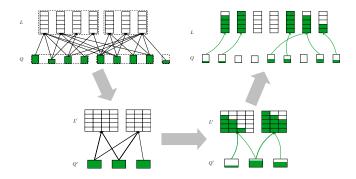
A Learning Bilevel Optimization Approach for the Demand Maximizing Battery Swapping Station Location Problem

Laurenz Tomandl Thomas Jatschka Günther Raidl Tobias Rodemann

Bilevel Optimization (BLO) Approach

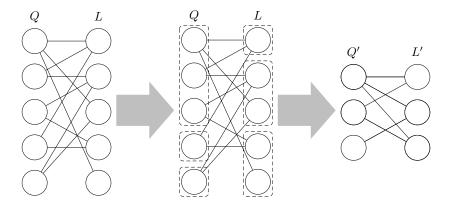
- 1. coarsening: reduce problem size
- 2. solve coarsest problem
- 3. projection: project solution to less coarse graphs



Bilevel Optimization (BLO) Approach

Coarsening

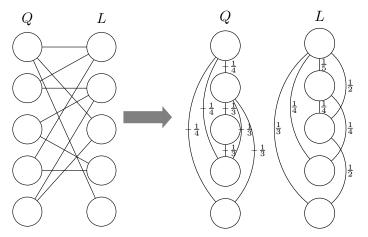
- partitioning: partition nodes of G
- contracting: aggregate nodes in each partition $\rightarrow G'$
- vertex Sets (Q, L) partitioned separately of each other



Learning Bilevel Optimization (LBLO) Approach

Similarity Calculation

- learned model: S(v, v') = model(v, v')... machine learning similarity for L set
- ▶ heuristic approach: $S(v, v') = -\frac{|N(v) \cap N(v')|}{|N(v) \cup N(v')|}$... Jaccard similarity for Q set



Partitioning Strategies

k-medoids (PAM)

Greedy construction algorithm with 1-swap local search

minimum spanning tree clustering

Clustering by creating an mst and deleting edges of connected components until a desired size is reached

 agglomerative clustering with different linkage methods. clustering by partitioning the most promising nodes together

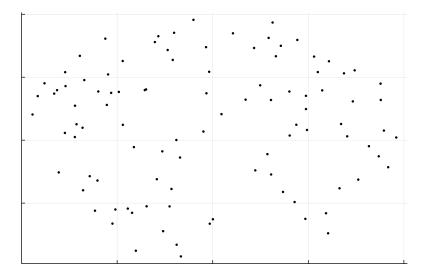
- minimum linkage: use minimum weight of partitioned nodes
- maximum linkage: use maximum weight of partitioned nodes
 mean linkage: use mean weight of partitioned nodes
- dominant linkage: use weight of the dominant node in the partitioning
- Multi Level: only allow pairs of nodes in a cluster. Cluster over Multiple Levels

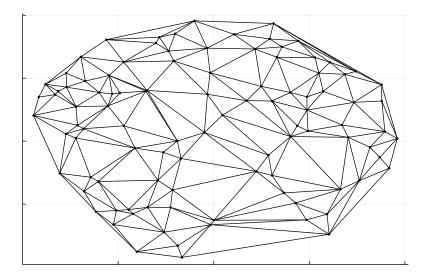
Related Work

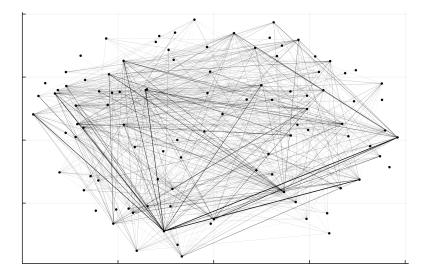
- Jatschka et al. (2023), EvoCOP23: Multilevel Optimization for MBSSLP
- Jatschka et al. (2020), OPTIMA20: Large Neighborhood Search for MBSSLP
- Walshaw (2002), Operations Research: Multilevel Optimization for traveling salesman problem
- Valejo et al. (2020), ACM Computing Surveys: Overview of MLO approaches

