,
converting this strategy to a depth-first search is inevitable to allow analyzing larger graphs. The
current bottleneck clearly is memory-usage, caused by the breadth-first approach. As we only
used this strategy for some verifications and not in the main solving task, we omitted this imple-
mentation.
The achieved results and the suitability of parameters may be highly specialized to the instances
we extracted. We make use of the deepness, which is not available normally - so the results may
not be generalizeable to graphs with differing characteristics.
Because of those differences, our requirement for resource group limits and the absence of com-
monly accepted instances, we did not make further comparisons with other algorithms.

3.4 Filling open Resource Groups

When having found a clique, its lessons will be assigned to the timeslot. Before doing so, all
open resource groups of the lessons have to be filled: to each open resource group a suitable
resource has to be assigned. We will describe this procedure, as well as the case where filling all
resource groups is impossible.

We have a set of open resource groups, and a set of resources which possibly fill these re-
source groups. They can be represented as a bipartite graph, as shown in figure 3.1:

Figure 3.1: grey nodes are resource groups,
hollow nodes are resources

For each resource and for each open resource group,
one node is created. A resource is connected to an open
resource group if it can fill it. This is the case when the
resource is available and belongs to the resource group.
The connections are weighted. The weight consists
of the resource-penalties and urgencies calculated in
section 3.1. Additionally, urgency and penalty of the
AvoidSplitAssignmentsConstraint is added. We also
made tests only adding the avoidSplit-grades and the
resource-urgency, see chapter 4.

AvoidSplitAssignmentsConstraint

This constraint aims at assigning the same resource
to the OpenRole (which we convert to open resource
groups) of events. The constraint is applied to an
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OpenRole (identified by an ID) of all events of an event
group. Assigning more than one distinct resource is pe-
nalized.
We cannot apply this constraint directly during the grading-procedure, because the open roles
(resource groups) are filled after the clique-search. The grade/urgency resulting from this con-
straint will not influence the clique-search, but only the filling of open resource groups.

The penalty is applied to all resources that are not yet assigned to the open resource group
of any event of the constrained event group. The urgency is calculated as follows:
We take all timeslots where any of the (still pending) sessions of the event group is available:
nrSessionSlots. We then look in how many of these slots each resource of the resource group
is available: commonSlots. These values form the ratio:

ratio =
commonSlots

nrSessionSlots
(3.19)

The final urgency is calculated as given by equation (3.1). If the constraint is hard and one
resource is already assigned, this resource will be required by the session. The open resource
group is considered as closed in this case, but can be re-opened by clearing all assignments.

Maximum-cardinalty maximum weight matching

Having constructed the weighted bipartite graph, we will search the most suitable matching that
covers as many open resource groups as possible: This is the maximum-cardinality maxi-
mum weight matching of the bipartite graph. We use an implementation by Joris van Rantwijk
(available under the GNU Lesser General Public License1) of the matching-algorithm that was
described 1986 in “Efficient algorithms for finding maximum matching in graphs“ [13]. The
documentation of the algorithm briefly notes the main principles as follows:

It is based on the "blossom" method for finding augmenting paths and the "primal-dual"
method for finding a matching of maximum weight, both methods invented by Jack Edmonds.

Impossibility of filling all open Roles (Resource Groups)

Valid cliques found during the clique-search do not necessarily mean that all open roles can
be filled. This is caused by resources that belong to more than one resource group. If the
resource “Teacher Miller” belongs both to the resource group “English-Teachers” as well as
“Biology-Teachers”, it increases the resource group limit of both resource groups - but can only
be assigned once.
To minimize such conflicts, we calculate which resource groups are subsets of other resource
groups. The information which resource groups a lesson fills (see section 2.3) is then adapted:
Each open resource group will not only fill exactly this resource group. Also, all resource groups
that have the open resource group as a subset will be filled.
With the availability of teachers and rooms, this subsets can change. To keep this information as

1http://www.gnu.org/copyleft/lesser.html
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accurate as possible, the subsets are calculated newly for each timeslot.

Filling the open roles of all lessons will fail in the following case:
Assume we have two resource groups rg1 and rg2, and the following statements hold:

(rg1 6⊇ rg2) ∧ (rg1 6⊆ rg2) = true
rg1 ∩ rg2 6= ∅

Resources of rg1 ∩ rg2 will both increase the resource group limits of rg1 and rg2. Still, open
roles of rg1 and rg2 will be considered to only fill their own resource group, because none of
this resource groups is a subset of the other. Assume that the chosen lessons - found by the
clique-search - fill rg1 and rg2 exactly. If an open resource group of rg1 is filled with a resource
out of rg1 ∩ rg2, it is impossible to fill all open resource groups of the resource group rg2 .
This would hinder assigning all lessons of the chosen clique. Not assigning all lessons would
possibly mean to not assign the best-weighted clique: There can (and almost always do) exist
cliques that do not violate the resource group limit, and have a higher weight than the original
clique substracting the weight of the not-assigned lesson.
To avoid this effect, the resource group limit of the conflicting resource group is reduced by one,
and the clique-search with then trying to fill all open resource groups is repeated. This is done
until no more conflicts exist.
Letting available resources fill only one resource group would be problematic, because this
would make the resource group limits much tighter than they are in reality.

3.5 Higher-Level Solving Strategies

As higher-level solving strategies we understand algorithms that are one layer above the before
mentioned procedure. “Filling one timeslot” is a basic action for this algorithm. Possible choices
are which timeslots to fill first, or which sessions or resources to re-assign.
The grades of resources and lessons aims at considering their urgency. This is not always pre-
dicted correctly, and also the clique-search-procedure will not always reveil the best result pos-
sible. We can easily end up in a timetable-state where it is impossible to assign all pending
lessons. Iteratively deleting some resources, events, lessons or timeslots and refilling/reassign-
ing them helps getting out of such a timetable-state, and to diversify the results.

General filling Strategies

We distinguish three different strategies, which differ in how the timeslots that have to be filled
are chosen, and whether we try to completely fill a timeslot or not.

Incremental Filling The incremental filling picks and fills the timeslots ordered by their occu-
rance: Monday 1st Slot, Monday 2nd slot and so on. We try to fill each chosen slot completely.
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Tetris Filling In the tetris-filling, the next slot to fill is chosen out of the day-timegroup that
currently has the fewest lessons assigned. Again, each slot is filled completely.

Single Filling We here give up our basic algorithm, and instead simulate the procedure de-
scribed in [24] and in chapter 1.4: We pick a meeting, and assign it to the most suitable timeslot
within the timetable. To do so, we grade all timeslots and store which lesson had the highest
grading in any timeslot. We then assign this lesson to the slot where it achieved its highest grade.
This takes a lot of time because our algorithm is not aimed at doing so: for assigning one single
lesson, we have to grade all lessons in all timeslots.

