
MIC 2011: The IX Metaheuristics International Conference S1-36–1

A Timeslot-Filling Heuristic Approach to Construct
High-School Timetables

Michael Pimmer, Günther R. Raidl

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Favoritenstraße 9-11/1861, A–1040 Vienna, Austria
michael@pimmer.info, raidl@ads.tuwien.ac.at

Abstract
This work describes an approach for creating high-school timetables. To develop and test our

algorithm, we used the international, real-world instances of the Benchmarking project for (High)
School Timetabling. Contrary to most other heuristic approaches, we do not try to iteratively assign
single meetings (events) to timeslots. Instead, we repeatedly choose a not entirely occupied timeslot
and aim at simultaneously assigning the most suitable set of meetings. To improve and diversify
the solutions, a heuristic that deletes and reassigns certain timeslots, events or resources is applied
and combined with a hill-climbing procedure to find suitable parameters for grading constraints.
Experimental results indicate the competitiveness of this new approach.

1 Introduction

The task of high-school timetabling is to assign events – normally class–teacher meetings – to rooms and
timeslots of a weekly schedule. Dependent on the country and institution of origin, the requirements and
specifics of the problem vary drastically. As no commonly accepted, international benchmark instances
existed until recently, most scientists have been working with specific local instances or strongly sim-
plified models as the classical Class-Teacher Timetabling Problem (CTTP) described by Gotlieb [8] in
1974. After decades of investigation, it often is still not clear which approaches are the most promising
for real-world problems of a certain kind or country, or which generally-applicable approach is likely to
yield good results.

In 2007, the Benchmarking Project for (High) School Timetabling was launched to settle this
issue. Based on an XML file format and a well-defined evaluation function, it currently provides more
than 20 real-world instances from various countries. The XML-format describes resources (e.g. teachers,
students, rooms) which can be part of events. An event is a meeting that usually requires some resources
and should be assigned to a timeslot. If any resource out of a set of resources – e.g. any English teacher
– shall be assigned to an event, this is called open role. Further information about the project is available
in [16] and on the project website1.

While most existing heuristics to solve school timetabling problems are based on an iterative process
that assigns single events to timeslots, we follow here the concept of repeatedly choosing a not entirely
occupied timeslot and assigning a promising larger set of suitable meetings at the same time. In addition
an improvement procedures that deletes and reassigns timeslots, events, or resources is applied in com-
bination with a hill-climbing procedure for adapting parameters controlling the grading of constraints.
This new approach was specifically developed with the instances of the Benchmarking Project for (High)
School Timetabling and general applicability in mind.

The next section gives an overview on related work. Our approach is described in Section 3, Section 4
presents and discusses achieved results, and conclusions are drawn in Section 5.

2 Related Work

Concerning the problem complexity, the classical CTTP was shown to be NP-complete when any un-
availabilities are given [7]. Relaxing the restrictive definition of meetings and adding some common

1http://www.utwente.nl/ctit/hstt/

Udine, Italy, July 25–28, 2011



S1-36–2 MIC 2011: The IX Metaheuristics International Conference

constraints from real-world school timetabling problems introduces significant additional complexity.
Kingston and Cooper [10] identified five NP-hard subproblems, and Willemen [20] extended these by
two more.

A broad range of approaches has been applied to high-school timetabling. For extensive information
on existing methods, the reader is referred to well-known surveys [3, 14, 17] and to the international
conferences Practice And Theory of Automated Timetabling (PATAT)2 [2, 4, 12] as well as to the EURO
working group on automated timetabling EURO-WATT3.

The most common solving strategy is to iteratively assign single events, combined with a back-
tracking on dead ends. The less explored alternative we consider in this work is to create a timetable
by repeatedly filling selected timeslots. This approach was first mentioned by Schmidt and Ströhlein
[18] in 1972. Unfortunately, their formulation of a CTTP as a vertex coloring problem is not always
applicable to real-world instances, because many constraints have to be considered additionally to the
coloring-problem. For example, problems arise with events of longer duration requiring multiple times-
lots, especially if it is not determined how an event can be split, or in case of multiple open roles requiring
the same resource. Considering the vertex coloring formulation, not only the weights and possible colors
of edges would change during the solving procedure, but nodes and edges may even appear or disappear.