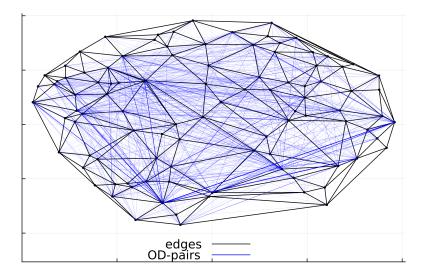
Problem Motivation

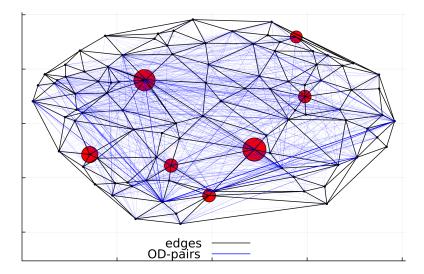
- adoption of electric vehicles steadily increasing
- major hindrance for customers: long charging times
- alternative approach: battery swapping stations
 - users replace depleted batteries with fully charged ones
 - depleted batteries are recharged and provided again later
- Goal: optimal setup of battery swapping station
 - $\rightarrow\,$ The Demand Maximizing Battery Swapping Station Location Problem (DMBSSLP)



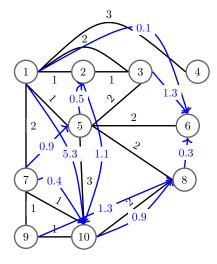








The Demand Maximizing Battery Swapping Station Location Problem (DMBSSLP)

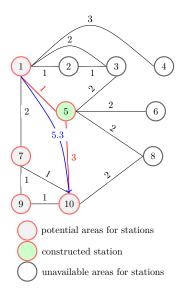


- edge weights are distances
- nodes are possible areas for a station (#nodes = n)
- origin destination pairs (OD-pairs) constitute demand (#OD-pairs = m)
- detours impact user acceptance

Goal: decide area and capacity of a station in order to maximize satisfied demand

← Connection with distance ← OD-pair with demand

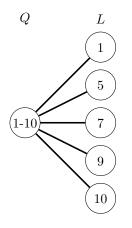
The Demand Maximizing Battery Swapping Station Location Problem (DMBSSLP)



- edge weights are distances
- nodes are possible areas for a station (#nodes = n)
- origin destination pairs (OD-pairs) constitute demand (#OD-pairs = m)
- detours impact user acceptance

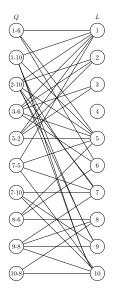
Goal: decide where to set up stations with which capacity in order to maximize satisfied demand

The Demand Maximizing Battery Swapping Station Location Problem (DMBSSLP)



- reformulation on a bipartite graph
- node set Q: OD-pairs
- node set L: areas for stations
- OD-pairs are connected to areas if a station in that area may satisfy part of the demand

The Demand Maximizing Battery Swapping Station Location Problem (DMBSSLP)



- reformulation on a bipartite graph
- node set Q: OD-pairs
- node set L: areas for stations
- OD-pairs are connected to areas if a station in that area may satisfy part of the demand

Properties of DMBSSLP

Bipartite Graph Properties

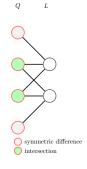
- properties of Q set
 - dq: demand of an OD-pair
- properties of L set
 - r₁: number of allowed stations at area 1
 - \bar{d}_l : The maximum demand that can be satisfied at an area l
- properties of an edge
 - e_{ql}: maximum demand that can be assigned form OD-pair q to area l
 - gq1: customer loss factor when satisfying demand of OD-pair q at area l
- global properties
 - s: number of battery charging slots that can be built at a station
 - c: cost of a station
 - **b**: cost of a battery charging slot
 - **B**: budget for the project

18

Model Features

- some important features for the L neural network:
 - Δd_q: the sum of demands of OD-pairs in the symmetric difference of sets of neighboring OD-pairs
 - ∩d_q: the sum of demands of OD-pairs in the intersection of sets of neighboring OD-pairs
 - ▶ d
 _{l₁}, d
 _{l₂}, d
 _{l₃}: the satisfiable demand at an area for the grouped nodes and the prospective merged node

$$\sum_{\substack{q \in N(l_1) \\ \sum_{q \in N(l_1)} e_{ql_1} g_{ql_1}}}^{\text{Hode:}} \sum_{\substack{q \in N(l_2) \\ q \neq q_2 \\ q \neq N(l_2)}}^{\text{Hode:}} \sum_{q \in N(l_2) e_{ql_2} g_{ql_2}}^{\text{Hode:}} e_{ql_2} g_{ql_2}}, \frac{\sum_{q \in N(l_3) e_{ql_3} g_{ql_3}}^{\text{Hode:}} e_{ql_3} g_{ql_3}}{\sum_{q \in N(l_3) e_{ql_3}}^{\text{Hode:}} e_{ql_3}}$$
demand weighted by the customer loss



the trainingset contains 3000 instances of varying sizes; 1000 instances with m = n = 1600; 1000 instances with m = n = 3200; 1000 instances with m = n = 6400