Refilling Strategies

We defined a set of different refilling-strategies. When having computed an initial timetable,
we randomly choose one refilling-strategy by implementing a roulette-wheel selection. The
probability of choosing this strategy again will be increased if it improved the current result.
The basic action before refilling the timetable is to remove sessions from timeslots. If we remove
a resource from a timeslot, we will always delete the session that occupies the resource in this
timeslot. When speaking about a probability of removing a resource, we mean that each session
occupying this resource will be removed with a certain probability. This sometimes helps coping
with tight resource-assignments.
We will now present the different refilling-strategies. The main difference is how to choose
which sessions to delete, and how to refill the timetable: incremental or “tetris-like”. This can
be changed for each refilling strategy. When “deleting random items”, we will delete random
timeslots, events (the sessions of these events) and random resources, to get some slack for a
higher diversity when refilling the timetable.

Reassign conflicting Resources We delete assignments of conflicting resources (see chapter
3.5) with a probability of 60. Also, some random items get deleted, before filling the timetable
again.

Refill slots with few lessons The initial filling strategies often end up in assigning much more
lessons to the first timeslots, letting possible slack in later timeslots unused. The following
strategy helps distributing resource- and lesson-usage more equally over the timetable: The
number of resources that are used in a timeslot is counted using the deepness of the assigned
sessions. Then, the timeslots with the least resources - besides some random items - are cleared
and refilled.

Assign unassigned events When having pending/unassigned events, we look which resources
these events require. We delete all assignments of those resources with a default probability of
60, and furthermore delete random items.
The difference to reassigning conflicting resources is that this strategy focusses on assigning
events (lessons) by clearing all resources that an unassigned event requires, not only its conflict-
ing resources.
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Refill random items Here we remove random items and try to reassign them by again filling
the timetable.

Reassign resources with high penalty The penalties of each resource are summed up. re-
sources with a high penalty (and some random items) are deleted; then the timetable is filled
again

Reassigning events with high penalty In this strategy, the penalties are grouped by events.
Only event-constraints will be considered. Again, bad events and random items are deleted, and
the timetable gets filled.

Iteratively refill time groups We start at a given day: All assignments to timeslots of this
and the next cay are removed - the next day given friday is monday. Then, the given day is
incrementally filled. We move on to the next day, until we again are at the day we initially
deleted. Tests were conducted with choosing the next day consecutively or random.

Iteratively refill timeslots The procedure of iteratively refilling timeslots is presented in figure
3.1. It’s like cleaning up the timetable with a snow-shovel, and re-filling it with a delay. The
number of parallel days (shovel-breadth, 2 in our example) and the number of timeslots that lie
between the currently deleted and currently filled timeslots (4 in the example) can be adjusted.
The next day can be chosen consecutively and random.

Figure 3.1: Iteratively refill timeslots: Black slots are filled, white slots are empty, hatched slots are to be filled
currently.

Failed assignment Bonus

After filling the timetable with one or more of the above mentioned methods, there sometimes are
iterations of sessions pending that we were unable to assign. To give lessons of these iterations a
higher possibility to be assigned the next time, we will automatically add a certain grade during
the next attempts of filling the timetable. The additional grade of such a lessons decreases when
it is assigned, and further increases whenever its assignment fails again.

59



Local Fix

The local fix helps to resolve unavailabilities of resources with a tight assignment: During the
grading, we calculate the “urgency” of resources. That is the number of pending assignments
compared to the number of timeslots where an assignment is still possible. A resource is avail-
able in a timeslot if both the resource itself and any session/lesson that uses this resource are
available. We call a resource “tight” if there are exactly as many pending assignments than
timeslots available, and “conflicting” when there are more pending assignments than available
timeslots. If - after filling a timeslot - any resource gets conflicting, we search for the reason and
try to fix it. The unavailability has to be caused by a lesson that was assigned to the latest filled
timeslot.
We first search for direct conflicts between any lesson assigned and the conflicting resource,
which can arise when there exist lessons of a duration larger than 1. If no such lesson is found,
we search for indirect resource-conflicts: We look why sessions that have the conflicting re-
source assigned got unavailable in a future timeslot. The unavailability can be caused by other
resources that both the session and any lately assigned lesson require. Again, only lessons with
a duration larger than 1 can lead to unavailabilities.
Figure 3.2 shows an example of an indirect conflict: There are the resources A, B, C and D. As-
sume that the resource C is tight. In the current day there are 3 timeslots (1,2 and 3) left. We just
filled the first timeslot and assigned the green and the blue lesson. If the red lesson is the only

Figure 3.2: Indirect resource-conflict: A, B, C and D are resources; 1, 2 and 3 the timeslots. Each color represents a
lesson. The green and blue lesson are assigned to the current (first) timeslot; The red lesson got unavailable because
of using resource B in timeslot 2. If resource C was tight already, it is conflicting now.

one that can fill resource C in timeslot 2 and 3, we have an indirect conflict: Altough resource
C is still available, it cannot be assigned because the session that requires it got unavailable. As
resource C was tight already, it is conflicting now: In this state it will be impossible to assign all
pending sessions to the timetable. This is caused by using resource B in timeslot 2.
We search for all resources that have direct or indirect resource-conflicts. Then, the lessons
and resources that caused future resource-inavailabilities are searched and evaluated: “Bad” re-
sources will be forbidden to be assigned. Resources that caused many inavailabilities are more
likely to be bad (forbidden), and resources that are itself urgent will have a higher probability to
not get forbidden. In our simple case, using resource B in timeslot 2 would be forbidden.
After forbidding using some resources in certain timeslots, we delete the lessons that would
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occupy such resources, and repeat the maximum-weight clique-search. If assigning the found
clique causes more conflicts than the original clique, we re-assign the original clique.

Evaluate a Parameter-Set

Besides the parameters of the grading, we also parametrized higher-level decisions as the choice
of the general filling strategy, or the usage of local fix. Section 4.1 explains all parameters we
are going to use.
To evaluate a given parameter-set, we initially fill the timetable with the according filling strategy
(see section 3.5). Then, a certain number of refilling-strategies (section 3.5) is applied. The
parameters and solution of each refilling strategy are stored in a database for later analyses.

Hill Climbing

To find suitable parameter-sets for each instance, we put a hill-climbing procedure on top of the
higher-level solving strategies, which is described by algorithm 3.5.1.