In 2002, Abraham and Kingston [1] applied the timeslot-filling approach to an Australian instance.
They pre-calculate possible compatible sets of events. As there are too many sets, smaller events which
are supposed to be easier to schedule are omitted. Then, a set is chosen for each timeslot in a way to cover
all required events. Finally, the omitted events are scheduled. Instead of continuing this work, effort was
put in the creation of the KTS High School Timetabling System [9], which yielded better results.

The KTS can be considered a hybrid approach. Such approaches lie in between assigning single
events and filling timeslots at once. The goal is to break down the problem into easier subproblems by
grouping events, without losing too much flexibility later on. This can be done by pre-assigning events
to days, e.g. as described in [6], before assigning them to specific timeslots. Kingston [9] breaks down
the problem by grouping events to tiles. The tiles are scheduled separately and joined afterwards to
obtain the final timetable. This approach yields good results for Australian real-world instances in short
runtimes and can to some degree be extended to be applicable to instances of other countries.

Some very Large-Scale Neighborhood Search Techniques (VLNS) delete and re-assign a major part
of the solution. They were already applied to timetabling problems, e.g. by Meyers and Orlin [13]. The
refilling-strategies described in chapter 3.3 also belong to this kind of search technique.

3 Timeslot-Filling Heuristic

Figure 1: Repeatedly filling
timeslots

Our approach is based on iteratively filling single timeslots, which is
shown in Figure 1 and further detailed in the subsequent sections. Con-
sequently, we call it Timeslot-Filling Heuristic (TFH). The basic build-
ing block of filling one timeslot is incorporated into higher-level strate-
gies, which are described in Section 3.3.

Because of the multitude of constraints considered in the bench-
mark project’s instances and thus in our algorithm, we cannot present
all details here but refer to the first author’s master thesis [15] for an
exhaustive description.

3.1 Grading of Events

The grade of an event represents the favorability of holding it in a cho-
sen timeslot. It is defined as the sum of the grades of the constraints
that apply to this event, that apply to any resource it requires (or that

2http://www.asap.cs.nott.ac.uk/patat/patat-index.shtml
3http://www.asap.cs.nott.ac.uk/watt/

Udine, Italy, July 25–28, 2011



MIC 2011: The IX Metaheuristics International Conference S1-36–3

can fill any of its open roles), and that apply to any event group this
event belongs to. Moreover, we calculate and add grades that are not
directly related to constraints, but instead aim at completely filling the
timetable (timetable-filling grades).

3.1.1 Constraint-Related Grades

When dealing with constraint-related grades, we try to maintain a direct connection to their weight and
cost function. If assigning an event would entail a penalty by violating a soft-constraint, a negative grade
of exactly this penalty will be added to the grade of this event. If an assignment helps avoiding future
constraint-violations, positive grades are assigned. When having positive as well as negative grades,
they are added up. The benchmark instances allow soft-constraint weights of up to 1000. To represent
the urge of avoiding hard-constraint violations – which originally do not have weights themselves – we
assign such constraints a weight of 10000. The balance between hard- and soft-constraints is maintained
with a parameter soft-constraint level. All positive and negative grades arising from soft-constraints are
multiplied with this value. This allows adjusting the influence of soft-constraints to the grades with one
parameter, as we will further explain in Section 3.3.

We will now demonstrate the evaluation of a constraint on the example of the SpreadEventsCon-
straint, which is – besides the resource availability – the most important of the 15 existing constraints.
First we will calculate a ratio, which expresses the urgency of an assignment independent of the weight
of the constraint or whether it is hard or soft. The second step is to transform the ratio to the final grade
of this constraint by considering the weights and other parameters such as the soft-constraint level.

Calculating the Ratio The SpreadEventsConstraint is supposed to limit the usage of a set of events
within certain timegroups. Typically timegroups represent days and the events form a course so that no
more than one event of this course should be held on each day. The constraint allows defining a minimum
and a maximum number of events per time group (day). We will only discuss the maximum here, where
an event with a duration of more than one timeslot still counts as one assignment.

As current time group we understand the intersection of the time groups the constraint is applied to
and the time groups the timeslot we are currently grading belongs to, which normally is the time group
representing the current day (i.e., the day the timeslot we are currently grading belongs to).

Table 1 explains the variables we are going to use for calculating the ratio.

