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Bilevel Optimization (BLO) Approach

1. coarsening: reduce problem size
2. solve coarsest problem
3. projection: project solution to less coarse graphs
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Bilevel Optimization (BLO) Approach
Coarsening

▶ partitioning: partition nodes of G
▶ contracting: aggregate nodes in each partition → G ′

▶ vertex Sets (Q, L) partitioned separately of each other
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Learning Bilevel Optimization (LBLO) Approach
Similarity Calculation

▶ learned model: S(v , v ′) = model(v , v ′). . . machine learning
similarity for L set

▶ heuristic approach: S(v , v ′) = − |N(v)∩N(v ′)|
|N(v)∪N(v ′)| . . . Jaccard

similarity for Q set

Q L Q

− 1
4

− 1
4

− 1
4

− 1
3

− 1
3

− 1
3− 1

3

L

1
2

1
5

1
4

1
3

1
4

1
4

1
2

4



Partitioning Strategies

▶ k-medoids (PAM)
Greedy construction algorithm with 1-swap local search

▶ minimum spanning tree clustering
Clustering by creating an mst and deleting edges of connected
components until a desired size is reached

▶ agglomerative clustering with different linkage methods.
clustering by partitioning the most promising nodes together
▶ minimum linkage: use minimum weight of partitioned nodes
▶ maximum linkage: use maximum weight of partitioned nodes
▶ mean linkage: use mean weight of partitioned nodes
▶ dominant linkage: use weight of the dominant node in the

partitioning
▶ Multi Level: only allow pairs of nodes in a cluster. Cluster

over Multiple Levels
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Related Work

▶ Jatschka et al. (2023), EvoCOP23: Multilevel Optimization
for MBSSLP

▶ Jatschka et al. (2020), OPTIMA20: Large Neighborhood
Search for MBSSLP

▶ Walshaw (2002), Operations Research: Multilevel
Optimization for traveling salesman problem

▶ Valejo et al. (2020), ACM Computing Surveys: Overview of
MLO approaches
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Problem Motivation
▶ adoption of electric vehicles steadily increasing
▶ major hindrance for customers: long charging times
▶ alternative approach: battery swapping stations

▶ users replace depleted batteries with fully charged ones
▶ depleted batteries are recharged and provided again later

▶ Goal: optimal setup of battery swapping station
→ The Demand Maximizing Battery Swapping Station Location

Problem (DMBSSLP)

© Gogoro
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Instance and Solution Representation
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Instance and Solution Representation
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Instance and Solution Representation
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Instance and Solution Representation
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Instance and Solution Representation
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The Demand Maximizing Battery Swapping Station
Location Problem (DMBSSLP)
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connection with distance
OD-pair with demand

▶ edge weights are distances
▶ nodes are possible areas for

a station (#nodes = n)
▶ origin destination pairs

(OD-pairs) constitute
demand (#OD-pairs = m)

▶ detours impact user
acceptance

Goal: decide area and capacity
of a station in order to maximize
satisfied demand
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The Demand Maximizing Battery Swapping Station
Location Problem (DMBSSLP)
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potential areas for stations

constructed station

unavailable areas for stations

▶ edge weights are distances
▶ nodes are possible areas for

a station (#nodes = n)
▶ origin destination pairs

(OD-pairs) constitute
demand (#OD-pairs = m)

▶ detours impact user
acceptance

Goal: decide where to set up
stations with which capacity in
order to maximize satisfied de-
mand
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The Demand Maximizing Battery Swapping Station
Location Problem (DMBSSLP)
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Q L ▶ reformulation on a bipartite
graph

▶ node set Q: OD-pairs
▶ node set L: areas for

stations
▶ OD-pairs are connected to

areas if a station in that
area may satisfy part of the
demand
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The Demand Maximizing Battery Swapping Station
Location Problem (DMBSSLP)
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Q L ▶ reformulation on a bipartite
graph

▶ node set Q: OD-pairs
▶ node set L: areas for

stations
▶ OD-pairs are connected to

areas if a station in that
area may satisfy part of the
demand

16



Properties of DMBSSLP
Bipartite Graph Properties

▶ properties of Q set
▶ dq: demand of an OD-pair

▶ properties of L set
▶ rl: number of allowed stations at area l
▶ d̄l : The maximum demand that can be satisfied at an area l

