
A Timeslot-Filling Heuristic Approach to
Construct High-School Timetables

Michael Pimmer and Günther R. Raidl

Abstract This work describes an approach for creating high-school timetables. To
develop and test our algorithm, we used the international, real-world instances of
the Benchmarking project for (High) School Timetabling. Contrary to most other
heuristic approaches, we do not try to iteratively assign single meetings (events) to
timeslots. Instead, we repeatedly choose a not entirely occupied timeslot and aim at
simultaneously assigning the most suitable set of meetings. To improve and diver-
sify the solutions, a heuristic that deletes and reassigns certain timeslots, events or
resources is applied and combined with a hill-climbing procedure to find suitable
parameters for grading constraints. Experimental results indicate the competitive-
ness of this new approach.

1 Introduction

The task of high-school timetabling is to assign events – normally class–teacher
meetings – to rooms and timeslots of a weekly schedule. Dependent on the country
and institution of origin, the requirements and specifics of the problem vary dras-
tically. As no commonly accepted, international benchmark instances existed until
recently, most scientists have been working with specific local instances or strongly
simplified models as the classical Class-Teacher Timetabling Problem (CTTP) de-
scribed by Gotlieb [8] in 1974. Thus, most of this work is hard to compare or of
limited practical relevance.

In 2007, the Benchmarking Project for (High) School Timetabling was laun-
ched to settle this issue. Based on an XML file format and a well-defined evaluation
function, it currently provides more than 20 real-world instances from various coun-

Institute of Computer Graphics and Algorithms
Vienna University of Technology
Favoritenstraße 9-11/1861, A–1040 Vienna, Austria
e-mail: michael@pimmer.info, raidl@ads.tuwien.ac.at

1

2 Michael Pimmer and Günther R. Raidl

tries. The XML-format describes resources (e.g. teachers, students, rooms) which
can be part of events. An event is a meeting that usually requires some resources
and should be assigned to a timeslot. If any resource out of a set of resources – e.g.
any English teacher – shall be assigned to an event, this is called open role. Further
information about the project is available in [16] and on the project website1.

While most existing heuristics to solve school timetabling problems are based
on an iterative process that assigns single events to timeslots, we follow here the
concept of repeatedly choosing a not entirely occupied timeslot and assigning a
promising larger set of suitable meetings at the same time. In addition an improve-
ment procedure that deletes and reassigns timeslots, events, or resources is applied
in combination with a hill-climbing procedure for adapting parameters controlling
the grading of constraints. This new approach was specifically developed with the
instances of the Benchmarking Project for (High) School Timetabling and general
applicability in mind.

The next section gives an overview on related work. Our approach is described
in Section 3, Section 4 presents and discusses achieved results, and conclusions are
drawn in Section 5.

2 Related Work

Concerning the problem complexity, the classical CTTP was shown to be NP-
complete when any unavailabilities are given [7]. Relaxing the restrictive defini-
tion of meetings and adding some common constraints from real-world school
timetabling problems introduces significant additional complexity. Kingston and
Cooper [10] identified five NP-hard subproblems, and Willemen [20] extended these
by two more.

A broad range of approaches has been applied to high-school timetabling. For
extensive information on existing methods, the reader is referred to well-known
surveys [3, 17, 14] and to the international conferences Practice And Theory of
Automated Timetabling (PATAT)2 [4, 2, 12] as well as to the EURO working group
on automated timetabling EURO-WATT3.

The most common solving strategy is to iteratively assign single events, com-
bined with a backtracking on dead ends. The less explored alternative we consider
in this work is to create a timetable by repeatedly filling selected timeslots. This ap-
proach was first mentioned by Schmidt and Ströhlein [18] in 1972. Unfortunately,
their formulation of a CTTP as a vertex coloring problem is not always applicable to
real-world instances, because many constraints have to be considered additionally
to the coloring-problem. For example, problems arise with events of longer dura-
tion requiring multiple timeslots, especially if it is not determined how an event can

1 http://www.utwente.nl/ctit/hstt/
2 http://www.asap.cs.nott.ac.uk/patat/patat-index.shtml
3 http://www.asap.cs.nott.ac.uk/watt/

A Timeslot-Filling Heuristic Approach to Construct High-School Timetables 3

be split, or in case of multiple open roles requiring the same resource. Considering
the vertex coloring formulation, not only the weights and possible colors of edges
would change during the solving procedure, but nodes and edges may even appear
or disappear.