Variable Explanation
maximum number of allowed events per time group
cA current Assignment: number of existing event-assignments within the

current time group
pendingAssignments nr of pending (open) event-assignments of the constrained event group
possibleAssignments possible assignment in all time groups (also current) without violating

the maximum
pACG possible assignments in current timegroup permitting maximum-

violations

Table 1: Variables used for calculating the SpreadEventsConstraint-ratio

Positive grades are only applied if the maximum is not yet reached (cA ≥ maximum). Equation
(1) shows the calculation of the ratio. The left part pendingAssignments

possibleAssignments is independent of the current
time group and can be considered as a general urgency/pressure: It compares the number of pending
assignments with the slots they can be assigned to without violating the maximum. The right part
min

(
maximum−cA

pACG , 1
)

represents the urgency of assignments in the current time group: It relates the

Udine, Italy, July 25–28, 2011



S1-36–4 MIC 2011: The IX Metaheuristics International Conference

assignments missing to reach the maximum with the number of timeslots that are available for such
assignments.

ratio =
pendingAssignments

possibleAssignments
·min

(
maximum− cA

pACG
, 1

)
(1)

If there are several possibilities (”sub-events“) of assigning the duration of an event, we will calculate
the ratio using the highest number of events. Having more possibleAssignments makes it more difficult
to not violate the maximum , so we anticipate this case.

Mo Tu We Th
1
2
3
4
5

Table 2: Event availabilities

Example Assume maximum = 1, a total number of four events,
and the event availabilities as given in Table 2. White slots indicate that
at least one of the events is available, black slots mark unavailability,
and grey slots indicate that an event of this group is already assigned
to the respective timeslot. The value of pendingAssignments is two,
because two of the four events are already assigned (We-1 and Th-3).
We have a possibleAssignment of two, one on Monday and one on
Tuesday. This would imply the following ratios:
Mo-1: ratio = 2

2 ·min(1−0
5 , 1) = 0.2

Tu-1: ratio = 2
2 ·min(1−0

2 , 1) = 0.5
Th-1: ratio = 2

2 ·min(1−1
4 , 1) = 0

As the maximum for Th-1 is already reached with cA ≥ maximum, we would not apply any positive
grade anyhow.

Calculating the final grade The final grade combines the ratio with the weight and type (soft or hard)
of the constraint. It is calculated as follows:

hard-constraint: grade = ratioexponent · 10000 · externalWeight

soft-constraint: grade = ratioexponent · weight · externalWeight · softConstraintLevel
(2)

Ratios usually are values between 0 and 1. The differences of a ratio can be either emphasized (stretched)
by applying an exponent < 1, or reduced (squeezed) by exponent > 1. The weight is given by the
constraint within the instance, whereas externalWeight is defined by us to adjust the overall importance
of each constraint. These parameters will be adjusted by a hill-climbing procedure, see Section 3.3.

Continuing our example, assume having an external weight of 0.5, an exponent of 2, and a hard
SpreadEventsConstraint. For Mo-1 this leads to grade = 0.22 · 10000 · 0.5 = 200, and to grade =
0.52 · 10000 · 0.5 = 1250 for Tu-1. When grading these timeslots, each event of the constrained event
group will have the grade of the respective timeslot added.

3.1.2 Timetable-Filling Grades

To assist creating complete timetables, we calculate three more grades:

Bin-Packing When having tight resource-assignments, a problem similar to bin-packing arises. We
calculate a grade that aims at gaplessly assigning such resources. This is done by favoring events
and event-durations that maintain the possibility of gaplessly assigning resources.

Unassignment-Bonus Resources and events that lately failed to be assigned get an additional grade.

Course-Urgency The instances do not provide something equally to a course: Courses can be either
represented by single events that have to be split or by a set of multiple events. We therefore group
events that require the same resources to courses. Then, a grade is calculated favoring courses that
have fewer possibilities left to assign their events, considering their duration and other constraints
that impede assignments to certain timeslots.

Udine, Italy, July 25–28, 2011



MIC 2011: The IX Metaheuristics International Conference S1-36–5

3.2 Clique-Search

Having graded all events for the chosen timeslot, we are now looking for the most favorable set of
events that can be held together. We first construct a weighted graph out of the graded events. The
nodes correspond to the events having their grade as weight, and nodes are connected by edges if the
events can be held simultaneously, which usually means that they do not have any resource in common.
Additionally to the weight we store the depth of nodes, which is the number of teachers and rooms an
event requires. Having open roles leads to resource limits, which is the number of resources of a certain
type that each solution has to respect to be valid. For example, a feasible set of events must not require
more gym-rooms than there are available in the given timeslot.

