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Zusammenfassung

Diese Arbeit setzt sich mit zwei kombinatorischen Optimierungsproblemen auseinander: das Prob-
lem des generalisierten minimalen knotenzweifachzusammenhngenden Netzwerks (GMVBCNP)
und das Problem des generalisierten minimalen Spannbaums mit Gradbeschrnkung (d-GMSTP).
Beide Optimierungsprobleme sind NP-vollstndig. Gegeben sind Graphen, deren Knoten in Clus-
ter unterteilt sind. Das Ziel besteht jeweils darin, einen Teilgraphen mit minimalen Kosten zu
finden, der genau einen Knoten von jedem Cluster verbindet und andere Zusatzbedingungen
bercksichtigt. Beim d-GMSTP ist die Zusatzbedingung die Gradbeschrnkung der Knoten. In
der Praxis findet sich diese Problemstellung in der Telekommunikation wieder, wo Netzwerk-
knoten in mehrere Cluster unterteilt sind und auf Basis einer Baumarchitektur miteinander ver-
bunden sind. Von jedem Cluster wird genau ein Knoten zum Rckgrat verbunden und durch
die Gradbeschrnkung wird die Transferqualitt gewhrleistet. Das GMVBCNP hingegen wird bei
fehlertoleranten Backbone-Netzen angewendet. Um sicherzustellen, dass durch den Ausfall einer
einzelnen Komponente andere Dienste nicht beeinflusst werden, mssen die Verbindungen re-
dundant sein. Diese Arbeit stellt zwei Lsungsanstze fr das d-GMSTP vor. Ein Ansatz basiert
auf variable Nachbarschaftssuche (VNS), bei der verschiedene Arten von Nachbarschaftsstruk-
turen komplementr arbeiten und dadurch die Effizienz bei der Zusammenarbeit maximiert wird.
Ein anderer Ansatz basiert auf einen memetischen Algorithmus (MA). Das GMVBCNP wird in
dieser Arbeit ebenfalls mit einem memetischen Algorithmus (MA) gelst. Dabei werden fr die
Zusammensetzung der Knoten zwei verschiedene Anstze betrachtet. Ausserdem werden mit Hilfe
von Graph-Reduzierungstechniken, die den Suchraum signifikant verkleinern, lokale Verbesserun-
gen erzielt. Beide Problemstellungen wurden auf euklidischen Instanzen mit bis zu 442 Knoten
getestet.



Abstract

This thesis examines two combinatorial optimization problems: the Generalized Degree Con-
strained Minimum Spanning Tree Problem (d-GMSTP) and the Generalized Minimum Vertex
Bi-connected Network Problem (GMVBCNP). Both problems are NP- hard. Given a clustered
graph where nodes are partitioned into clusters, the goal is to find a minimal cost subgraph con-
taining exactly one node from each cluster and satisfying other constraints. For the d-GMSTP the
subgraph has to fulfill degree constraint. It plays an important role in telecommunication areas
where network nodes are divided into clusters and they need to be connected via tree architec-
ture using exactly one node per cluster and satisfying degree constraint for transfer quality. The
GMVBCNP can be applied to the design of survivable backbone networks that should be fault
tolerant to the single component outage. In order to ensure that the failure of a single service ver-
tex would not lead to disconnection of other services, redundant connections need to be created.
For solving the d-GMSTP two approaches are proposed: Variable Neighborhood Search (VNS)
which uses different types of neighborhoods, which work in complementary ways to maximize the
collaboration efficiency and a Memetic Algorithm (MA) involving local improvement. For solving
the GMVBCNP a Memetic Algorithm (MA) is proposed. Two different population management
approaches are considered, as well as local improvement involving graph reduction technique that
reduces the search space significantly. Both problems are tested on Euclidean instances with up
to 442 nodes.
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1 Introduction

This thesis attacks two optimization problems: Generalized Degree Constrained Mini-
mum Spanning Tree Problem (d-GMSTP) and Generalized Minimum Vertex Bi-
connected Network Problem (GMVBCNP). Both problems are located in combinato-
rial optimization areas and are classified as NP- hard. The solution of both problems can
be applied in the real world, in the area of network design especially when one considers
the design of a large-capacity backbone network connecting many individual networks. Gen-
eralized Degree Constrained Minimum Spanning Tree problem plays an important role in
telecommunication area where network nodes are divided into clusters and they need to be
connected via a tree architecture using exactly one node per cluster, however degree con-
straint must not be violated. Generalized Minimum Vertex Bi-connected Network Problem
can be applied in a design of survivable backbone networks that should be fault tolerant to
the single component outage.

The Generalized Degree Constrained Minimum Spanning Tree (d-GMST)
problem is an extension of the classical Minimum Spanning Tree Problem, however the degree
constraint is considered as well. In this problem the minimum spanning tree is searched and
none of its vertices has degree grater than d ≥ 2. The problem is defined as follow.

Consider an undirected, weighted complete graph G = (V, E, c) with node set V , edge set
E, edge cost function c : E → R+. The node set V is partitioned into r pairwise disjointed
clusters V1,V2, ...,Vr containing n1,n2,...nr nodes respectively. A spanning tree of a graph is a
cycle- free subgraph connecting all nodes. A solution to the d-GMST problem defined on G
is a graph S = (P, T ) with P = { p1, p2, . . . , pr} ⊆ V containing exactly one node from each
cluster, pi ∈ Vi for all i = 1, 2, .., r and T ⊆ P × P ⊆ E being the tree spanning nodes P .
Lets assign numerical costs cu,v ≥ 0 to each edge (u, v) ∈ T then the Generalized Minimum
Spanning Tree is a spanning tree with minimum total edge cost

C(T ) =
∑

(u,v)∈T

c(u, v).

In the degree constrained d-GMST problem an additional constraint called degree deg(u)
of every vertex u ∈ P is considered. The degree is the number deg(u) ≤ d, ∀u ∈ P , where d
is a given upper bound of edges adjacent to u. Thus the Generalized Degree Constrained
Minimum Spanning Tree is the tree that fulfills the degree constraint and simultaneously
minimizes the total edge cost. Figure 3.1 shows an example for a solution to d-GMST.

Similar to the Generalized Minimum Spanning Tree problem, the Generalized Mini-
mum Vertex Bi-connected Network Problem (GMVBCNP) is an extension of the
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Figure 1.1: Example for d-GMST problem, where degree d = 3

classical Minimum Vertex Bi-connectivity Network Problem. Nowadays network’s reliability
and survivability are very crucial not only in telecommunication or IT industry, but also in
many other industrial areas and it is not acceptable that the failure of a single service vertex
could lead to disconnection of other vertices. Therefore a redundant connection needs to be
created in order to provide alternative connections between the rest of service vertices. The
graph theory describes this type of network robustness by means of vertex connectivity. A
k − connected network, k > 2, is said to be survivable because currently the new technolo-
gies provide good reliable solutions. Therefore the probability of a second failure before the
first one is repaired can be kept very small. Thus this thesis focuses on the case of reliable
networks which are 2-connected.
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Figure 1.2: Example for a solution to GMVBCNP.

To define GMVBCNP we can link directly to Generalized Minimum Spanning Tree
Problem (GMSTP) by requiring a vertex bi-connected graph, that includes cycles, instead
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of having a spanning tree. Consider an undirected, weighted, complete graph G = (V, E, c)
with node set V , edge set E, edge cost function c : E → R+. The node set V is partitioned
into r pairwise disjoined clusters V1,V2, ...,Vr containing n1,n2,...nr, nodes respectively. The
vertex bi-connected graph is a subgraph that connects all nodes and the failure of a single
vertex will not disconnect the graph.

A solution to GMVBCNP defined on G is a subgraph S = (P, T ), P = { p1, .., pn} ⊆ V
connecting exactly one node from each cluster, i.e. pi ∈ Vi,∀i = 1, ..r and containing no
cut nodes. A cut node is a node whose removal would disconnect a graph. Let us assign
numerical costs cu,v ≥ 0 to each edge (u, v) ∈ T , then cost of such a vertex bi-connected
graph are its total edge costs i.e.

C(T ) =
∑

(u,v)∈T

c(u, v),

and the objective is to identify a feasible solution with minimum costs. Figure 1.2 shows an
example for a solution to GMVBCNP.

1.1 Graph theory

Undirected graph

This section describes an undirected graph. Please consider that the definitions given here
can be different from some in the literature, but mostly the differences are slight. The aim
of presenting this theory here is to establish the notation and to introduce the terms used in
this work.