In 2002, Abraham and Kingston [1] applied the timeslot-filling approach to an
Australian instance. They pre-calculate possible compatible sets of events. As there
are too many sets, smaller events which are supposed to be easier to schedule are
omitted. Then, a set is chosen for each timeslot in a way to cover all required events.
Finally, the omitted events are scheduled. Instead of continuing this work, effort was
put in the creation of the KTS High School Timetabling System [9], which yielded
better results.

The KTS can be considered a hybrid approach. Such approaches lie in between
assigning single events and filling timeslots at once. The goal is to break down the
problem into easier subproblems by grouping events, without losing too much flex-
ibility later on. This can be done by pre-assigning events to days, e.g. as described
in [6], before assigning them to specific timeslots. Kingston [9] breaks down the
problem by grouping events to tiles. The tiles are scheduled separately and joined
afterwards to obtain the final timetable. This approach yields good results for Aus-
tralian real-world instances in short runtimes and can to some degree be extended to
be applicable to instances of other countries.

Some very Large-Scale Neighborhood Search Techniques (VLNS) delete and re-
assign a major part of the solution. They were already applied to timetabling prob-
lems, e.g. by Meyers and Orlin [13]. The refilling-strategies described in chapter 3.3
also belong to this kind of search technique.

3 Timeslot-Filling Heuristic

Fig. 1 Repeatedly filling timeslots

The central building block of our algorithm
is to fill a timeslot with a suitable set of
events. Consequently, we call it Timeslot-
Filling Heuristic (TFH). We iteratively fill non-
full timeslots as shown in Figure 1 and further
detailed in the subsequent sections.

The higher-level strategies based on this
building block are described in Section 3.3.

Because of the multitude of constraints con-
sidered in the benchmark project’s instances
and thus in our algorithm, we cannot present all
details here but refer to the first author’s master
thesis [15] for an exhaustive description.

4 Michael Pimmer and Günther R. Raidl

3.1 Grading of Events

The grade of an event represents the favorability of holding it in a chosen timeslot.
It is defined as the sum of the grades of the constraints that apply to this event, that
apply to any resource it requires (or that can fill any of its open roles), and that apply
to any event group this event belongs to. Moreover, we calculate and add grades
that are not directly related to constraints, but instead aim at completely filling the
timetable (timetable-filling grades).

3.1.1 Constraint-Related Grades

When dealing with constraint-related grades, we try to maintain a direct connection
to their weight and cost function. If assigning an event would entail a penalty by
violating a soft-constraint, a negative grade of exactly this penalty will be added to
the grade of this event. If an assignment helps avoiding future constraint-violations,
positive grades are assigned. When having positive as well as negative grades, they
are added up. The benchmark instances allow soft-constraint weights of up to 1000.
To represent the urge of avoiding hard-constraint violations – which originally do
not have weights themselves – we assign such constraints a weight of 10000. The
balance between hard- and soft-constraints is maintained with a parameter soft-
constraint level. All positive and negative grades arising from soft-constraints are
multiplied with this value. This allows adjusting the influence of soft-constraints to
the grades with one parameter, as we will further explain in Section 3.3.

We will now demonstrate the evaluation of a constraint on the example of the
SpreadEventsConstraint, which is – besides the resource availability – the most
important of the 15 existing constraints. First we will calculate a ratio, which ex-
presses the urgency of an assignment independent of the weight of the constraint
or whether it is hard or soft. The second step is to transform the ratio to the final
grade of this constraint by considering the weights and other parameters such as the
soft-constraint level.

Calculating the Ratio

The SpreadEventsConstraint is supposed to limit the usage of a set of events within
certain timegroups. Typically timegroups represent days and the events form a
course so that no more than one event of this course should be held on each day.
The constraint allows defining a minimum and a maximum number of events per
time group (day). We will only discuss the maximum here, where an event with a
duration of more than one timeslot still counts as one assignment.

As current time group we understand the intersection of the time groups the
constraint is applied to and the time groups the timeslot we are currently grading

A Timeslot-Filling Heuristic Approach to Construct High-School Timetables 5

belongs to, which normally is the time group representing the current day (i.e., the
day the timeslot we are currently grading belongs to).

Table 1 explains the variables we are going to use for calculating the ratio.