Algorithm 3.5.1 Hill Climbing
1: // input-arguments: emptyRoundsLimit,nrBaseCamps

2: // Create base camps

3: createdBaseCamps := 0
4: repeat
5: params := random parameter-set
6: evaluate params
7: createdBaseCamps = createdBaseCamps+ 1
8: until createdBaseCamps ≥ nrBaseCamps
9: // Start hill climbing

10: for promising parameters-set param do
11: emptyRounds := 0 // emptyRounds are rounds without a new maximum

12: while emptyRounds < emptyRoundsLimit do
13: newParams := change one parameter of params
14: evaluate newParams
15: if result of newParams better than params then
16: params = newParams
17: emptyRounds = 0
18: else
19: emptyRounds = emptyRounds+ 1
20: end if
21: end while
22: end for

When hill climbing, we allow changing all parameters that affect any hard- or soft-constraints
the given instance has. We set the parameter hardConstraint to 10000, and allowed changing
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the “softConstraintLevel”. All parameters and the exact setup the tests were executed with are
described in section 4.1.
Altough the hill-climber itself is not stochastic, a certain randomness is introduced by the use
of the refilling-strategies: The strategies incorporate many random aspects as deleting a random
set of resources or timeslots. Also the refilling-strategies are picked randomly, using a roulette-
wheel implementation (see section 3.5). Thus, the results achieved by a specific parameter-set
are usually close, but do not equal completely. To reduce deviations that could mislead the hill-
climber, we use the average of the best three solutions obtained by the refilling-strategies when
testing the parameter-set. This average is the reference whether a parameter-set is better than
another one.
For the hill-climbing, we forbid the three refilling-strategies that achieved the worst results dur-
ing the search for base camps. When applying the filling-strategy “single filling”, we addition-
ally forbid the refilling-strategies that would require completely filling single timeslots: This are
the strategies “iteratively refill timeslots” and “iteratively refill time groups”.
Two tabu-lists are incorporated: One of length two for picking the next refilling-strategy, and
one of length three for picking the next parameter to change.
In section 4.3 we will discuss the results of the hill climbing. Resuming, the hill climbing is too
less directed, which probably is caused by the large number of parameters. We implemented the
guided hill climbing to reduce the complexity introduced by parameters.

Guided Hill Climbing

Contrary to the hill climbing, the guided hill climbing of algorithm 3.5.2 strictly distinguishes
parameters that apply to hard-constraints (aim at completely filling the timetable), and soft-
constraint parameters. We forbid parameter-changes that are of minor interest in a given stage
of the solving procedure.

The guided hill climbing consists of two parts:
In the first part, we try to find settings for hard-constraint parameters that reliably fill the

timetable. All soft-constraint parameters are set to default values and are forbidden to change,
except softConstraintLevel: All penalties and urgencies arising from soft-constraint are multi-
plied with this parameter. Setting it to zero completely deactivates considering any soft con-
straint. We search the parameter-settings that, besides filling the timetable, are able to consider
an as high softConstraintLevel as possible.

The second part then inverts the parameters that are allowed to change: Only soft-constraint
parameters (without the softConstraintLevel) are changeable, and we try to minimize the penalty
given the hard-constraint parameters found before.

Algorithm 3.5.2 shows the guided hill climbing: During the search for base camps, we
increase the softConstraintLevel as soon as we found a valid solution. This stepwise increases
the influence of all soft constraints, until no valid solution can be found any more.
For the hill-climbing itself, which equals the procedure described in section 3.5, we only allow
changes of the soft-constraint parameters - the goal now is decreasing the penalty of a valid
solution with different settings of the soft-constraints.
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Algorithm 3.5.2 Guided Hill Climbing
1: // input-arguments: startLevel,levelStepSize,nrBaseCamps,emptyRoundsLimit

2: level := startLevel
3: createdBaseCamps := 0
4: params := random parameter-set
5: // Create base camps

6: only allow changes of hard-constraint parameters
7: repeat
8: evaluate params
9: createdBaseCamps = createdBaseCamps+ 1

10: if found a valid solution then
11: level = level + levelStepSize
12: else
13: params := random parameter-set
14: end if
15: until createdBaseCamps ≥ nrBaseCamps
16: // Start hill climbing

17: only allow changes of soft-constraint parameters
18: for promising parameters-set param do
19: emptyRounds := 0 // emptyRounds are rounds without a new maximum

20: while emptyRounds < emptyRoundsLimit do
21: newParams := change one parameter of params
22: evaluate newParams
23: if result of newParams better than params then
24: params = newParams
25: emptyRounds = 0
26: else
27: emptyRounds = emptyRounds+ 1
28: end if
29: end while
30: end for

The guided hill climbing will be discussed and compared to the other approaches in section 4.3.
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CHAPTER 4
Results and Conclusion

We will here present and discuss the achieved results. First, section 4.1 describes the test-setup
and all parameters. The achieved results are presented in section 4.2. The results of the different
higher-level methods can be found in section 4.3, followed by the discussion of each of these
strategies in the sections 4.3, 4.3 and 4.3.
Testing and evaluating the higher-level approaches also allowed us a more detailed analysis of
the refilling-methods (section 4.4) and parameters (section 4.5). The general suitability of our
approach is discussed in section 4.6, followed by the conclusion in section 4.7. Finally, the
appendix gives a brief overview of the characteristics and constraints of all instances we used.

4.1 Test-Setup

To receive compareable parameter-values, we transformed the weights of soft-constraints of
each instance to values between 0 and 1000, so that the before highest weight then had a value
of 1000. This is done by searching the maximum soft weight of an instance, and then dividing
all weights by maxSoftWeight

1000 . We set hardConstraint to 10000 for all instances: the relation
between the filling the timetable and not violating soft-constraints is mainly expressed by the
parameter softConstraintLevel, and the respective weights and exponents of the urgencies. Sec-
tion 4.1 describes all existing parameters.
The algorithm was implemented using the Python programming language1. All tests were per-
formed on a machine with an Intel Core 2 Duo 2.53GHz processor and 4GiB of memory, limiting
the program to only run on one of the two cores.

Description of Parameters

We here present all parameters a parameter-set consists of. Note that, when creating a random
parameter-set or changing a parameter, not all of these values are allowed to be changed. This

1http://www.python.org/
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depends on the higher-level strategy, and is described in the section that introduces the respective
strategy.

The first kind of parameters are those which are strongly related to the constraints. Each of
these parameters has two components: a weight and an exponent, which directly influence the
ratio, described in 3.1. These parameters influence the importance of certain constraints during
the grading procedure.

The second kind of parameters are the higher-level parameters. They usually influence ap-
proaches that aim at filling the timetable independent from particular constraints.

Constraint-Related Parameters Each parameter of this section aims at avoiding violations
of a certain constraint, and consist of two “sub-parameters”: a weight and an exponent, which
can be changed seperately.

Example: The parameter BinFitHard (see section 3.1) aims at gapless filling a resource to a
block of timeslots. The block of timeslots can either have a hard-constrained border (resource-
unavailability, end of day, no session available), or a soft-constrained border (soft AvoidUnavail-
ableTimesConstraint). The bin-fitting assists the AssignTimeConstraint to assign all events when
having tight resource-assignments: It favors lesson-assignments that maintain the possibility of
filling a resource gapless into the current block of timeslots.
When having a soft-constrained border, we use the (constraint-)weigth of the AvoidUnavail-
ableTimesConstraint. For hard-constrained borders, we apply the parameter HardConstraint as
(constraint-)weight. Finally, our parameter BinFitHard - consisting of an (external) weight and
an exponent - is applied to the ratio, as already described in chapter 3.1:

urgency = ratioexponent · weight · externalWeight (4.1)

As well the penalty as this urgency is then multiplied with the parameter softConstraintLevel
(described at the higher-level parameters). All constraint-related parameters are given in table
4.1.

