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1. Introduction

▶ Historically, components of heuristic algorithms to solve
combinatorial problems are manually designed by a human
expert.

– Suboptimal.

– Expensive.

▶ Learning to search: replace hard-coded heuristic components
with machine learning models that assist in lower-level
decisions.

Goal: Utilize machine learning to learn policy functions
that guide beam search efficiently toward more

promising solutions.
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1. Introduction

Beam Search (BS): Incomplete tree search algorithm

▶ Determines at each level the β most promising nodes to
pursue further via evaluation function

f (v) = g(v) + h(v),
where

– g(v): cost from root node r to node v .

– h(v): heuristic estimated cost from node v to goal node t.
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2. Related Work

Learning Beam Search Policies via Imitation Learning:

[Negrinho et al., 2018]

▶ Presented a meta algorithm that learns BS policies for
structured prediction problems by imitation learning.

– Learns a scoring function for BS to match the ranking induced
by given oracle costs.

– Proposed and analyzed several loss functions and data
collection strategies that consider the beam also at train time.

▶ Pure theoretical work.
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2. Related Work
Learning Beam Search (LBS) [Huber and Raidl, 2021]:

▶ Multilayer perceptron (MLP) used as heuristic h(v).

▶ MLP is trained offline in a reinforcement learning manner on
many representative randomly generated problem instances.
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3. Policy-Based Learning Beam Search (P-LBS)
▶ Builds upon our earlier LBS framework.

▶ Policy function = MLP: applied to all the expanded nodes
at a current BS level together.

⇒ Relies not on the prediction of actual cost-to-go values!

▶ Four-layer MLP architecture for P-LBS:

Notation: Vext = set of all nodes encountered at one BS level.

xv = feature vector of node v ∈ Vext.

A(i) = shared weight matrix; b(i) bias vector.
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3. Policy-Based Learning Beam Search (P-LBS)

Abstract training procedure:

1. Initialize MLP randomly.

2. Create random problem instance.

3. Perform BS guided by the (retrained) MLP.

4. Store all nodes encountered on α ∈ N randomly selected levels
during BS in a FIFO replay buffer.

5. Train MLP on FIFO replay buffer data.

6. Repeat steps 2-5 until a stopping criterion is fulfilled.

7 / 21



3. Policy-Based Learning Beam Search (P-LBS)

Two different approaches to label training data:

1. beam-unaware: label nodes that lie on the r − t path
obtained by BS with ones and all other nodes with zero.

r

Vext(1)

Vext(2)

Vext(3)

Vext(4)

Exemplary training data labeling using beam-unaware.

2. beam-aware: perform NBS on each node v ∈ Vext to obtain
estimated values for the oracle cost.
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3. Policy-Based Learning Beam Search (P-LBS)

Adam optimizer is used to update network weights with
respect to different loss functions.

Notation:

c = (cv )v∈Vext = vector of all target values of the nodes in Vext.

s = (sv )v∈Vext = vector of all scores obtained by evaluating the
MLP for Vext.

σ̂ = permutation of Vext that sorts scores in s such
that sσ̂(1) ≥ sσ̂(2) ≥ . . . ≥ sσ̂(|Vext|).

σ∗ = permutation of Vext that sorts target values in
c such that cσ∗(1) ≥ cσ∗(2) ≥ . . . ≥ cσ∗(|Vext|).
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3. Policy-Based Learning Beam Search (P-LBS)

Example:

Vext = {v1, v2, v3, v4, v5}.

β = 2.

MLP(xv1 , xv2 , . . . , xv5) = (sv1 , sv2 , sv3 , sv4 , sv5).

(NBS(vi ))i=1,...,5 = (cv1 , cv2 , cv3 , cv4 , cv5).

sσ̂(1) ≥ sσ̂(2) ≥ . . . ≥ sσ̂(5) = sv5 ≥ sv2 ≥ sv1 ≥ sv4 ≥ sv3 .

cσ∗(1) ≥ cσ∗(2) ≥ . . . ≥ cσ∗(5) = cv2 ≥ cv1 ≥ cv5 ≥ cv4 ≥ cv3 .

Loss functions proposed by [Negrinho et al., 2018]:

▶ perceptron first (pf):

ℓ(s, c) = max(0, sσ̂(1) − sσ∗(1)).
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3. Policy-Based Learning Beam Search (P-LBS)

Example:

Vext = {v1, v2, v3, v4, v5}.

β = 2.

MLP(xv1 , xv2 , . . . , xv5) = (sv1 , sv2 , sv3 , sv4 , sv5).

(NBS(vi ))i=1,...,5 = (cv1 , cv2 , cv3 , cv4 , cv5).

sσ̂(1) ≥ sσ̂(2) ≥ . . . ≥ sσ̂(5) = sv5 ≥ sv2 ≥ sv1 ≥ sv4 ≥ sv3 .

cσ∗(1) ≥ cσ∗(2) ≥ . . . ≥ cσ∗(5) = cv2 ≥ cv1 ≥ cv5 ≥ cv4 ≥ cv3 .

Loss functions proposed by [Negrinho et al., 2018] cont’d:

▶ cost-sensitive margin last (cml):

ℓ(s, c) = (cσ∗(1) − cσ̂(β))max(0, 1 + sσ̂(β) − sσ∗(1)).
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3. Policy-Based Learning Beam Search (P-LBS)
Example:

Vext = {v1, v2, v3, v4, v5}.

β = 2.

MLP(xv1 , xv2 , . . . , xv5) = (sv1 , sv2 , sv3 , sv4 , sv5).

