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Abstract. Due to varying user demands in bicycle sharing systems, operators
need to actively shift bikes between stations by a fleet of vehicles. We address the
problem of finding efficient vehicle tours by an extended version of an iterated
greedy construction heuristic following the concept of the PILOT method and
GRASP and applying a variable neighborhood descend (VND) as local improve-
ment. Computational results on benchmark instances derived from the real-world
scenario in Vienna with up to 700 stations indicate that our PILOT/GRASP hy-
brid especially scales significantly better to very large instances than a previously
proposed variable neighborhood search (VNS) approach. Applying only one it-
eration, the PILOT construction heuristic followed by the VND provides good
solutions very quickly, which can be potentially useful for urgent requests.

1 Introduction

Public bicycle sharing systems (BSSs) emerge worldwide in various cities. Such sys-
tems augment public transport very well, reduce the amount of motorized traffic, con-
gestions, parking problems, and last but not least are an incentive for sports, thereby
contributing to public health [4]. Typically, modern BSSs offer automated rental sta-
tions distributed over the city, where users may rent or return bicycles anytime. Op-
erators face one important issue: most stations show asymmetric usage patterns, e.g.,
people tend to rent bikes at topographically higher stations and return them at lower
stations. Other frequent influences are commuting patterns across working days and the
weather situation [9]. In order to avoid critical situations where stations run completely
empty or full, operators actively move bikes between stations, usually by a fleet of cars
with trailers. The Balancing Bicycle Sharing System (BBSS) Problem deals with opti-
mizing these vehicle tours together with corresponding loading or unloading directions.

2 The Balancing Bicycle Sharing System Problem

The BBSS problem is defined on a complete directed graph G0 = (V0,A0), with node
set V0 =V ∪{0} consisting of the nodes for rental stations V and the vehicles’ depot 0.
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Arcs (u,v)∈A0 connecting all v∈V are weighted with a time value tu,v > 0 that consists
of the time needed for driving from u to v and for servicing v. Let the subgraph induced
by the bike stations V only be G = (V,A), A⊂ A0. For each station v ∈V we are given
the bike capacity Cv ≥ 0, the number of present bikes when beginning the rebalancing
process pv, as well as a target number of bikes qv, with 0 ≤ pv,qv ≤ Cv. The BSS
operator employs a fleet of vehicles L = {1, . . . , |L|} for moving bikes. Each vehicle
l ∈ L starts empty at the depot 0, has a capacity of Zl bikes and may visit an arbitrary
number of stations before returning empty to the depot again as long as the total tour
length tl does not exceed an available time budget t̂.

Solutions to the BBSS problem consist of a route for each vehicle l ∈ L specified
by an ordered sequence of visited stations rl = (r1

l , . . . ,r
ρl
l ) with ri

l ∈ V , i = 1, . . . ,ρl ,
and ρl being the number of visited stations. Note that each station may be vis-
ited multiple times by several vehicles. Each visit has associated loading instructions
yi

l ∈ {−Zl , . . . ,Zl} with l ∈ L, v ∈ V , and i = 1, . . . ,ρl , specifying how many bikes are
to be picked up (yi

l > 0) or delivered (yi
l < 0) at that visit.

Let av be the final number of bikes at each station v ∈ V after rebalancing and let
δv = |av−qv|, ∀v ∈V . Our objective function is given by

min ω
bal

∑
v∈V

δv +ω
load

∑
l∈L

ρl

∑
i=1
|yi

l |+ω
work

∑
l∈L

tl . (1)

Scaling factors ωbal,ω load,ωwork ≥ 0 control the relative importance of the respective
terms. The primary objective is to minimize deviations δv and only secondarily the
number of loading activities as well as the overall tour lengths. We use the setting
ωbal = 1 and ω load = ωwork = 1/100000 in all our tests.

We simplify the problem by restricting the fill levels of stations to monotonicity. Let
Vpic = {v ∈ V | pv > qv} denote pickup stations and Vdel = {v ∈ V | pv < qv} denote
delivery stations. A vehicle must only load bikes at pickup stations and unload bikes at
delivery stations. As shown in previous work, this restriction has only a minimal impact
on the theoretically achievable best solution quality [8].

3 Related Work

The BBSS problem is related to variants of the vehicle routing problem (VRP). Signifi-
cant differences, however, include allowing multiple visits of stations, even by different
vehicles, and the possibility of loading or unloading an arbitrary number of bikes. BBSS
can be regarded as a capacitated single commodity split pickup and delivery VRP.

