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Introduction
What is multi-agent path finding (MAPF)?

Moving robots on a warehouse grid.1

Optimization problem with the objective to minimize the sum of task-completion time
or the sum of travel times

1https://www.leagueofrobotrunners.org
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Introduction

Applications

▶ Unmanned aerial vehicle traffic management

▶ Warehouse logistics

▶ Airport operations

▶ Game characters in video games
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Introduction

Formulation

▶ Graph

▶ Set of agents, each with unique start- and goal vertices

Plans

▶ Sequence of actions

▶ Length of a plan: time when the agent reaches its goal and does not leave it
anymore
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Introduction

Task

▶ Find plans for all agents such that the plans do not collide in time and space

Objectives

▶ Makespan: number of time steps until all agents reach their goals

▶ Sum of costs: sum of time steps required by each agent to reach its goal

Complexity

▶ NP-hard to find a makespan or- sum of costs optimal MAPF
plan [Surynek, 2010, Yu and LaValle, 2013]
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Introduction

Project assumptions [Stern et al., 2019]

▶ No swapping and vertex conflicts

Swapping conflict. Vertex conflict.

▶ Stay at target

▶ Objective: minimize sum of costs
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Related Work

Comparison of scalability versus solution quality tradeoffs of existing
algorithms [Li et al., 2021]
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Related Work

Prioritized planning (PP) [Silver, 2005]

▶ Plans paths for each agent one after the other

▶ Avoids collisions with the already planned paths
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Related Work

Prioritized planning (PP) [Silver, 2005]

▶ Challenges: maintaining soundness, completeness, and optimality

▶ Complexity: polynomial in the grid size and max time

▶ Soundness: Yes!

▶ Complete and Optimal? No!

Exemplary illustration of a scenario where PP fails to find a solution.
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Related Work

Anytime Multi-Agent Path Finding via Large Neighborhood Search
(MAPF-LNS) [Li et al., 2021]

1. Invokes a MAPF solver to quickly find a feasible initial solution

2. Proceeds to improve the solution by repeatedly replanning a subset of agent
paths selected by randomized destroy heuristics

Anytime Multi-Agent Path Finding via Machine Learning-Guided Large
Neighborhood Search (MAPF-ML-LNS) [Huang et al., 2022]

▶ Learns a ranking function for a collection of agent sets generated by the destroy
heuristics in MAPF-LNS, such that replanning increases the solution quality more
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Related Work

MAPF-LNS2: Fast Repairing for Multi-Agent Path Finding via Large
Neighborhood Search [Li et al., 2022]2

1. Calls PP to find an initial solution quickly

2. Plans paths for agents that do not have a plan yet such that the number of
collisions with the existing paths are minimized

3. Repeats a repairing procedure using PP until the plan becomes feasible

4. Proceeds with MAPF-LNS

2https://github.com/Jiaoyang-Li/MAPF-LNS2
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Learning to Select Promising Initial Solutions
for LNS-Based MAPF

Benchmark set3

▶ 25 instances for each map and each number of agents

Map Map Size Number of Agents

empty-8-8 8× 8 {16, 24, 32, 40, 48}
empty-32-32 32× 32 {300, 350, 400, 450, 500}
random-32-32-20 (random) 32× 32 {50, 100, 150, 200, 250}
warehouse-10-20-10-2-1 (warehouse) 161× 63 {150, 200, 250, 300, 350}
ost003d 194× 194 {100, 200, 300, 400, 500}
den520d 256× 257 {500, 600, 700, 800, 900}

empty-8-8 empty-32-32 random warehouse ost003d den520d
3https://movingai.com/benchmarks/mapf
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Learning to Select Promising Initial Solutions
for LNS-Based MAPF

MAPF-LNS2 observation (time limit 60s): final solution quality depends on the
initial solution independently from its solution quality
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Learning to Select Promising Initial Solutions
for LNS-Based MAPF

MAPF-LNS2 observation (time limit 60s): final solution quality depends on the
initial solution independently from its solution quality
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Learning to Select Promising Initial Solutions
for LNS-Based MAPF

MAPF-LNS2 observation (time limit 60s): final solution quality depends on the
initial solution independently from its solution quality
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Learning to Select Promising Initial Solutions
for LNS-Based MAPF

Key idea

▶ Train an ML model that ranks a set of initial solutions generated by PP

▶ Use the trained model in MAPF-LNS2 to select the most promising initial solution
that leads to the smallest sum of costs after applying the destroy- and repair
procedure

Training instance generation

▶ Given a map M and n agents A = {a1, . . . , an}
1. Select n start and goal vertices randomly to generate a training instance I nM
2. Repeat 1. for i times to obtain a set of i training instances In

M
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Learning to Select Promising Initial Solutions
for LNS-Based MAPF

Training data generation (time limit 60s)

Features

1. Execute PP with randomized ordering p times on each training instance I nM ∈ In
m

to collect p different initial solutions for each training instance I nM ∈ In
m

2. Extract from each initial solution 16 agent features for each agent ai ∈ A

3. Compute the minimum, maximum, sum, and average over all agent features of A

4. Normalize the set of features for each initial solution to the range [0, 1] using
min-max normalization

Labels

▶ After PP execution, the final solution obtained by the destroy and repairing
process is used to rank the p initial solutions for each training instance
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Learning to Select Promising Initial Solutions
for LNS-Based MAPF