An undirected graph G is a pair (V, E), where V is a finite set and E is a binary relation
in V . The set V is called the vertex set of G and its elements are called vertices. In an
undirected graph G = (V, E), the edge set E consists of unordered pairs of vertices. That is,
an edge is a set {u, v }, where u, v ∈ V and u 6= v. The notation (u, v) is used for an edge;
the notations (u, v) and (v, u) are considered to be the same edge. In an undirected graph
self-loops are forbidden, and so every edge consists of exactly two distinct vertices. If (u, v)
is an edge in an undirected graph G = (V, E), we say that (u, v) is incident to vertex u and v
and vertex v is adjacent to vertex u. When the graph is undirected, the adjacency relation is
symmetric. The degree deg of vertex in an undirected graph is the number of edges incident
to it. A path of length k from a vertex u to a vertex u in a graph G = (V, E) is a sequence
〈vo, v1, . . . , vr〉 of vertices such that u = vo, u′ = vr and (vi−1, vi) ∈ E for i = 1, 2, ..., r. The
length of the path is the number of edges in the path. A path is simple if all vertices in the
path are distinct. An undirected graph is connected if every pair of vertices is connected by a
path. We say that a graph G′ = (V ′, E′) is a subgraph of G = (V, E) if V ′ ∈ V and E′ ∈ E.

Graph connectivity

If for any two nodes {u, v } ∈ V of graph G = (V,E) an [i, j] -path exists, the graph is
said to be connected, otherwise it is disconnected. A maximal connected subgraph of G is a
component of G.

3



If G is connected and G \ S is disconnected, where S is a set of vertices or set of edges,
then we say that S separates G. For more details please refer to [22].

Definition 1 [k-Connectivity] A graph G is vertex (edge) k-connected (k ≥ 2) if it has at
least k + 2 vertices and no set of k − 1 vertices (edges) separates it. The maximal value of k
for which a connected graph G is k - connected is the connectivity of G. For k = 2, graph G
is called biconnected.

If S is a vertex set such that G\S has more connected components than G, set S is called
an articulation set. If S = v, the vertex v is called articulation or cut vertex.

The below theory represents fundamentals of graph (vertex) connectivity:

Definition 2 [Menger’s theorem] A graph G = (V, E) is k- vertex connected (k - edge
connected) if for each pair v, u of distinct vertices , G contains at least k vertex- disjointed
(edge disjointed) [v, u]-paths. Note:While vertex k-connectivity implies edge k-connectivity
the reverse does not generally hold.

As the redundant edge we denote edge that can be easily removed from the solution with-
out violating the vertex-biconnectivity feature. As a minimum vertex biconnected network
we denote a graph that contains no cut nodes and no redundant edges.

The block cut graph

Referring to [23], a block is denoted as maximal subgraph of a graph G that is already vertex
biconnected. If the graph is vertex biconnected the whole graph represents one block. If any
two blocks of G share at least one node, then this node is called the cut point of graph G
and its removal would disconnect graph G into at least two components.

A block cut tree T = (VT , ET ) is an undirected tree that represents relationships between
blocks and cut points in graph G. Figure 1.3 illustrates the block cut tree, where two types
of vertices are presented: cut vertices and block vertices. Each cut vertex in graph G is
represented by corresponding cut node in VT , and each maximal vertex biconnected block of
graph G is represented by means of a unique block - vertex in VT .

The block vertex is represented by all vertices of the corresponding block in G, except
the ones which are cut points.

1.2 Dynamic Programming

In computer science this method is usually used to tackle problems which are solvable in poly-
nomial time. The method described here is very helpful when solving a complex problems
by breaking them down into sub-problems in a recursive manner. The space of the subprob-
lems must be small, which means that any recursive algorithm that is solving the problem
should be able to solve the same sub-problems time after time without generating any new
sub-problems. The solutions to the original problem can be obtained either in top-down
approach or bottom-up approach, which tries to solve the sub-problems first and use their
solutions to build-on and finally obtain solutions to bigger sub-problems. For more details
please refer to [29] and [3].
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Figure 1.3: a) Graph G = (V, E) which is not vertex biconnected, b) the corresponding block
tree representing block nodes and cut nodes of graph G

1.3 Metaheuristics and population based methods

The term metaheuristic has been introduced by Glover in 1986 [10], however for the time
being there is no commonly accepted definition. Nevertheless we can outline here some
common properties that characterize the metaheuristics:

� strategies that guide the search process

� exploring the search space in efficient way in order to find an optimal or near-optimal
solution

� approximate and usually non-deterministic algorithms

� non-problem specific

5



� the abstract level is permitted by a basic concept.

The above characteristics guide us to the conclusion that the following (but not restricted to)
classes of algorithms can be rated as metaheuristics: Ant Colony Optimization, Evolutionary
Computation including Genetic Algorithms, Iterated Local Search, Simulated Annealing and
Tabu Search. Generally metaheuristics are high level strategies which use different methods
to explore the search spaces, simultaneously keeping the balance between diversification and
intensification. This thesis focuses on Evolutionary Algorithms.

The population based methods like Evolutionary Algorithms (EA) deal with a set of
solutions in every iteration. Such methods can be concisely characterized as computational
methods of evolutionary processes. Evolutionary Algorithms use operators of recombination
or crossover to create new individuals, and may adapt mutation operator also, which causes a
self-adaptation of individuals. In order to gain good results by running EA, the intensification
and diversification strategies should be applied. It has been proved by many applications that
by using an improvement mechanism to increase the fitness of individuals is quite beneficial.
Such EA, that applies a local search algorithm to every individual are often called Memetic
Algorithms. By using a population of individuals it ensures the exploration of search space,
but in order to quickly identify the good areas in the search space local search techniques
need to be involved. However this can lead to premature convergence towards sub-optimal
solutions, which is the one of the major difficulties of EA’s. A simply way to diversify
the population is involvement of mutation operators. A more sophisticated way can be the
application of population management techniques, described in chapter 2.9. Algorithm 1
describes the general idea of EA’s. The phrase “Evolutionary Algorithms” denotes a family
of parallel, randomized search optimization heuristics which share the following features:

� population P of solutions

� individuals (parents) are selected from this population and are mated to form new
individuals (children)

� children are possibly mutated to introduce diversity into the population and avoid
ending up with a population of very similar or even identical solutions.

An initialization of the population can be performed by means of a random procedure or
heuristics can be involved. The main condition must be fulfilled – the diversity of a beginning
(initial) population of chromosomes should be achieved. Each member of the population is
characterized by a fitness value. This fitness determines the chances of the individuals survival
and a member with a lower fitness has a smaller chance of survival and of being chosen for
mating (and thus to have its genes reproduced). The net effect of survival of the fittest is that
the average fitness of the population increases with each generation. By allowing mutation,
the diversity of the population is increased and new (maybe better) attributes can be created.
This simulation of evolution allows the principle of survival of the fittest to be applied to
optimization problems. The goal is to find a population member with a very high fitness
level, corresponding to a perhaps an optimal solution to the problem.
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Algorithm 1 Evolutionary Algorithm
t←0
Initialization (P (0))
Evaluate (P )
repeat

Selection (P (t))
Recombination ( P ′(t))
Mutate ( P ′(t))
Evaluate (P ′)
P (t+1)←Replacement (P (t), P ′)
t ←t+1

until termination condition met

Steady state Evolutionary Algorithm As a steady state sort of algorithm is used to
solve GMVBCNP, it is briefly introduced in here. Steady state EA [13] [11] is an algorithm
with successive population replacement. Strictly speaking there is no offspring population.
Instead offspring are generated gradually replacing the worst individual(s) immediately so
that the population size is kept constant.

The elitism strategy can be used as well in order to improve the results. In this case,
the best individual at generation k + 1 (the father or the mother) is maintained in the next
generation if its child has a performance inferior to that of its parent. Without elitism, the
best results can be lost during the selection, mutation and crossover operations. In case of
global elitism, each individual in the population of generation k+ 1 can replace its parent of
generation k, if it has a performance superior than him. In this case, at a generation k + 1,
the individuals are better than the individuals at generation k.

Convergence The main problem of an EA is the premature convergence. The fitness of
the best and the average individual in each generation increases towards a global optimum.
Convergence is the progression towards increasing uniformity. A gene is said to have con-
verged when a high percentage of the population share the same value. The population is
said to have converged when all of the genes have converged. As the population converges,
the average fitness will approach that of the best individual. To avoid premature convergence
the sort of population management can be involved, which will control population diversity.
Such a method is introduced in Chapter 2.9.

1.4 Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a metaheuristic [2] that explicitly applies a strategy
based on dynamical change of neighborhood structures. The change of neighborhoods leads
to exploration of local optima but as well to escape from these valleys in order to reach
under-explored areas to find even better results [21]. The VNS main cycle is composed
basically of three steps: shaking, local search and move. The VNS can be combined with
Variable Neighborhood Descent (VND) that applies a best improvement local search to find
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Algorithm 2 Schema of Variable Neighborhood Search
generate initial solution S
repeat

k =1
while k < kmax do

generate a random S′ from one of the neighborhood Nk of S // shaking phase
l =1
while l < lmax do

find the best neighbor S′′ of Nl(S′)
if f(S′′) < f(S′) then

S′ = S′′

l =1

else
l = l+1

if f(S′) < f(S) then
S = S′

k =1

else
k = k+1

until termination condition met

s local minima. The basic idea of VNS is to improve VND by means of shaking function that
jumps to a random new solution among the neighbors of the current solution. This approach
provides the possibility of escaping from local optima and valleys containing them. The
Algorithm 2 presents the pseudocode of general VNS used further for solving the d-GMSTP.
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2 The Generalized Minimum Vertex
Biconnected Network Problem

2.1 Problem formulation

The considered Generalized Minimum Vertex Biconnected Network Problem (GMVBCNP)
is defined as follow. We consider a complete, undirected weighted graph G = (V, E, c) with
node set V , edge set E and edge cost function c : E → Ru. The node set V is partitioned
into r pairwise disjointed clusters: V1, .....Vr,

⋃r
i=1 Vi = V, Vi ∩ Vj = 0 ∀i, j = 1, ...., r; i 6= j.