Each approach deals with different application characteristics, making a direct com-
parison difficult. In particular, Chemla et al. [2] require achieving perfect balance as a
hard constraint. Their approach is designed for a single vehicle and consists of a branch-
and-cut algorithm on a relaxed MIP model in conjunction with a tabu search for the lo-
cal improvement of solutions. Benchimol et al. [1] focus on approximation algorithms
for selected special situations. Their approaches also assume balancing as a hard con-
straint and are limited to a single vehicle. Raviv et al. [9] propose MIP models for the
multiple-vehicle case. They consider a convex penalty objective function minimizing



user dissatisfaction and tour lengths, but ignore the number of loading operations. The
assets and drawbacks of the models are compared on instances with up to 104 stations,
two vehicles and a time horizon of up to five hours. Contardo et al. [3] investigate the
dynamic scenario where user activities during rebalancing are taken into account. They
describe a hybrid MIP approach utilizing Dantzig-Wolfe and Benders decomposition.
Upper and lower bounds can be derived relatively quickly for instances up to 100 sta-
tions, but significant gaps remain. Schuijbroek et al. [11] decompose the problem into
separate single-vehicle routing problems by solving a clustering problem. The routing
problems are handled by a clustered MIP heuristic or a constraint programming ap-
proach.

In [8], we propose a greedy construction heuristic followed by a variable neighbor-
hood search/variable neighborhood descent (VNS/VND) metaheuristic for efficiently
finding vehicle routes. Three alternative auxiliary algorithms calculate meaningful load-
ing instructions for given tours. In [7] we develop a forth alternative for deriving loading
instructions and describe an effective way for applying all of them in a hybrid fashion.
The current work extends our methods by applying the PILOT method [12] in the con-
struction heuristic and GRASP as an alternative to the VNS, as well as by performing
experiments on larger instances of up to 700 stations.

4 Construction Heuristics

We employ two alternative construction heuristics for creating initial solutions: a greedy
construction heuristic (GCH) and an extended version following the PILOT method.

4.1 Greedy Construction Heuristic

The greedy construction heuristic, which is in detail described in [8], sequentially con-
structs vehicle tours in a pure greedy manner following a local best successor strategy.
First, we compute the maximum number of bicycles γv that can be picked up or de-
livered at any station v in the set of feasible, i.e., not yet balanced, successor stations
F :

γv =

{
min(av−qv,Zl−bl) for v ∈ F ∩Vpic and
min(qv−av,bl) for v ∈ F ∩Vdel,

(2)

where bl expresses the final load of vehicle l so far and av the final number of bikes at
station v in the partial tour. Next, we evaluate the ratio γv/tu,v for all v ∈ F . As vehicles
need to return empty to the depot, we additionally apply a correction at pickup stations:
We restrict the number of pickups at a station by potential deliveries after this stop.
Eventually, we append the station offering the highest ratio to the tour rl and derive
loading instructions as follows:

yρl
l =

{
γv if v ∈Vpic and
−γv if v ∈Vdel.

(3)

After updating bl and av, the procedure continues with the next extension.
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(b) PILOT-CH.

Fig. 1. Exemplary solutions of GCH vs. PILOT-CH with |L|= 1 and t̂ = 30min.

4.2 PILOT Construction Heuristic

The drawbacks of the fast GCH – always choosing the single locally best successor
– are possible shortsighted results, e.g., we might never service a more distant cluster
of stations offering a substantial balance gain. The PILOT (Preferred Iterative LOok
ahead Technique) method addresses this issue by looking ahead in order to escape this
greedy trap [12]. Consequently, the PILOT construction heuristic (PILOT-CH) extends
GCH by evaluating each potential successor in a deeper way by constructing a complete
temporary route. For this purpose, we utilize the objective function value as evaluation
criterion and select the candidate station with the highest benefit. Figure 1 demonstrates
an example where PILOT-CH surpasses GCH. For simplicity we merely visualize the
most lucrative connections weighted with symmetric traveling times. Due to the recur-
sive evaluation of candidates the time complexity of PILOT-CH is higher than GCH by
a factor of O(|V |). To speed up the computation we may limit the PILOT depth β , i.e.,
restrict the number of successor stations of the recursive look-ahead. In this case we
adopt the evaluation criterion of GCH, i.e., the ratio of the balance gain and the time for
the whole extension, as the objective function only makes sense for complete solutions.
Figure 2 illustrates obtained objective values and computation times for varying β on
benchmark instances, where β = 0 represents GCH and β = ∞ unrestricted depth. For
details on the instances and hardware see Section 7. As β = ∞ runs fast compared to
our other approaches while yielding significantly better results than all depth-restricted
cases, we use it in all further experiments in this article.

