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Problem Motivation | w .. o ac'h

Transportation services:
® Classic public transit services (bus, train)

® | many passengers, cost efficient
® — fixed routes, scheduled times, unavailability

® Taxi services

® | door-to-door service
® — high cost

® On-demand public transit services = Dial-A-Ride (DAR)

® | cost efficient, customizable service
® — ride-sharing, detours
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Problem Motivation Il ... cos ac'h

DAR applications:

® Door-to-door transportation of disabled and elderly persons

Airport transportation

Health care / patient transportation

Public transportation
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DARP - Typical Features ... wo ac'lt

® Request: transportation from a pickup to a drop-off location

® Time window: earliest and latest times of pickup/drop-off

® Depot(s): starting and ending location(s) of a trip of a vehicle

® Trip (route): a vehicle's tour starting and ending at a depot

® Vehicle capacity: maximum number of users in a vehicle at once

® load: number of users in a vehicle

¢ (Maximum) Ride time: (maximum) time a user spends in a vehicle
® Waiting time: time without service or travel

¢ (Maximum) Route duration: (maximum) travel time of a vehicle
for one trip
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Problem Deflnltlon I Cordeau and Laporte (2003) aclll

Definition (Standard DIAL-A-RIDE PROBLEM)

Given: n users with transportation requests from a pickup to a drop-off
location, a fleet of m vehicles

Task: Design m vehicle routes serving all requests, s.t. the total routing
cost is minimized and certain constraints are satisfied.
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Problem Deflnltlon II Cordeau and Laporte (2003) aclll

Constraints:
® FEvery route starts and ends at the depot.

® For every request, the pickup and drop-off location belong to the
same route and the drop-off is visited after the pickup location.

® The load of a vehicle does not exceed the vehicle capacity at any time.

® The total duration of a route does not exceed the maximum route
duration.

® The service at each location begins in the given time window, and
every vehicle leaves the depot and returns to the depot within the
planning horizon.

® The ride time of any user does not exceed the maximum ride time.
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DARP & Related Problems

DARP:
® Combinatorial optimization problem
NP-hard

Generalization of:

® Traveling Salesman Problem (TSP)
® Vehicle Routing Problem (VRP)
® Pickup and Delivery Problem (PDP)

Considers user inconvenience: e.g., maximum user ride time

Model: complete graph
® Vertices: depot(s), pickup/drop-off locations
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CIaSS|flcat|0n Molenbruch et al. (2017); Ho et al. (2018) aclll

Static vs. Dynamic
® Static: all information known in advance, decisions made a priori

® Dynamic: new information revealed during operation, existing plans
modified accordingly

Deterministic vs. Stochastic
® Deterministic: information known with certainty at the time of
decision
® Stochastic: information still undetermined when decisions are made,
information about the uncertainty may be available (e.g., probability
distribution)
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DARP Variants v e o (2017); Ho et al. (2018) aclll

Single vehicle vs. fleet of vehicles

® Homogeneous vs. heterogeneous

Single- vs. multi-trip

Single vs. multiple depots

Passenger transfers

Hard vs. soft constraints

Single vs. multiple objectives
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ObJectlve Functions e e a1 (2017); Ho et al. (2018) aclll

Operators’ perspective:
® Qperating cost minimization
® Vehicle usage efficiency maximization

® Demand satisfaction maximization

Users’ perspective: inconvenience minimization
® Total and/or maximum ride time
® Waiting time
® Number of transfers (if allowed)
Others:
® \/ehicle emissions
e Staff workload
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Solution Methods v e = (2017); Ho et al. (2018) ac'll

Exact methods:
® Mainly based on branch-and-bound (B&B)
® Dynamic programming
® Small instances of deterministic and static DARP: 8 vehicles, 96
requests
Heuristics and metaheuristics (MHs):
® (Classical algorithms: IH, LS, TS, SA, DA, VNS, (A)LNS, GA

® Hybrid algorithms: combination of MHs, with mathematical
programming, or constraint programming

® | arger instances: 17 vehicles, 214 requests

Other methods:

® Approximation algorithms
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State-Of-The-Art - Standard DARP ..., oo ac'l!