Table 1 Variables used for calculating the SpreadEventsConstraint-ratio

Variable Explanation

maximum number of allowed events per time group
cA current Assignment: number of existing event-assignments within the

current time group
pendingAssignments nr of pending (open) event-assignments of the constrained event group
possibleAssignments possible assignment in all time groups (also current) without violating

the maximum
pACG possible assignments in current timegroup permitting maximum-violations

Positive grades are only applied if the maximum is not yet reached (cA ≥
maximum). Equation (1) shows the calculation of the ratio. The left part
pendingAssignments
possibleAssignments is independent of the current time group and can be considered
as a general urgency/pressure: It compares the number of pending assignments
with the slots they can be assigned to without violating the maximum. The right
part min

(
maximum−cA

pACG ,1
)

represents the urgency of assignments in the current time
group: It relates the assignments missing to reach the maximum with the number of
timeslots that are available for such assignments.

ratio =
pendingAssignments
possibleAssignments

·min
(

maximum− cA
pACG

,1
)

(1)

If there are several possibilities (”sub-events“) of assigning the duration of an
event, we will calculate the ratio using the highest number of events. Having more
possibleAssignments makes it more difficult to not violate the maximum, so we an-
ticipate this case.

Example

Assume maximum = 1, a total number of four events, and the event availabilities as
given in Figure 2. White slots indicate that at least one of the events is available,
black slots mark unavailability, and grey slots indicate that an event of this group
is already assigned to the respective timeslot. The value of pendingAssignments is
two, because two of the four events are already assigned (We-1 and Th-3). We have a
possibleAssignment of two, one on Monday and one on Tuesday. This would imply
the following ratios:

6 Michael Pimmer and Günther R. Raidl

Mo Tu We Th
1
2
3
4
5

Fig. 2 Event availabilities

Mo-1: ratio = 2
2 ·min(1−0

5 ,1) = 0.2
Tu-1: ratio = 2

2 ·min(1−0
2 ,1) = 0.5

Th-1: ratio = 2
2 ·min(1−1

4 ,1) = 0

As the maximum for Th-1 is already reached
with cA ≥ maximum, we would not apply any
positive grade anyhow.

Calculating the final grade

The final grade combines the ratio with the weight and type (soft or hard) of the
constraint. It is calculated as follows:

hard-constraint.: grade = ratioexponent ·10000 · externalWeight

soft-constraint: grade = ratioexponent ·weight · externalWeight · so f tConstraintLevel
(2)

Ratios usually are values between 0 and 1. The differences of a ratio can be ei-
ther emphasized (stretched) by applying an exponent < 1, or reduced (squeezed) by
exponent > 1. The weight is given by the constraint within the instance, whereas
externalWeight is defined by us to adjust the overall importance of each constraint.
These parameters will be adjusted by a hill-climbing procedure, see Section 3.3.

Continuing our example, assume having an external weight of 0.5, an exponent of
2, and a hard SpreadEventsConstraint. For Mo-1 this leads to
grade = 0.22 ·10000 ·0.5 = 200, and to grade = 0.52 ·10000 ·0.5 = 1250 for Tu-1.
When grading these timeslots, each event of the constrained event group will have
the grade of the respective timeslot added.

3.1.2 Timetable-Filling Grades

To assist creating complete timetables, we calculate three more grades:

Bin-Packing When having tight resource-assignments, a problem similar to bin-
packing arises. We calculate a grade that aims at gaplessly assigning such re-
sources. This is done by favoring events and event-durations that maintain the
possibility of gaplessly assigning resources.

Unassignment-Bonus Resources and events that lately failed to be assigned get
an additional grade.

Course-Urgency The instances do not provide something equally to a course:
Courses can be either represented by single events that have to be split or by a set
of multiple events. We therefore group events that require the same resources to
courses. Then, a grade is calculated favoring courses that have fewer possibilities
left to assign their events, considering their duration and other constraints that
impede assignments to certain timeslots.

A Timeslot-Filling Heuristic Approach to Construct High-School Timetables 7

3.2 Clique-Search

Having graded all events for the chosen timeslot, we are now looking for the most
favorable set of events that can be held together. We first construct a weighted graph
out of the graded events. The nodes correspond to the events having their grade as
weight, and nodes are connected by edges if the events can be held simultaneously,
which usually means that they do not have any resource in common. Additionally to
the weight we store the depth of nodes, which is the number of teachers and rooms
an event requires. Having open roles leads to resource limits, which is the number of
resources of a certain type that each solution has to respect to be valid. For example,
a feasible set of events must not require more gym-rooms than there are available in
the given timeslot.

