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Introduction

Definition (Directed Feedback Vertex Set Problem)

Given: Directed graph G = (V ,E )
Task: Find F ⊆ V of minimum cardinality, s.t. G [V \ F ] is acyclic.

F . . . directed feedback vertex set (DFVS)
G [V \ F ] . . . directed acyclic graph (DAG)

Figure: Example of a DFVS
problem instance.
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Figure: Suboptimal
solution F = {1, 5}.
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Figure: Optimal
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Problem Motivation

Applications:

• Deadlock detection and
recovery

• Program verification

• Package dependencies

But:

• NP-complete problem
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Related Work

DFVS problem:

• Simulated annealing (SA) metaheuristic by Galinier et al. (2013):
SA-FVSP

• Extension of SA-FVSP with nonuniform neighborhood sampling
(SA-FVSP-NNS) by Tang et al. (2017)

• Heuristic solvers from the Parameterized Algorithms and
Computational Experiments (PACE) 2022 challenge†

Undirected weighted FVS problem:
• MILS+ by Melo et al. (2021)

• multi-start iterated local search (MILS) + MIP-based local search

†https://pacechallenge.org/2022/results/
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Solving Approach

Exact: Mixed Integer Linear Programming (MILP)

Heuristic: Large Neighborhood Search (LNS)

Idea: combine LNS and MILP
• Large neighborhoods with complex move operators

• Destroy operator
• Repair operator

• MILP formulation: optimally solve subproblem in repair operator

• Important parameter: degree of destruction k

• Initial solution: construction heuristic + local search
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MILP Formulations

Formulation inspired by subtour elimination constraints from Miller,
Tucker, and Zemlin (MTZ):

• derived from formulation by Melo et al. (2021)

Formulation based on cycle elimination constraints (CECs):

• initial model strengthened with clique constraints based on cycles of
length two (2-cycles)

• lazy constraint generation for more general CECs
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Enlarge-DAG Neighborhood Structure

• destroy: move multiple vertices from DFVS to DAG

• repair: solve smaller DFVS subproblem

DAG DFVS

Figure: Initial state with
current solution.

DAG DFVS

Figure: Element
selection.

DAG DFVS

Figure: Enlarged DAG.

DAG DFVS

Figure: Enlarged DAG
with exemplary cycle.

DAG DFVS

Figure: Solving the
subproblem.

DAG DFVS

Figure: Final state with
new solution.
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Selection Strategies
Degree of Destruction k

k = number of selected vertices in the destroy operator

Simple selection:

• fixed degree(x): constant value x

• random selection: from a predefined range

Advanced dynamic selection:

• 5 strategies

• based on graph properties and/or MILP formulation

• rules to predict suitable values for each instance
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Selection Strategies
Degree of Destruction k

#2-cycles:

2-cycles Partition Instances k

From To CEC MTZ

0 100 22 50 25
101 10000 11 200 75000

10001 100000 16 200 5000
100001 200000 14 2000 1000
200001 1000000 15 2000 500

1000001 1200000 12 3000 1000
1200001 ∞ 10 50000 3000
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Selection Strategies
MILP Formulation

2 approaches:

• uninformed preselection
• depending on instance characteristics:

• number of 2-cycles
• graph density
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Computational Study
Setup

• implementation in Julia 1.7.1

• Gurobi 9.5.1 via JuMP
• memory limit of 20GB
• time limit of 90 s

• general time limit of 550 s

• Intel Xeon E5540 with 2.53GHz
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Computational Study
Benchmark Instances

Table: Data sets used for the computational study.

Data Set Size Number of Vertices Number of Edges

nmin nmax mmin mmax

pace-public 100 843 875713 2103 5105039
pace-private 100 1024 2394385 3473 5021410
fsp-data 40 50 1000 100 30000

Evaluation:

• solution quality: 100%
|F∗

i |
|Fi |

• instance i , solution Fi , best known solution F ∗
i

• geometric mean
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Results - Selection Strategies for k
Dynamic Selection

Selection Strategy Formulation Average Solution Quality [%] Best Known Solutions

pace-public pace-private pace-public pace-private

#2-cycles CEC 96.15 98.83 12 26
MTZ 94.57 97.25 13 17

dynamic 96.21 98.96 15 26

best triple CEC 94.53 96.33 32 39
MTZ 93.68 96.48 13 15

#2-cycles best triple CEC 95.84 97.48 17 27
MTZ 94.34 97.10 13 17

#2-cycles regression CEC 95.62 97.53 15 25
MTZ 93.89 95.83 8 12

dynamic 95.63 97.44 14 21

#vertices regression CEC 94.81 96.77 9 27
MTZ 93.62 95.81 6 10

dynamic 94.80 96.79 9 20
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Comparison with Literature

SA-based metaheuristics:
• SA-FVSP (Galinier et al. (2013))

• SA-FVSP (Tang et al. (2017))

• SA-FVSP-NNS (Tang et al. (2017))

Benchmark instances:

Table: Data sets used for the computational study.