Parameter Related Constraint Described in
resourceUrgency AvoidUnavailableTimes 3.1
sessionUrgency AvoidUnavailableTimes 3.1
binFitHard, binFitSoft AvoidUnavailableTimes 3.1
spreadEventsMax, spreadEventsMin maximum/minimum1 of SpreadEventsConstraint 3.1
limitIdleTimes LimitIdleTimes 3.1
limitBusyMax, limitBusyMin minimum/maximum of LimitBusyTimes 3.1
clusterBusyMin, clusterBusyMax minimum/maximum of ClusterBusyTimes 3.1
avoidSplit AvoidSplitConstraint 3.4

Table 4.1: Constraint-related parameters. 1 the minimum of the spreadEvents-constraint only exists in the altered
Italy-instance
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Higher-Level Parameters These parameters represent higher-level decisions, and apply to
different aspects of filling the timetable. The parameters can contain absolute values, boolean
decision variables, or percentages of other absolute parameters. If not further specified, their
value is absolute.

hardConstraint This parameter is introduced as weight whenever an urgency is calculated for
avoiding hard-constraint violations, see section 3.1 and 4.1. Usually we set its value to
10000 and handle the relation between hard- and soft-constraints with the later described
parameter softConstraintLevel.

deepnessBonus Give a lesson a certain default bonus (grade) for each deepness it has. Assign-
ing large meetings is usually more difficult, so this parameter can assist if the grading-
procedure itself does not sufficiently consider this.

durationBonus Lessons get this bonus for each duration above one. Some constraint-urgencies,
i.e. the avoidUnavailableTimes-urgency of section 3.1, generally prefer higher or lower
durations. The duration-bonus equalizes these preferations, but can also be used to favor
meetings of higher durations to be assigned earlier, as having large meetings in the end of
the timetable-creation is a common trap.

noUrgencyForTypes Some instances define certain school-classes on student-level and others
as school-classes. This can disturb the grading procedure when calculating an urgency for
each resource. Therefore, we give the possibility to skip calculating the resource-urgency
(urgency of AvoidUnavailableTimesConstraint) for resources of a specific type:

• 0: Grade all resources

• 1: Do not give students a resource-urgency

• 2: Give neither students nor school-classes a resource-urgency

hardConstraintResolution The penalties we calculate consider solving hard-constraint con-
flicts by giving them positive values, whereas all usual penalties are negative. This can i.e.
be assigning a meeting whose event-group is constrained by a hard splitEventsConstraint.
The hardConstraintResolution defines how much percent of the hardConstraint solving a
hard-constraint violation receives.

makeResourcesUnavailableBelowGrade This parameter adjusts making resources unavail-
able if their overall grade - their urgency minus the penalty - is below a certain barreer. The
barreer (this parameter) is given in percent of the hardConstraint. It prevents bad graded
resources from getting assigned by being part of a high-graded meeting, but principally
aims at lowering the resource group limits when an assignment is generally undesired. For
meetings (lessons) with open resource groups, it is not known in advance how desirable
the assignment of the resources possibly filling the open resource group is - which we try
to influence in this way.

failedAssignmentBonus Bonus given to lessons that we were unable to assign in our last at-
tempt of filling the timetable, see section 3.5
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newSessionOnHardSpreadEvents This boolean parameter is applied during the creation of
sessions. If an event has a hard spreadEvents-constraint that is not part of the session by
now, we can either create a new session, or add this event to the current session. Adding
the event makes the session-urgency more accurate because all lessons that require the
same resources are combined to one session. Not adding the event gives more accurate
timeslot-availabilities of the session, because the session can not be partly unavailable,
caused by the hard spreadEvents-constraint which is only applying to a part of it.

fillingMethod This is how we chose the next timeslot to fill:

• incremental filling

• tetris filling

• single filling

localFix Deactivate (0) or activate (1) the localFix

softConstraintLevel All penalties and urgencies that arise from soft constraints will be mul-
tiplied with this value. Considering any soft-constraint is deactivated with a value of 0,
and 1 means that the highest soft weight will be exactly 1000 because of the weight-
transformation described earlier in this section.

4.2 Best Results

Up to now, there are not many verified results available, except the few instances that already
contain solutions as well. As far as we know, these are the first results published for the in-
stances of the School Benchmarking Project. Altough some instances spring from previous
scientific work, we discourage or at least warn from direct comparisons with those results. The
evaluation function may have been different, or the transformation of the instances is inaccurate,
as it is the case with the finish instances, see chapter 2.6.

The best results we were able to achieve are given in table 4.2. The solutions delivered with
the instances, which are the only source of existing solutions, are given in column “Existing
Solution”. By “Method” we understand one of the higher-level strategies, which we will discuss
in section 4.3. The detailed parameters of each best solution can be found in the appendix,
section A.2.

During the whole process of solving the instances, we learned to know about the suitability
of parameters, and could i.e. speed up the search for suitable base camps. Thus, the runtimes
necessary for achieving a certain result can not be compared directly, but instead are given in the
discussion of the respective higher-level approach.
The reasons for not including and testing the australian instances are explained in section 4.6.
We also skipped the artificial instances Abramson15 and FinArtificialSchool, because we fo-
cused our work on real-world problems, and no valid solution can exist for the current definition
of FinArtificialSchool, as described in section 2.6.
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Best Results HC-Violations Penalty Existing Solution Method Runtime
Brazil1 0 1 104 penalty hill-climbing 1.8s
Brazil4 4 1728 - guided hill-climbing 46s
Brazil5 0 2375 - guided hill-climbing 59s
Brazil6 0 2218 - guided hill-climbing 40s
Brazil7 0 6581 - guided hill-climbing 85s
FinHigh 0 248 - hill-climbing 20s
FinSec 0 216 - guided hill-climbing 40s
FinColl 5 424 - guided hill-climbing 222s
Greece 0 0 - guided hill-climbing 90s
GEPRO 0 19751 1HC, 566 penalty guided hill-climbing 2330s
Italy1 0 302 - hill-climbing 7s
KT2003 0 33565 1410 penalty guided hill-climbing 1800s
KT2005 23 13530 1078 penalty guided hill-climbing 1850s
StPaul 0 81996 32028 penalty guided hill-climbing 1550s

Table 4.2: Best results we achieved

It is hard to draw a clear conclusion, as there are few existing solutions. We did not expect
having so many troubles constructing full timetables (without hard-constraint violations) - the
literature hardly ever describes such cases. Altough we were able to solve most of the instances
without violating hard-constraints, our algorithm seems to deliver better results for smaller in-
stances. Most difficult to solve were the instances FinCollege, StPaul and all instances from
the Netherlands - for which exist valid results with a much lower penalty than we were able to
achieve. We will further discuss this matter and country/instance-specific issues in section 4.6.
Up to now we are unable to explain the bad result of the KT2005 instance, especially as there
exists a valid solution with low penalty. As single filling did lead to even worse results, this prob-
lem is not caused by the clique-search, but perhaps by a bug in the design or or implementation
of the grading process.