(NBS(vi ))i=1,...,5 = (cv1 , cv2 , cv3 , cv4 , cv5).

sσ̂(1) ≥ sσ̂(2) ≥ . . . ≥ sσ̂(5) = sv5 ≥ sv2 ≥ sv1 ≥ sv4 ≥ sv3 .

cσ∗(1) ≥ cσ∗(2) ≥ . . . ≥ cσ∗(5) = cv2 ≥ cv1 ≥ cv5 ≥ cv4 ≥ cv3 .

Loss functions proposed by [Negrinho et al., 2018] cont’d:

▶ log loss neighbors (lln):

ℓ(s, c) = −sσ∗(1) + log

( |Vext|∑
i=1

exp(si )

)
.
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3. Policy-Based Learning Beam Search (P-LBS)
Example:

Vext = {v1, v2, v3, v4, v5}.

β = 2.

MLP(xv1 , xv2 , . . . , xv5) = (sv1 , sv2 , sv3 , sv4 , sv5).

(NBS(vi ))i=1,...,5 = (cv1 , cv2 , cv3 , cv4 , cv5).

sσ̂(1) ≥ sσ̂(2) ≥ . . . ≥ sσ̂(5) = sv5 ≥ sv2 ≥ sv1 ≥ sv4 ≥ sv3 .

cσ∗(1) ≥ cσ∗(2) ≥ . . . ≥ cσ∗(5) = cv2 ≥ cv1 ≥ cv5 ≥ cv4 ≥ cv3 .

Loss functions proposed by [Negrinho et al., 2018] cont’d:

▶ upper bound (ub):

ℓ(s, c) = max(0, δβ+1, . . . , δ|Vext|),

where δj = (cσ∗(1) − cσ∗(j))(sσ∗(j) − sσ∗(1)) for
j = β + 1, . . . , |Vext|.
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3. Policy-Based Learning Beam Search (P-LBS)
Example:

Vext = {v1, v2, v3, v4, v5}.

β = 2.

MLP(xv1 , xv2 , . . . , xv5) = (sv1 , sv2 , sv3 , sv4 , sv5).

(NBS(vi ))i=1,...,5 = (cv1 , cv2 , cv3 , cv4 , cv5).

sσ̂(1) ≥ sσ̂(2) ≥ . . . ≥ sσ̂(5) = sv5 ≥ sv2 ≥ sv1 ≥ sv4 ≥ sv3 .

cσ∗(1) ≥ cσ∗(2) ≥ . . . ≥ cσ∗(5) = cv2 ≥ cv1 ≥ cv5 ≥ cv4 ≥ cv3 .

Loss functions proposed by us:

▶ cost-sensitive margin beam (cmb):

ℓ(s, c) =

β−1∑
i=1

max(0, cσ∗(i) − cσ̂(β))max(0, 1 + sσ̂(β) − sσ∗(i)).
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3. Policy-Based Learning Beam Search (P-LBS)

Further loss functions proposed by [Negrinho et al., 2018]:

▶ perceptron last (pl):

ℓ(s, c) = max(0, sσ̂(β) − sσ∗(1)).

▶ margin last (ml):

ℓ(s, c) = max(0, 1 + sσ̂(β) − sσ∗(1)).

▶ log loss beam (llb):

ℓ(s, c) = −sσ∗(1) + log

(∑
i∈I

exp(si )

)
,

where I = {σ∗(1), σ̂(1), . . . , σ̂(β)}.

15 / 21



3. Policy-Based Learning Beam Search (P-LBS)

Bootstrapping for beam-aware data labeling:

▶ NBS calls are time expensive.

⇒ Stop NBS execution at level depth d ∈ N and use the so far
trained MLP to obtain suitable training targets.
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4. Experimental Evaluation

Longest Common Subsequence (LCS) problem:

▶ Input: set of m input strings S = {S1, . . . ,Sm} over
alphabet Σ, each of length n = |Si |i=1,...,m.

▶ Output: longest string that appears as subsequence in any
string of S.

▶ Example: LCS of strings AGACT, GTAAC, and GTACT is GAC.

LCS benchmark instances:

▶ rat instance set [Shyu and Tsai, 2009].
– 20 single instances composed of sequences from rat genomes.

▶ ES instance set [Easton and Singireddy, 2008].
– Nine instance sets. Each set contains 50 random instances.

State-of-the-art:

▶ [Djukanovic et al., 2019], and [Huber and Raidl, 2021].
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4. Experimental Evaluation

LCS problem: feature vectors for MLP

▶ Remaining string lengths (x iv )i=1,...,m ordered ascending,
where v ∈ Vext.

▶ s := MLP(xv1 , xv2) = (3, 2), where v1, v2 ∈ Vext.
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4. Experimental Evaluation
Bootstrapping:
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5. Results on LCS benchmark instances

▶ Trained MLPs for each combination of |Σ|, m, and n occuring
in benchmark instances on random instances using P-LBS
with each loss function.

▶ Evaluated BS with trained MLPs on all instances from
benchmark sets rat and ES.

⇒ BS with the trained MLPs with loss functions lln, cml, ub and
cmb could achieve

– in five out of 29 instance groups for β = 50,

– and in two out of 29 for β = 600 new best solutions.
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6. Conclusions and Future Work

▶ Presented a general P-LBS framework for learning BS policies
to solve combinatorial optimization problems.

▶ Compared and evaluated different loss functions in the
practical scenario of solving the LCS problem.

▶ Utilized bootstrapping to achieve reasonable scalability to
larger problem instances.

Future Work:

▶ Weakness: disregarded in beam-unaware training the fact that
multiple best goal nodes may exist.

⇒ Adapt P-LBS so that all found equally good goal nodes and
corresponding r − t paths are considered.

▶ Utilize graph neural network as policy to get rid of the
dependency of specific instance sizes.
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Thank you for your attention!

Questions?
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