A solution to GMVBCNP defined on G (Figure 2.1) is a subgraph S = (P, T ), P =
{ p1, .., pr } ⊆ V connecting exactly one node from each cluster, i.e. pi ∈ Vi, ∀i = 1, ..r and
containing no cut nodes. A cut node is a node whose removal would disconnect a graph.

The costs of such a vertex biconnected network are its total edge costs i.e.
C(T)=

∑
(u,v)∈T c(u, v), and the objective is to identify a feasible solution with minimum

costs. The feasible solution should be a redundant edges free subgraph. As the redundant
edges we denote edges that can be easily removed from the solution without violating the
vertex-biconnectivity feature.

p1

p2

p3

p4

p5
p6

V1

V2

V3

V4

V5

V6

Figure 2.1: Example for a solution to GMVBCNP.

In order to solve the The Generalized Minimum Biconnected Network Problem, a problem
specific operators have been implemented. In this section the general idea of an implemented
operators is presented.
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2.2 Previous work

For the time being there are not too many literatures addressing the Generalized Minimum
Vertex Biconnected Network Problem. Eswaran and Tarjan [4] were the first to investigate
vertex biconnectivity augmentation problem for graphs(V2AUG). By means of a reduction of
the Hamiltonian cycle they proved that the decision problem for V2AUG is NP-complete.
Watanabe and Nakamura [37] proved that minimum-cost augmentation for edge or vertex
k-connectivity is NP-hard, for any k ≥ 2. Some preliminary results of running memetic al-
gorithm for the Generalized Minimum Vertex Biconnected Network Problem can be found
in [17]. The vertex biconnectivity as well as the edge biconnectivity problem has been at-
tacked by Ljubic in [22]. Because the Generalized Minimum Vertex Biconnected Network
Problem and the Generalized Minimum Edge Biconnected Network Problem (GMEBCNP)
are strongly related it is worth to mention that Leitner in [21] proposed VNS approach for
solving the GMEBCNP. He proposed different types of neighborhood structures addressing
particular properties as spanned nodes and the edges between them.

2.3 Memetic Algorithm

After performing tests with a steady state evolutionary algorithm, the results were still not
satisfactory, so I decided to use a memetic algorithm. Memetic algorithms are a hot topic
nowadays, and they were successful in many optimization problems. The difference between
Memetic Algorithm (MA) and EA [13][11] is that MA actually exploits all available knowledge
about the problem under study. As mentioned in [25] MA exploits problem knowledge by
involving hybridization, that evaluates to the use of pre-existing heuristics, preprocessing
data reduction rules, approximation, local search techniques and specialized recombination
operators etc. The important feature of MA is the use of adequate representation to the
problem being tackled. Those both allow creation of a highly efficient tool, for solving difficult
optimization problems. MA’s are considered as population based metaheuristics, and deal
with the population of individuals, similar to EA’s. However opposite to EA’s Memetic
Algorithms they couple with an individual learning procedure capable of performing local
refinements.

The Algorithm 3 pseudocode presents the involved MA for solving the GMVBCNP. For
selection, the standard tournament selection with tournament size of two is applied. The
designed framework for MA is based of the steady state EA, however it involves both local
improvements with graph reduction as well as the population management technique. The
applied operators and approaches are described in the next subsections.

2.4 Initial solutions

All initial solutions are created as Hamiltonian cycles. In the considered problem Hamiltonian
cycles represents feasible solutions, because removal of a single node disconnects a cycle and
creates a path and therefore all nodes are still connected. Each solution is represented by
means of vector solution.data which stores the indices of nodes chosen from clusters, and
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Algorithm 3 Memetic Algorithm for the GMVBCNP
create random initial population P
repeat

select two parental solutions S1 ∧ S2 ∈ P
create a new solution SN by crossover on S1 ∧ S2with probability pcross

mutate a new solution SN with probability pmut

if edgemanagement = true then
check the percentage of covered edges in population P
change edgemanagementstrategyparameters adequately

locally improve SN with probability pimp

if deltamanagenent = true then
repeat

mutate SN

until SN will satisfy condition for addition
update diversity parameter 4

until no new better solution found in last l iterations

Algorithm 4 Create Initial Solution S

for i = 1, . . . , r do
wi (Vi) = random [0,1)

sort wi (Vi) descending
create adjacent list adjlist

for i = 1, . . . , r do
random node ni from cluster Vi

add node ni to solution.data

adjacent list that represents connections between clusters - in other words it represents edges
of a clustered graph.

A method based on random keys [1] is used to create the initial solutions. In this method,
to each gene a random number wi , i = 1, . . . , r drawn uniformly from [0, 1) is assigned
(Figure 2.2). A single gene represents a cluster. To decode the chromosome we visit nodes
in ascending order of their genes. Nodes that should be early in the tour tend to evolve
genes closer to 0 and those that come later tend to evolve genes closer to 1. In the second
step we need to choose randomly a node from each cluster. The nodes are stored then in
solution.data, and connections between clusters are stored in an adjacent list. Pseudocode
of Algorithm 4 represents the idea of a creation of initial solutions.

The time complexity for sorting the wr random values is O(r log r). Randomizing r keys
takes O(r) and the time complexity for selection of r nodes is O(r). It leads to the O(r log r)
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Figure 2.2: Hamiltonian cycle created by means of random keys

time complexity for initialization of a single solution.

2.5 Crossover operators

A crossover operator should be designed with the aim to provide the highest possible heri-
tability, i.e. an offspring should have as many common features to its parents as possible.
There were many ideas for crossover operators, however after running test instances and
measuring efficiency as well as time complexity I decided to use only two of them. The gen-
eral aim for both of them was to inherit as many common edges and nodes as possible from
parental solutions. The common step for both: one point crossover and greedy crossover is
assignment to each gene probability p. Figure 2.3 illustrates an example of building a new
descendant solution. To each parental gene probability p ∈ [0, 1) is assigned and then genes
from parental solutions with higher probability assigned on the specific gene position are
inherited. In the presented example the genes from parents: 2,2,1,1,1,1,1,1 are transferred to
the new solution respectively. This method guarantees that nodes common for both parents
will be always inherited. The next step in both crossover operators refers to the creation of
an adjacent list that stores connections between clusters. This is described separately in the
following subsections for each operator.

Figure 2.3: The heritage of common nodes
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One-Point Crossover operator

This crossover operator is based on a random choice of parental edges, which creates a new
offspring solution SN = (PN , TN ). To the parental edges of solution Sl with lower connec-
tion cost, the higher probability p is assigned. Assignment of probability can simulate the
heritage of more edges from the solution with lower cost, however please note that inherited
edges from Sl would not necessarily be edges with the lowest costs in that solution. The
pseudocode of this crossover is presented by Algorithm 5. The new created solution might be
an infeasible one, therefore a specially designed method needed to be run. A modified DFS
algorithm, presented in section 2.7, determines whether or not the new solution is vertex bi-
connected. Repair methods can introduce some redundant edges, so it is necessary to evaluate
the solution and remove the unnecessary edges. Let us consider and an example presented
below. We create a new offspring individual SN = (PN , TN ) from two parental solutions
S1 = (P1, T1), S2 = (P2, T2) presented on Figure 2.4a. In the first step node pi, i = 1, . . . , r
from each cluster of solutions S1 or S2 is inherited, as presented on Figure 2.4. This leads
to the solution which will posses the common nodes for both parents. In this case common
nodes {p2, p3} are included in the new solution and the rest of the nodes {p1, p4, p5, p6}
are inherited in a random way. In the second step a new solution based on parental edges
is built. Lets assume the solution S1 has lower connection cost than solution S2. Defining
the probability prob ∈ [x, 1), where x ∈ (0.5, 0.99] and assigning it to S1 it will favor the
edges from the solution with lower connection cost. The idea is very simple: we start with
cluster V1, random the probability p and compare it with prob ∈ [x, 1). If p < prob then
inherit edges from parent S1, alternatively from parent S2. The steps b, c, d, e on Figure
2.4 build the new solution SN . Figure 2.4e presents a complete solution, where all clusters
{V1, V2, V3, V4, V5, V6} were visited and edges adjacent to certain clusters were inherited. In
order to check if the graph is vertex biconnected the Modified DFS is run, described in next
chapter, to determine if there are any cut vertices. In the presented example the new solution
SN does not posses cut nodes, so we can start determining if there are any redundant edges.