4.3 Comparison of High-Level Solving Strategies

We chose a small set of instances for which we compare the different solving strategies. The
results are given in table 4.3, and discussed in detail in the subsequent sections. “HC” stands
for hill climbing, “GHC” for guided hill climbing, and “SF” for single filling. The columns of
“Nr Parameter-Sets” gives the number of parameter-sets that were evaluated for achieving the
respective result. This number should not be overrated, because during the process we were able
to cut down the ranges of some parameters which repeatedly yielded bad results, which also
reduced the necessity of testing distinct parameter-sets. We limited the iterations of single filling
because of the high runtimes.

The guided hill climbing (GHC) clearly is the most successful high-level strategy. The re-
sults achieved are either the best or close to the best known, with a reduced number of evaluated
parameter-sets compared to the thill climbing. We expected the single filling to be more success-
ful, but this may, as already mentioned, also be caused by the grading-function that was tailored
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Penalty Nr Parameter-Sets
Instance HC GHC SF HC GHC SF
FinSec 273 216 303 118 100 11
FinHigh 248 257 312 327 133 36
Italy1 302 312 394 244 201 101
FinColl 6HC1 5HC1 15HC1 78 48 13

Table 4.3: Comparison of High-Level Strategies 1 HC: number of hard-constraint violations (no valid solution found)

to our timetslot-based approach. The high number of hard-constraint violations of the FinCol-
lege instance when applying single filling is caused by not being able to apply the refilling-
methods “iteratively refill timeslots” and “iteratively refill timegroups”, which is also going to
be discussed in section 4.4.

Hill-Climbing

The hill climbing was implemented to find suitable parameter-sets for each instance. First, base
camps (starts for the hill climbing procedure) were searched with testing random parameter-sets.
For this evaluation, we limited ourselves on using 10 refilling-rounds, see section 3.5 for details.
Then, the base camps are chosen in regard of the average penalty (or hard-constraint violations,
if exist) of the best three results. During hill-climbing, each parameter-change is tested with
30 refilling-rounds. We forbid all refilling-methods with a negative performance, see section
4.4 for the evaluation of the refilling strategies. After 12 parameter-sets without finding a new
maximum, we change two parameters per parameter-set and also increase the range by which
parameters are modified. After not finding a new maximum for 20 rounds, the hill climbing is
aborted.

We started testing the hill-climbing using small instances. Figure 4.1 shows two hill-climbing
runs. “avg penalty” is the average of the three best solutions found while evaluating the given
parameter-set. Remind that, as our intention is lowering the penalty, we are trying to descend in
the given graphs. The left figure, a run of Brazil1, shows a successful run: The average penalty
is decreasing with runtime. Unfortunately, such runs were an exception. We often had runs
that stayed at the same level or even seemed trying to ascend, as shown on the right on instance
FinHigh: In this case neither the average nor the best (lowest) penalty was improved.

Another aspect shown by the brazil instance in figure 4.1, is the solution-landscape. Given
the instance Brazil1, the landscape is strongly influenced by the ClusterBusyTimesConstraint
with a weight of 100. All solutions have a penalty of slightly above a multiple of 100, as can be
seen in the graph: The best solutions (blue dotted) are all slightly above a penalty of 100, 200 or
300. This means that the solution-landscape has large plateaus with abrupt ascents or descents,
which hindered the hill-climber from finding its way up within the limited number of steps we
applied.

70



(a) good run of Brazil1 (b) bad run of FinHigh

Figure 4.1: Examples of hill-climbing runs. “avg Penalty” indicates the average of the best three results obtained
while applying refilling-strategies. Remind that good solutions have low penalties, so the hill-climber will try to
descend.

In general, the solution landscapes turned out to be rather bumpy and sensitive to the parameters.
Varying one single parameter, the solution-quality often turned out to have several peaks within
the solution landscape, so a “preferable direction” for changing a given value is hard to detect.
A possible cause is not only the multidimensionality of the timetabling problem itself, but also
the multitude of parameters we introduced. They often influence or depend on other parameters
and may have added even more dimensions to the solution landscape.

The hill climbing we implemented is a high-level process. The 30 refilling-rounds are neces-
sary to achieve reliable results, but lead to long runtimes of the overall algorithm. The runtimes
for the whole process are acceptable for small and medium-sized instances, up to a total runtime
of 24 hours. The border between medium-sized and large instances lies between a total event-
duration of 500 and 1000, depending on event groups and on how to split the events. For larger
instances, hill-climbing becomes unreasonable. In example, evaluating a parameter-set and only
applying three refilling-methods takes between two and three hours with the instance GEPRO,
dependent on the choice of the refilling-strategy.

Because of the runtime we did not apply the “steepest step”-technique, as this would make
even more runs of parameter-evaluations necessary. Instead, we climb the first step upward that
we find, as described in algorithm 3.5.1. Because of this cut-down procedure and the bumpy
solution-landscape, we were unable to escape from local minima. The hill-climbing applied
with the parameters described above rather functioned as a local search for suitable parameters
in a limited area of the parameter-space. Increasing the speed of the algorithm by implementing
some key parts in a faster programming language would make further experiments possible.
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Guided Hill-Climbing

First, we show that the adaptions of the soft-constraint level has the desired effect. Figure 4.2
demonstrates some effects of different levels with two random parameter-sets and the FinHigh-
instance. The sets were evaluated for each level with applying ten refilling-rounds (see section
3.5). As expected, with increasing the level, the penalty decreases and the hard-constraint vio-

(a) Random parameter-set 1 (b) Random parameter-set 2

Figure 4.2: Demonstration of the effect of the softConstraint-level applied to the instance FinHigh

lations increase. With both parameter-sets we were able to achieve valid solutions, marked red
dashed. On the left figure, the average penalty falls below the best penalty. This is caused by
considering the penalty of invalid solutions when calculating the average penalty, whereas we
only allow valid solutions for the best penalty. The effect that the penalty increases just before
no more valid solutions can be obtained could be observed frequently (left figure: level five and
six, right figure: level four). If the hard-constraints are adjusted in a way that the timetable
can barely be filled, the penalty increases: During the first timeslots, too few meetings get as-
signed. Because of the reaction of the adaptive grading function, the urgency of tight meetings
and resources increases. The high-level procedures still manage to assign all meetings to the
timetable, but have to violate more constraints to do so, caused by the higher urgencies. The
best hard-constraint settings are these which equally distribute this necessity of violating con-
straints over all timeslots.

