
A Policy-Based Learning Beam Search for
Combinatorial Optimization

Marc Huber
Institute of Logic and Computation, TU Wien, Vienna, Austria

mhuber@ac.tuwien.ac.at

joint work with Rupert Ettrich and Günther Raidl

Second Vienna Workshop on Computational Optimization
March 16, 2023

1 / 21

1. Introduction

▶ Historically, components of heuristic algorithms to solve
combinatorial problems are manually designed by a human
expert.

– Suboptimal.

– Expensive.

▶ Learning to search: replace hard-coded heuristic components
with machine learning models that assist in lower-level
decisions.

Goal: Utilize machine learning to learn policy functions
that guide beam search efficiently toward more

promising solutions.

2 / 21

1. Introduction

Beam Search (BS): Incomplete tree search algorithm

▶ Determines at each level the β most promising nodes to
pursue further via evaluation function

f (v) = g(v) + h(v),
where

– g(v): cost from root node r to node v .

– h(v): heuristic estimated cost from node v to goal node t.

3 / 21

2. Related Work

Learning Beam Search Policies via Imitation Learning:

[Negrinho et al., 2018]

▶ Presented a meta algorithm that learns BS policies for
structured prediction problems by imitation learning.

– Learns a scoring function for BS to match the ranking induced
by given oracle costs.

– Proposed and analyzed several loss functions and data
collection strategies that consider the beam also at train time.

▶ Pure theoretical work.

4 / 21

2. Related Work
Learning Beam Search (LBS) [Huber and Raidl, 2021]:

▶ Multilayer perceptron (MLP) used as heuristic h(v).

▶ MLP is trained offline in a reinforcement learning manner on
many representative randomly generated problem instances.

5 / 21

3. Policy-Based Learning Beam Search (P-LBS)
▶ Builds upon our earlier LBS framework.

▶ Policy function = MLP: applied to all the expanded nodes
at a current BS level together.

⇒ Relies not on the prediction of actual cost-to-go values!

▶ Four-layer MLP architecture for P-LBS:

Notation: Vext = set of all nodes encountered at one BS level.

xv = feature vector of node v ∈ Vext.

A(i) = shared weight matrix; b(i) bias vector.

. . .

x1 x2 xk

. . .

. . .

. . .s1 s2 sk

h
(0)
1 h

(0)
2 h

(0)
k

h(1)

h
(2)
1 h

(2)
2 h

(2)
k

Vext = {1, . . . , k}

h
(3)
1 h

(3)
2 h

(3)
k

h(1) : argument pooling

h
(0)
v = A(0)xv + b(0)

h
(2)
v = ReLU(A(2)(h

(0)
v || h(1)) + b(2))

h
(3)
v = A(3)h

(2)
v + b(3)

scores for input nodes

6 / 21

3. Policy-Based Learning Beam Search (P-LBS)

Abstract training procedure:

1. Initialize MLP randomly.

2. Create random problem instance.

3. Perform BS guided by the (retrained) MLP.

4. Store all nodes encountered on α ∈ N randomly selected levels
during BS in a FIFO replay buffer.

5. Train MLP on FIFO replay buffer data.

6. Repeat steps 2-5 until a stopping criterion is fulfilled.

7 / 21

3. Policy-Based Learning Beam Search (P-LBS)

Two different approaches to label training data:

1. beam-unaware: label nodes that lie on the r − t path
obtained by BS with ones and all other nodes with zero.

r

Vext(1)

Vext(2)

Vext(3)

Vext(4)

Exemplary training data labeling using beam-unaware.

2. beam-aware: perform NBS on each node v ∈ Vext to obtain
estimated values for the oracle cost.

8 / 21

3. Policy-Based Learning Beam Search (P-LBS)

Adam optimizer is used to update network weights with
respect to different loss functions.

Notation:

c = (cv)v∈Vext = vector of all target values of the nodes in Vext.

s = (sv)v∈Vext = vector of all scores obtained by evaluating the
MLP for Vext.

σ̂ = permutation of Vext that sorts scores in s such
that sσ̂(1) ≥ sσ̂(2) ≥ . . . ≥ sσ̂(|Vext|).

σ∗ = permutation of Vext that sorts target values in
c such that cσ∗(1) ≥ cσ∗(2) ≥ . . . ≥ cσ∗(|Vext|).

9 / 21

3. Policy-Based Learning Beam Search (P-LBS)

Example:

Vext = {v1, v2, v3, v4, v5}.

β = 2.

MLP(xv1 , xv2 , . . . , xv5) = (sv1 , sv2 , sv3 , sv4 , sv5).

(NBS(vi))i=1,...,5 = (cv1 , cv2 , cv3 , cv4 , cv5).

sσ̂(1) ≥ sσ̂(2) ≥ . . . ≥ sσ̂(5) = sv5 ≥ sv2 ≥ sv1 ≥ sv4 ≥ sv3 .

cσ∗(1) ≥ cσ∗(2) ≥ . . . ≥ cσ∗(5) = cv2 ≥ cv1 ≥ cv5 ≥ cv4 ≥ cv3 .