Algorithm 5 One-Point Crossover
input: S1 = (P1, T1), S2 = (P2, T2)
for i = 1, . . . , number of clusters do

random p

if p < probability then
add to PN node from P1 of cluster i and to TN all edges from T1 adjacent to cluster i

else
add to PN node from P2 of cluster i and to TN all edges from T2 adjacent to cluster i

ensure vertex biconnectivity of SN

remove redundant edges of SN
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Figure 2.4: One-Point crossover

It is easy to notice that edges {p1, p2} , {p3, p4} , {p3, p2} , {p1, p3} can be considered
as redundant, so the new solution does not present a minimum vertex-biconnected graph.
How to determine the edges for removal is described with more details in chapter Repair
procedure. Considering the presented example, by removing an edge {p1, p3} a minimum
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Algorithm 6 Greedy Crossover Operator
input: S1 = (P1, T1), S2 = (P2, T2)
for i = 1, . . . , r do

SN= SN+{pi∈P1∨pi ∈P2 }

TN = T1∩T2

sort EN by alfa or beta or gamma

for each edge e(p, v) in TN do
if edge e(u, v) is removable ∧ graph SN is vertex biconnected then

TN = TN \ e(u, v)

vertex-biconnected graph is archived. Considering only the time complexity of pure crossover
operator, without calling the repair method it would be O(r) for inheriting the nodes and
edges, and O(r + m) for checking if the graph is vertex biconnected, which gives O(m) in
the worst case. Further considering O(l) for connecting possible blocks and O(m2) for repair
method, the upper bound for crossover operator is O(m2).

Greedy Crossover Operator

This crossover operator inherits the properties from both parents in two steps as well. First
I determine which nodes pi , i = 1, . . . , r will be inherited from the clusters, and then I
determine which edges will build the new solution SN = (PN , TN ).

The basic idea of this crossover operator is to inherit firstly all edges from both parents
TN = T1 ∪ T2, which denotes that the new solution probably has many redundant edges. In
the next step all edges TN are considered in a particular order:

� alfa - decreasing costs

� beta - decreasing perturbated costs c′(pi, pj)·ρ, where ρ is uniformly distributed random
value [0.5,...,1.0]

� gamma - random order

and repair procedure is called. This procedure tests if the chosen edges are redundant and
removes them if applicable from TN . If all redundant edges are removed, then the archived
solution can be considered as a minimum vertex-biconnected.

The pseudocode of Greedy Crossover Operator is presented by Algorithm 6.

Considering only the time complexity of a pure crossover operator, without repair method
a new solution is achieved in the worst case O(r). Further considering O(m2) for repair
method, the upper bound for crossover operator is O(m2).
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2.6 Mutation Operators

Mutation is applied to each child individually after crossover. It randomly alters each gene
with a small probability. The traditional view presents crossover as the more important of
the two techniques for rapidly exploring a search space. Mutation provides a small amount
of random search, and ensures that all solutions in the search space have the possibility of
being examined. The designed mutation operators were inspired by the neighbor’s structures
presented in [21].

Simple Node Exchange Mutation Operator

This mutation operator is based on exchange of exactly one node pi from cluster Vi to a new
node p′i from the same cluster. Therefore if I = {pj ∈ P | (pi, pj) ∈ T } is the set of nodes
incident to pi in S = (P, T ), these nodes will be incident to p′i in the new solution S′ = (P ′, T ′)
with P = P\ {pi}∪ {p′i}, pi, p′i ∈ Vi, pi 6= p′i and T ′ = T\ {(pi, p) | p ∈ I } ∪ {(p′i, p) | p ∈ I } .

p1 V1

p2
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p4

V4

p5

V5

p6
V6

p1 V1

V2

p3

V3

p4

V4

p5

V5

p6V6

Figure 2.5: Simple Node Exchange Mutation Operator

On Figure 2.5 the node within clusterV6 has been exchanged. The Algorithm 7 presents
the pseudocode of Simple Node Exchange Mutation Operator. The considered complexity
time is constant O(1).

Edge Augmentation Mutation Operator

This mutation operator adds the new edge. This operation extends graph G = (V, E) with
an edge e(u, v) ∈ E. So we are receiving the new solution S′ = (P ′, T ′ ∪ {e}). The resulting
graph is certainly not minimal, because it includes a redundant edge, so the connection cost
is not minimal, however the graph is vertex biconnected. Therefore, there is at least one
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Algorithm 7 Simple Node Exchange Mutation Operator
input: G = (V,E)
pi= used node of cluster V i

p′i= random node from cluster V i\pi

if pi 6=p′i then
save current solution

edge that can be removed without violating the vertex biconnectivity property of solution
S′ = (P ′, T ′ ∪ {e}).

The Algorithm 8 represents the pseudocode of Edge Augmentation Mutation Operator.

Algorithm 8 Edge Augmentation Mutation Operator
input: G = (V,E)

repeat
random edge e1
random edge e2

until (e1 = e2)

if ( cost e1 < cost e2) then
E ∪ {e1}

else
E ∪ {e2}

call repair procedure ( S′ = (P, T ′))

After the introduction of an new edge the repair procedure is called, in order to ex-
amine and remove redundant edges. In the example shown in Figure 2.6, the initial
solution is augmented by e (p1, p3) which leads to S′ where at least one edge out of
E′ = { (p1, p2), (p2, p3), (p3, p6), (p1, p6) } can be removed. During the optimization process,
(p3, p6) and (p1, p2) are removed. The time complexity of this mutation operator equals to
the complexity of the repair method, that is O(m2) as an upper bound.

Two Nodes Swap Mutation Operator

This mutation operator is based on the rearrangement of nodes between two clusters. This
leads to the exchange of some adjacent edges between two clusters. Swapping pi and pj

(pi ∈ Vi, pj ∈ Vj , i 6= j) is defined as follows.
Consider a solution S = (P, T ) and let Ii = {p ∈ P | (pi, p) ∈ T } be the set of nodes

incident to pi, and Ij = {p ∈ P | (pj , p) ∈ T } the set of nodes incident to pj in S. The
exchange operation transforms S = (P, T ) into a new solution S′ = (P, T ′) with T ′ = T \
∪ {(pi, p)| p ∈ Pj} ∪ {(pj , p)| p ∈ Pi}. In other words all edges that were incident to pi are
incident to pj , and vice versa.

The example of an exchange operation between two clusters is presented on Figure 2.7.
The adjacent edges of nodes p4 and p5 are exchanged. The pseudocode of this mutation
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Figure 2.6: Edge Augmentation Mutation Operator

operator is presented by Algorithm 9. As in some cases this mutation operator can intro-
duce redundant edges, repair method examines edges against removal possibility. The time
complexity of this mutation operator equals to the complexity of the repair method, what is
O(m2) as an upper bound.
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Figure 2.7: Two Nodes Swap Mutation Operator
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Algorithm 9 Two Nodes Swap Mutation Operator
input: G = (V,E)
repeat

random cluster V1

random cluster V2

until V1 6= V2

swap adjacent edges of cluster V1 and V2

call repair procedure ( S′ = (P, T ′))

2.7 Cut Nodes Detection and repair procedure

In order to deal with feasible solutions a special algorithm, inspired by R.Sedgewick [34] that
detects cut nodes has been implemented. The main conclusion regarding graph biconnectivity
is: ‘̀The graph is biconnected if and only if there are at least two different paths connecting
each pair of vertices“. To identify the cut vertices depth first search (DFS) algorithm can
be used. However in GMVBCNP some small modifications of DSF are necessary, which is
described further.

Modified DFS

In the considered problem, the classical DFS would not discover the cut nodes. Therefore
some small modification has been done. The general idea of cut nodes detection is as follows:

Let G = (V, E) be a connected, undirected graph.
We can find all articulation points in a graph using depth-first search, so let T be a

depth-first search tree.

Theorem 1. The root of T is an articulation point if it has two or more children.
Proof: If the root has less than two children, then deleting the root does not disconnect

T so the root is not an articulation point. If the root has two or more children, then because
there are no cross edges (G is undirected), every path from one child of the root to another
contains the root. Therefore, the root is an articulation point.

Theorem 2. A non-root vertex v of T is an articulation point if it has at least one child
w and there is no back edge from a descendant of w to a proper ancestor of v.

Proof: If there is no back edge from a descendant of w to a proper ancestor of v, then
because there are no cross edges, every path from w to the parent of v contains v.

Lets consider the following function: low[v] = min{d[v]} ∪ [{d[x] : (u, x) is a back edge
from some descendant u of v}].

If low[v] is computed for each vertex v, then v is an articulation point if low[w] ≥ d[v] for
some child w of v in T .

There is a back edge from a descendant of a child w of v to a proper ancestor of v if
low[w] ≥ d[v].