The drawback of the guided hill climbing is that the initial soft-constraint parameters may
be inadequate, and that this influences the softConstraint-level we are able to reach. Altough
we were able to achieve results compareable to the normal hill climbing with examining less
parameter-sets, the guided hill climbing still is too less directed. Despite the fact that we cut
down the number of parameters to in between two thirds and a half of the original number, the
hill climbing itself showed similar results as described in section 4.3. We therefore believe that
the lowered number of evaluated parameter-sets is not caused by the more efficient and directed
hill climbing, but by the strict distinction of hard and soft parameters.
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Single Filling

We did not include single filling, described in 3.5, as an option for the random parameter-sets
described above. The method strongly differs from our initial approach, and was therefore tested
separately. It does not take timeslots as basis and fills them, but instead iteratively picks the most
urgent lesson (meeting) and assigns it to the timetable.
Altough this basically is the method used by GP-Untis and FET, it can not serve as a direct
comparison of the two approaches. The grading-procedure as well as the higher-level refilling
strategies were developed in respect of the timeslot-based approach, and may contain pitfalls
for the lesson-based approach. Furthermore, we did not implement any kind of backtracking
or local search for the latter approach. The runtimes of our software are much higher for sin-
gle filling - approximately by factor 10, because it is tailor-made for the timeslot based approach.

In theory, this approach should perform better for the italian instance. The problem described
in section 4.6 does not arise when applying single filling, because we never completely fill a
timeslot at once. However, the comparison of single filling with the other strategies, given in
section 4.3, shows that single filling was the worst strategy for every instance tested, also for
the italian instance. We also tested single filling on the KT2005 instance, to check whether
the bad result could be caused by a flaw of the clique search. The results of single filling for
KT2005, altough not tested thoroughly, were even worse than the normal filling methods. This
may be rather caused by specifics of our grading procedure than by the general suitability of
single filling for creating high-school timetables.

4.4 Suitability of refilling-methods

Of interest is the effect that single refilling-methods have. We therefore analyze the results col-
lected during our search for base camps. The hill-climbing procedure is not analyzed, because
we there forbid certain refilling-methods, which would influence the results.
For each parameter-set we tested, we order the methods descending by the respective best result
they achieved. The suitability of a method within a parameter-set is rank− |methods|2 . Figure 4.1
presents the average method-results of the instances FinHighSchool and Brazil7. Positive values
indicate that a method performed better than average, and negative that it performed worse.
It can be seen that the most suitable methods of Brazil7 are the worst ones for FinHigh and vice

versa. This indicates that the suitability of a refilling method strongly depends on the instance.

The refilling-methods six, seven and ten of figure 4.1 derive from the refilling-strategies “It-
eratively refill time groups” and “Iteratively refill timeslots” (see section 3.5). They differ in
whether the next timeslot/group to delete is picked consecutive or randomly. These strategies
maintain a certain number of empty timeslots within the timetable. All other strategies rather
clear certain lessons, event groups or resources, or try to again fill timeslots with few assign-
ments.
Evaluating the results showed that there are two groups of instances: One group that highly
profits from applying the iterative refilling strategies (i.e. FinSecondary, Brazil7, FinCollege),
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Figure 4.1: Comparison of the suitability of refilling-methods for different instances

and another group that profits from applying all other strategies (i.e. FinHigh, Brazil1, Italy).
This seems to be dependent on the difficulty of completely solving the instance: The iterative
refilling strategies are good in completely filling a timetable, whereas the other strategies aim
at improving the solution. This fails if it is hard to create a valid solution for the instance, and
results in infeasible solutions.

4.5 Discussion of suitable Parameter-Settings

We will here describe observations we made regarding the (non) suitability of specific parame-
ters.

As can be seen in the parameters for the best solutions we achieved, section A.2, the soft-
ConstraintLevel roughly represents the difficulty of achieving valid solutions of a certain in-
stance. Combined with the guided hill climbing, this parameter can assist in quickly determining
the difficulty of solving a certain instance with our algorithm.

Whether activating local fix is desirable depends on the instance. If there are only a few or
no resources that have a tight assignment, i.e. as for the instances Brazil1 and FinSecondary,
the algorithm profits from resolving those local resource-conflicts. If the whole instance is hard
to solve because of tight resource-assignments, i.e. as in FinCollege, the local fix has a nega-
tive effect: When locally resolving such resource-conflicts, we normally avoid assigning certain
resources in favor of assigning more urgent, tighter resources. On the long run, this leads to a
larger number of resources with a tight assignment, and hence should only be activated if the
majority of the resources has some slack - which is having more timeslots than their workload
(sum of all assignments).

The weights and exponents of the constraint-related parameters are more diverse than we
expected. Still, some effects are notable: For the limitIdleTimes, exponents and weights of 1
seem suitable. The urgency sometimes compensates penalty, which is biased when having a
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weight that does not equal 1. We allowed the hill-climbing procedure to apply also negative
parameters. As disabled or negative constraint-related parameters only appear twice in the best
results - the binFitHard-weight of FinHigh and the spreadEventsMax of KT2003 - we generally
consider our grading function to be appropriate, altough there surely are a lot of improvement
possibilities.

4.6 Discussion of our Approach

Our approach - completely filling timeslots - is a general one, and applicable to all existing in-
stances. Still, the results we achieved are diverse and strongly dependent on characteristics of
the instance. The reason is that in some aspects, our algorithm lacks flexibility. Altough the pro-
cedure may not reach top results, we were able to solve a major part of the real-world instances
existing (except the australian ones, see section 4.6). Because of the seperate grading-function,
new constraints are easy to implement as long as they do not require fundamental changes of the
datastructure. Also, the evaluation of existing constraints can be changed easily.

The grading-procedure was implemented (and completely revised) to maintain a relation
to the constraint-penalties as direct as possible. However, maintaining the connection to the
constraint-evaluation on the one hand and hard-constraints on the other hand, while keeping the
balance between all constraints, is really tough. The grading is, besides a reliable clique-search,
the core of this approach. Altough giving much attention and thought in the design, implementa-
tion and test of the grading-process, it still has many weaknesses, as can be seen by the diversity
of suitable parameters for each instance, see appendix A.2. This partly may be flaws of the de-
sign, but possibly also are implementation errors of the grading function, which itself has 3500
lines of code.

The results of the clique search are satisfying. Altough we can not measure achieving ade-
quate results also on larger graphs, the tests performed in section 3.3 are better than we expected.
The problems we have with the larger instances, getting invalid or high-penalized results, are not
caused by the clique search. Tests with single filling - which completely bypasses the clique-
search - lead to even worse results.

We will now describe the two main instance-specific problems we had with the italian and
the australian instances, followed by the description of implementation-specific issues and im-
provement possibilities.

Italian Instances

The new formulation of the italy-instance, having a spreadEvents-minimum for single timeslots,
is problematic for our algorithm. As we pick and fill one single timeslot, we can either favor all
or no events of the event group the spreadEvents-minimum applies to. Only favoring some of
these events would torpedoe the idea of letting the clique-search decide which lessons to choose.
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Altough this was not a big problem when solving the italy-instance, it is a general disadvantage
of this approach, and may present a bottleneck for future instances having similar constraints.

Problems with australian instances

The australian instances were neglected by us because of two main points:
First, the current definition of the limitWorkload-constraint seems unnatural, as discussed

in section 2.6. This constraint is one of the key points and bottlenecks the australian instances
have.

