acllll

A Policy-Based Learning Beam Search for
Combinatorial Optimization

Marc Huber
Institute of Logic and Computation, TU Wien, Vienna, Austria
mhuber@ac.tuwien.ac.at

joint work with Rupert Ettrich and Gunther Raidl

Second Vienna Workshop on Computational Optimization
March 16, 2023

ac'lt

1/21

I
1. Introduction ac

» Historically, components of heuristic algorithms to solve
combinatorial problems are manually designed by a human
expert.

— Suboptimal.

— Expensive.

P Learning to search: replace hard-coded heuristic components
with machine learning models that assist in lower-level
decisions.

Goal: Utilize machine learning to learn policy functions
that guide beam search efficiently toward more
promising solutions.

2/21

I
1. Introduction ac

Beam Search (BS): Incomplete tree search algorithm

» Determines at each level the 8 most promising nodes to
pursue further via evaluation function

f(v) =g(v) + h(v),
where
— g(v): cost from root node r to node v.

— h(v): heuristic estimated cost from node v to goal node t.

Beam width § = 3

o @ . @

«@p ® é% &

N 5 0000

im
2. Related Work ac'l

Learning Beam Search Policies via Imitation Learning;:
[Negrinho et al., 2018]
» Presented a meta algorithm that learns BS policies for
structured prediction problems by imitation learning.

— Learns a scoring function for BS to match the ranking induced
by given oracle costs.

— Proposed and analyzed several loss functions and data
collection strategies that consider the beam also at train time.

» Pure theoretical work.

4/21

i
2. Related Work ac
Learning Beam Search (LBS) [Huber and Raidl, 2021]:
» Multilayer perceptron (MLP) used as heuristic h(v).

» MLP is trained offline in a reinforcement learning manner on
many representative randomly generated problem instances.

Randomly Main BS with beam width B NBS calls from selected nodes
generated (solves problem instance) (generates a training data)
prObIem instance While performing main BS

s, = CABA — 0 S ,) —27
s, = ABBA
OO O O] g)b
. d i NBS(vy) = Z‘%g:vz) =2
T / FIFO replay buffer of size y

ML model (e.g. NN) (stores training data,
(guides BS) Train ML model removes older samples)

A7 \ G Feature Vectors | Targets

o 1 27
w Q@0 3K

\

“ 22
‘/ tz5) :

5/21

i
3. Policy-Based Learning Beam Search (P-LBS) ac

» Builds upon our earlier LBS framework.

» Policy function = MLP: applied to all the expanded nodes
at a current BS level together.

= Relies not on the prediction of actual cost-to-go values!

» Four-layer MLP architecture for P-LBS:
Notation: V.. = set of all nodes encountered at one BS level.

x, = feature vector of node v € V.

Al) = shared weight matrix; b(") bias vector.

Ty) Ty Vext = {1,..., k}

B = Az, 4 p©

R : argument pooling

Y = ReLU(A® (b || hD) + b2)

B = AGRP 453

scores for input nodes

6/21

i
3. Policy-Based Learning Beam Search (P-LBS) ac

Abstract training procedure:

Ll

o

. Initialize MLP randomly.

Create random problem instance.
Perform BS guided by the (retrained) MLP.

Store all nodes encountered on & € N randomly selected levels
during BS in a FIFO replay buffer.

Train MLP on FIFO replay buffer data.

Repeat steps 2-5 until a stopping criterion is fulfilled.

7/21

i
3. Policy-Based Learning Beam Search (P-LBS) ac
Two different approaches to label training data:

1. beam-unaware: label nodes that lie on the r — t path
obtained by BS with ones and all other nodes with zero.

7 TN
NN

Exemplary training data labeling using beam-unaware.

2. beam-aware: perform NBS on each node v € V,y to obtain

estimated values for the oracle cost.
8/21

i
3. Policy-Based Learning Beam Search (P-LBS) ac

Adam optimizer is used to update network weights with
respect to different loss functions.

Notation:
c=(cv)vev,,, = vectorofalltarget values of the nodes in Vixt.
s=(sv)vev., = vector of all scores obtained by evaluating the
MLP for Vixt.
o = permutation of V¢ that sorts scores in s such
that S&(1) > S5(2) > ... 2> S6(| Vext) -
o* = permutation of V. that sorts target values in

¢ such that Cox(1) > Co*(2) > .. Co* (| Vext |) -

9/21

i
3. Policy-Based Learning Beam Search (P-LBS) ac

Example:
Vext = {vi,v2,v3,va, v5}.
3 - 2
MLP(Xy,, Xy - - - 5 Xvs) = (Sv, 52, 53, Sug» Sug)-
(NBS(v;))i=1,...5 = (€ G Gy Gy Cug)-
Sa(1) = S5(2) = -+ = S5(5) = Sy = Sy, = Sy = Sy, = Sus-
Cor(1) = Co*(2) = -+ 2 Cox(5) = Cyy = Cyy = Cyy = Cyy = Cus.