Apart from the resource limits and the depth, the search for the most favorable
set of events corresponds to the maximum-weight clique problem. Because of the
additional constraints and the instances’ graphs with densities of up to 0.96% and
950 nodes, we use a custom heuristic.

A peer of a clique is a node that is not part of the clique but connected to all
nodes of the clique. Our approach is to repeatedly expand cliques, which means we
create new cliques by adding peers to an existing clique. When expanding a clique,
we will create one new clique for each of its peers. We start at cliques of size 1, each
containing one single event. Obviously, the order of selecting the clique to extend
next is crucial. Condition (3) shows the basic idea of how we sort our cliques. The
depth of a clique is the sum of the depth values of all its nodes, and the peerDepth
of a clique is the total depth of all its peers. As long as the condition holds, a clique
can still exceed the currently known maximum.

grade+
grade
depth

· peerDepth > currentMax (3)

This condition is incorporated into our internGrade, which determines the order
of choosing cliques to extend. Equation (4) shows the calculation of the intern-
Grade. The smaller the cliques are, the more the internGrade tends to over-estimate
the reachable maximum, which we try to compensate with parameter c. As con-
dition (3) aims at finding the optimum, we introduce gradeMultiplier (default set
to 10) to focus on good-graded cliques instead of cliques having many peers. This
again prevents expanding too many small cliques, and thus to expand many cliques
that are highly unlikely of being further chosen later on.

internGrade =
(

grade ·gradeMultiplier+
(

peerDepth · grade
depth

))1+c·depth

(4)

The cliques are stored in an array of heaps, so the internGrade is only calculated for
the highest graded clique of each depth. At any moment, we only allow expanding
cliques of certain depths, e.g. cliques that contain three to six normal-sized events.
With increasing runtime, this range is shifted towards higher depths. Factor c is

8 Michael Pimmer and Günther R. Raidl

adapted automatically with the goal of equally choosing the cliques of the depths
we currently permit; it is increased when too many cliques are chosen from low
depths and decreased in case of too many cliques are chosen from high depths.

After having found a promising clique with this heuristic, the open roles have to
be closed. We construct a bipartite graph out of the open roles of the chosen events
and the resources that possibly fill these roles. Then, a maximum-cardinality maxi-
mum weight matching is determined. If there are resources that belong to multiple
resource-groups, e.g. the sets rg1 and rg2, filling all open roles can be impossible
when (rg1 6⊇ rg2)∧ (rg1 6⊆ rg2) and rg1∩ rg2 6= /0. In such cases, we reduce the re-
source limits and repeat the search until filling all open roles succeeds. Finally, the
events are assigned to the chosen timeslot.

3.3 Higher-Level Strategies

Apart from the grading parameters, we modify the search by varying how to choose
the next timeslot that is filled: simply incremental or by choosing the first not en-
tirely full timeslot of the day that has the fewest events assigned. When the pending
workload of a resource gets unassignable, a local backtracking is applied. Whether
or not these methods are used is controlled by parameters, too. Together with the
grading parameters, they form a parameter set.

Fig. 3 Refilling strategies

A given parameter set is tested by re-
peatedly applying refilling strategies, as
shown in Figure 3. We implemented sev-
eral different strategies, each having a dif-
ferent focus: Refilling timeslots that have
few events assigned, consecutively deleting
and refilling timeslots or days, re-assigning
resources, events or event-groups (courses)
that cause high penalty or that we were un-
able to assign completely.

After initially filling the timetable, we
iteratively select and apply one of these
strategies on a random basis. Hereby, each
strategy has an individual selection proba-
bility which is adapted according to its suc-
cess in previous applications.

On top of the refilling strategies, a hill-
climbing procedure is applied. The goal of
the hill-climbing is to find the most suitable parameter set and soft-constraint level
for a given instance. To focus on the most relevant parameters at a given stage of the
solving procedure, we introduced the soft-constraint level already mentioned in Sec-
tion 3.1. All grades arising from soft-constraints get multiplied with this parameter.
All hard-constraints and grades that assist in creating a completely filled timetable

A Timeslot-Filling Heuristic Approach to Construct High-School Timetables 9

(e.g. the bin-packing and the course-urgency) are not affected by the soft-constraint
level. Setting the soft-constraint level to zero completely deactivates considering any
soft-constraint – the grades will exclusively aim at creating a complete timetable.
Increasing the soft-constraint level leads to a higher influence of soft-constraints to
the overall grades. This helps avoiding penalty, but complicates creating completely
filled timetables. The hill-climbing then consists of two parts:

The first part is to find suitable parameter sets as starting points for the later hill-
climbing. We try to find hard-constraint parameters that reliably fill the timetable
while maximizing the extent of considering soft-constraints. To do so all soft-
constraint parameters are set to default values; when creating a random parameter
set these values are forbidden to be changed. Instead, all hard-constraint parame-
ters are allowed to change. We start at a soft-constraint level of zero and create a
random parameter set. This set is tested by applying the before-mentioned refilling
strategies. If we achieve a valid timetable without any hard-constraint violations, we
increase the soft-constraint level. Otherwise, a new random parameter set is created
and evaluated.

The second part, the hill-climbing procedure, inverts the parameters that are al-
lowed to change: The hard-constraint parameters and the soft-constraint level are
fixed, we only allow changes of soft-constraint parameters at this stage. As start-
ing point we pick the parameter set with which the lowest-penalized full timetable
was created during the first part. Then, the climbing is started by iteratively chang-
ing some of the parameters and evaluating the changed parameter set. If we were
not able to create a full timetable in the first part, we continue ignoring the soft-
constraints by only allowing changes of hard-constraint parameters.

4 Results

We compare the timeslot-filling heuristic (TFH) described above with the more
common event-assignment heuristic (EAH) which iteratively assigns the most ur-
gent event. We simulate the latter by grading all timeslots and assigning the event
that achieved the highest grade to the respective timeslot. This allows us to apply
exactly the same grading procedure and higher-level strategies to both algorithms.
Normally, event-assigning first picks the most urgent event (only considering hard-
constraints), and then assigns it to the most suitable timeslot determined by the
soft-constraints. Contrary to this we consider both the hard- and soft-constraints at
the same time. We did not implement any kind of additional backtracking for EAH.
The algorithms were implemented in Python. All runtimes were measured using an
Intel Core 2 Duo with 2.55GHz (with the program running on one core only) with
3GB RAM.

We tested our algorithms on the real-world instances of the Benchmarking
Project and on artificial HDTT (hard timetabling) instances from the OR Library
as discussed in the next paragraphs.

10 Michael Pimmer and Günther R. Raidl

Real-World Instances

Table 2 shows the best results we were able to achieve. As these are probably the
first published results for the benchmarking project instances, the only source of
solutions are the solutions delivered with the instances, which are listed in column
Existing Solution. These solutions originate from previous scientific work and usu-
ally were provided by the contributor of the respective instance. The columns TFH
and EAH present the results for the timeslot-filling heuristic and event-assigning
heuristic, where the first value denotes the hard-constraint violations, and the latter
value in parenthesis indicates the penalty arising from soft-constraint violations.

The column runtime TFH presents CPU-times of the initial filling of the timetable
using TFH. The runtime of evaluating a parameter-set depends on the – stochasti-
cally chosen – refilling strategies. For 20 refilling-rounds, it usually is 20 to 30 times
the initial filling time. The implementation of EAH has a lot of overhead because we
use much code that we implemented for TFH: For assigning one event, all events in
all timeslots are graded without applying any delta-functions, which makes runtime-
comparisons valueless.

Table 2 Results for real-world instances
Instance Country TFH EAH Existing

Solution
Runtime

TFH
Brazil1 Brazil 0 (1) 0 (101) 0 (104) 1.8s
Brazil4 Brazil 4 (1728) 18 (1070) - 46s
Brazil5 Brazil 0 (2375) 0 (5054) - 59s
Brazil6 Brazil 0 (2218) 0 (2376) - 40s
Brazil7 Brazil 0 (6581) 0 (6277) - 85s
FinHigh Finland 0 (248) 0 (193) - 20s
FinSec Finland 0 (216) 0 (279) - 40s
FinColl Finland 5 (424) 4 (813) - 222s
GreeceHigh Greece 0 (0) 0 (0) - 90s
Patras Greece 0 (163) 0 (30) 0 (0) 74s
Preveza Greece 0 (138) 0 (62) 0 (0) 68s
Italy1 Italy 0 (138) 0 (134) 0 (28) 7s
Lewitt South-Africa 0 (36) 0 (144) 0 (58) 163s
GEPRO Netherlands 0 (19751) 36 (54157) 1 (566) 2330s
KT2003 Netherlands 0 (33565) 27 (77148) 0 (1410) 1800s
KT2005 Netherlands 23 (13530) 98 (20588) 0 (1078) 1850s
StPaul England 0 (81996) 62 (76782) 0 (18444) 1550s