Data Set Size Number of Vertices Number of Edges

nmin nmax mmin mmax

pace-public 100 843 875713 2103 5105039
pace-private 100 1024 2394385 3473 5021410
fsp-data 40 50 1000 100 30000
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Comparison with Literature
Results

MILP-based LNS Algorithms Average Solution Quality [%] Best Known Solutions

Selection Strategy Formulation

#2-cycles CEC 96.37 18
MTZ 95.49 15

dynamic 96.01 15

best triple CEC 94.77 19
MTZ 93.38 15

#2-cycles best triple CEC 96.23 19
MTZ 95.54 15

#2-cycles regression CEC 95.71 18
MTZ 94.80 15

dynamic 95.57 15

#vertices regression CEC 95.58 18
MTZ 94.53 15

dynamic 95.42 15

SA Algorithms

SA-FVSP‡ 99.77 27
SA-FVSP§ 63.24 1
SA-FVSP-NNS§ 70.40 1

‡
by Galinier et al. (2013)

§
by Tang et al. (2017)
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Conclusion & Future Work

• LNS outperforms MILP solving when having a time limit

• Degree of destruction important for performance of MILP-based LNS
• Dynamic MILP selection sometimes beneficial

→ still room for improvement

• Investigate machine learning approaches for algorithm configuration

• Extend graph reduction procedure
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Discussion & Questions

Thank you!
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MILP Formulations
MTZ

min |V | −
∑
v∈V

yv (1)

s.t. Φu − Φv + |Vs | · yv ≤ |Vs | − 1 ∀(u, v) ∈ Es (2)

yv ≤ Φv ∀v ∈ V (3)

ys = 1 (4)

Φs = 0 (5)

yv ∈ {0, 1} ∀v ∈ V (6)

0 ≤ Φv ≤ |Vs | − 1 ∀v ∈ V (7)

Maria Bresich MILP-Based LNS for the DFVS Problem Nov. 3, 2023 18 / 18



MILP Formulations
CEC

min |V | −
∑
v∈V

yv (8)

s.t.
∑
v∈C

yv ≤ |C | − 1 ∀C ∈ C (9)∑
v∈K

yv ≤ 1 ∀K ∈ K (10)

yv ∈ {0, 1} ∀v ∈ V (11)
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Construction Heuristic & Local Search

Idea:

• create initial solution with construction heuristic (CH)

• improve with local search (LS)

CH: based on greedy function (Cai et al. (2006)) and topological ordering

h(v) = deg−(v) + deg+(v)− λ · |deg−(v)− deg+(v)| (12)

LS: one-flip neighborhood

• move 1 vertex from DFVS to DAG
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Results - MILP Formulations
pace-public

Formulation Avg. Solution Quality [%] Best Known Solutions

MTZpure 84.93 18
MTZCH+LS 92.58 18

CECpure 82.59 38
CECCH+LS 93.43 38

pure CH+LS
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Results - Selection Strategies for k
Simple Selection on pace-public
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MTZ CEC

Selection Strategy MILP Avg. Solution Quality [%] Best Known Solutions

fixed degree(25) MTZ 93.42 8
CEC 94.20 7

fixed degree(75) MTZ 92.92 7
CEC 95.10 11

random MTZ 93.72 6
CEC 94.87 6

Maria Bresich MILP-Based LNS for the DFVS Problem Nov. 3, 2023 18 / 18



Benchmark Instances

Table: Data sets used for the computational study.

Data Set Size Number of Vertices Number of Edges

nmin nmax mmin mmax

pace-public 100 843 875713 2103 5105039
pace-private 100 1024 2394385 3473 5021410
fsp-data 40 50 1000 100 30000
fsp-data 50 10 50 50 100 900
fsp-data 100 10 100 100 200 1400
fsp-data 500 10 500 500 1000 7000
fsp-data 1000 10 1000 1000 3000 30000
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Benchmark Instances - pace-public

pace-public instances: vertex number

Figure: The number of vertices of each instance.
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Benchmark Instances - pace-public

pace-public instances: edge number

Figure: The number of edges of each instance.
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Benchmark Instances - pace-public

pace-public instances: edges in 2-cycles

Figure: The ratio of edges involved in 2-cycles for each instance.
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Graph Reduction

5 reduction rules inspired by Levy and Low (1988) and Park and Akers
(1992)

• reducing > 75% of tested instances

• reductions of up to 100%

• average runtime: < 1 second

Partitioning into strongly connected components (SCCs)

• splits DFVS problem into smaller subproblems
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Graph Reduction

5 reduction rules inspired by Levy and Low (1988) and Park and Akers
(1992)

Rule IN/OUT0:

Figure: Initial graph. Figure: Reduced graph.
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Graph Reduction

5 reduction rules inspired by Levy and Low (1988) and Park and Akers
(1992)

Rule IN1:

Figure: Initial graph. Figure: Reduced graph.
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Graph Reduction

5 reduction rules inspired by Levy and Low (1988) and Park and Akers
(1992)

Rule OUT1:

Figure: Initial graph. Figure: Reduced graph.
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Graph Reduction

5 reduction rules inspired by Levy and Low (1988) and Park and Akers
(1992)

Rule LOOP:

Figure: Initial graph. Figure: Reduced graph.
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Graph Reduction

5 reduction rules inspired by Levy and Low (1988) and Park and Akers
(1992)

Loop generation:

Figure: Initial graph. Figure: Reduced graph.
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Graph Reduction

5 reduction rules inspired by Levy and Low (1988) and Park and Akers
(1992)

Rule SCC:

Figure: Initial graph. Figure: Partitioned graph.