If there is a back edge from a descendant to a proper ancestor x of v, then low[w] ≤ d[v].
Since x is a proper ancestor of v, then d[x] < d[v] so low[v] < d[v]. If low[w] ≤ d[v], then
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Figure 2.8: DFS Algorithm :a Graph with two cut vertices v2 and v6 b) depth first tree
representing the graph on figure a; the numbers next to the nodes represents dfsnum and
low

there is a back edge from some descendant u of v to a vertex x with d[x] < d[v]. Thus, x was
discovered before v; x is a proper ancestor of v.

In implemented DFS (Algorithm 10) a node u is a cut vertex, for every child v of u, if
there is no back edge from v to a node higher in the tree than u [18]. If there is no way to
visit other nodes in the graph, that are in the decedent tree of u, without passing through u,
such a node is cut vertex.

Thus, for each node in DFS traversal, dfsnum(v) and low(v) is calculated (Figure 11).
As dfsnum(v) we denote the number defining the order of visited nodes by DFS traversal.
The definition of low(v) is the lowest dfsnum of any node that is either in the DFS subtree
rooted at v or connected to a node in that subtree by a back edge. Then, in DFS, if there
are no more nodes to visit, the values of low are backed up and updated as only returned
from each recursive call.

The stack has been used to trace back the recursive calls. When an edge(u, x) is processed
- either by a recursive call on vertex x from vertex u, or (u, x) is back edge, that edge is put
to a stack. Later, if u is identified as cut vertex, then all edges from the top of the stack down
to (u, x) are the edges of one biconnected component. So, the edges are popped out of the
stack until the top of the stack is (u, x). Those edges belong to a biconnected component.

The running time of the algorithm seems to depend relatively more on the number of
edges than on the number of vertices. That is because, if a graph has more edges incident
to each vertex, the algorithm needs more works in each call of the recursive function to
decompose the graph’s structure. The algorithm runs at linear time and it can be observed
that the complexity of overall performance is O(r + m) in the worst case, where r is the
number of vertices and m is the number of edges in a graph.
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Algorithm 10 Articulation DFS
input: ∀ vi.depth = -1 , i= 1, ..., n

DFS (v)

v.depth = increase(dfsCounter)

v.low = v.depth
forall e(v, x) do

if x.dfsnum = -1 then
x.dfslevel = increase(v.dfslevel)
v.ChildNumber = increase(v.ChildNumber)
push e(v, x) on stack
DFS(x)
v.low = min(v.low, x.low)
if v.dfsnum = 1 then

if v.ChildNumber≥ 2 then
add v to articPointList

repeat
add stack.pop to bccEdgeList

until stack.top6=(v, x)

else
if x.low ≥ v.dfsnum then

add v to v.articPointList
repeat

add stack.pop to bccEdgeList
until stack.top6=(v, x)

else
if x.dfslevel < v.dfslevel - 1 then

v.low = min(v.low, x.dfsnum)
push edge(v, x) on stack

Connecting block vertices

When creating a new offspring by means of one of the above crossover operators, or when
applying mutation to an individual, the final solution S′ after those operations can be infea-
sible or not minimal. This can be caused either by introducing redundant edges to solution S
or by violating the vertex biconnectivity property. So some solutions S′ need to be repaired.
Therefore additional repair procedure has been implemented.

When the crossover operator is called, a new offspring is created mostly from parental
edges. Unfortunately for some reasons, in order to create a feasible solution using only
parental edges would be not sufficient. At the end of the crossover operation the method
checkSolutionV2Connectivity is called. This method uses the modified DFS algorithm 10 to
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identify the prospective cut vertices and block vertices. To repair the solution S′ including
cut vertices vc, one node from each block vertex Bi is selected in random way (Algorithm
11) and a new edge e(u, v) is added to solution S′. Of course the cut vertices are excluded
during the random search. When all block vertices Bi are connected together the solution
is feasible in respect of vertex biconnectivity, but not in respect of minimal connection cost,
because adding new edges during solution repair can introduce redundant edges. In order to
connect l block vertices Bi, l− 1 edges are needed to make the solution feasible in respect of
vertex biconnectivity property. In the worst case we achieve feasible solution in O(l), where
l is the number of blocks in a graph.

Algorithm 11 Algorithm for connecting block in solution S′

input: S′ = (P ′, T ′)
DFS ( S′)

if cut vertex exist between blocks Bi and Bj then
for i = 1,. . . , l do

random node u from Bi

random node v from Bj

add edge e(u, v) to T ′
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Figure 2.9: Repairing the infeasible solution by connecting blocks of solution S’

Figure 2.9a presents the solution S′that contains one cut vertex p5 and two cut blocks
containing nodes B2= {p4, p5, p6} and B2= {p1, p2, p3, p5}. To make the solution feasible the
new edge e(p3, p4) has been added, see Figure 2.9b. The solution S′ is a feasible one, but
now there exist redundant edges, which should be removed. This is performed by the repair
procedure.
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Repair procedure

The mutation, crossover or connection of blocks can introduce redundant edges. The solution
SN = (PN , TN ) can be feasible in respect of vertex biconnectivity but the connection cost
would be not minimal. In such cases the redundant edges should be identified and removed.
In order to minimize the search area, not all edges are checked against redundancy, but only
the edges (pi, pj) ∈ TN , where deg(pi) > 2 ∧ deg(pj) > 2 are considered. Inspired by [14], to
minimize the connection cost, before the edges are examined against its removal possibility,
all edges adjacent to nodes with degree deg > 2 are put in particular order:

� alfa - decreasing costs

� beta - decreasing perturbated costs c′(pi, pj) · ρ, whereρ is uniformly a distributed
random value [0.5,...,1.0]

� gamma -random order.

To each edge (pi, pj) a weight wc is assigned. What is obvious, is the alfa strategy emphasizes
on the intensification, whereas gamma favours diversification. Each time the repair method
is called, one of the above sorting criterion is selected. Some initial values were set up (alfa,
beta, gamma ) = (0.6, 0.2, 0.2), however they change dynamically during the execution of
the memetic algorithm. The values are strongly connected with the population management
procedure, which determines how diverse the current population is. If the diversity factor div
will be too small or too high, then the gamma is increased and the alfa decreased respectively.

The search for redundant edges starts with the edge with the highest weight wc, de-
termined by factor alfa, beta or gamma. In Figure 2.10a it can be seen that solution
S’ includes three potential redundant edges e1(p3, p5) , e2(p3, p4) and e3(p4, p5), because
the degree of each node deg(pi) > 2, i ∈ {3, 4, 5} is more than two. Assume that weight
wc(e1) > wc(e2) > wc(e3), so edge e1(p3, p5) is removed from solution S′, if and only if it
will not introduce a cut vertex. This is checked by running Modified DFS which examines if
the edge can be removed. Next the edge e2(p3, p4) will not be examined, because degree of
node deg(p3) = 2 and removal of this edge would violate the vertex bi-connectivity property.
The last potential edge is e3(p4, p5). As removal of this edge will not introduce cut vertex it
is removed. The minimum vertex bi-connected solution is achieved and presented in Figure
2.10b. The worst case is when all nodes have degree deg > 2. In order to sort the edges
we need O(m log m), for examining each edge against removal in the worst case we need
O(m(n+m)). In general it gives an upper bound of O(m2)

2.8 Local improvement

Graph reduction

The graph reduction technique has been introduced and successfully applied to the GME-
BCNP in [21] and [14]. The motivation is to reduce the search space for some neighborhood
structures on which the local improvement procedures are based on.

It is generally not possible to derive an optimal selection of spanned nodes in polynomial
time when a global structure Sg is given. However, this task becomes feasible once the
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Figure 2.10: Removing redundant edges by the repair procedure.

spanned nodes in a few specific clusters are fixed. Based on the global structure, it can
be distinguished between branching clusters that have a degree greater than two, and path
clusters that have a degree of two. Note that there are no clusters with degree one, since this
would violate the biconnectivity constraint.

Once the spanned nodes within all branching clusters are fixed, it is possible to effi-
ciently determine optimal selection of nodes for the path clusters: By computing the shortest
path between two nodes of branching clusters which are connected by path clusters, optimal
spanned nodes can be obtained.