All results were achieved using the instances of version XHSTT-2011.2. We im-
proved two out of the nine existing solutions, but up to now we are not able to
explain the rather poor results of the larger instances from the Netherlands and Eng-
land. Because of the better results for smaller instances, and also for Lewitt which
is comparable in size, we do not think that this is a more general problem of our
approach, but rather a flaw of the grading procedure which we were unable to detect
until now.

A Timeslot-Filling Heuristic Approach to Construct High-School Timetables 11

We did not include the Australian instances in our tests for two reasons: The defi-
nition of the limitWorkload constraint was problematic at the time of implementing,
but is fixed already. This constraint is one of the key points of the Australian in-
stances. Second, our algorithm is not well suited for dealing with the multitude of
open roles that these instances incorporate. Closing the open roles after searching
the maximum weight clique decreases control and influence on the search proce-
dure. Having chosen a set of events, we have to fill their open roles, no matter how
preferable assigning some of the resources is. The situation gets even worse when
having hard avoidSplit-constraints: These define that all events of a course have to
use the same resource to fill a certain open role. We already close the open role of
the whole course when assigning the first event losing a lot of flexibility this way.
However, this is an implementation-specific issue we became aware of too late, and
not an inherent feature of our approach.

Artificial HDTT-Instances

The HDTT-Instances stem from the OR Library4, and are very basic: Every event
has one teacher, one school-class and one room assigned. There are 30 timeslots,
and every resource has to be occupied in every timeslot to get all events assigned.
There are only two hard-constraints, AssignTime and AvoidClashes, and no soft-
constraints. We converted these instances to the XML-format of the Benchmarking
Project.

Table 3 Results for the artificial HDTT instances

Method HDTT4 HDTT5 HDTT6 HDTT7 HDTT8

SA1 - 0 (0.7) 0 (2.5) 2 (2.5) 2 (2.5)
SA2 0 (0) 0 (0.3) 0 (0.8) 0 (1.2) 0 (1.9)
TS 0 (0.2) 0 (2.2) 3 (5.6) 4 (10.9) 13 (17.2)
GS 5 (8.5) 11 (16.2) 19 (22.2) 26 (30.9) 29 (35.4)
NN-TT2 0 (0.1) 0 (0.5) 0 (0.8) 0 (1.1) 0 (1.4)
NN-TT3 0 (0.5) 0 (0.5) 0 (0.7) 0 (1.0) 0 (1.2)
CPMF 5 (10.7) 8 (13.2) 11 (18.7) 18 (25.6) 15 (28.6)
DWTAN 0 (0) 0 (0.4) 0 (1.65) 0 (2.1) 0 (3.25)
SA3 0 (0) 0 (0) 0 (0) 0 (0) 0 (0.4)
EAH 0 (0) 2 (5.4) 6 (7.9) 9 (12.0) 13 (15.1)
TFH 0 (0) 0 (0.6) 0 (2.1) 0 (2.5) 0 (3.1)
TFH: time 107s 168s 220s 432s 697s

Table 3 compares our algorithms TFH and EAH with existing results: The first
six methods are explained or cited in [19]. SA stands for Simulated Annealing, TS
denotes Tabu Search, GS a Greedy Search and NN-TT are Hopfield Neural Net-

4 http://people.brunel.ac.uk/ mastjjb/jeb/orlib/tableinfo.html

12 Michael Pimmer and Günther R. Raidl

works. DWTAN and CPMF are neural network approaches too, described in [5].
The currently best method SA3 again is a Simulated Annealing variant [11].

The first value of each cell indicates the hard-constraint violations of the best
result achieved, followed by the average hard-constraint violations of 20 runs in
parentheses. The row TFH: time denotes the average runtime of our TFH algorithm.
As we can observe, TFH yields on these instances solutions that are competitive
to those of the leading existing methods, while EAH’s solutions are significantly
worse.

Here, we did not apply the full hill-climbing procedure. Instead, we create and
test random parameter sets, which – for TFH – was sufficient to create valid solu-
tions. Applying hill-climbing results in better average results, but causes runtimes
much higher than the ones stated in existing work.