Loss functions proposed by [Negrinho et al., 2018]:

▶ perceptron first (pf):

ℓ(s, c) = max(0, sσ̂(1) − sσ∗(1)).

10 / 21

3. Policy-Based Learning Beam Search (P-LBS)

Example:

Vext = {v1, v2, v3, v4, v5}.

β = 2.

MLP(xv1 , xv2 , . . . , xv5) = (sv1 , sv2 , sv3 , sv4 , sv5).

(NBS(vi))i=1,...,5 = (cv1 , cv2 , cv3 , cv4 , cv5).

sσ̂(1) ≥ sσ̂(2) ≥ . . . ≥ sσ̂(5) = sv5 ≥ sv2 ≥ sv1 ≥ sv4 ≥ sv3 .

cσ∗(1) ≥ cσ∗(2) ≥ . . . ≥ cσ∗(5) = cv2 ≥ cv1 ≥ cv5 ≥ cv4 ≥ cv3 .

Loss functions proposed by [Negrinho et al., 2018] cont’d:

▶ cost-sensitive margin last (cml):

ℓ(s, c) = (cσ∗(1) − cσ̂(β))max(0, 1 + sσ̂(β) − sσ∗(1)).

11 / 21

3. Policy-Based Learning Beam Search (P-LBS)
Example:

Vext = {v1, v2, v3, v4, v5}.

β = 2.

MLP(xv1 , xv2 , . . . , xv5) = (sv1 , sv2 , sv3 , sv4 , sv5).

(NBS(vi))i=1,...,5 = (cv1 , cv2 , cv3 , cv4 , cv5).

sσ̂(1) ≥ sσ̂(2) ≥ . . . ≥ sσ̂(5) = sv5 ≥ sv2 ≥ sv1 ≥ sv4 ≥ sv3 .

cσ∗(1) ≥ cσ∗(2) ≥ . . . ≥ cσ∗(5) = cv2 ≥ cv1 ≥ cv5 ≥ cv4 ≥ cv3 .

Loss functions proposed by [Negrinho et al., 2018] cont’d:

▶ log loss neighbors (lln):

ℓ(s, c) = −sσ∗(1) + log

(|Vext|∑
i=1

exp(si)

)
.

12 / 21

3. Policy-Based Learning Beam Search (P-LBS)
Example:

Vext = {v1, v2, v3, v4, v5}.

β = 2.

MLP(xv1 , xv2 , . . . , xv5) = (sv1 , sv2 , sv3 , sv4 , sv5).

(NBS(vi))i=1,...,5 = (cv1 , cv2 , cv3 , cv4 , cv5).

sσ̂(1) ≥ sσ̂(2) ≥ . . . ≥ sσ̂(5) = sv5 ≥ sv2 ≥ sv1 ≥ sv4 ≥ sv3 .

cσ∗(1) ≥ cσ∗(2) ≥ . . . ≥ cσ∗(5) = cv2 ≥ cv1 ≥ cv5 ≥ cv4 ≥ cv3 .

Loss functions proposed by [Negrinho et al., 2018] cont’d:

▶ upper bound (ub):

ℓ(s, c) = max(0, δβ+1, . . . , δ|Vext|),

where δj = (cσ∗(1) − cσ∗(j))(sσ∗(j) − sσ∗(1)) for
j = β + 1, . . . , |Vext|.

13 / 21

3. Policy-Based Learning Beam Search (P-LBS)
Example:

Vext = {v1, v2, v3, v4, v5}.

β = 2.

MLP(xv1 , xv2 , . . . , xv5) = (sv1 , sv2 , sv3 , sv4 , sv5).

(NBS(vi))i=1,...,5 = (cv1 , cv2 , cv3 , cv4 , cv5).

sσ̂(1) ≥ sσ̂(2) ≥ . . . ≥ sσ̂(5) = sv5 ≥ sv2 ≥ sv1 ≥ sv4 ≥ sv3 .

cσ∗(1) ≥ cσ∗(2) ≥ . . . ≥ cσ∗(5) = cv2 ≥ cv1 ≥ cv5 ≥ cv4 ≥ cv3 .

Loss functions proposed by us:

▶ cost-sensitive margin beam (cmb):

ℓ(s, c) =

β−1∑
i=1

max(0, cσ∗(i) − cσ̂(β))max(0, 1 + sσ̂(β) − sσ∗(i)).

14 / 21

3. Policy-Based Learning Beam Search (P-LBS)

Further loss functions proposed by [Negrinho et al., 2018]:

▶ perceptron last (pl):

ℓ(s, c) = max(0, sσ̂(β) − sσ∗(1)).

▶ margin last (ml):

ℓ(s, c) = max(0, 1 + sσ̂(β) − sσ∗(1)).