Apart from the resource limits and the depth, the search for the most favorable set of events cor-
responds to the maximum-weight clique problem. Because of the additional constraints and the in-
stances’ graphs with densities of up to 0.96% and 950 nodes, we use a custom heuristic.

A peer of a clique is a node that is not part of the clique but connected to all nodes of the clique.
Our approach is to repeatedly expand cliques, which means we create new cliques by adding peers to an
existing clique. When expanding a clique, we will create one new clique for each of its peers. We start at
cliques of size 1, each containing one single event. Obviously, the order of selecting the clique to extend
next is crucial. Condition (3) shows the basic idea of how we sort our cliques. The depth of a clique
is the sum of the depth values of all its nodes, and the peerDepth of a clique is the total depth of all its
peers. As long as the condition holds, a clique can still exceed the currently known maximum.

grade+
grade

depth
· peerDepth > currentMax (3)

This condition is incorporated into our internGrade, which determines the order of choosing cliques
to extend. Equation (4) shows the calculation of the internGrade. The smaller the cliques are, the
more the internGrade tends to over-estimate the reachable maximum, which we try to compensate with
parameter c. As condition (3) aims at finding the optimum, we introduce gradeMultiplier (default set to
10) to focus on good-graded cliques instead of cliques having many peers. This again prevents expanding
too many small cliques, and thus to expand many cliques that are highly unlikely of being further chosen
later on.

internGrade =

(
grade · gradeMultiplier +

(
peerDepth · grade

depth

))1+c·depth
(4)

The cliques are stored in an array of heaps, so the internGrade is only calculated for the highest graded
clique of each depth. At any moment, we only allow expanding cliques of certain depths, e.g. cliques that
contain three to six normal-sized events. With increasing runtime, this range is shifted towards higher
depths. Factor c is adapted automatically with the goal of equally choosing the cliques of the depths we
currently permit; it is increased when too many cliques are chosen from low depths and decreased in case
of too many cliques are chosen from high depths.

After having found a promising clique with this heuristic, the open roles have to be closed. We
construct a bipartite graph out of the open roles of the chosen events and the resources that possibly
fill these roles. Then, a maximum-cardinality maximum weight matching is determined. If there are
resources that belong to multiple resource-groups, e.g. the sets rg1 and rg2, filling all open roles can be
impossible when (rg1 6⊇ rg2) ∧ (rg1 6⊆ rg2) and rg1 ∩ rg2 6= ∅. In such cases, we reduce the resource
limits and repeat the search until filling all open roles succeeds. Finally, the events are assigned to the
chosen timeslot.

3.3 Higher-Level Strategies

Apart from the grading parameters, we modify the search by varying how to choose the next timeslot
that is filled: simply incremental or by choosing the first not entirely full timeslot of the day that has the
fewest events assigned. When the pending workload of a resource gets unassignable, a local backtracking

Udine, Italy, July 25–28, 2011



S1-36–6 MIC 2011: The IX Metaheuristics International Conference

is applied. Whether or not these methods are used is controlled by parameters, too. Together with the
grading parameters, they form a parameter set.

Figure 2: Refilling strategies

A given parameter set is tested by repeatedly applying refill-
ing strategies, as shown in Figure 2. We implemented several dif-
ferent strategies, each having a different focus: Refilling timeslots
that have few events assigned, consecutively deleting and refilling
timeslots or days, re-assigning resources, events or event-groups
(courses) that cause high penalty or that we were unable to assign
completely.

After initially filling the timetable, we iteratively select and
apply one of these strategies on a random basis. Hereby, each
strategy has an individual selection probability which is adapted
according to its success in previous applications.

On top of the refilling strategies, a hill-climbing procedure is
applied. The goal of the hill-climbing is to find the most suitable
parameter set and soft-constraint level for a given instance. To fo-
cus on the most relevant parameters at a given stage of the solving
procedure, we introduced the soft-constraint level already men-
tioned in Section 3.1. All grades arising from soft-constraints get
multiplied with this parameter. All hard-constraints and grades
that assist in creating a completely filled timetable (e.g. the bin-
packing and the course-urgency) are not affected by the soft-constraint level. Setting the soft-constraint
level to zero completely deactivates considering any soft-constraint – the grades will exclusively aim at
creating a complete timetable. Increasing the soft-constraint level leads to a higher influence of soft-
constraints to the overall grades. This helps avoiding penalty, but complicates creating completely filled
timetables. The hill-climbing then consists of two parts:

The first part is to find suitable parameter sets as starting points for the later hill-climbing. We try
to find hard-constraint parameters that reliably fill the timetable while maximizing the extent of consid-
ering soft-constraints. To do so all soft-constraint parameters are set to default values; when creating a
random parameter set these values are forbidden to be changed. Instead, all hard-constraint parameters
are allowed to change. We start at a soft-constraint level of zero and create a random parameter set. This
set is tested by applying the before-mentioned refilling strategies. If we achieve a valid timetable without
any hard-constraint violations, we increase the soft-constraint level. Otherwise, a new random parameter
set is created and evaluated.

The second part, the hill-climbing procedure, inverts the parameters that are allowed to change:
The hard-constraint parameters and the soft-constraint level are fixed, we only allow changes of soft-
constraint parameters at this stage. As starting point we pick the parameter set with which the lowest-
penalized full timetable was created during the first part. Then, the climbing is started by iteratively
changing some of the parameters and evaluating the changed parameter set. If we were not able to create
a full timetable in the first part, we continue ignoring the soft-constraints by only allowing changes of
hard-constraint parameters.

4 Results

We compare the timeslot-filling heuristic (TFH) described above with the more common event-assignment
heuristic (EAH) which iteratively assigns the most urgent event. We simulate the latter by grading all
timeslots and assigning the event that achieved the highest grade to the respective timeslot. This allows
us to apply exactly the same grading procedure and higher-level strategies to both algorithms. Normally,
event-assigning first picks the most urgent event (only considering hard-constraints), and then assigns it
to the most suitable timeslot determined by the soft-constraints. Contrary to this we consider both the
hard- and soft-constraints at the same time. We did not implement any kind of additional backtracking

Udine, Italy, July 25–28, 2011



MIC 2011: The IX Metaheuristics International Conference S1-36–7

for EAH. The algorithms were implemented in Python. All runtimes were measured using an Intel Core
2 Duo with 2.55GHz (with the program running on one core only) with 3GB RAM.

We tested our algorithms on the real-world instances of the Benchmarking Project and on artificial
HDTT (hard timetabling) instances from the OR Library as discussed in the next paragraphs.

Real-World Instances Table 3 shows the best results we were able to achieve. As these are prob-
ably the first published results for the benchmarking project instances, the only source of solutions
are the solutions delivered with the instances, which are listed in column Existing Solution. These
solutions originate from previous scientific work and usually were provided by the contributor of the
respective instance. The columns TFH and EAH present the results for the timeslot-filling heuristic
and event-assigning heuristic, where the first value denotes the hard-constraint violations, and the latter
value in parenthesis indicates the penalty arising from soft-constraint violations. The column runtime
TFH presents CPU-times of the initial filling of the timetable using TFH. The runtime of evaluating a
parameter-set depends on the – stochastically chosen – refilling strategies. For 20 refilling-rounds, it usu-
ally is 20 to 30 times the initial filling time. The implementation of EAH has a lot of overhead because
we use much code that we implemented for TFH: For assigning one event, all events in all timeslots are
graded without applying any delta-functions, which makes runtime-comparisons valueless.

Instance Country TFH EAH Existing Solution runtime TFH
Brazil1 Brazil 0 (1) 0 (101) 0 (104) 1.8s
Brazil4 Brazil 4 (1728) 18 (1070) - 46s
Brazil5 Brazil 0 (2375) 0 (5054) - 59s
Brazil6 Brazil 0 (2218) 0 (2376) - 40s
Brazil7 Brazil 0 (6581) 0 (6277) - 85s
FinHigh Finland 0 (248) 0 (193) - 20s
FinSec Finland 0 (216) 0 (279) - 40s
FinColl Finland 5 (424) 4 (813) - 222s
GreeceHigh Greece 0 (0) 0 (0) - 90s
Patras Greece 0 (163) 0 (30) 0 (45) 74s
Preveza Greece 0 (138) 0 (62) 0 (90) 68s
Italy1 Italy 0 (138) 0 (134) 0 (28) 7s
Lewitt South-Africa 0 (36) 0 (144) 0 (58) 163s
GEPRO Netherlands 0 (19751) 36 (54157) 1 (566) 2330s
KT2003 Netherlands 0 (33565) 27 (77148) 0 (1410) 1800s
KT2005 Netherlands 23 (13530) 98 (20588) 0 (1078) 1850s
StPaul England 0 (81996) 62 (76782) 0 (18444) 1550s

Table 3: Results for real-world instances

All results were achieved using the instances of version XHSTT-2011.2. We improved four out of
the nine existing solutions, but up to now we are not able to explain the rather poor results of the larger
instances from the Netherlands and England. Because of the better results for smaller instances, and
also for Lewitt which is comparable in size, we do not think that this is a more general problem of our
approach, but rather a flaw of the grading procedure which we were unable to detect until now.