Formally, for any global structure Sg = 〈V g, T g〉, we can define a reduced global struc-
ture Sg

red = 〈V g
red, T

g
red〉. Vred denotes the set of branching clusters, i.e. V g

red = {Vi ∈ V g |
deg(Vi) ≥ 3}. T g

red consists of edges which represent sequences of path clusters connecting
these branching clusters, i.e. T g

red = {(Va, Vb) | (Va, Vk1), (Vk1 , Vk2), . . . , (Vkl−1
, Vkl

), (Vkl
, Vb) ∈

T g ∧Va, Vb ∈ V g
red∧Vki

/∈ V g
red, ∀i = 1, . . . , l}. Note that Sg

red is in general a multi-graph that
can contain multiple edges corresponding to multiple paths in Sg between two nodes. Figure
2.11 shows an example for applying graph reduction on the global structure Sg of Figure 1.2
. V2 and V3 are branching clusters while all others are path clusters. Corresponding to the
reduced global structure Sg

red = 〈V g
red, T

g
red〉 we can define a reduced graph Gred = 〈Vred, Ered〉

with the nodes representing all branching clusters Vred = {v ∈ Vi | Vi ∈ V g
red} and edges

between any pair of nodes whose clusters are adjacent in the reduced global structure, i.e.
(i, j) ∈ Ered ⇔ (Vi, Vj) ∈ T g

red, ∀i ∈ Vi, j ∈ Vj . Each such edge (i, j) corresponds to the
shortest path connecting i and j in the subgraph of G represented by the reduced structure’s
edge (Vi, Vj), and (i, j) therefore gets assigned this shortest path’s costs.

When fixing the spanned nodes in V g
red, the costs of the corresponding solution S with op-

timally chosen nodes in path clusters can be efficiently determined by using the precomputed
shortest path costs stored with the reduced graph’s edges. Decoding the corresponding solu-
tion, i.e. making the optimal spanned nodes within path clusters explicit, is done by choosing
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all nodes lying at the shortest paths corresponding to used edges from Ered.
For details on how the graph reduction can be efficiently implemented, please refer to [21].

As a matter of fact, all solutions considered for local improvement are edge-minimal since
they are derived from the crossover operator. Hence they consist of O(r) edges only. The
overall time complexity is bounded by O(r · d3

max), with dmax being the maximum number of
nodes within a single cluster.

Node Optimization Neighborhood

This neighborhood structure [17] emphasizes the selection of the spanned nodes in the branch-
ing clusters while not modifying the global structure. When Vred is the set of branching
clusters in a current solution S, the Node Optimization Neighborhood (NON) consists of all
solutions S′ that differ from S by exactly one spanned node of a branching cluster. A move
within NON is accomplished by changing pi ∈ Vi ∈ Vred to p′i ∈ Vi, pi 6= p′i, i ∈ {1, . . . , r}.
By using the graph reduction technique, spanned nodes of path clusters are computed in an
optimal way. Algorithm 12 shows NON in detail.

Updating the objective value for a considered neighbor can be done in O(dmax) and
O(r) neighbors are to be considered. However, applying a graph reduction in advance adds
O(r · d3

max) to the time complexity. This is also the overall time complexity of NON.
If Vred is empty, then the global structure is a round trip and all spanned nodes can be

determined by using the shortest path calculation analogously to the generalized traveling
salesman problem [16] [25] and NON is not searched at all.

Cluster Re-Arrangement Neighborhood

With this neighborhood structure I try to optimize a solution with respect to the arrangement
of the clusters. Given a solution S with its global structure Sg = 〈V g, T g〉, let adj(Va) and
adj(Vb) be the sets of adjacent clusters of Va and Vb in Sg, respectively. Moving from S to a
neighbor solution S′ in the Cluster Re-Arrangement Neighborhood (CRAN) means to swap

V1

V2

V3

V4

V5

V6

V1

V6

Figure 2.11: Example for applying graph reduction on a global structure.
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Algorithm 12 Node Optimization (solution S)
compute reduced structure Sg

red = 〈V g
red, T

g
red〉

forall Vi, Vj ∈ V g
red ∧ Vi 6= Vj do

forall u ∈ Vi 6= pi do
change used node pi of cluster Vi to u
forall v ∈ Vj do

change used node pj of cluster Vj to v
if current solution better than best then

save current solution as best

restore initial solution

restore and return best solution

these sets of adjacent clusters, resulting in adj(V ′a) = adj(Vb) and adj(V ′b ) = adj(Va) with
V ′a and V ′b being the clusters in S′ corresponding to Va and Vb in S, respectively. S′ can be
further improved by using the shortest path calculations to re-choose the spanned nodes in
the path clusters. Since doing this after each move is relatively time-expensive, the graph
reduction is used again to enhance the performance. Whenever the arrangement of two path
clusters is swapped, it is possible to only apply incremental updates on the paths that contain
them. However, if at least one of these clusters is a branching cluster, the graph reduction
procedure must be completely re-applied as the structure of the whole solution graph may
change. The pseudocode is given in Algorithm 13.

2.9 Population Management

There is not much literature about population management techniques. Some theoretical
ideas can be found in [35]. It has been observed that the quality of metaheuristics is the
result of cooperation between intensification and diversifiation strategies. The use of the
memetic algorithm can upset the balance between those two factors. Although crossover and
mutation operators decrease and increase diversity, involvement of local improvement can
lead to premature convergence. So the question is how to prevent the premature convergence
and how to explore the search space exhaustive as possible. The already known diversity
measure involved in Genetic Algorithms in the context of fitness sharing, crowding etc. can
be applied, however I used two new population management techniques. The test results
presented in the thesis proves the success of an implemented strategy that actively controls
the diversity of the population.

Delta Population Management

This strategy especially puts emphasis on the quality of the solution SN and on the diversity
of the whole population after adding the new solution to population P. In order to check
if the new solution SN sufficiently diverses the population P , a parameter dist called dis-
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Algorithm 13 Cluster Re-Arrangement (solution S)
compute reduced structure Sg

red = 〈V g
red, T

g
red〉

for i = 1, . . . , r − 1 do
for j = i+ 1, . . . , r do

swap adjacency lists of nodes pi and pj

if Vi or Vj is a branching cluster then
recompute reduced solution Sg

red = 〈V g
red, T

g
red〉

else
if Vi and Vj belong to the same reduced path P then

update P in Sg
red

else
update the path containing Vi in Sg

red

update the path containing Vj in Sg
red

if current solution better than best then
decode and save current solution as best

restore initial solution and Sg
red

restore and return best solution

tance has been defined, which for any pair of solutions determines their relative distance (or
similarity). The common failure is to measure the objective function space instead of the
solution space. When designing the distance measure it is necessary to consider the problem
to be solved and the encoding of solutions as well. Designing distance measure independently
from the problem would not provide a desired results [35]. In considering the GMVBCNP
the Hamming distance has been applied to measure the diversity between two solutions. Of
course another technique, like Minkowsky distance could be applied as well. By defining the
distance measure that can calculate the distance between any two solutions, we achieve

distP = minSi∈Pdist(Sk, Si)

where Sk is the distance of the given solution to the population. As mentioned above the Ham-
ming distance has been involved for distance measurement, so first the vector solution.data
is examined and if the values on the relevant vector’s index differs then I increase distP by 1.
In the next step the adjacent lists are compared. I increase the distP by 1 respectively only
if the values at certain indices are different.
Of course the solution that has a small distance to another solution would not contribute
much to the diversity of the whole population. Therefore a diversity parameter 4 has been
introduced, in order to control if a certain solution can be inserted to the population or if it
should be evolved further to fulfill a given criteria. Assume the quality of Sk is sufficient, it
can be added if the below formula holds:
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distP (Sk) = minSi∈Pdist(Sk, Si) ≥ 4.

As can be seen in Algorithm 3, if the quality of the solution does not allow the insertion
operation into the population, the solution is mutated until the distance between solutions
is sufficient. However it was observed that for some instances it takes a long time to evolve
the solution that has sufficient distance to the population, so it was decided to introduce
a benchmark, that stops the mutation after n runs, and the solution is simply added to
population. Parameter 4 allows to control of the diversity of the population, however the
value of that parameter strongly affects the quality of the population. Setting it to low
would decrease and setting it to high would increase diversity too quickly. In case only the
solutions with a large distance will be introduced, after a few iterations it could lead to
the population consisting of very different solutions, which is not the scope. The diversity
parameter should be neither too large nor too small, its value should be well balanced. It can
be changed dynamically during the execution of the algorithm. The initial value of 4 is set
to 10% of the clusters’ number, but during the running time the parameter is decreased or
increased, depending on the population diversity that is examined by the second technique
edge-percentage population management.

When performing tests, the population size equal to 100 individuals was used. In order to
save computation time, when delta Population Management is called, solution is compared
with 10% - 20% of population size. Of course this percentage can be changed but one has to
be aware of the increasing time complexity.