▶ log loss beam (llb):

ℓ(s, c) = −sσ∗(1) + log

(∑
i∈I

exp(si)

)
,

where I = {σ∗(1), σ̂(1), . . . , σ̂(β)}.

15 / 21

3. Policy-Based Learning Beam Search (P-LBS)

Bootstrapping for beam-aware data labeling:

▶ NBS calls are time expensive.

⇒ Stop NBS execution at level depth d ∈ N and use the so far
trained MLP to obtain suitable training targets.

16 / 21

4. Experimental Evaluation

Longest Common Subsequence (LCS) problem:

▶ Input: set of m input strings S = {S1, . . . ,Sm} over
alphabet Σ, each of length n = |Si |i=1,...,m.

▶ Output: longest string that appears as subsequence in any
string of S.

▶ Example: LCS of strings AGACT, GTAAC, and GTACT is GAC.

LCS benchmark instances:

▶ rat instance set [Shyu and Tsai, 2009].
– 20 single instances composed of sequences from rat genomes.

▶ ES instance set [Easton and Singireddy, 2008].
– Nine instance sets. Each set contains 50 random instances.

State-of-the-art:

▶ [Djukanovic et al., 2019], and [Huber and Raidl, 2021].
17 / 21

4. Experimental Evaluation

LCS problem: feature vectors for MLP

▶ Remaining string lengths (x iv)i=1,...,m ordered ascending,
where v ∈ Vext.

▶ s := MLP(xv1 , xv2) = (3, 2), where v1, v2 ∈ Vext.

18 / 21

4. Experimental Evaluation
Bootstrapping:

3 5 10 20

Depth limit d , loss: ub

100

120

140

S
ol
u
ti
on

le
n
gt
h

rat(|Σ| = 4, m = 40, n = 600)

3 5 10 20

Depth limit d , loss: ub

0

25000

50000

75000

R
u
n
ti
m
e
(s
)

Training for 2000 iterations

Impact of depth limit d in NBS calls on the solution length of BS on a
rat instance.

Loss functions:

pf lln pl ml cml llb ub cmb

Loss function used for training

100

150

200

S
ol
u
ti
on

le
n
gt
h

rat(|Σ| = 4, m = 100, n = 600)

pf lln pl ml cml llb ub cmb

Loss function used for training

80

100

120

S
ol
u
ti
on

le
n
gt
h

ES(|Σ| = 10, m = 10, n = 1000)

Impact of the loss function in P-LBS on the solution lengths of BS on
rat and ES instances.

19 / 21

5. Results on LCS benchmark instances

▶ Trained MLPs for each combination of |Σ|, m, and n occuring
in benchmark instances on random instances using P-LBS
with each loss function.

▶ Evaluated BS with trained MLPs on all instances from
benchmark sets rat and ES.

⇒ BS with the trained MLPs with loss functions lln, cml, ub and
cmb could achieve

– in five out of 29 instance groups for β = 50,

– and in two out of 29 for β = 600 new best solutions.

20 / 21

6. Conclusions and Future Work

▶ Presented a general P-LBS framework for learning BS policies
to solve combinatorial optimization problems.

▶ Compared and evaluated different loss functions in the
practical scenario of solving the LCS problem.

▶ Utilized bootstrapping to achieve reasonable scalability to
larger problem instances.

Future Work:

▶ Weakness: disregarded in beam-unaware training the fact that
multiple best goal nodes may exist.

⇒ Adapt P-LBS so that all found equally good goal nodes and
corresponding r − t paths are considered.

▶ Utilize graph neural network as policy to get rid of the
dependency of specific instance sizes.

21 / 21

Thank you for your attention!

Questions?

References I

Djukanovic, M., Raidl, G. R., and Blum, C. (2019).
A beam search for the longest common subsequence problem
guided by a novel approximate expected length calculation.
In Machine Learning, Optimization, and Data Science: 5th
International Conference, LOD 2019, Siena, Italy, September
10–13, 2019, Proceedings, page 154–167. Springer-Verlag.

Easton, T. and Singireddy, A. (2008).
A large neighborhood search heuristic for the longest common
subsequence problem.
Journal of Heuristics, 14:271–283.

References II

Huber, M. and Raidl, G. R. (2021).
Learning beam search: Utilizing machine learning to guide
beam search for solving combinatorial optimization problems.
In Machine Learning, Optimization, and Data Science: 7th
International Conference, LOD 2021, Grasmere, UK, October
4–8, 2021, Revised Selected Papers, Part II, page 283–298.
Springer-Verlag.

Negrinho, R., Gormley, M., and Gordon, G. J. (2018).
Learning beam search policies via imitation learning.
In Bengio, S. et al., editors, Advances in Neural Information
Processing Systems, volume 31, pages 10652–10661. Curran
Associates, Inc.

References III

Shyu, S. J. and Tsai, C.-Y. (2009).
Finding the longest common subsequence for multiple
biological sequences by ant colony optimization.
Computers & Operations Research, 36(1):73–91.