We did not include the Australian instances in our tests for two reasons: The definition of the limit-
Workload constraint was problematic at the time of implementing, but is fixed already. This constraint
is one of the key points of the Australian instances. Second, our algorithm is not well suited for dealing
with the multitude of open roles that these instances incorporate. Closing the open roles after searching
the maximum weight clique decreases control and influence on the search procedure. Having chosen a
set of events, we have to fill their open roles, no matter how preferable assigning some of the resources
is. The situation gets even worse when having hard avoidSplit-constraints: These define that all events
of a course have to use the same resource to fill a certain open role. We already close the open role of
the whole course when assigning the first event losing a lot of flexibility this way. However, this is an
implementation-specific issue we became aware of too late, and not an inherent feature of our approach.

Udine, Italy, July 25–28, 2011



S1-36–8 MIC 2011: The IX Metaheuristics International Conference

Artificial HDTT-Instances The HDTT-Instances stem from the OR Library4, and are very basic: Ev-
ery event has one teacher, one school-class and one room assigned. There are 30 timeslots, and every re-
source has to be occupied in every timeslot to get all events assigned. There are only two hard-constraints,
AssignTime and AvoidClashes, and no soft-constraints. We converted these instances to the XML-format
of the Benchmarking Project.

Method HDTT4 HDTT5 HDTT6 HDTT7 HDTT8
SA1 - 0 (0.7) 0 (2.5) 2 (2.5) 2 (2.5)
SA2 0 (0) 0 (0.3) 0 (0.8) 0 (1.2) 0 (1.9)
TS 0 (0.2) 0 (2.2) 3 (5.6) 4 (10.9) 13 (17.2)
GS 5 (8.5) 11 (16.2) 19 (22.2) 26 (30.9) 29 (35.4)
NN-TT2 0 (0.1) 0 (0.5) 0 (0.8) 0 (1.1) 0 (1.4)
NN-TT3 0 (0.5) 0 (0.5) 0 (0.7) 0 (1.0) 0 (1.2)
CPMF 5 (10.7) 8 (13.2) 11 (18.7) 18 (25.6) 15 (28.6)
DWTAN 0 (0) 0 (0.4) 0 (1.65) 0 (2.1) 0 (3.25)
SA3 0 (0) 0 (0) 0 (0) 0 (0) 0 (0.4)
EAH 0 (0) 2 (5.4) 6 (7.9) 9 (12.0) 13 (15.1)
TFH 0 (0) 0 (0.6) 0 (2.1) 0 (2.5) 0 (3.1)
TFH: time 107s 168s 220s 432s 697s

Table 4: Results for the artificial HDTT instances

Table 4 compares our algorithms
TFH and EAH with existing results:
The first six methods are explained or
cited in [19]. SA stands for Simulated
Annealing, TS denotes Tabu Search, GS
a Greedy Search and NN-TT are Hop-
field Neural Networks. DWTAN and
CPMF are neural network approaches
too, described in [5]. The currently best
method SA3 again is a Simulated An-
nealing variant [11].

The first value of each cell indi-
cates the hard-constraint violations of
the best result achieved, followed by
the average hard-constraint violations of 20 runs in parentheses. The row TFH: time denotes the av-
erage runtime of our TFH algorithm. As we can observe, TFH yields on these instances solutions that
are competitive to those of the leading existing methods, while EAH’s solutions are significantly worse.

Here, we did not apply the full hill-climbing procedure. Instead, we create and test random parameter
sets, which – for TFH – was sufficient to create valid solutions. Applying hill-climbing results in better
average results, but causes runtimes much higher than the ones stated in existing work.