4.1 Discussion

In general, the success of our algorithm highly depends on a suitable grading pro-
cedure. Dealing with several NP-complete subproblems, good grading functions
are not easy to design and implement. Although we tried to maintain the relation
between the grades and the constraints’ penalties as directly as possible, the param-
eters for finding the best results are much more diverse than we originally expected.
Despite the introduction of the soft-constraint level, the number of parameters often
is still too high to lead to a clearly directed hill-climbing.

Regarding the refilling-strategies, it turned out that iteratively deleting and re-
filling timeslots and days helps to get all events assigned and therefore is more suit-
able for hard-to-fill instances. The other strategies – refilling resources, events and
event-groups – help keeping the penalty low at the cost of having more difficulties
assigning all events.

The results of the maximum-weight clique search are satisfying. The event-
assigning heuristic EAH completely bypasses the clique search, and can therefore
be used as an indicator for flaws in the clique-search. Surprisingly, especially for
larger instances – where we assume that our clique-search yields worse results due
to the NP-complete nature of the problem – TFH performs much better than EAH.
This may partly be caused by the lack of backtracking, but it still indicates that the
current bottleneck of TFH is not the clique-search, but rather the grading procedure.

Although theoretically applicable, our approach is not equally well suited for
all instances. The Italian instance requires that at least one out of a set of multiple
events is assigned to each of a certain group of timeslots. As TFH picks and fills
single timeslots, we can either favor assigning all or none of those events. Although
we can avoid assigning too many events using the resource limits of the clique-
search, we lose fine-grained control at this point.

Interpreting the final results is not easy because of their diversity, and because
of few existing solutions. Altough the timeslot-filling heuristic TFH often yields
better results than EAH, it is not justified to declare it as the better approach in

A Timeslot-Filling Heuristic Approach to Construct High-School Timetables 13

general. The whole grading procedure was developed and implemented having TFH
in mind. Also, the event-assigning heuristic EAH lacks backtracking. We assume
that most of the existing solutions were achieved with an event-assigning approach,
so the suitability of this approach for solving high-school timetabling problems is
out of question. The performance of an approach strongly depends on the specifics
of the given instance, as shown by the results of the artificial HDTT-instances. When
developing our algorithm we did not adapt it to these instances in some more specific
way. We were surprised by the good results of TFH, which are competitive to other,
tailor-made algorithms. Completely filling each timeslot turned out to be much more
appropriate than EAH to cope with this kind of problems. For TFH, a good solution
of one timeslot occupies all resources (when not having any soft-constraints), which
is exactly the bottleneck of the HDTT instances.

5 Conclusion

In this work we described a timeslot-filling heuristic (TFH) for creating high-school
timetables. This heuristic is based on iteratively filling selected timeslots with sets
of events. The more common approach, with which we compared our heuristic, is
to iteratively assign single events. These approaches were evaluated using artificial
instances as well as the real-world instances of the Benchmarking Project for (High)
School Timetabling.

Although our algorithm is sometimes outperformed by tailor-made algorithms
for particular instances, we demonstrated the general aptitude of the timeslot-filling
heuristic. The suitability of an approach strongly depends on the characteristics of
the instance it is applied to, which inhibits stating a clear winner. As the timeslot-
filling approach is by far less explored, further investigation will be necessary
to evaluate it in more detail. In particular, a comparison to other leading school
timetabling algorithms that are flexible enough to handle the instances’ constraints
is required.

The main challenge definitely lies in the development of a suitable grading func-
tion. It has to maintain the balance between the various soft- and hard-constraints,
between events of differing size, and the urge of creating a completely filled
timetable. Future work may focus on more advanced concepts for the grading func-
tion. Self-adapting parameters or switching between various grading functions for
one constraint are possible improvements. This could be done by applying local
search algorithms to timetables created by the timeslot-filling heuristic. One could
then focus on adapting the parameters or grading functions of the part (constraint-
violation) the local search was able to improve. This would make the search for
suitable parameter sets and inappropriate grading functions more efficient.

We want to thank the authors and contributors of the Benchmarking Project for
their effort, and believe that their work will both help to organize and structure
past and future scientific effort, and to revive the field of (real-world) high-school
timetabling.

14 Michael Pimmer and Günther R. Raidl

References

1. D. J. Abraham and J. H. Kingston. Generalizing bipartite edge colouring to solve real instances
of the timetabling problem. In E. K. Burke and P. D. Causmaecker, editors, Practice and
Theory of Automated Timetabling IV, volume 2740 of Springer Lecture Notes in Computer
Science, pages 288–298, 2002.