Loss functions proposed by [Negrinho et al., 2018]:

> perceptron first (pf):
(s, c) = max(0, s5(1) — Sy+(1))-

10/21

i
3. Policy-Based Learning Beam Search (P-LBS) ac

Example:
Vit = {vi,vo,v3,vq, v5}.
15} = 2.
MLP (X, s Xy -« 5 Xug) = (SuysSvys Susy Svay Sus)-
(NBS(vi))i=1,...5 = (Cvys Cuyy Cugs Cuyy Cug)-
Sa(1) = S5(2) = -+ - = Sa(5) = S = Sy, = Sy = Sy = Sus-
Cox(1) = Co*(2) = -+- = Cox(5) = Cu = Cy = Cyg = Cyy = Cus.

Loss functions proposed by [Negrinho et al., 2018] cont’d:

> cost-sensitive margin last (cml):
(s, c) = (coe(1) — C5(8)) Max(0, 1 + s5(8) — Sy+(1))-

1/21

i
3. Policy-Based Learning Beam Search (P-LBS) ac

Example:
Vext = {vi,v2,v3,v4, v5}.
I6; = 2.
MLP (Xyy s Xvys - - -5 Xus) = (Svy»Svys Suss Sugs Sus)-
(NBS(vj))i=1,...5 = (Cu,Cu, Cus, Cusy Cus)-
Sa(1) = Ss(2) = -+ - = S5(5) = Sy = Sy, = Sy = Sy = Sus-
Cox(1) = Co*(2) = -+- = Cox(5) = Cyy = Cyy = Cyg = Cyy = Cus.

Loss functions proposed by [Negrinho et al., 2018] cont’d:
» log loss neighbors (lIn):

|Vext|
(s, ¢) = —5y+(1) + log (Z exp(s,')).

i=1

12/21

i
3. Policy-Based Learning Beam Search (P-LBS) ac

Example:
Vext = {vi,v,v3,vg, 5}
B = 2.
MLP (Xyy s Xy - - -5 Xus) = (SvySvys Suss Sugs Sus)-
(NBS(vi))i=1,...5 = (CusCn, Cuss Cuy» Cus)
S5(1) = S5(2) = -+ - = S5(5) = Sy = Sy, = Sy = Sy = Sus-
Cox(1) = Co*(2) = -+- = Cox(5) = Cyy = Cyy = Cyg = Cyy = Cus.

Loss functions proposed by [Negrinho et al., 2018] cont’d:
» upper bound (ub):
(s, ¢) = max(0,9541,- -, Ovi))s
where §; = (Co(1) = Co(j)) (So(j) — So(1)) for
j:,B+17--'7’VeXt"

13/21

i
3. Policy-Based Learning Beam Search (P-LBS) ac

Example:
Voxt = {vi,v2,v3,v4, v5}.
I6] = 2.
MLP (Xyy, Xy - -5 Xus) = (SvySvys Suss Sugs Sus)-
(NBS(vi))i=1,...5 = (Cuy, Cuy» Cuss Cuys Cug)-
Sa(1) = S5(2) = -+ - = S5(5) = Sy > Sy, = Sy = Sy = Sy
Cox(1) = Co*(2) = -+- = Cox(5) = Cu = Cyy = Cug = Cyy = Cus.

Loss functions proposed by us:

> cost-sensitive margin beam (cmb):

8-1
{(s,c) = Z max(0, ¢,=(i) — C4()) Max(0, 1 + s5(8) — Sy=(i))-
i=1

14/21

i
3. Policy-Based Learning Beam Search (P-LBS) ac

Further loss functions proposed by [Negrinho et al., 2018]:

» perceptron last (pl):
£(s, c) = max(0, s5(3) — So+(1))-
» margin last (ml):
(s, c) = max(0,1 + s5(3) — Sy+(1))-
» log loss beam (lIIb):
(s, c) = —55+(1) + log (Z exp(s,-)) ,
icl
where | = {0*(1),6(1),...,6(B)}.

15/21

i
3. Policy-Based Learning Beam Search (P-LBS) ac

Bootstrapping for beam-aware data labeling:

> NBS calls are time expensive.

Small problem instance Larger problem instance

TR Ew

Level 0 NBS(vy) = 2 NBS(vp) =1 NBS(vy) = 240 NBS(v,) = 230
Level 1

Level 2 é

Level 3

Level 4 CS

= Stop NBS execution at level depth d € N and use the so far
trained MLP to obtain suitable training targets.