Edge-Percentage Population Management

The second implemented technique examines the percentage of the covered edges in the pop-
ulation P among all possible edges. In order to calculate the percentage of all the edges
covered in population the matrix global matrix Mg has been declared. It stores all edges
covered by the population. As only the population is created and population management
is involved the global matrix Mg is updated. To save the computation time, it is initialized
only once, before the first generation will run. Each time the new edge (u, v) is introduced
or deleted from the single solution S, the global matrix Mg is affected by deletion or addition
of this edge (u, v). The percentage edgpercent of covered edges is calculated every k itera-
tions and compared with the input parameter percent. If the edgepercent < percent, then
parameters (alfa, beta, gamma), used in repair method, are set to (0.2, 0.2, 0.6) to increase
population diversity. If edgepercent ≥ percent which means that diversity reaches a certain
limit then (alfa, beta, gamma) are set to (0.5, 0.3, 0.2). The value of parameter percent
changes dynamically during the execution of the algorithm, because after each k iterations
more edges are covered, so the parameter percent should change accordingly. In turn the
parameter edgepercent assists in defining the value of the diversity parameter 4. This leads
to the assumption that both techniques complete on each other, however they can be used
independently as well.
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2.10 Computational results for GMVBCNP

The MA was tested on Euclidean TSPlib instances with geographical center clustering [6, 8].
They contain 137 to 431 nodes partitioned into 28 to 87 clusters. The number of nodes
per cluster varies. All experiments have been performed on 2× Dual-Core AMD Opteron
Processor 2214 with 8GB RAM. The program is written in C++ and gcc version 4.1.3 is
used. In order to compute average values and standard deviations, 30 independent runs have
been performed for each instance. The population of the MA consists of 100 solutions. As
stopping criterion I use:

� tcgen, denoting number of generations for termination according to convergence

� ttime, denoting time limit for termination

� tgen, denoting number of generations until termination.

The probability of mutation operator was set to pmut=0.6. As no reference values are avail-
able, the results of different settings of MA for GMVBCNP are compared to each other. I
have run MA for different parameter settings, testing behavior of algorithm for different lo-
cal improvement probabilities plocim as well as for different types of population management
approaches. All solutions, generated by initialization, crossover and mutation operators, as
well as local improvement methods fulfill vertex bi-connectivity constraint.

Test instances

I tested my MA on large Euclidean TSPlib instances with geographical clustering. Geograph-
ical clustering is performed as follow [8]: first the r center nodes are chosen which are located
as far as possible from each other. This is obtained by selecting the first center randomly,
the second center as farthest node from the first center, the third center as the farthest node
from the set of the two first centers, and so on. In next step the clustering is performed by
assigning to its nearest center node the remaining nodes. The considered instances are listed
in Table 2.1 and the values of the columns denote names of the instances, number of nodes,
number of edges and number of clusters.

Results of test instances for different plocimp and popmngt settings

For each setting of algorithm, the tables show the objective values for the average values
of the final solutions C(T ) found during 30 runs, their standard deviations and the average
CPU-time time required for the search process. In order to examine the algorithm effective-
ness, different settings for plocimp has been used. The results are given in Table 2.2. It is
easy to notice that using plocimp=0.2 significantly improves results, in comparison to those
gained without local improvement. The results presented in Table 2.2 show as well that
increasing the value of plocimp improves the final outcome. This could mean that designed
genetic operators are weaker comparing to local improvement operators. However genetic
operators for this problem do not strongly concentrate on creation of individuals with mini-
mum total connection cost. Both crossover and mutation rather focus on producing solutions
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Table 2.1: TSPLib instances with geographical clustering [6]. Number of nodes vary for each
cluster.

Instance Name |V | |E| r

gr137 137 9316 28
kroa150 150 11175 30
d198 198 19503 40
krob200 200 19900 40
gr202 202 20301 41
ts225 225 25200 45
pr226 226 25425 46
gil262 262 34191 53
pr264 264 34716 54
pr299 299 44551 60
lin318 318 50403 64
rd400 400 79800 80
fl417 417 86736 84
gr431 432 92665 87

undiscovered so far, which are improved by local improvement. They might turn out to be
better than the best ones found in the previous generations. Therefore in designed MA, local
improvement approach plays a crucial role for improvement of results and its plocimp that
affects the outcome. This is proved by results in Table 2.4, where increase of computation
time for MA without local improvement still provides worse outputs than those of MA with
plocimp. Returning to results in Table 2.2, an increase of plocimp, affects the computation
time significantly. Figures 2.12 and 2.13 present the relative results of C(T ) and time for
individual instances, where plocimp=1.0 equals 100%.

Figure 2.12 clearly shows that results obtained with parameter plocimp=1.0 are better by
about 1% - 4.5% from those with plocimp=0.2. However, on the other hand diagram on Figure
2.13 shows that computation time can be twice as large for plocimp=1.0. In order to find the
balance between the running time and achieved results, plocimp=0.2 seems to be a good choice.
The comparison of diagrams presented on Figures 2.14 , 2.15, 2.16, 2.17, 2.18, 2.19 proves
that results gained with plocimp=0.2 are the most optimal when using fast runs. Even when
computation time was increased with 50% the results for plocimp=1.0 were still worse. The
poor results, gained with plocimp=1.0 comparing to the results gained with plocimp=0.2 within
the same computation time, are caused by the expensive local improvement approaches. So
it is possible to obtain better results with lower local improvement probability using short
running times as for the higher value of plocimp. Table 2.2 presents outcomes gained with
termination condition tcgen 200, however using ttime as termination condition and results
presented on Figures 2.14 , 2.15, 2.16, 2.17, 2.18, 2.19 proves legitimacy for plocimp=0.2 as a
balanced choice.

The next set of tests was performed with different settings of population management
approaches. Both approaches provide better results in comparison to MA without population
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Figure 2.12: Relative results of C(T ) on TSPlib instances for plocimp=1.0 (without popmngt)
and plocimp=0.2 (with delta popmngt),where plocimp=1.0 equals 100%

management, see results in Table 2.3. The best results were obtained when involving both
population management types, however edge management is highly time consuming because
each operation for insertion or deletion of a single edge must be reflected in global edge
matrix and frequency matrix, that stores the frequency of edge occurrences in the population
set. The computation time for edge management gets doubled for small instances and tripled
for large instances in comparison to those for delta management, what presents Figure 2.20.
Therefore from the computation time perspective the delta management seems to be more
efficient.

Please note here that in delta management the new created solution is compared only
with 10% of population’s individuals (delta percent parameter) and on the basis of obtained
distance value the new solution is either added to population or mutated until the termination
condition is fulfilled. The increase of percentage value (delta percent) would lead to higher
computation time, nevertheless 10% of trials is sufficient for delta management. Please refer
to Figure 2.21. Considering the compromise between best found solutions and computation
time, the best parameter setting is delta population management with 10% as population
comparison parameter and local improvement set to plocimp=0.2. The MA was tested for
different termination conditions as well. The used tcgen = 200 is sufficient for algorithm
to convergence. Naturally the increased computation time leads to better results, what
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Figure 2.13: Relative results of time on TSPlib instances for plocimp=1.0 (without popmngt)
and plocimp=0.2 (with delta popmngt), where plocimp=1.0 equals 100%

is obvious, as for ttime and tgen termination conditions in Table 2.5. On Figure 2.22 the
behavior of objective function for different plocimp settings can be seen. The increased value of
plocimp leads to better results in the begin generations, however at some point objective value
flirts around the same approximate values for plocimp=1, plocimp=0.6, plocimp=0.2. Finally, as
the Figure 2.22b proves, for short runs the results obtained with plocimp=0.2 are better than
results obtained with plocimp=1. As no reference results are available, it was not possible to
compare the obtained and presented results here with different ones.
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Table 2.2: Results of MA: different plocimp, delta popmngt, popsize 100, pmut=0.6.

Instance plocimp=0 plocimp=0.2 plocimp=0.6 plocimp=1.0
Name C(T ) std dev time C(T ) std dev time C(T ) std dev time C(T ) std dev time

gr137 476.5 17.8 1.5 444.4 4.7 2 441.3 2.5 2.9 440.8 1.7 3.9
kroa150 12994.5 691.1 2.1 11809.5 289.0 2.3 11619.8 150.3 3.6 11601.8 90.7 4.7
d198 11708.1 407.8 3.8 10840.6 115.4 5.2 10753.6 102.9 7.6 10730.6 97.9 9.3
krob200 15153.4 655.9 3.9 13896.5 325.1 4.5 13573.2 192.4 7.2 13531.6 167.5 9.2
gr202 355.7 11.0 3.4 323.1 4.9 4.7 320 2.3 7.3 319.7 2.5 9.1
ts225 78642.1 3100.0 4.7 70296.9 754.5 5.4 69910.2 307.4 8.9 69768.5 332.9 13
pr226 75712.8 3632.2 4.3 66939.4 1186.9 5.4 66687.1 966.5 7.4 66126.3 980.8 9.9
gil262 1351.7 102.3 6.7 1132.3 27.2 10.4 1108.3 23.2 15.3 1099.1 18.9 20.7
pr264 36185.4 1799.4 7 32031.5 511.1 10.5 31409.1 847.7 17.4 30860.8 816.1 23.2
pr299 29313.8 2361.7 9.3 23801.5 682.3 14.1 23313.6 442.2 22.2 23016.5 325.0 28.1
lin318 28387 1927.6 9.7 21811 396.2 15.1 21562.3 373.3 24.8 21368.9 189.5 31.9
rd400 9678.5 689.5 15.8 7142.8 137.5 30.5 6958.8 122.5 51.2 6887.7 114.8 70.4
fl417 13307 844.6 18.5 10277.4 201.4 27.7 10156.3 198.4 41.5 10129.1 177.7 49
gr431 1716.6 120.4 18.7 1306.1 13.2 36.6 1296 10.4 60.5 1290.4 8.7 81.9

Table 2.3: Results of MA: different types of popmngt, popsize 100, pmut=0.6, plocimp=0.2.