Second, our algorithm is not suitable for dealing with the multitude of open roles as they
appear in those instances. As we close the open roles after the search for the maximum weight
clique, we lose control. We then have to fill the open roles of the chosen lessons, no matter how
preferable assigning some of the resources is. Even more, when the open roles are bound by
hard avoidSplit-constraints, we prematurely close this open role with certain resources. We lose
a lot of flexibility this way, and have only very limited control when dealing with this bottleneck.
This is an implementation-specific issue, which will also described in the next section.

Implementation-specific aspects

As mentioned in the discussion of the australian instances, closing open roles when assigning
lessons to timeslots is a clear disadvantage. Instead, the roles could be left open, and closed
later. Kingston [19] described closing open roles for meetings that have times assigned in 2010.

The necessity of the parameter newSessionOnHardSpreadEvents is not induced by the
problem or any instance, but by our definition of sessions. In example, the the instance FinHigh-
School has the event groups gr_C003 and gr_C004. Each three events of this event groups
exactly require the same resources. If we combine them to the same session, the session-
availability is inexact: We will have to mark the session available if at least one of its iteration
is available - altough a major part of the session could be in fact inavailable: The availability of
one iteration of event group gr_C003 can lead to having many timeslots left, altough there are in
reality very few timeslots left for event group gr_C004. This disturbs the session-urgency, which
does not distinguish which of its iterations are available in the timeslots. On the other hand, cre-
ating two distinct sessions is also not precise, because both sessions are unaware of each other,
and would have a too low urgency. The session-urgency would have to consider which iterations
of a session are available in specific slots to being more exact. This issue is not relevant for the
instances of brazil, australia and the italy-instance.

The runtime of the whole solving process is insatisfactory for larger instances. This could
be reduced by comparing specifics of the instances and further restricting the range of some
parameters, or conducting tests with parameter-sets that performed good on similar instances.
Also, the core functions of the algorithm - the grading and the clique-search - could be imple-
mented in a faster programming language. Still, we are very content having chosen python as
programming language. We often had to restructure our program because of changes of the for-
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mat or knew insights, which was facilitated by the flexibility of python.

Because of the long runtimes, we had to limit the number of steps of the hill climber.
Performing the “steepest step” instead of the “first step” we implemented could improve the
directedness and the ability of escaping local minima.

We did not implement a classical local or neighborhood search on a meeting- or event-based
level, because the variety of constraints and their evaluation is not only time consuming but
also hard to implement: Additional to our grading procedure, delta-functions for all constraints
would have been necessary to achieve reasonable runtimes. For the same reasons, and because
of the amount of meetings we assign simultaneously, we left out a more profound backtracking
than the local fix of section 3.5. Whereas a more sophisticated backtracking would have helped
for filling the timetable, local searches are often helpful for polishing existing solutions, or even
creating whole timetables, dependent on the neighborhood definition.

4.7 Conclusion

In this work, we developed an algorithm for solving high-school timetabling problems. We used
the newly available instances of the School Benchmarking Project, which was started in 2007.
These real-world instances were collected from scientists from various countries, and so the
constraints and possible bottlenecks drastically vary.

The algorithm we developed takes timeslots as basis. A non-full timeslot is chosen, and
the favorability of all meetings that can be held in this timeslot is graded. We then construct a
weighted graph out of the meeting-grades, where all meetings that can be held simultaneously
are connected. A heuristic maximum-weight clique search with some other side-constraints is
performed. The clique found represents a set of meetings which are then assigned to the spe-
cific timeslot. This are the two core functions of our approach: The grading-procedure and the
maximum-weight clique search. On top of this basic procedures, we implemented some strate-
gies to refill the timetable, in example by reassigning resources that cause high penalty. To find
suitable parameters for an instance, we applied a hill climbing procedure.

Not only designing and implementing the algorithm, but also parsing the instances was a
challenge. Partly, the instances contained errors, and during our work, fundamental changes of
the format were introduced with a new version. Still, we highly appreciate the commitment of
the authors. Up to now, the field of high-school timetabling clearly lacks common, interchange-
able real-world instances that are not bound to a specific institution or country. Altough some
points of the file format may be worthy of discussion, we hope and expect the School Bench-
marking Project to have a large, positive impact to the field of high school timetabling.

Because of some limitations of our approach and the implementation we chose, combined
with the diversity of the instances, we were not able to create valid timetables for all instances
available. A general algorithm for solving high-school timetabling problems has to bring a
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high flexibility and the ability to shift its focus to the varying bottlenecks this problem possibly
contains.
We did not fully exhaust the timeslot-based approach: There are some implementation details
that could be improved, above all separating closing open roles from assigning meetings to a
timeslot, which would make the algorithm better applicable to the australian instances. But
there are also some approach-inherent disadvantages, in example as encountered in the italian
instance. We believe that the strategy of picking single meetings and assigning those to suitable
timeslots yields more flexibility to be adapted to the diversity of bottlenecks. Especially, it
facilitates backtracking, which we only applied in a very limited extent.
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APPENDIX A
Appendix

A.1 Overview of the Instances and their Constraints

Tables A.1 and A.2 show which constraints occur in which instances. “both” means that the
constraint occurs as soft- and as hard-contraint within this instance. The AssignResource-,
AssignTime- and AvoidClashConstraints have been left out as they equal for all Instances de-
scribed here.

Instances 1/3 FinHigh FinSec. FinColl. StPaul Greece KT2003 KT2005 GEPRO
spreadEvents hard hard hard hard hard hard hard hard
preferTimes hard hard hard hard - hard hard hard
distrib.SplitEvents - - - - - - - -
splitEvents hard1 hard1 hard1 hard1 hard1 hard1 hard1 hard1

limitIdleTimes soft soft soft soft - soft soft soft
clusterBusyTimes - - - - - soft soft soft
limitBusyTimes soft soft soft - - soft soft soft
limitWorkload - - - - - - - -
avoidUnav.Times both both hard soft hard both both soft
avoidSplitAss. - - - - - - - -
preferResource - - - hard - hard hard hard

country Finland Finland Finland England Greece Netherl. Netherl. Netherl.
total event-duration 319 306 854 1227 372 1203 1272 2675
open roles for - - - rooms - rooms rooms -

Table A.1: Constraints in instances. 1 splitting events is forbidden by this instance
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Instances 2/3 Brazil1 Brazil7 Italy1 TES99 BGHS SAHS96 Abr15
spreadEvents hard hard both soft soft soft hard
preferTimes hard soft hard - hard hard hard
distrib.SplitEvents soft soft - hard hard hard -
splitEvents hard hard hard hard1 hard hard hard1

limitIdleTimes soft soft soft - - - soft
clusterBusyTimes soft soft - - - - -
limitBusyTimes - - soft soft soft soft -
limitWorkload - - - hard hard hard -
avoidUnav.Times hard - both hard hard hard -
avoidSplitAss. - - - soft both soft -
preferResource - - - hard hard hard -

country Brazil Brazil Italy Australia Australia Australia Artificial
total event-duration 75 500 133 1564 806 - 450
open roles for - - - rooms,teach. rooms,teach. rooms,teach. -