Hybrid adaptive large neighborhood search (ALNS) by Gschwind and Drexl
(2019)
e ALNS with dynamic programming
Multiple destroy and repair operators
Roulette wheel selection
Adaptive weight adjustment
Simulated annealing acceptance criterion
Further optimize elite solutions

® Set covering problem on promising routes
® Results:

® |Instances: 13 vehicles, 144 requests
® Runtime: 14 - 688s, ) = 200s
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Large Nelghborhood Search (LNS) Shaw (1998); Pisinger and Ropke (2010) CIIII

® |ocal search metaheuristics
® |arge neighborhoods with complex move operators

® Destroy operator
® Repair operator
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Large Nelghborhood Search (LNS) Shaw (1998); Pisinger and Ropke (2010)

® | ocal search metaheuristics

® | arge neighborhoods with complex move operators
® Destroy operator
® Repair operator

Input: feasible solution x
Output: best found solution x
xP — x;
repeat
xt <+ r(d(x));
if accept(x?, x) then
L x « xt;
if c(x?) < c(x?) then
L xP — xt;

b

until stop criterion is met;

return x?;

Algorithm 1: Large Neighborhood Search
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Large Nelghborhood Search (LNS) Shaw (1998); Pisinger and Ropke (2010) CIIII

® | ocal search metaheuristics
® | arge neighborhoods with complex move operators

® Destroy operator
® Repair operator

o
o
@ L
Figure: Initial solution. Figure: After destroy Figure: After repair
operation. operation.
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Adaptive Large Neighborhood Search (ALNS)

Ropke and Pisinger (2006)

® Extension of LNS
Multiple destroy and repair operators with weights
Roulette wheel selection principle

Adaptive weight adjustment based on previous performance
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Adaptive Large Neighborhood Search (ALNS)

Ropke and Pisinger (2006)

® Extension of LNS

® Multiple destroy and repair operators with weights

® Roulette wheel selection principle

® Adaptive weight adjustment based on previous performance

Input: feasible solution x
Output: best found solution x
xP — x;
p~ =(1,...,1); pt =(1,...,1);
repeat

select destroy and repair operators d € 2~ and r € Q using p~ and pT;

xt « r(d(x));

if accept(x?, x) then

L x + xt;

b

if c(x?) < c(x?) then
xb  xt;
update p~ and pt;
until stop criterion is met;
return x?;

Algorithm 3: Adaptive Large Neighborhood Search (pisinger and Rope (2010))
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Problem Deflnltlon I Bongiovanni et al. (2019) aclll

Definition (Static ELECTRIC AuTONOMOUS DARP)

Given: n users with transportation requests from a pickup to a drop-off
location, a fleet of m electric autonomous vehicles
Task: Design m vehicle routes serving all requests, s.t. the total travel

time and excess ride time of all users are minimized and certain constraints
are satisfied.
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Figure: Example of e-DARP taken from Masmoudi et al. (2018).
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Problem Deflnltlon II Bongiovanni et al. (2019) aclll

DARP constraints:
® FEvery route starts and ends at the depot.

® For every request, the pickup and drop-off location belong to the
same route and the drop-off is visited after the pickup location.

® The load of a vehicle does not exceed the vehicle capacity at any time.

® The total duration of a route does not exceed the maximum route
duration.

® The service at each location begins in the given time window, and
every vehicle leaves and returns to a depot within the planning
horizon.

® The ride time of any user does not exceed the maximum ride time.
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Problem Deflnltlon II Bongiovanni et al. (2019) aclll

e-ADARP constraints:
® Every route starts and ends at the-depot — a depot.

® For every request, the pickup and drop-off location belong to the
same route and the drop-off is visited after the pickup location.

® The load of a vehicle does not exceed the vehicle capacity at any time.

® The service at each location begins in the given time window, and
every vehicle leaves and returns to a depot within the planning
horizon.

® The ride time of any user does not exceed the maximum ride time.
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Problem Deflnltlon III Bongiovanni et al. (2019) aclll

New constraints:

® The battery level of vehicles cannot exceed the battery capacity and
cannot fall below zero at any time.

® \ehicles have to return with minimal battery levels to the destination
depots.

® Recharging stations can only be visited when there is no user on
board.