Agent features of agent ai ∈ A

Feature Description Count

Distance between agent ai ’s start and goal vertices 1

Row and column numbers of agent ai ’s start and goal
vertices

4

Degree of agent ai ’s goal vertex 1

Delay of agent ai 1

Ratio between the delay of agent ai and the distance
between ai ’s start and goal vertices

1

Minimum, maximum, sum, and average of the heat val-
ues of the vertices on agent ai ’s path

4

Number of time steps that agent ai is on a vertex with
degree j (1 ≤ j ≤ 4) before reaching its goal vertex

4
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Evaluation

Setup

▶ Generated 1000 training instances with 50 agents and 30 initial solutions on map
random

▶ Used LambdaMART for training – a learning-to-rank algorithm, implemented in
the LightGBM framework4

▶ Set a time limit of 60 seconds in the tests

▶ Tested trained model on map random with 50 and 200 agents

▶ Evaluated approach 1000 times on each of the 25 benchmark instances

4https://lightgbm.readthedocs.io/en/stable
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Evaluation
Feature importance

▶ Feature 27: average delay Feature 26: sum of delay
▶ Feature 28: ratio between the delay and the distance between start and goal

vertices
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Evaluation
Map random with 50 agents

MAPF-LNS2 results averaged over 25 instances.

Runtime
Solution
cost

Initial
solution cost

Sum of
distance

Runtime of
initial solution

Runtime of initial
solutions gen.

Runtime of best
initial sol. prediction

Area under
curve

Mean of Instances Means 60.000424 1136.702480 1232.382360 1112.48 0.004554 0.000000 0.000000 1465.547897

Mean of Instances Medians 60.000376 1136.560000 1230.540000 1112.48 0.004094 0.000000 0.000000 1460.193880

Medians of Instances Means 60.000412 1128.149000 1224.240000 1099.00 0.003655 0.000000 0.000000 1273.298360

Mean of Instances SDs 0.000318 0.368144 30.586329 0.00 0.001745 0.000000 0.000000 25.136322

MAPF-ML-LNS2 results averaged over 25 instances.

Runtime
Solution
cost

Initial
solution cost

Sum of
distance

Runtime of
initial solution

Runtime of initial
solutions gen.

Runtime of best
initial sol. prediction

Area under
curve

Mean of Instances Means 60.000458 1136.687680 1229.629760 1112.48 0.005115 0.135314 0.028795 1464.903052

Mean of Instances Medians 60.000412 1136.560000 1229.840000 1112.48 0.003812 0.137877 0.011753 1457.538420

Medians of Instances Means 60.000432 1128.093000 1240.000000 1099.00 0.004799 0.113115 0.029514 1281.361670

Mean of Instances SDs 0.000346 0.363907 5.395529 0.00 0.006240 0.035441 0.036013 24.859422

Solution cost mean: statistical test
Shapiro-Wilk test p-value: 0.0

Wilcoxon signed-rank test p-value: 0.00021633718179290347
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Evaluation
Map random with 200 agents

MAPF-LNS2 results averaged over 25 instances.

Runtime
Solution
cost

Initial
solution cost

Sum of
distance

Runtime of
initial solution

Runtime of initial
solutions gen.

Runtime of best
initial sol. prediction

Area under
curve

Mean of Instances Means 60.002219 5289.469120 6407.723960 4444.40 0.281363 0.000000 0.000000 56767.171536

Mean of Instances Medians 60.001848 5287.580000 6400.780000 4444.40 0.269738 0.000000 0.000000 56641.414000

Medians of Instances Means 60.002306 5260.244000 6397.289000 4445.00 0.276701 0.000000 0.000000 57158.726000

Mean of Instances SDs 0.001712 48.162960 143.263315 0.00 0.110180 0.000000 0.000000 3083.067946

MAPF-ML-LNS2 results averaged over 25 instances.

Runtime
Solution
cost

Initial
solution cost

Sum of
distance

Runtime of
initial solution

Runtime of initial
solutions gen.

Runtime of best
initial sol. prediction

Area under
curve

Mean of Instances Means 60.002303 5286.731320 6369.296080 4444.40 0.259941 8.425453 0.052537 56728.993300

Mean of Instances Medians 60.001892 5285.480000 6366.120000 4444.40 0.273025 8.846618 0.038068 56730.228000

Medians of Instances Means 60.002400 5260.668000 6394.196000 4445.00 0.259011 8.142390 0.053548 57315.850200

Mean of Instances SDs 0.001793 39.812404 63.321988 0.00 0.073720 1.103487 0.037090 2538.797399

Solution cost mean: statistical test
Shapiro-Wilk test p-value: 0.0

Wilcoxon signed-rank test p-value: 2.2227957933236724e-12
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Conclusion and Future Work

▶ Presented MAPF-ML-LNS2, an approach that utilizes ML to select the most
promising initial solution generated by PP in MAPF-LNS2

▶ Showed that MAPF-ML-LNS2 yields superior results than the original
MAPF-LNS2 on map random

▶ Demonstrated that the trained ML model generalizes well

Future work

▶ Feature engineering

▶ Learning destroy operator in MAPF-LNS2
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