▶ properties of an edge
▶ eql : maximum demand that can be assigned form OD-pair q to

area l
▶ gql: customer loss factor when satisfying demand of OD-pair q

at area l
▶ global properties

▶ s: number of battery charging slots that can be built at a
station

▶ c: cost of a station
▶ b: cost of a battery charging slot
▶ B: budget for the project
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Model
Features

▶ some important features for the L neural
network:
▶ ∆dq: the sum of demands of OD-pairs in the

symmetric difference of sets of neighboring
OD-pairs

▶ ∩dq: the sum of demands of OD-pairs in the
intersection of sets of neighboring OD-pairs

▶ d̄l1 , d̄l2 , d̄l3 : the satisfiable demand at an area for
the grouped nodes and the prospective merged
node

▶
∑

q∈N(l1)
eql1 gql1∑

q∈N(l1)
eql1

,
∑

q∈N(l2)
eql2 gql2∑

q∈N(l2)
eql2

,
∑

q∈N(l3)
eql3 gql3∑

q∈N(l3)
eql3

demand weighted by the customer loss

Q L

symmetric difference
intersection
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Model
Data Collection

the trainingset contains 3000 instances of varying sizes;
1000 instances with m = n = 1600;
1000 instances with m = n = 3200;
1000 instances with m = n = 6400
▶ coarsen instance by randomly merging neighboring L nodes.
▶ solve smaller instance using MILP
▶ project MILP solutions of small instance
▶ record features of merged nodes
▶ create dependent variable
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Model
dependent variable

zl1l2 =
(∑

q∈N(l3) aql3

)
−

(∑
q∈N(l3) ãql1 + ãql2

)
▶ record difference between coarse and projected solution for

individual nodes

l3

Q aql L
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Q aql Li
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Model
Model Parameters

Fully connected MLP
ADAM Optimizer
MSE loss with symlog transformation

symlog(x) := sign(x) log (|x | + 1)

▶ architecture:
▶ width: [40,20]; [40,40]; [80,40]; [80,80]; [120,80]
▶ regularization: dropout, no dropout

▶ learning rate: 0.001; 0.0005; 0.0001
▶ batch size: 64; 256
▶ number of trainings instances: 90; 900; 7200
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Experiments
Methodology

▶ 9 set of 30 benchmark instances with size of
n = m = {100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600}

▶ Programming Language: Julia 1.10

▶ AMD EPYC 7402, 2.80GHz

▶ Gurobi (single threaded) 10.0 for all MI(LP) solving
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Experiments
Computational Results

Average solution quality using ML-similarity or Jaccard similarity
on benchmark instances

size ML Jaccard ML time Jaccard time
100 0.9274 0.9342 1.38s 1.15s
200 0.9211 0.9127 2.39s 1.79s
400 0.9000 0.8750 4.67s 3.03s
800 0.8860 0.8571 13.1s 9.45s

1600 0.8825 0.8614 37.5s 16.4s
3200 0.8881 0.8593 81.2s 74.8s
6400 0.8817 0.8431 331s 268s

12800 0.8809 0.8435 1240s 1120s
25600 0.8714 0.8454 6220s 8060s
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Experiments
Computational Results

Average solution quality using ML-similarity or Jaccard similarity on
benchmark instances grouped by different partitioning algorithms

ML Jaccard
mst-clustering 0.9005 0.8749
k-medoids 0.9019 0.8739
multi-level 0.8641 0.8439
max-linkage 0.8964 0.871
min-linkage 0.9005 0.876
mean-linkage 0.8954 0.876
dominant-linkage 0.8981 0.8756
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Experiments
Computational Results

Detailed results selected algorithms solution quality

ML Jaccard

mst-clustering k-medoids min-linkage mst-clustering k-medoids min-linkage

100 0.9321 0.9304 0.9352 0.9443 0.9425 0.9420
200 0.9272 0.9304 0.9261 0.9227 0.9145 0.9227
400 0.9045 0.9104 0.9046 0.8765 0.8812 0.8802
800 0.8893 0.8930 0.8895 0.8582 0.8582 0.8613

1600 0.8956 0.8977 0.8916 0.8625 0.8579 0.8606
3200 0.8958 0.8924 0.8986 0.8680 0.8628 0.8682
6400 0.8886 0.8891 0.8927 0.8450 0.8472 0.8468