2. E. K. Burke and M. Gendreau, editors. Proceedings of the 7th International Conference on
the Practice and Theory of Automated Timetabling (PATAT 2008), Montreal, Canada, 2008.

3. E. K. Burke and S. Petrovic. Recent research directions in automated timetabling. European
Journal of Operational Research, 140(2):266–280, 2002.

4. E. K. Burke and H. Rudova, editors. The Practice and Theory of Automated Timetabling VI,
volume 3867 of Lecture Notes in Computer Science. Springer, 2007.

5. M. P. Carrasco and M. V. Pato. A comparison of discrete and continuous neural network
approaches to solve the class/teacher timetabling problem. European Journal of Operational
Research, 153(1):65–79, 2004. Timetabling and Rostering.

6. P. de Haan, R. Landman, G. Post, and H. Ruizenaar. A four-phase approach to a timetabling
problem in secondary schools. In E. K. Burke and H. Rudová, editors, Practice and Theory of
Automated Timetabling VI, volume 3867 of Lecture Notes in Computer Science, pages 423–
425, Sept. 2006.

7. S. Even, A. Itai, and A. Shamir. On the complexity of timetabling and multicommodity flow
problems. SIAM Journal of Computation, 5:691–703, 1976.

8. C. C. Gotlieb. The construction of class-teacher time-tables. In C. M. Popplewell, editor,
Proc. IFIP Congress 62, volume 4 of Information Processing, pages 73–77. North-Holland
Publishing Co., 1963.

9. J. H. Kingston. The kts high school timetabling system. In E. K. Burke and H. Rudova,
editors, Practice and Theory of Automated Timetabling VI, volume 3867 of Lecture Notes in
Computer Science, pages 181–195. Springer, 2006.

10. J. H. Kingston and T. B. Cooper. The complexity of timetable construction problems. In E. K.
Burke and P. Ross, editors, Practice and Theory of Automated Timetabling, volume 1153 of
Lecture Notes in Computer Science, pages 283–295. Springer, 1996.

11. Y. Liu, D. Zhang, and S. C. H. Leung. A simulated annealing algorithm with a new
neighborhood structure for the timetabling problem. In GEC ’09: Proceedings of the first
ACM/SIGEVO Summit on Genetic and Evolutionary Computation, pages 381–386, New York,
NY, USA, 2009. ACM.

12. B. McCollum, E. Burke, and G. White, editors. Proceedings of the 8th International Confer-
ence on the Practice and Theory of Automated Timetabling (PATAT 2010), Belfast, Northern
Ireland, 2010.

13. C. Meyers and J. B. Orlin. Very large-scale neighbourhood search techniques in timetabling
problems. In Practice and Theory of Automated Timetabling VI (Sixth International Con-
ference, PATAT2006, Brno, Czech Republic, August 2006, Selected Papers), volume 3867 of
Springer Lecture Notes in Computer Science, pages 24–39, 2007.

14. N. Pillay. An overview of school timetabling research. In B. McCollum, E. Burke, and
G. White, editors, Proceedings of the 8th International Conference on the Practice and Theory
of Automated Timetabling (PATAT 2010), pages 321–335, 2010.

15. M. Pimmer. A timeslot-based heuristic approach to construct high-school timetables. Master’s
thesis, Vienna University of Technology, Nov. 2010.

16. G. Post, S. Ahmadi, S. Daskalaki, J. Kingston, J. Kyngas, C. Nurmi, and D. Ranson. An
xml format for benchmarks in high school timetabling. Annals of Operations Research, pages
1–13, Feb. 2010.

17. A. Schaerf. A survey of automated timetabling. Artificial Intelligence Review, 13(2):87–127,
1999.

18. G. Schmidt and T. Ströhlein. Timetable construction - an annotated bibliography. The Com-
puter Journal, 23(4), 1979.

A Timeslot-Filling Heuristic Approach to Construct High-School Timetables 15

19. K. A. Smith, D. Abramson, and D. Duke. Hopfield neural networks for timetabling: formula-
tions, methods, and comparative results. Comput. Ind. Eng., 44:283–305, February 2003.

20. R. J. Willemen. School timetable construction: Algorithms and complexity. PhD thesis, Tech-
nische Universiteit Eindhoven, May 2002.

