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Bayesian Learning

Learn, which model parameters are probable, given data.

Advantages

• Measure for uncertainty

• Use prior knowledge about model and parameters

→ Sample efficient

Disadvantages

• Can be resource-heavy

• Probabilistic model required
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Setting and Terminology

Given:

• Data x

• Probabilisic model p(x | θ)
• Prior probability distribution p(θ)

Compute: probability distribution p(θ | x)
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Bayes theorem

p(θ | x)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
p(x | θ)

Prior︷︸︸︷
p(θ)

p(x)︸︷︷︸
Evidence

p(x) usually hard to compute, but x is known → p(x) is constant

Therefore
p(θ | x) ∼ f (θ) = p(x | θ)p(θ)

f (θ): Joint probability

How to specify f ?
How to represent and compute posterior?
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Running example: Coinflip
Flip (fair or unfair) coin n times
→ k times head, n − k times tail
Predict probability θ for head

Figure: Analytical solution for n = 10 and k = 6
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Probabilistic Programs

General framework to specify model via f (θ)

Arbitrary program enriched by

A︸︷︷︸
Name of

random variable

∼ Normal︸ ︷︷ ︸
Distribution

( µ, σ2︸ ︷︷ ︸
Parameters

)

and the observed value for some random variables
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Example: Coinflip in Turing.jl

Prior:

p(θ) = PDFUniform(θ) =

{
1 , if 0 ≤ θ < 1

0 otherwise

Likelihood:

p(heads|θ) =
n∏

i=1

PDFBernoulli(headsi ) = pkpn−k

where n = |heads| and k = |heads|1
→ Joint Probability is product of PDFs
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Joint Probability, Trace

For each V ∼ D, a function is called that

• determines and returns a value v for V,
• appends (V, v) to the trace, and

• updates joint probability f (θ) (multiply with PDF).

Determine v :

• V is observed: use observed value

• Otherwise: sampler-dependent, e.g. use proposal distribution or reuse from
previous trace

Run results in:

• trace θ

• joint probability f (θ)
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Markov chains

Next state only depends on current state

0 1

2

t01

t02

t10

t12t20
t21

t00 t11

t22

s: probability distribution over states

Definition (Steady state)

s is a steady state iff sT = s

Theorem
si tij = sj tji (aka reversibility) ⇒ s is steady
state
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Monte-Carlo Markov Chains

Bayes Theorem: p(θ | x) = p(x |θ)p(θ)
p(x) = Cf (θ)

Problems:

• C unknown

• many dimensions possible, therefore hard to handle

→ sample from p(θ | x)
But: no direct way

Idea: create Markov chain with steady state p(θ | x)
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Metropolis Hastings

State space: parameter configurations θ
Transitions: use proposal distribution q(θ′|θ)
Make p(θ|x) reversible by rejecting proposals
with probability 1− A(θ′|θ)
Reversible if

p(θ|x)q(θ′|θ)A(θ′|θ) = p(θ′|x)q(θ|θ′)A(θ|θ′)

Fulfilled with

A(θ′|θ) = min

(
1,

p(θ′|x)q(θ|θ′)
p(θ|x)q(θ′|θ)

)

→ Jupyter-Notebook

Algorithm 1:

Data: Distributions f , q, initial
parameters θ, #Iterations n

Result: n samples
S ← {};
for i ∈ {1, . . . , n} do

sample θ′ ∼ q(·|θ);
sample a ∼ Uniform(0, 1);

if a < min
(
1, f (θ

′)q(θ|θ′)
f (θ)q(θ′|θ)

)
then

θ ← θ′

end
append θ to S ;

end
return S
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Other inference algorithms

• Hamiltonian Monte Carlo (HMC) and No U-Turn Sampler (NUTS)

• Variational Inference (VI)

• Gibbs sampling

Visualization: https://chi-feng.github.io/mcmc-demo/app.html
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Predicting User Availabilities

→ Jupyter-Notebook
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Captchas
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Airline passenger forecast
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