12800 0.8838 0.8896 0.8897 0.8487 0.8500 0.8510
25600 0.8877 0.8841 0.8773 0.8480 0.8512 0.8508
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Experiments
Computational Results

Detailed results selected algorithm times

ML Jaccard

mst-clustering k-medoids min-linkage mst-clustering k-medoids min-linkage

100 1.30s 1.37s 1.41s 1.19s 1.19s 1.19s
200 1.98s 2.16s 2.36s 1.55s 1.51s 1.88s
400 3.47s 3.77s 4.50s 2.40s 2.42s 3.23
800 10.1s 10.6s 12.8s 6.51s 6.41s 9.81s

1600 29.2s 29.3s 36.5s 12.5s 12.5s 16.4s
3200 72.2s 64.7s 77.0s 64.1s 65.5s 76.1s
6400 290s 281s 297s 231s 277s 270s

12800 1070s 1130s 1150s 1060s 1030s 1150s
25600 4640s 5950s 6470s 7370s 8640s 7960
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Conclusion and Future Work
▶ Machine Learning supported partitioning of BLO for

DMBSSLP instances improves solution quality in comparison
to simple heuristic by up to 4%

▶ Different clustering methods don’t lead to significantly
different solution qualities. Faster methods like mst-clustering
are therefore preferable.

▶ show that this principle is applicable to other more complex
problems

▶ expand the usage of ML-similarity to both Q and L set at the
same time

▶ apply graph neural networks, with message passing
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Properties of DMBSSLP
Solution and Objective Function

decision variables for a solution:
▶ x = (xl)l∈L ∈ {0, . . . , rl} # of opened stations in l
▶ y = (yl)l∈L ∈ {0, . . . , s · xl} # of battery slots in l
▶ a = (aql)q∈Q,l∈L s.t. 0 ≤ aql ≤ eql : the part of the demand of

OD-pair q assigned to stations at area l

objective function (maximize fulfilled demand):

max
∑
q∈Q

∑
l∈N(q)

aql
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DMBSSLP MILP formulation

max
∑
q∈Q

∑
l∈N(q)

aql

sxl ≥ yl l ∈ L∑
l∈N(q)

aql ≤ dq q ∈ Q

∑
q∈N(l)

aql ≤ yl l ∈ L

∑
l∈L

(clxl + blyl) ≤ B

xl ∈ {0, . . . , rl} l ∈ L
yl ∈ {0, . . . , ⌈d̄l⌉} l ∈ L
0 ≤ aql ≤ eql q ∈ Q, l ∈ N(q)
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Bilevel Optimization (MLO) Approach
Projecting Solution

▶ vertex Sets (Q′, L′) projected independent of each other
▶ for each OD-pair and for each area a MI(LP) is solved
▶ MILP for area l are dependent of each other
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Further Results
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Further Results

33



Further Results
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Further Results
MILP L projection

max
∑

l ′∈Li−1
l

∑
q∈N i−1(l ′)

ai−1
ql ′

sx i−1
l ′ ≥ y i−1

l ′ l ′ ∈ Li−1
l∑

l ′∈Li−1
l ∩N i−1(q)

ai−1
ql ′ ≤ δq q ∈ N i−1(l)

∑
q∈N i−1(l ′)

ai−1
ql ′ ≤ y i−1

l ′ l ′ ∈ Li−1
l∑

l ′∈Li−1
l

(cx i−1
l ′ + by i−1

l ′ ) ≤ cx̃ i
l + bỹ i

l

x i−1
l ′ ∈ {0, . . . , r i−1

l ′ } l ′ ∈ Li−1
l

y i−1
l ′ ∈ {0, . . . , ⌈d̄ i−1

l ′ ⌉} l ′ ∈ Li−1
l

0 ≤ ai−1
ql ′ ≤ ei−1

ql ′ l ′ ∈ Li−1
l , q ∈ N i−1(l ′)
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Further Results
LP Q projection

max
∑

q′∈Qi−1
q

∑
l∈Ñ i (q′)

ãi
q′l

∑
l∈Ñ i (q′)

ãi
q′l ≤ d̃ i

q′ q′ ∈ Qi−1
q

∑
q′∈Ñ i (l)∩Qi−1

q

ãi
q′l ≤ ai

ql l ∈ N i(q)

0 ≤ ãi
q′l ≤ ẽq′l q′ ∈ Qi−1

q , l ∈ Ñ i(q)
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