4.1 Discussion

In general, the success of our algorithm highly depends on a suitable grading procedure. Dealing
with several NP-complete subproblems, good grading functions are not easy to design and implement.
Although we tried to maintain the relation between the grades and the constraints’ penalties as directly as
possible, the parameters for finding the best results are much more diverse than we originally expected.
Despite the introduction of the soft-constraint level, the number of parameters often is still too high to
lead to a clearly directed hill-climbing.

Regarding the refilling-strategies, it turned out that iteratively deleting and refilling timeslots and
days helps to get all events assigned and therefore is more suitable for hard-to-fill instances. The other
strategies – refilling resources, events and event-groups – help keeping the penalty low at the cost of
having more difficulties assigning all events.

The results of the maximum-weight clique search are satisfying. The event-assigning heuristic
EAH completely bypasses the clique search, and can therefore be used as an indicator for flaws in the
clique-search. Surprisingly, especially for larger instances – where we assume that our clique-search
yields worse results due to the NP-complete nature of the problem – TFH performs much better than
EAH. This may partly be caused by the lack of backtracking, but it still indicates that the current bottle-
neck of TFH is not the clique-search, but rather the grading procedure.

Although theoretically applicable, our approach is not equally well suited for all instances. The
Italian instance requires that at least one out of a set of multiple events is assigned to each of a certain
group of timeslots. As TFH picks and fills single timeslots, we can either favor assigning all or none
of those events. Although we can avoid assigning too many events using the resource limits of the
clique-search, we lose fine-grained control at this point.

4http://people.brunel.ac.uk/ mastjjb/jeb/orlib/tableinfo.html

Udine, Italy, July 25–28, 2011



MIC 2011: The IX Metaheuristics International Conference S1-36–9

Interpreting the final results is not easy because of their diversity, and because of few existing solu-
tions. Altough the timeslot-filling heuristic TFH often yields better results than EAH, it is not justified
to declare it as the better approach in general. The whole grading procedure was developed and imple-
mented having TFH in mind. Also, the event-assigning heuristic EAH lacks backtracking. We assume
that most of the existing solutions were achieved with an event-assigning approach, so the suitability of
this approach for solving high-school timetabling problems is out of question. The performance of an
approach strongly depends on the specifics of the given instance, as shown by the results of the artificial
HDTT-instances. When developing our algorithm we did not adapt it to these instances in some more
specific way. We were surprised by the good results of TFH, which are competitive to other, tailor-made
algorithms. Completely filling each timeslot turned out to be much more appropriate than EAH to cope
with this kind of problems. For TFH, a good solution of one timeslot occupies all resources (when not
having any soft-constraints), which is exactly the bottleneck of the HDTT instances.

5 Conclusion

In this work we described a timeslot-filling heuristic (TFH) for creating high-school timetables. This
heuristic is based on iteratively filling selected timeslots with sets of events. The more common approach,
with which we compared our heuristic, is to iteratively assign single events. These approaches were
evaluated using artificial instances as well as the real-world instances of the Benchmarking Project for
(High) School Timetabling.

Although our algorithm is sometimes outperformed by tailor-made algorithms for particular in-
stances, we demonstrated the general aptitude of the timeslot-filling heuristic. The suitability of an
approach strongly depends on the characteristics of the instance it is applied to, which inhibits stating
a clear winner. As the timeslot-filling approach is by far less explored, further investigation will be
necessary to evaluate it in more detail. In particular, a comparison to other leading school timetabling
algorithms that are flexible enough to handle the instances’ constraints is required.

The main challenge definitely lies in the development of a suitable grading function. It has to main-
tain the balance between the various soft- and hard-constraints, between events of differing size, and the
urge of creating a completely filled timetable. Future work may focus on more advanced concepts for
the grading function. Self-adapting parameters or switching between various grading functions for one
constraint are possible improvements. This could be done by applying local search algorithms to timeta-
bles created by the timeslot-filling heuristic. One could then focus on adapting the parameters or grading
functions of the part (constraint-violation) the local search was able to improve. This would make the
search for suitable parameter sets and inappropriate grading functions more efficient.

We want to thank the authors and contributors of the Benchmarking Project for their effort, and
believe that their work will both help to organize and structure past and future scientific effort, and to
revive the field of (real-world) high-school timetabling.

References

[1] D. J. Abraham and J. H. Kingston. Generalizing bipartite edge colouring to solve real instances
of the timetabling problem. In E. K. Burke and P. D. Causmaecker, editors, Practice and Theory
of Automated Timetabling IV, volume 2740 of Springer Lecture Notes in Computer Science, pages
288–298, 2002.