Table A.2: Constraints in instances. 1 splitting events is forbidden by this instance

Instances 3/3 Brazil4 Brazil5 Brazil6
spreadEvents hard hard hard
preferTimes soft soft soft
distrib.SplitEvents soft soft soft
splitEvents hard hard hard
limitIdleTimes soft soft soft
clusterBusyTimes soft soft soft
limitBusyTimes - - -
limitWorkload - - -
avoidUnav.Times hard - hard
avoidSplitAss. - - -
preferResource - - -

country Brazil Brazil Brazil
total event-duration 300 325 350
open roles for - - -

Table A.3: Constraints in instances

A.2 Parameters for finding the best Results

Tables A.4 and A.5 present the settings of parameters used when finding the respective best
result. Beware that for a certain instance, only the parameters of constraints this instance has -
see section A.1 - are of relevance.
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Instances 1/2 FinHigh FinSec FinColl StPaul Greece KT2003 KT2005 GEPRO
hardConstraint 10000 10000 10000 10000 10000 10000 10000 10000
deepnessBonus 688 -2400 2200 2000 0 1800 0 0
durationBonus 492 1700 500 -400 0 -1300 0 -834
noUrgencyForTypes 1 1 0 1 0 1 0 2
hardConstraintResol. 0 0.9 0.1 0.1 0.1 0.1 0.1 0.1
makeResourcesUnav.Below -0.16 -0.9 -1 -0.5 -2 -0.5 -1.3 -0.9
failedAssignmentBonus 16 30.3 1000 1000 1000 1000 1000 1000
newSessionOnHardSpread. 0 0 0 1 1 1 1 1
fillingMethod 1 1 1 0 0 1 1 1
localFix 0 1 0 1 0 1 1 1
softConstraintLevel 1 3.7 0 0.1 0.2 0.3 0 0.7

resourceUrgency: weight 1.4 4.65 8.85 3.3 1.65 7.2 7.2 1.2
resourceUrgency: expon. 0.6 1.4 1.55 1.25 2.15 3.05 1.55 0.8
sessionUrgency: weight 6.8 8.1 5.55 8.4 2 7.8 7.8 4.05
sessionUrgency: expon. 1.6 0.65 3.05 2.75 1 0.95 1.1 0.8
spreadEventsMin: weight 1 1 1 1 1 1 1 1
spreadEventsMin: expon. 1 1 1 1 1 1 1 1
spreadEventsMax: weight 1.1 1.2 0.5 2 1.3 -0.3 1.3 2
spreadEventsMax: expon. 1.4 1.3 1.5 1 1.3 1 1 1.5
binFitHard: weight 0 0.55 0.65 0.1 0.5 0.6 0.7 0.55
binFitHard: expon. 3.5 5 3 2.2 4 4 5 2
binFitSoft: weight 0.85 0.3 0.1 0.1 0.1 0.1 0.1 0.1
binFitSoft: expon. 5 2.5 4 4 4 4 4 4
limitIdle: weight 1.4 1 1 1 1 1 1 1
limitIdle: expon. 1 1.2 1 1 1 1 1 1
limitBusyMax: weight 1 1 1 1 1 1 1 1
limitBusyMax: expon. 3 3 3 3 3 3 3 3
limitBusyMin: weight 1 1 1 1 1 1 1 1
limitBusyMin: expon. 1 1 1 1 1 1 1 1
clusterBusyMaxWAss: weight 1 1 1 1 1 1 1 1
clusterBusyMaxWAss: expon. 2 2 2 2 2 2 2 2
clusterBusyMaxOverf: weight 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
clusterBusyMaxPress.: exp. 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
clusterBusyMax : weight 1 1 1 1 1 1 1 1
clusterBusyMin: weight 1 1 1 1 1 1 1 1
clusterBusyMin: expon. 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
avoidSplit: weight 1 1 1 1 1 1 1 1
avoidSplit: expon. 2 2 2 2 2 2 2 2

Table A.4: Detailed parameter-settings for achieving the best solutions, section 4.2
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Instances 2/2 Brazil1 Brazil4 Brazil5 Brazil6 Brazil7 Italy1
hardConstraint 10000 10000 10000 10000 10000 10000
deepnessBonus -1200 0 0 0 -1500 1800
durationBonus -962 0 0 0 580 -700
noUrgencyForTypes 0 0 0 0 1 0
hardConstraintResol. 0.1 0.1 0.1 0.1 0.1 0.1
makeResourcesUnav.Below -1.6 -1.7 -0.6 -1.6 -0.5 -1
failedAssignmentBonus 1000 1000 1000 1000 1000 1000
newSessionOnHardSpread. 0 0 1 1 1 1
fillingMethod 0 0 1 0 0 1
localFix 1 1 0 1 1 1
softConstraintLevel 2.9 0 6 8.4 0.3 4

resourceUrgency: weight 8.4 2.55 5.4 4 9 1.5
resourceUrgency: expon. 0.55 2.6 1.4 1 2.4 1.25
sessionUrgency: weight 5.9 2 2 1.85 8.35 2.7
sessionUrgency: expon. 1.6 1 1 0.85 0.5 1.7
spreadEventsMin: weight 1 1 1 1 1 0.7
spreadEventsMin: expon. 1 1 1 1 1 1.2
spreadEventsMax: weight 1.0 1.1 1.8 0.9 0.4 1.2
spreadEventsMax: expon. 1.1 0.9 1.2 1.5 1 1.2
binFitHard: weight 0.3 0.35 0.3 0.65 0.15 1
binFitHard: expon. 2.9 3.2 2.4 4.8 4.4 4.6
binFitSoft: weight 0.3 0.1 0.1 0.1 0.1 0.4
binFitSoft: expon. 3.7 4 4 4 4 2
limitIdle: weight 1 1 1 1 1 0.6
limitIdle: expon. 1 1 1 1 1 1.4
limitBusyMax: weight 0.8 1 1 1 1 1
limitBusyMax: expon. 3.5 3 3 3 3 2.5
limitBusyMin: weight 1 1 1 1 1 1
limitBusyMin: expon. 1 1 1 1 1 0.6
clusterBusyMaxWAss: weight 1 1 1 1.2 1.2 1
clusterBusyMaxWAss: expon. 2 2 2 2 1.8 2
clusterBusyMaxOverf: weight 1.5 1.5 1.5 1.5 1.6 1.5
clusterBusyMaxPress.: exp. 2.5 2.5 2.5 2.4 2.4 2.5
clusterBusyMax : weight 1 1 1 1.2 1 1
clusterBusyMin: weight 1 1 1 1 1 1
clusterBusyMin: expon. 1.2 1.2 1.2 1.2 1.2 1.2
avoidSplit: weight 1 1 1 1 1 1
avoidSplit: expon. 2 2 2 2 2 2

Table A.5: Detailed parameter-settings for achieving the best solutions, section 4.2
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