Level 0 @ NBS(]}l) = max{zgj}g} =4
2

tevelt O O

Level 2 @) @

Sw) =4 Sy =1

16/21

i
4. Experimental Evaluation ac

Longest Common Subsequence (LCS) problem:

» Input: set of m input strings S = {S1,...,Sn} over
alphabet ¥, each of length n = |S;|i=1,... m.

» Qutput: longest string that appears as subsequence in any
string of S.

» Example: LCS of strings AGACT, GTAAC, and GTACT is GAC.

LCS benchmark instances:

» rat instance set [Shyu and Tsai, 2009].
— 20 single instances composed of sequences from rat genomes.

» ES instance set [Easton and Singireddy, 2008].
— Nine instance sets. Each set contains 50 random instances.

State-of-the-art:
» [Djukanovic et al., 2019], and [Huber and Raidl, 2021].

17/21

i
4. Experimental Evaluation ac

LCS problem: feature vectors for MLP

» Remaining string lengths (X\I;)izl,m’m ordered ascending,
where v € Viyt.

S1:BABA
S2: AABA

Xr = [4—,4]
()
@ S1:BABA
5 :AABA

XV2 = [1,3]

A
$1:BABA @
$: AABA

]

le = [2,3

| — MLP(XV17XV2) = (372)’ where Vi, V2 € VeXt.

18/21

i
4. Experimental Evaluation ac

Bootstrapping:
rat(|X| =4, m =40, n = 600) Training for 2000 iterations
5 140 - —+ . 75000 1 —
42 120 g 50000 4
g 100 5 25000 _ =
» = T v w

Depth limit d, \oss ub Depth limit d, loss: ub

Impact of depth limit d in NBS calls on the solution length of BS on a
rat instance.

Loss functions:

rat(\Z\ =4, m=100, n=600) ES(|X| =10, m = 10, n = 1000)
001 e
= =
< 1504 < *
2 2
2 % £ 100 4
3 100 3
80
v‘ \\“ p\ m\ cﬁ\\ \b u‘O c“\‘o vi \\n 9\ m\ cm\ \b “b cm"

Loss function used for training Loss function used for training

Impact of the loss function in P-LBS on the solution lengths of BS on

rat and ES instances.
19/21

. acllll
5. Results on LCS benchmark instances

» Trained MLPs for each combination of |X|, m, and n occuring
in benchmark instances on random instances using P-LBS
with each loss function.

» Evaluated BS with trained MLPs on all instances from
benchmark sets rat and ES.

= BS with the trained MLPs with loss functions lIn, cml, ub and
cmb could achieve

— in five out of 29 instance groups for 5 = 50,
— and in two out of 29 for 8 = 600 new best solutions.

20/21

. acllll
6. Conclusions and Future Work

» Presented a general P-LBS framework for learning BS policies
to solve combinatorial optimization problems.

» Compared and evaluated different loss functions in the
practical scenario of solving the LCS problem.

P Utilized bootstrapping to achieve reasonable scalability to
larger problem instances.

Future Work:

» Weakness: disregarded in beam-unaware training the fact that
multiple best goal nodes may exist.

= Adapt P-LBS so that all found equally good goal nodes and
corresponding r — t paths are considered.

» Utilize graph neural network as policy to get rid of the
dependency of specific instance sizes.

21/21

Thank you for your attention!

Questions?

References |

[§ Djukanovic, M., Raidl, G. R., and Blum, C. (2019).
A beam search for the longest common subsequence problem
guided by a novel approximate expected length calculation.
In Machine Learning, Optimization, and Data Science: 5th
International Conference, LOD 2019, Siena, Italy, September
10-13, 2019, Proceedings, page 154—-167. Springer-Verlag.

[§ Easton, T. and Singireddy, A. (2008).
A large neighborhood search heuristic for the longest common
subsequence problem.
Journal of Heuristics, 14:271-283.

References |l

[§ Huber, M. and Raidl, G. R. (2021).
Learning beam search: Utilizing machine learning to guide
beam search for solving combinatorial optimization problems.
In Machine Learning, Optimization, and Data Science: 7th
International Conference, LOD 2021, Grasmere, UK, October
4-8, 2021, Revised Selected Papers, Part I, page 283-298.
Springer-Verlag.

@ Negrinho, R., Gormley, M., and Gordon, G. J. (2018).
Learning beam search policies via imitation learning.
In Bengio, S. et al., editors, Advances in Neural Information
Processing Systems, volume 31, pages 10652-10661. Curran
Associates, Inc.

References Il

[§ Shyu, S. J. and Tsai, C.-Y. (2009).
Finding the longest common subsequence for multiple
biological sequences by ant colony optimization.
Computers & Operations Research, 36(1):73-91.