® Each recharging station can only be visited at most once by all
vehicles.
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Problem Deflnltlon IV Bongiovanni et al. (2019) aclll

Extension of DARP with supplementary features:
® Battery management
® Intermediate stops for (partial) vehicle recharge

® Heterogeneous vehicles: capacity, battery

Different origin and destination depots
® No restrictions on maximum route durations

® Total excess ride time of users in objective

Simplifying assumptions:

® Constant battery consumption independent from load, speed, and
state-of-charge (SOC)

® |inear increase of SOC with time considering a recharge rate
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Problem Deflnltlon V Cordeau and Laporte (2007); Bongiovanni (2020) aclll

Challenge: scheduling problem

® DARP: determine the departure time from the depot and the time at
which service should begin at each location such that time windows

are satisfied and route duration is minimized

® e-ADARP: additionally determine time for partial recharging while
also minimizing user excess ride time

® Delays (sometimes) beneficial
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Related Work ac'l

Static e-ADARP:
® MILP formulations and branch-and-cut algorithm by Bongiovanni
et al. (2019)
® Bilevel large neighborhood search (BI-LNS) by Limmer

® Quter level: set/optimize visits to recharging stations
® Inner level: insert/optimize requests

® Deterministic annealing local search (DA-LS) by Su et al. (2023)

Dynamic e-ADARP:

® Machine learning-based 2-phase metaheuristic (ML-LNS) by
Bongiovanni et al. (2022)

® First phase: greedy insertion algorithm
® Second phase: ML-based LNS

Maria Bresich Intro to DARPs



Our Project ac'l!

Static and deterministic e-ADARP (for now)

® Dynamic and stochastic variants later

Solving approach: combination of LNS and ML
® Multiple operators: simple, fast
® |earn LNS operator selection

Challenges:
® Fast prediction with ML model

e FEfficient evaluation and scheduling for routes
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SOlVIng ApproaCh PreprOCCSS|ng Cordeau (2006); Bongiovanni et al. (2019)

Time window tightening:
® Determine missing time windows

® Tighten known time windows

Arc elimination:
® Remove infeasible arcs from the complete graph

® |ncludes identification of incompatible user pairs
® Based on constraints:

® Time windows

® Pairing and precedence

® User ride time

® Battery capacity

Maria Bresich Intro to DARPs
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Solving Approach - LNS | ac'le

Request operators: (Ropke and Pisinger (2006); Shaw (1998))
® Destroy:

® random removal
® \worst removal
® Shaw removal

® Repair:

® basic greedy heuristic

® regret heuristics: regret-2, regret-3
® Possible approach:

® disregard battery feasibility
® apply recharging station insertion operator after destroy-+repair
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Solving Approach - LNS Il

Recharging station operators: (keskin and catay (2016))
® Destroy:
® random removal
® worst distance removal
® worst charge usage removal
® Repair:
® greedy insertion
® hest insertion
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Solving Approach - ML ac!ln

Ideas:
® | earn LNS operator selection
® Similar to Bongiovanni et al. (2022): random forest classification
® Select pair of destroy and repair operators (for now)
® Sequentially select destroy and repair operator (maybe later)
® Reinforcement learning (RL)
® Avoid the need for labeled data
® Similar to Johnn et al. (2023): Graph Reinforcement Learning for
Operator Selection in the ALNS Metaheuristic
® ML model: neural network with multi-layer perceptron architecture
® Aggregated features

® Efficient computation
® E.g., features by Bongiovanni et al. (2022)
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Thank you!
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e-ADARP Benchmark Instances ac!lt

Small size: 2 - 5 vehicles, 16 - 50 requests
® 14 instances:

® introduced by Bongiovanni et al. (2019)
® based on DARP benchmark instances by Cordeau (2006)

® 14 instances:

® introduced by Bongiovanni et al. (2019)
® based on ride sharing data from Uber Technologies Inc.

Medium size: 5 - 8 vehicles, 60 - 96 requests
® 10 instances:

® introduced by Su et al. (2023)
® based on DARP benchmark instances by Ropke et al. (2007)

Large size: 180 - 260 vehicles, 3600 - 5200 requests
® 5 instances

® introduced by Limmer
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