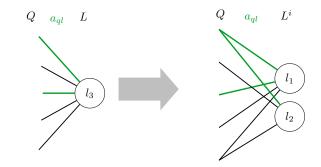
- coarsen instance by randomly merging neighboring L nodes.
- solve smaller instance using MILP
- project MILP solutions of small instance
- record features of merged nodes
- create dependent variable

Model

dependent variable

$$z_{l_1l_2} = \left(\sum_{q \in \mathcal{N}(l_3)} a_{ql_3}\right) - \left(\sum_{q \in \mathcal{N}(l_3)} \tilde{a}_{ql_1} + \tilde{a}_{ql_2}\right)$$

 record difference between coarse and projected solution for individual nodes



Model

Model Parameters

Fully connected MLP ADAM Optimizer MSE loss with symlog transformation

 $symlog(x) := sign(x) \log (|x| + 1)$

architecture:

- width: [40,20]; [40,40]; [80,40]; [80,80]; [120,80]
- regularization: dropout, no dropout
- learning rate: 0.001; 0.0005; 0.0001
- batch size: 64; 256
- number of trainings instances: 90; 900; 7200

Methodology

- 9 set of 30 benchmark instances with size of
 n = m = {100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600}
- Programming Language: Julia 1.10
- AMD EPYC 7402, 2.80GHz
- Gurobi (single threaded) 10.0 for all MI(LP) solving

Computational Results

Average solution quality using ML-similarity or Jaccard similarity on benchmark instances

size	ML	Jaccard	ML time	Jaccard time
100	0.9274	0.9342	1.38s	1.15s
200	0.9211	0.9127	2.39s	1.79s
400	0.9000	0.8750	4.67s	3.03s
800	0.8860	0.8571	13.1s	9.45s
1600	0.8825	0.8614	37.5s	16.4s
3200	0.8881	0.8593	81.2s	74.8s
6400	0.8817	0.8431	331s	268s
12800	0.8809	0.8435	1240s	1120s
25600	0.8714	0.8454	6220s	8060s

Computational Results

Average solution quality using ML-similarity or Jaccard similarity on benchmark instances grouped by different partitioning algorithms

	ML	Jaccard
mst-clustering	0.9005	0.8749
k-medoids	0.9019	0.8739
multi-level	0.8641	0.8439
max-linkage	0.8964	0.871
min-linkage	0.9005	0.876
mean-linkage	0.8954	0.876
dominant-linkage	0.8981	0.8756

Computational Results

Detailed results selected algorithms solution quality

	ML			Jaccard		
	mst-clustering	k-medoids	min-linkage	mst-clustering	k-medoids	min-linkage
100	0.9321	0.9304	0.9352	0.9443	0.9425	0.9420
200	0.9272	0.9304	0.9261	0.9227	0.9145	0.9227
400	0.9045	0.9104	0.9046	0.8765	0.8812	0.8802
800	0.8893	0.8930	0.8895	0.8582	0.8582	0.8613
1600	0.8956	0.8977	0.8916	0.8625	0.8579	0.8606
3200	0.8958	0.8924	0.8986	0.8680	0.8628	0.8682
6400	0.8886	0.8891	0.8927	0.8450	0.8472	0.8468
12800	0.8838	0.8896	0.8897	0.8487	0.8500	0.8510
25600	0.8877	0.8841	0.8773	0.8480	0.8512	0.8508

Computational Results

Detailed results selected algorithm times

	ML			Jaccard		
	mst-clustering	k-medoids	min-linkage	mst-clustering	k-medoids	min-linkage
100	1.30s	1.37s	1.41s	1.19s	1.19s	1.19s
200	1.98s	2.16s	2.36s	1.55s	1.51s	1.88s
400	3.47s	3.77s	4.50s	2.40s	2.42s	3.23
800	10.1s	10.6s	12.8s	6.51s	6.41s	9.81s
1600	29.2s	29.3s	36.5s	12.5s	12.5s	16.4s
3200	72.2s	64.7s	77.0s	64.1s	65.5s	76.1s
6400	290s	281s	297s	231s	277s	270s
12800	1070s	1130s	1150s	1060s	1030s	1150s
25600	4640s	5950s	6470s	7370s	8640s	7960

Conclusion and Future Work

- Machine Learning supported partitioning of BLO for DMBSSLP instances improves solution quality in comparison to simple heuristic by up to 4%
- Different clustering methods don't lead to significantly different solution qualities. Faster methods like mst-clustering are therefore preferable.