[2] E. K. Burke and M. Gendreau, editors. Proceedings of the 7th International Conference on the
Practice and Theory of Automated Timetabling (PATAT 2008), Montreal, Canada, 2008.

[3] E. K. Burke and S. Petrovic. Recent research directions in automated timetabling. European
Journal of Operational Research, 140(2):266–280, 2002.

Udine, Italy, July 25–28, 2011



S1-36–10 MIC 2011: The IX Metaheuristics International Conference

[4] E. K. Burke and H. Rudova, editors. The Practice and Theory of Automated Timetabling VI, volume
3867 of Lecture Notes in Computer Science. Springer, 2007.

[5] M. P. Carrasco and M. V. Pato. A comparison of discrete and continuous neural network ap-
proaches to solve the class/teacher timetabling problem. European Journal of Operational Re-
search, 153(1):65–79, 2004. Timetabling and Rostering.

[6] P. de Haan, R. Landman, G. Post, and H. Ruizenaar. A four-phase approach to a timetabling
problem in secondary schools. In E. K. Burke and H. Rudová, editors, Practice and Theory of
Automated Timetabling VI, volume 3867 of Lecture Notes in Computer Science, pages 423–425,
Sept. 2006.

[7] S. Even, A. Itai, and A. Shamir. On the complexity of timetabling and multicommodity flow
problems. SIAM Journal of Computation, 5:691–703, 1976.

[8] C. C. Gotlieb. The construction of class-teacher time-tables. In C. M. Popplewell, editor, Proc.
IFIP Congress 62, volume 4 of Information Processing, pages 73–77. North-Holland Publishing
Co., 1963.

[9] J. H. Kingston. The kts high school timetabling system. In E. K. Burke and H. Rudova, editors,
Practice and Theory of Automated Timetabling VI, volume 3867 of Lecture Notes in Computer
Science, pages 181–195. Springer, 2006.

[10] J. H. Kingston and T. B. Cooper. The complexity of timetable construction problems. In E. K. Burke
and P. Ross, editors, Practice and Theory of Automated Timetabling, volume 1153 of Lecture Notes
in Computer Science, pages 283–295. Springer, 1996.

[11] Y. Liu, D. Zhang, and S. C. H. Leung. A simulated annealing algorithm with a new neighborhood
structure for the timetabling problem. In GEC ’09: Proceedings of the first ACM/SIGEVO Summit
on Genetic and Evolutionary Computation, pages 381–386, New York, NY, USA, 2009. ACM.

[12] B. McCollum, E. Burke, and G. White, editors. Proceedings of the 8th International Conference on
the Practice and Theory of Automated Timetabling (PATAT 2010), Belfast, Northern Ireland, 2010.

[13] C. Meyers and J. B. Orlin. Very large-scale neighbourhood search techniques in timetabling
problems. In Practice and Theory of Automated Timetabling VI (Sixth International Conference,
PATAT2006, Brno, Czech Republic, August 2006, Selected Papers), volume 3867 of Springer Lec-
ture Notes in Computer Science, pages 24–39, 2007.

[14] N. Pillay. An overview of school timetabling research. In B. McCollum, E. Burke, and G. White,
editors, Proceedings of the 8th International Conference on the Practice and Theory of Automated
Timetabling (PATAT 2010), pages 321–335, 2010.

[15] M. Pimmer. A timeslot-based heuristic approach to construct high-school timetables. Master’s
thesis, Vienna University of Technology, Nov. 2010.

[16] G. Post, S. Ahmadi, S. Daskalaki, J. Kingston, J. Kyngas, C. Nurmi, and D. Ranson. An xml format
for benchmarks in high school timetabling. Annals of Operations Research, pages 1–13, Feb. 2010.

[17] A. Schaerf. A survey of automated timetabling. Artificial Intelligence Review, 13(2):87–127, 1999.

[18] G. Schmidt and T. Ströhlein. Timetable construction - an annotated bibliography. The Computer
Journal, 23(4), 1979.

[19] K. A. Smith, D. Abramson, and D. Duke. Hopfield neural networks for timetabling: formulations,
methods, and comparative results. Comput. Ind. Eng., 44:283–305, February 2003.

[20] R. J. Willemen. School timetable construction: Algorithms and complexity. PhD thesis, Technische
Universiteit Eindhoven, May 2002.

Udine, Italy, July 25–28, 2011