5 Variable Neighborhood Descent

For locally improving candidate solutions, we employ a Variable Neighborhood De-
scent (VND) [5] with several classical neighborhood structures that were successfully
applied in VRPs [6] as well as new neighborhood structures specific to BBSS. The
neighborhoods are described in detail in our previous work [8]: Remove station (REM-
VND), insert unbalanced station (INS-U), replace station (REPL), intra or-opt (OR-
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(b) CPU time.

Fig. 2. PILOT-CH: Finally best objective values and CPU times [s] for instances with |V |= 700,
|L|= 14, t̂ = 8h and different PILOT depths β .

OPT), 2-opt* inter-route exchange (2-OPT*), and intra-route 3-opt (3-OPT). All neigh-
borhoods are searched using the best improvement strategy, and they are applied in
random order, which turned out to work better in conjunction with PILOT-CH than the
static order from [8].

The VND only searches the space of vehicle routes, while loading instructions are
calculated for each candidate solution by an auxiliary heuristic following the greedy
strategy from GCH; see also [8], Chemla et al. [2].

6 Greedy Randomized Adaptive Search Procedure

For optimizing solutions further, we realized a Greedy Randomized Adaptive Search
Procedure (GRASP) [10] by iteratively applying randomized versions of either the
GCH or PILOT-CH, locally improving each solution with the VND, and finally re-
turning the overall best solution. In the randomized construction heuristics we select a
random successor station from a restricted candidate list RCL ⊆ F instead of always
picking the best candidate:

RCL = {v ∈ F | g(v)≥ gmax−α (gmax−gmin)}, (4)

where g(v) is the greedy value of candidate station v, while gmax = max{g(v) | v ∈ F}
and gmin = min{g(v) | v ∈ F} are the maximum and minimum evaluation values in F ,
respectively. Accordingly, α ∈ [0,1] controls the strength of the randomization, with
α = 0 representing a pure greedy and α = 1 a completely random construction method.
In this context, we may choose either a fixed α , i.e., remaining constant throughout all
GRASP iterations, or a randomized α ∈ [0,αmax], changing in a random manner at each
iteration. Evaluating both variants of α on the benchmarks instances disclose that the
randomized version is more robust, and thus we employ it in all further tests. Moreover,
the tests indicate that large instances w.r.t. |V |, |L|, and t̂ require smaller values for α

than small instances. Figure 3 shows the impact of different values for α exemplarily
for GCH-based GRASP (GCH-GRASP) on large instances. Based on many preliminary

tests, we finally decided to choose α = 0.11 · e− |V |187 .
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(a) Instances with |V |= 180, |L|= 4.
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(b) Instances with |V |= 700, |L|= 14.

Fig. 3. GCH-GRASP: Final objective values in dependence of α; t̂ = 8h.

7 Computational Results

We performed computational tests on benchmark instances1, which range from 10
to 700 stations and are derived from real-world data provided by Citybike Wien,
which operates a BSS of 92 stations in Vienna, Austria. For larger instances the
Austrian Institute of Technology (AIT) supplied us with another 664 artificial sta-
tions placed at reasonable locations. For the following tests we consider |V | ∈
{30,60,90,180,300,400,500,600,700} and a shift length t̂ for all vehicles ranging
from 2 to 8 hours. We set |L| between 1% and 12% of |V | depending on t̂. All in-
stance sets include 30 instances and represent unique combinations of |V |, |L|, and t̂.
We implemented and ran each test on a single core of an Intel Xeon E5540 machine
with 2.53 GHz. For a fair comparison we terminate our algorithms after a defined run
time tmax depending on the instance size.

Note that the scaling factors ωbal = 1, ω load =ωwork = 1/100000 induce that an im-
proved balance always effects the objective values more than a decrease in tour lengths
or number of loading operations. Since the values of ω load and ωwork cause small differ-
ences of objective values, these small values are still crucial for evaluating the quality of
solutions. In order to ease these comparisons we also list the number of runs for which
the variant yields the best results of all variants in the #best column.

As indicated by the mean objective values obj and #best in table 1 and confirmed
by Wilcoxon signed-rank test with an error probability of 5%, the PILOT construc-
tion heuristic (PILOT-CH) clearly outperforms the simple greedy construction heuristic
(GCH) on each instance set. Naturally, PILOT-CH consumes more median computation
time as listed in the column t̃tot. Nevertheless, it is still faster than the more complex op-
timization methods and consequently a good compromise between solution quality and
computation time. PILOT-CH might be a good option for practical applications requir-
ing short computation times. Table 2 includes the final results of selected instance sets
for VNS as proposed in our previous work [8], GCH-GRASP (GRASP with random-
ized GCH), and PILOT-GRASP (GRASP with randomized PILOT-CH). According to a
Wilcoxon signed-rank test (with less than 5% error probability), PILOT-GRASP yields
significantly better results than GCH-GRASP. When comparing our VNS with PILOT-
GRASP, we observe that all approaches perform almost equally good on small instances
with 30 stations. However, while VNS dominates the medium-sized instances with 60
to 180 stations, PILOT-GRASP is superior on large instances with 400 or more stations.