- show that this principle is applicable to other more complex problems
- expand the usage of ML-similarity to both Q and L set at the same time
- apply graph neural networks, with message passing

Bibliography

- T. Jatschka, F. F. Oberweger, T. Rodemann, and G. R. Raidl. Distributing battery swapping stations for electric scooters in an urban area. In N. Olenev, Y. Evtushenko, M. Khachay, and V. Malkova, editors, *Optimization and Applications, Proceedings of OPTIMA 2020 – XI International Conference Optimization and Applications*, volume 12422 of *LNCS*, pages 150–165. Springer, 2020.
- T. Jatschka, T. Rodemann, and G. R. Raidl. A multilevel optimization approach for large scale battery exchange station location planning. In
 L. Pérez Cáceres and T. Stützle, editors, *Evolutionary Computation in Combinatorial Optimization*, volume 13987 of *LNCS*, page 50–65. Springer, 2023. URL https://www.ac.tuwien.ac.at/files/pub/jatschka_23.pdf.

A. Valejo, V. Ferreira, R. Fabbri, M. C. F. d. Oliveira, and A. d. A. Lopes. A

- critical survey of the multilevel method in complex networks. *ACM Computing Surveys*, 53(2), 2020. ISSN 0360-0300.
- C. Walshaw. A multilevel approach to the travelling salesman problem. *Oper. Res.*, 50(5):862–877, 2002.

Properties of DMBSSLP

Solution and Objective Function

decision variables for a solution:

objective function (maximize fulfilled demand):

$$\max \sum_{q \in Q} \sum_{l \in N(q)} a_{ql}$$

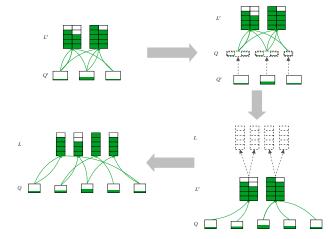
DMBSSLP MILP formulation

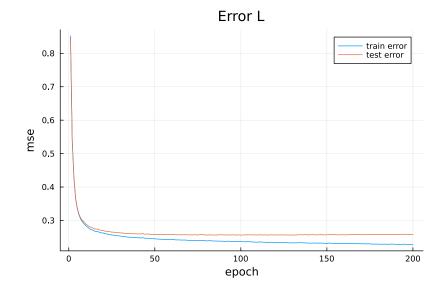
 $\max \sum \sum a_{ql}$ $q \in Q$ $l \in N(q)$ $sx_l \ge y_l$ $I \in L$ $\sum a_{ql} \leq d_q$ $q \in Q$ $l \in N(q)$ $\sum a_{ql} \leq y_l$ $l \in L$ $q \in N(I)$ $\sum (c_l x_l + b_l y_l) \leq B$ $I \in L$ $x_l \in \{0, \ldots, r_l\}$ $l \in L$ $y_l \in \{0, \ldots, \lceil \overline{d}_l \rceil\}$ $I \in L$ $q \in Q, I \in N(q)$ $0 < a_{al} < e_{al}$

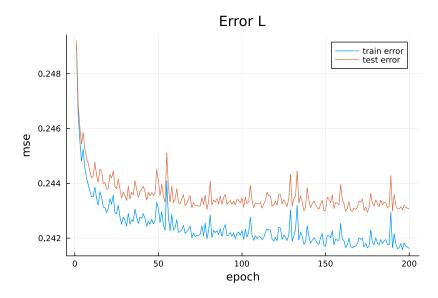
Bilevel Optimization (MLO) Approach

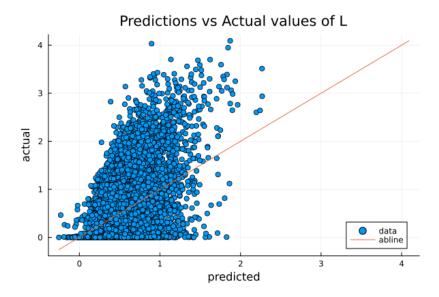
Projecting Solution

- ▶ vertex Sets (Q', L') projected independent of each other
- ▶ for each OD-pair and for each area a MI(LP) is solved
- MILP for area / are dependent of each other



