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What is Clustering

» Find points or Elements in Data/Graph that are similar to
each other
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What is Clustering

» Find points or Elements in Data/Graph that are similar to
each other

towardsdatascience.com/community-detection-algorithms



Clustering for Combinatorial Optimization Problems

» Transform the problem into a similar smaller problem
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Clustering for Combinatorial Optimization Problems

» Problem defined on a bipartite Graph
» Transformed into problem on two separate Graphs
> weights represent the expected error when merging
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Graph properties
P> not-metric

> negative weights, may include negative circles: Solution
weight transformation

» ldeasare e or x <0 —x=0

Qz Li




Graph Partitioning Algorithms
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k-means (for metric graphs)
agglomerative hierachical clustering
PAM (Partitioning Around Medoids)
CLARA (Clustering LARge Applications)

CLARANS (Clustering Large Applications based on
RANdomized Search)

MST Clustering
Spectral Clustering
Graph Auto Encoders (GAE)

Clarification: many of these algorithms require a complete distance
matrix with runtime O(n?log(n)) which is a bottleneck



k-means

» Mostly used for arbitrary data not graph data

» k-means requires distance calculation from nodes to arbitrary

points
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Figure: towardsdatascience.com/k-means-a-complete-introduction



agglomerative hierachical clustering
P lteratively cluster node pairs
» Clustered nodes have new similarity to neighbors

» Different linkage variants
» Works on non metric graphs because we can use the length of

a path between two nodes as distance

[ Aqglomerative Hierarchical Clustering ]
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Figure: https://quantdare.com/hierarchical-clustering/



agglomerative hierachical clustering

» Single Linkage: Take the minimum distance to the cluster

> Complete Linkage: Take the maximum distance to the cluster
» Average Linkage: Take the mean distance to all nodes

» Other: e.g. Ward Linkage

(_Aqalomerative Hierarchical Clustering ]
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Figure: https://quantdare.com/hierarchical-clustering/
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PAM (Partitioning around Medoids)
» Two Phases: Build and Swap
» Build Phase: Greedily Select Cluster Center such that distance
to all other nodes is minimal
» Swap Phase: Use local search. Swap one medoid with one
non medoid which improves the sum of distances the most

BUILD iteration #1
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Figure: wikipedia.org/K-medoids
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PAM (Partitioning around Medoids)

P node assigned to cluster around medoid with shortest distance
» Disadvantage over agglomerative clustering: No control over

cluster sizes.

» FastPAM runtime: O(|V/|?)
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Figure: wikipedia.org/K-medoids
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CLARA (Cluster LARge Applications)

> Create n samples of size m of the original graph

» apply PAM to those n samples

» Compare the found medoids in those n samples on the whole
graph and choose the best.

Cluster plot
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Figure: datanovia.com/clara-in-r-clustering-large-applications/
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CLARANS (Clustering Large Applications based on
RANdomized Search)

» Based on local search with first improvement

» Randomly choose k medoids

» check n random neighbors if they yield an improvement
> After n steps compare found optimum to global optimum
> Repeat m times

Cluster plot
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Figure: datanovia.com/clara-in-r-clustering-large-applications/ 14



MST-Clustering

» Calculate an MST of the graph

> |teratively add edges of MST until k disjoint clusters are
created
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Figure: Minimum spanning tree release under differential privacy constraints
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Spectral Clustering

» Based on Eigenvector analysis of Graph Laplacian

» Often combined with k-means analysis

» Doesn't scale well for many clusters

P Requires strictly positive weights

Figure:

Spectral Circles

https:/ /towardsdatascience.com/spectral-clustering
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Auto Encoders

» AutoEncoders are Neural Network Structures that learn a low
level Representation of the input

» Encoder encodes a low level representation of the input.
Decoder reconstructs the original input from the low level
representation.

» Idea is to transform high level structure into a low level
representation, then cluster the low level representation using
e.g. k-means, then decode the structure
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Figure: towardsdatascience.com/generating-images-with-autoencoders 17



Graph Auto Encoders

» Similar GAE can learn a low level graph representation of an
input graph

» How to cluster nodes in the low level representation?
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Figure: Graph Autoencoder for Graph Compression and Representation Learning
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Problems that | am trying to solve

> Negative weight transformation — trial and error

» Restricting Cluster Sizes — lterative application of an
algorithm on too large Clusters
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