Figure: Reduced graph.

Maria Bresich MILP-Based LNS for the DFVS Problem Nov. 3, 2023 18 / 18



Dynamic Selection Strategies for k

• #2-cycles

• best triple

• #2-cycles best triple

• #2-cycles regression

• #vertices regression
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Dynamic Selection Strategies for k

#2-cycles:

• predefine partitions for the number of 2-cycles

• preselect the best performing degree of destruction for each partition

• differentiate between MILP formulations

2-cycles Partition Instances k

From To CEC MTZ

0 100 22 50 25
101 10000 11 200 75000

10001 100000 16 200 5000
100001 200000 14 2000 1000
200001 1000000 15 2000 500

1000001 1200000 12 3000 1000
1200001 ∞ 10 50000 3000
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Dynamic Selection Strategies for k

best triple:

• preselect 3 values: best-mean, mode, most-best

• random selection in each LNS iteration

• differentiate between MILP formulations

• independent of graph properties

Formulation Degree of Destruction k

best-mean mode most-best

CEC 75 3000 75000

MTZ 25 25 1000
5000
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Dynamic Selection Strategies for k

#2-cycles best triple:
• combination of #2-cycles and best triple
• reuse 2-cycle partitions
• preselect 3 values for each partition and each MILP formulation:
best-2cycle-mean, most-2cycle-best, best-mean

• random selection in each LNS iteration

2-cycles Partition Degree of Destruction k

From To best-2cycle-mean most-2cycle-best best-mean

CEC MTZ CEC MTZ CEC MTZ

0 100 50 25 75 25 75 25
101 10000 200 75000 500 500 75 25

10001 100000 200 5000 2000 1000 75 25
100001 200000 2000 1000 5000 5000 75 25
200001 1000000 2000 500 1000 500 75 25

1000001 1200000 3000 1000 2000 500 75 25
1200001 ∞ 50000 3000 2000 1000 75 25
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Dynamic Selection Strategies for k

#2-cycles regression:

• linear correlation between the base-10 logarithmic value of the
number of 2-cycles and the base-10 logarithmic value of the lowest
best degree of destruction

• function defined by regression line

• differentiate between MILP formulations

Figure: CEC-based formulation. Figure: MTZ-based formulation.
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Dynamic Selection Strategies for k

#2-cycles regression:

• linear correlation between the base-10 logarithmic value of the
number of 2-cycles and the base-10 logarithmic value of the lowest
best degree of destruction

• function defined by regression line

• differentiate between MILP formulations

k =

{
15.85 · z0.365 for the MTZ model

20.14 · z0.433 for the CEC model,
(13)

z . . . number of 2-cycles
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Dynamic Selection Strategies for k

#vertices regression:

• linear correlation between the base-10 logarithmic value of the
number of vertices and the base-10 logarithmic value of the lowest
best degree of destruction

• function defined by regression line

• differentiate between MILP formulations

Figure: CEC-based formulation. Figure: MTZ-based formulation.
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Dynamic Selection Strategies for k

#vertices regression:

• linear correlation between the base-10 logarithmic value of the
number of vertices and the base-10 logarithmic value of the lowest
best degree of destruction

• function defined by regression line

• differentiate between MILP formulations

k =

{
0.2917 · |V |0.808 for the MTZ model

0.1159 · |V |1.004 for the CEC model
(14)
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Dynamic Selection of MILP Formulation

• predefine partitions for the product of the number of 2-cycles and the
graph density

• preselect the MILP formulation for each partition

• differentiate between direct MILP and hybrid LNS

MILP-based LNS:

2-cycles × Density Partition MILP Formulation

From To

0 5 CEC
5 20 MTZ
20 700 CEC

700 1000 MTZ
1000 3000 CEC
3000 7000 MTZ
7000 ∞ CEC
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Dynamic Selection of MILP Formulation

• predefine partitions for the product of the number of 2-cycles and the
graph density

• preselect the MILP formulation for each partition

• differentiate between direct MILP and hybrid LNS

Direct MILP:

2-cycles × Density Partition MILP Formulation

From To

0.00 0.04 MTZ
0.04 0.40 CEC
0.40 20.00 MTZ
20.00 50.00 CEC
50.00 150.00 MTZ

150.00 500.00 CEC
500.00 ∞ MTZ
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