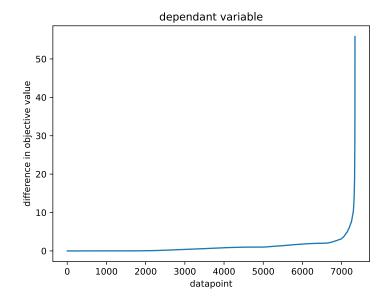


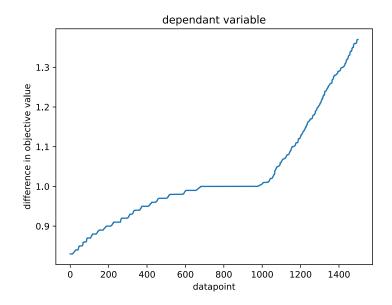


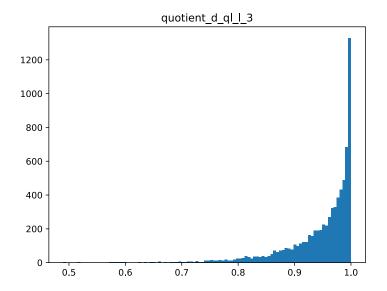


Algorithm 5.2: Partitioning

```
Input: a set of nodes U
    Output: a partitioning M(U)
 1: S \leftarrow \text{empty max heap};
 2: for u \in U do
       for v \in neighborhood(u) s.t. (u, v) \notin S do
 3:
           S(u, v) = similarity(u, v));
 4:
       end for
 5:
6: end for
7: M \leftarrow \emptyset:
8: unpartitioned \leftarrow U:
9: while S is not empty do
        (u, v) \leftarrow pop pair with highest similarity from S;
10:
        if u, v \in unpartitioned then
11:
           M \leftarrow M \cup (u, v);
12:
           remove u, v from unpartitioned;
13:
        end if
14:
15: end while
16: add all nodes in unpartitioned to M partitioned just to themselves ;
17: return M:
```







Further Results MILP *L* projection

max $\sum \sum a_{al'}^{i-1}$ $I' \in L^{i-1}_{I} q \in N^{i-1}(I')$ $sx_{u}^{i-1} > y_{u}^{i-1}$ $l' \in L_l^{i-1}$ $\sum \quad a_{al'}^{i-1} \leq \delta_a$ $q \in N^{i-1}(I)$ $l' \in L_i^{i-1} \cap N^{i-1}(q)$ $\sum a_{al'}^{i-1} \leq y_{l'}^{i-1}$ $l' \in L_l^{i-1}$ $q \in \overline{N^{i-1}}(I')$ $\sum (cx_{l'}^{i-1} + by_{l'}^{i-1}) \leq c\tilde{x}_l^i + b\tilde{y}_l^i$ $l' \in L_{i}^{i-1}$ $x_{\mu}^{i-1} \in \{0, \ldots, r_{\mu}^{i-1}\}$ $l' \in L_l^{i-1}$ $y_{u}^{i-1} \in \{0,\ldots,\lceil \overline{d}_{u}^{i-1} \rceil\}$ $I' \in L_{L}^{i-1}$ $0 \leq a_{a'}^{i-1} \leq e_{a'}^{i-1}$ $l' \in L_{l}^{i-1}, q \in N^{i-1}(l')$

Further Results LP Q projection

$$\begin{array}{ll} \max \ \sum\limits_{q' \in \mathcal{Q}_q^{i-1}} \sum\limits_{l \in \tilde{\mathcal{N}}^i(q')} \tilde{a}_{q'l}^i \\ & \sum\limits_{l \in \tilde{\mathcal{N}}^i(q')} \tilde{a}_{q'l}^i \leq \tilde{d}_{q'}^i \\ & \sum\limits_{q' \in \tilde{\mathcal{N}}^i(l) \cap \mathcal{Q}_q^{i-1}} \tilde{a}_{q'l}^i \leq a_{ql}^i \\ & 0 \leq \tilde{a}_{q'l}^i \leq \tilde{e}_{q'l} \end{array} \qquad \begin{array}{ll} q' \in \mathcal{Q}_q^{i-1} \\ & l \in \mathcal{N}^i(q) \\ & q' \in \mathcal{Q}_q^{i-1}, \ l \in \tilde{\mathcal{N}}^i(q) \end{array}$$