Probabilistic Programming

MCMC and MH

Selected Applications

Introduction to Probabilistic Programming

Johannes Varga

Institute of Logic and Computation, TU Wien, Österreich Research Unit for Algorithms and Complexity

December 18, 2023

Probabilistic Programming

MCMC and MH

Selected Applications

Table of contents

Bayesian Learning

Probabilistic Programming

MCMC and MH

Selected Applications

MCMC and MH

Selected Applications

Bayesian Learning

Learn, which model parameters are probable, given data.

Advantages

- Measure for uncertainty
- Use prior knowledge about model and parameters
- \rightarrow Sample efficient

Disadvantages

- Can be resource-heavy
- Probabilistic model required

Probabilistic Programming

MCMC and MH

Selected Applications

Setting and Terminology

Given:

- Data <u>x</u>
- Probabilisic model $p(x \mid \theta)$
- Prior probability distribution $p(\theta)$

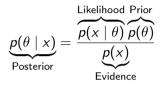
Compute: probability distribution $p(\theta \mid x)$

Probabilistic Programming

MCMC and MH

Selected Applications

Bayes theorem



p(x) usually hard to compute, but x is known $\rightarrow p(x)$ is constant

Therefore

$$p(\theta \mid x) \sim f(\theta) = p(x \mid \theta)p(\theta)$$

 $f(\theta)$: Joint probability

How to specify *f*? How to represent and compute posterior?

MCMC and MH

Selected Applications

Running example: Coinflip

Flip (fair or unfair) coin *n* times $\rightarrow k$ times head, n - k times tail Predict probability θ for head

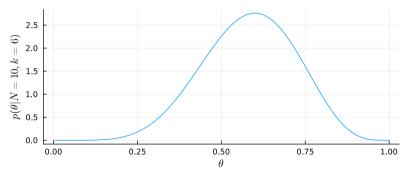


Figure: Analytical solution for n = 10 and k = 6

Probabilistic Programming

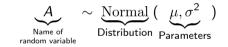
MCMC and MH

Selected Applications

Probabilistic Programs

General framework to specify model via $f(\theta)$

Arbitrary program enriched by



and the observed value for some random variables

Probabilistic Programming

MCMC and MH

Selected Applications

Example: Coinflip in Turing.jl

```
@model function coinflip(heads::AbstractVector{Bool})
    θ ~ Uniform(0, 1)
    for i in eachindex(heads)
        heads[i] ~ Bernoulli(θ)
    end
end
```

Probabilistic Programming

MCMC and MH

Selected Applications

Example: Coinflip in Turing.jl

```
@model function coinflip(heads::AbstractVector{Bool})
    θ ~ Uniform(0, 1)
    for i in eachindex(heads)
        heads[i] ~ Bernoulli(θ)
    end
end
```

Prior:

$$p(heta) = ext{PDF}_{ ext{Uniform}}(heta) = egin{cases} 1 & ext{, if } 0 \leq heta < 1 \ 0 & ext{otherwise} \end{cases}$$

Probabilistic Programming

MCMC and MH

Selected Applications

Example: Coinflip in Turing.jl

```
@model function coinflip(heads::AbstractVector{Bool})
    θ ~ Uniform(0, 1)
    for i in eachindex(heads)
        heads[i] ~ Bernoulli(θ)
    end
end
```

Prior:

$$p(heta) = ext{PDF}_{ ext{Uniform}}(heta) = egin{cases} 1 & ext{, if } 0 \leq heta < 1 \ 0 & ext{otherwise} \end{cases}$$

Likelihood:

$$p(ext{heads}| heta) = \prod_{i=1}^n ext{PDF}_{ ext{Bernoulli}}(ext{heads}_i) = p^k p^{n-k}$$

where n = |heads| and $k = |\text{heads}|_1$ \rightarrow Joint Probability is product of PDFs

MCMC and MH

Selected Applications

Joint Probability, Trace

For each $\mathcal{V}\sim\mathcal{D},$ a function is called that

- determines and returns a value v for \mathcal{V} ,
- appends $(\mathcal{V}, \mathbf{v})$ to the trace, and
- updates joint probability $f(\theta)$ (multiply with PDF).