1 Available at: https://www.ads.tuwien.ac.at/w/Research/Problem Instances



Table 1. Computational results of GCH and PILOT-CH.

Instance set GCH PILOT-CH
|V | |L| t̂ [h] #best obj t̃tot [s] #best obj t̃tot [s]
30 1 2 4 141.401410 < 0.1 29 138.134850 < 0.1
30 1 4 1 99.203000 < 0.1 30 93.536490 < 0.1
60 1 4 3 279.136470 < 0.1 29 271.136660 < 0.1
60 2 2 2 302.936050 < 0.1 29 291.603090 < 0.1
90 2 4 1 390.739620 < 0.1 29 379.273230 < 0.1
90 2 8 1 236.545910 < 0.1 29 220.812930 0.2

180 4 4 1 760.812500 < 0.1 29 735.146480 0.3
180 4 8 0 448.825240 < 0.1 30 421.425890 1.2
300 6 4 0 1361.285300 < 0.1 30 1310.753180 1.1
300 6 8 0 865.571370 < 0.1 30 819.039150 5.0
400 8 4 0 1833.891260 < 0.1 30 1760.959600 2.3
400 8 8 0 1161.650440 < 0.1 30 1096.118750 11.3
500 10 4 0 2294.297610 < 0.1 30 2213.966180 4.5
500 10 8 0 1452.530120 < 0.1 30 1378.665150 22.2
600 12 4 0 2783.170230 < 0.1 30 2672.506080 6.9
600 12 8 0 1762.409230 < 0.1 30 1658.011680 35.9
700 14 4 0 3255.442790 0.1 30 3125.779220 10.3
700 14 8 0 2068.555330 0.1 30 1957.891110 57.6

Total 13 21498.403880 0.2 534 20544.759720 158.8

Table 2. Computational results of VNS and two GRASP variants.

Instance set VNS GCH-GRASP PILOT-GRASP
|V | |L| t̂ [h] tmax [s] #best obj #best obj #best obj
30 1 2 900 28 137.13486 27 137.13617 29 136.93617
30 1 4 900 29 89.26988 28 89.34470 30 89.27799
60 1 4 1800 30 267.00340 19 268.01137 25 267.27850
60 2 2 1800 24 287.40315 12 288.67231 24 287.47238
90 2 4 1800 28 368.00672 0 370.35554 4 369.42263
90 2 8 1800 27 205.21311 2 210.95327 2 210.75318
180 4 4 3600 27 714.21342 0 723.57714 3 719.04451
180 4 8 3600 28 396.82615 0 412.56891 2 408.03814
300 6 4 3600 27 1287.42007 0 1304.53134 4 1294.80010
300 6 8 3600 17 798.57261 3 813.78571 10 803.72637
400 8 4 3600 19 1737.75980 0 1762.41566 11 1743.21898
400 8 8 3600 1 1087.31864 0 1094.79654 29 1077.87467
500 10 4 3600 12 2193.83297 0 2217.90432 18 2192.24287
500 10 8 3600 0 1383.19814 1 1381.35180 29 1359.56638
600 12 4 3600 2 2664.17266 0 2691.98787 28 2651.39459
600 12 8 3600 0 1675.21100 0 1675.89018 30 1641.57620
700 14 4 3600 0 3128.84563 0 3150.20618 30 3102.14626
700 14 8 3600 0 1979.89031 0 1974.83820 30 1938.92603

Total 52200 299 20401.29252 92 20568.32721 338 20293.69595



8 Conclusions and future Work

We presented and tested two GRASP approaches iterativly employing randomized ver-
sions of the construction heuristics and compared them to our previously proposed VNS
approach. Computatinal results indicate that the PILOT-GRASP variant surpasses the
GCH-GRASP and the VNS on large instances up to 700 stations. However, the VNS
yields the best results on medium instances. Hence, we conclude that PILOT-GRASP
scales better with respect to instance size and complexity.

In future work we will adapt our methods to the dynamic case of BBSS considering
prognosis of demands involving stochastic aspects and investigate the hybridization of
VNS with MIP approaches for computing lower bounds.
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