Determine v:

- \mathcal{V} is observed: use observed value
- Otherwise: sampler-dependent, e.g. use proposal distribution or reuse from previous trace

Run results in:

- trace θ
- joint probability $f(\theta)$

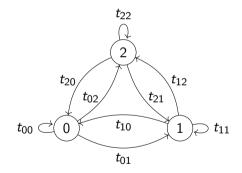
Probabilistic Programming

MCMC and MH

Selected Applications

Markov chains

Next state only depends on current state



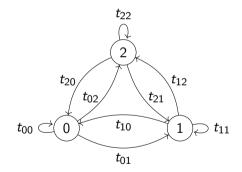
Probabilistic Programming

MCMC and MH

Selected Applications

Markov chains

Next state only depends on current state



s: probability distribution over states Definition (Steady state) s is a steady state iff sT = sTheorem

 $s_i t_{ij} = s_j t_{ji}$ (aka reversibility) \Rightarrow s is steady state

Probabilistic Programming

MCMC and MH

Selected Applications

Monte-Carlo Markov Chains

Bayes Theorem:
$$p(\theta \mid x) = \frac{p(x \mid \theta)p(\theta)}{p(x)} = Cf(\theta)$$

Problems:

- C unknown
- many dimensions possible, therefore hard to handle
- \rightarrow sample from $p(\theta \mid x)$

But: no direct way

Idea: create Markov chain with steady state $p(\theta \mid x)$

Probabilistic Programming

MCMC and MH

Selected Applications

Metropolis Hastings

State space: parameter configurations θ Transitions: use proposal distribution $q(\theta'|\theta)$ Make $p(\theta|x)$ reversible by rejecting proposals with probability $1 - A(\theta'|\theta)$ Reversible if

 $p(\theta|x)q(\theta'|\theta)A(\theta'|\theta) = p(\theta'|x)q(\theta|\theta')A(\theta|\theta')$

Fulfilled with

$$A(\theta'|\theta) = \min\left(1, \frac{p(\theta'|x)q(\theta|\theta')}{p(\theta|x)q(\theta'|\theta)}\right)$$

Probabilistic Programming

MCMC and MH

Selected Applications

Metropolis Hastings

State space: parameter configurations θ Transitions: use proposal distribution $q(\theta'|\theta)$ Make $p(\theta|x)$ reversible by rejecting proposals with probability $1 - A(\theta'|\theta)$ Reversible if

 $p(\theta|x)q(\theta'|\theta)A(\theta'|\theta) = p(\theta'|x)q(\theta|\theta')A(\theta|\theta')$

Fulfilled with

$$A(\theta'|\theta) = \min\left(1, \frac{Cf(\theta')q(\theta|\theta')}{Cf(\theta)q(\theta'|\theta)}\right)$$

Probabilistic Programming

MCMC and MH

Selected Applications

Metropolis Hastings

State space: parameter configurations θ Transitions: use proposal distribution $q(\theta'|\theta)$ Make $p(\theta|x)$ reversible by rejecting proposals with probability $1 - A(\theta'|\theta)$ Reversible if

 $p(\theta|x)q(\theta'|\theta)A(\theta'|\theta) = p(\theta'|x)q(\theta|\theta')A(\theta|\theta')$

Fulfilled with

$$A(\theta'|\theta) = \min\left(1, \frac{f(\theta')q(\theta|\theta')}{f(\theta)q(\theta'|\theta)}\right)$$

Probabilistic Programming

MCMC and MH

Selected Applications

Metropolis Hastings

State space: parameter configurations θ Transitions: use proposal distribution $q(\theta'|\theta)$ Make $p(\theta|x)$ reversible by rejecting proposals with probability $1 - A(\theta'|\theta)$ Reversible if

 $p(\theta|x)q(\theta'|\theta)A(\theta'|\theta) = p(\theta'|x)q(\theta|\theta')A(\theta|\theta')$

Fulfilled with

$$A(\theta'|\theta) = \min\left(1, \frac{f(\theta')q(\theta|\theta')}{f(\theta)q(\theta'|\theta)}\right)$$

Algorithm 4:

Data: Distributions f, g, initial parameters θ , #Iterations *n* **Result:** *n* samples $S \leftarrow \{\}$: for $i \in \{1, ..., n\}$ do sample $\theta' \sim q(\cdot | \theta)$: sample $a \sim \text{Uniform}(0, 1)$; if $a < \min\left(1, rac{f(heta')q(heta| heta')}{f(heta)q(heta'| heta)}
ight)$ then $\mid \theta \leftarrow \theta'$ end append θ to S: end return S

Probabilistic Programming

MCMC and MH

Selected Applications

Metropolis Hastings

State space: parameter configurations θ Transitions: use proposal distribution $q(\theta'|\theta)$ Make $p(\theta|x)$ reversible by rejecting proposals with probability $1 - A(\theta'|\theta)$ Reversible if

 $p(\theta|x)q(\theta'|\theta)A(\theta'|\theta) = p(\theta'|x)q(\theta|\theta')A(\theta|\theta')$

Fulfilled with

$$A(\theta'|\theta) = \min\left(1, \frac{f(\theta')q(\theta|\theta')}{f(\theta)q(\theta'|\theta)}\right)$$

 \rightarrow Jupyter-Notebook

Algorithm 5:

Data: Distributions f, q, initial parameters θ , #Iterations *n* **Result:** *n* samples $S \leftarrow \{\}$: for $i \in \{1, ..., n\}$ do sample $\theta' \sim q(\cdot | \theta)$: sample $a \sim \text{Uniform}(0, 1)$; if $a < \min\left(1, \frac{f(\theta')q(\theta|\theta')}{f(\theta)q(\theta'|\theta)}\right)$ then $\mid \theta \leftarrow \theta'$ end append θ to S: end return S

Probabilistic Programming

MCMC and MH

Selected Applications

Other inference algorithms

- Hamiltonian Monte Carlo (HMC) and No U-Turn Sampler (NUTS)
- Variational Inference (VI)
- Gibbs sampling

Visualization: https://chi-feng.github.io/mcmc-demo/app.html

Probabilistic Programming

MCMC and MH

 $\substack{ \text{Selected Applications} \\ \bullet \circ \circ }$

Predicting User Availabilities

 $\rightarrow \mathsf{Jupyter-Notebook}$

Probabilistic Programming

MCMC and MH

Selected Applications 0 = 0

Captchas

				g	gx
1: procedure CAPTCHA 2: $\nu \sim p(\nu)$ 3: $\kappa \sim p(\kappa)$	▷ sample number of letters ▷ sample kerning value	$a_1 = " u"$ $i_1 = 1$ $x_1 = 7$	$a_2 = \kappa^* \kappa^*$ $i_2 = 1$ $x_2 = -1$	$a_3 = {}^{"}\lambda"$ $i_3 = 1$ $x_3 = 6$	$a_4 = {}^{"}\lambda"$ $i_4 = 2$ $x_4 = 23$
4: Generate letters: 5: $\Lambda \leftarrow \{\}$	> sample kerning value	gxs	gxs2	gxs2r	gxs2rR
6: for $i = 1, \dots, \nu$ do 7: $\lambda \sim p(\lambda)$ 8: $\Lambda \leftarrow \operatorname{append}(\Lambda, \lambda)$	▷ sample letter identity	$a_5 = ``\lambda" \ i_5 = 3 \ x_5 = 18$	$a_6 = "\lambda"$ $i_6 = 4$ $x_6 = 53$	$i_7 = 5$	$a_8 = ``\lambda"$ $i_8 = 6$ $x_8 = 43$
9: Render: 10: $\gamma \leftarrow \text{render}(\Lambda, \kappa)$ 11: $\pi \sim p(\pi)$ 12: $\gamma \leftarrow \text{noise}(\gamma, \pi)$ 13: $\mathbf{r}\text{eturn } \gamma$	⊳ sample noise parameters	$gxs2rRj$ $a_9 = "\lambda"$ $i_9 = 7$ $x_9 = 9$	gxs2rRj Noise: displacement field	Noise: stroke	Noise: ellipse

Table 1: Captcha recognition rates.

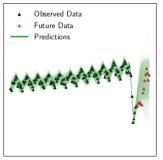
	Baidu 2011	Baidu 2013	eBay	Yahoo	reCaptcha	Wikipedia	Facebook
Our method	99.8%	99.9%	99.2%	98.4%	96.4%	93.6%	91.0%
Bursztein et al. (2014)	38.68%	55.22%	51.39%	5.33%	22.67%	28.29%	
Starostenko et al. (2015)				91.5%	54.6%		
Gao et al. (2014)	34%			55%	34%		
Gao et al. (2013)		51%		36%			
Goodfellow et al. (2014)					99.8%		
Stark et al. (2015)					90%		

Probabilistic Programming

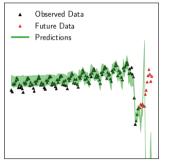
MCMC and MH

Selected Applications

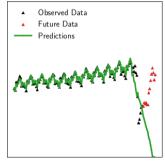
Airline passenger forecast



(a) Gaussian Process DSL 100 Synthesized Structures



(c) Facebook Prophet With ChangePoint (Custom)



(e) Neural Prophet With ChangePoint (Custom)

References I

T. A. Le, A. G. Baydin, and F. Wood. Inference compilation and universal probabilistic programming. In Artificial Intelligence and Statistics, pages 1338–1348. PMLR, 2017.

📔 F. A. K. Saad.

Scalable Structure Learning, Inference, and Analysis with Probabilistic Programs. PhD thesis, Massachusetts Institute of Technology, 2022.