Instance without popmngt delta popmngt delta & edge popmngt

Name C(T ) std dev time C(T ) std dev time C(T ) std dev time

gr137 445.8 6.3 1.8 444.4 4.7 2 444.4 5.2 3.9
kroa150 11898.2 418.2 2.3 11809.5 289.0 2.3 11618.3 110.2 5.3
d198 10836.2 125.1 4.7 10835.2 115.4 5.2 10798.4 124.9 12.7
krob200 13811.9 362.1 4.8 13896.5 325.1 4.5 13658.4 197.7 10.8
gr202 326.5 6.1 4.4 323.1 4.9 4.7 321.9 4.1 10.3
ts225 70520.5 765.2 5.5 70296.9 754.5 5.4 70092.1 517.6 14.4
pr226 66215.1 1247.7 4.8 66939.4 1186.9 5.4 66852.2 816.9 16.1
gil262 1145.2 34.3 9.2 1132.3 27.2 10.4 1140.7 31.3 26.8
pr264 31765.4 940.9 9.9 32031.5 511.1 10.5 31661.1 760.6 29.6
pr299 24258.9 964.7 12.6 23801.5 682.3 14.1 23727.3 532.6 37.7
lin318 21917.6 514.2 14.3 21811 396.2 15.1 21733.0 358.1 42.2
rd400 7273.1 190.2 28.9 7142.8 137.5 30.5 7081.8 149.1 82.3
fl417 10193.5 291.9 26.7 10277.4 201.4 27.7 10212.1 181.2 104.8
gr431 1309.2 17.5 34.6 1306.1 13.2 36.6 1308.2 12.5 111.9
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Figure 2.14: C(T ) for lin318 with different plocimp settings and termination condition ttime.
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Figure 2.15: C(T ) for krob200 with different plocimp settings and termination condition ttime.
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Figure 2.16: C(T ) for rd400 with different plocimp settings and termination condition ttime.
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Figure 2.17: C(T ) for pr299 with different plocimp settings and termination condition ttime.
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Figure 2.18: C(T ) for fl417 with different plocimp settings and termination condition ttime

gr431

1364,2 1318

1596,45
1445,5

20s 30s

time

av
g

 C
(T

)

0.2
1

Figure 2.19: C(T ) for gr431 with different plocimp settings and termination condition ttime.
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Figure 2.20: Relative results of time on TSPlib instances for plocimp=0.2 with delta and edge
popmngt, where edge&delta equals 100%

Table 2.4: Results on MA: with differentplocimp, without popmngt, popsize 100, pmut=0.6

Instance plocimp=0.0, time=60s plocimp=0.0, tcgen=200 plocimp=0.2, tcgen=200
Name C(T ) std dev time C(T ) std dev time C(T ) std dev time

gr137 452.5 7.6 60 476.5 16.9 1.5 445.8 6.3 1.8
kroa150 12088.9 539.7 60 13113.5 881.5 2 11898.2 418.2 2.3
d198 11108.6 174.1 60 11734 308.0 4.1 10836.2 125.1 4.7
krob200 14020.4 434.1 60 15498 1125.5 3.7 13811.9 362.1 4.8
gr202 332.4 7.0 60 354.6 9.8 3.3 326.5 6.1 4.4
ts225 72616 1977.0 60 80461.6 4594.0 4.7 70520.5 765.2 5.5
pr226 68318.4 1424.5 60 76582.5 3620.2 4.3 66215.1 1247.7 4.8
gil262 1177.6 29.5 60 1358.9 74.6 6.4 1145.2 34.3 9.2
pr264 32693 655.5 60 36226.8 2075.0 7.2 31765.4 940.9 9.9
pr299 25119.9 743.1 60 29379.9 2312.7 9.2 24258.9 964.7 12.6
lin318 23457.4 801.7 60 27429.2 1928.5 10 21917.6 514.2 14.3
rd400 7799.7 246.9 60 9385.3 502.8 15.2 7273.1 190.2 28.9
fl417 10794.8 405.0 60 13080.9 823.8 16.4 10193.5 291.9 26.7
gr431 1395.6 40.6 60 1693 89.5 17.3 1309.2 17.5 34.6
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Table 2.5: Results on GMVBCNP, MA with different termination conditions, popsize 100,
pmut=0.6, plocimp=0.2, delta popmngt

Instance MA with tgen MA with tcgen MA with time
Name tgen C(T ) std dev time C(T ) std dev time time C(T ) std dev
gr137 2000 441.7 2.5 2.6 444.4 4.7 2 100s 441.5 3.2
kroa150 2000 11596.5 113.9 3.6 11809.5 289.0 2.3 100s 11602.2 182.4
d198 2000 10739.3 88.4 6.4 10835.2 115.4 5.2 200s 10724.1 83.2
krob200 4000 13483.9 198.7 8 13896.5 325.1 4.5 200s 13428.2 198.6
gr202 4000 321.9 3.6 8.4 323.1 4.9 4.7 200s 321.5 3.5
ts225 4000 69909.9 372.8 10.9 70296.9 754.5 5.4 200s 70037.7 398.8
pr226 4000 66161.9 619.9 7.8 66939.4 1186.9 5.4 200s 65644.3 842.8
gil262 4000 1102.9 20.5 15.5 1132.3 27.2 10.4 200s 1098.9 19.0
pr264 4000 31205.2 726.9 15.6 32031.5 511.1 10.5 200s 30995.5 701.9
pr299 6000 23119.5 386.4 23.3 23801.5 682.3 14.1 300s 23010.3 497.5
lin318 6000 21450.7 252.9 25.6 21811 396.2 15.1 300s 21432.7 196.9
rd400 6000 6941.4 95.7 52 7142.8 137.5 30.5 300s 6893 127.2
fl417 10000 9955.3 163.4 55.4 10277.4 201.4 27.7 600s 10006.8 178.5
gr431 10000 1288.7 8.2 67.7 1306.1 13.2 36.6 600s 1287.8 7.7
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Figure 2.21: C(T ) for krob200 with different deltapercent settings and termination condition
tcgen=200.
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3 The Generalized Degree
Constrained Minimum Spanning
Tree Problem

3.1 Problem formulation

The Generalized Degree Constrained Minimum Spanning Tree (d-GMST) prob-
lem is an extension of the classical Minimum Spanning Tree Problem. In this problem the
generalized minimum spanning tree is searched and none of its vertices is allowed to have
degree grater than dmax ≥ 2. The problem is defined as follow.

Consider an undirected, weighted complete graph G = (V, E, c) with node set V , edge set
E, edge cost function c : E → R+. The node set V is partitioned into r pairwise disjointed
clusters V1,V2, ...,Vr containing n1,n2,...nr nodes respectively. A spanning tree of a graph is a
cycle- free subgraph connecting all nodes. A solution to the d-GMST problem defined on G,
Figure 3.1, is a graph S = (P, T ) with P = { p1, p2, . . . , pr} ⊆ V containing exactly one node
from each cluster, pi ∈ Vi for all i = 1, 2, .., r and T ⊆ P × P ⊆ E being the tree spanning
nodes P . In the d-GMST problem an additional constraint called degree deg(u) of every
vertex u ∈ P is considered. The degree is the number deg(u) ≤ dmax ∧u ∈ P , where dmax is
a given upper bound of edges adjacent to u. Thus the Generalized Degree Constrained
Minimum Spanning Tree is the tree that fulfills the degree constraint and simultaneously
minimizes the total edge cost. Lets assign numerical costs cu,v ≥ 0 to each edge (u, v) ∈ T ,
where deg(u) ≤ dmax and deg(v) ≤ dmax then the Generalized Degree Constrained Minimum
Spanning Tree is a spanning tree with minimum total edge cost

C(T ) =
∑

(u,v)∈T

c(u, v).

3.2 Previous work

The Generalized Minimum Spanning Tree Problem (GMSTP) as well as the Degree Con-
strained Minimum Spanning Tree Problem (d-MSTP) were studied already and a lot of
researches have been performed for both of them. In this thesis I focused on the Generalized
Degree Constrained Minimum Spanning Tree Problem (d-GMSTP), which to the best of my
knowledge has not been yet addressed in the literature. As d-GMSTP is a conjunction of
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Figure 3.1: Example for d-GMST problem, where degree d = 3

GMSTP and d-MSTP this chapter briefly introduces a previous works related to both of
them.

The GMST problem was first proposed by Myung, Lee and Tcha [26] and they proved
that it is NP-hard and they provided Integer Linear Programming formulation. Feremans,
Labbe and Laporte provided further formulations in [7] and investigated all eight ILPs. Fer-
emans in [6] proposed exact solution algorithms based on branch and cut approach, while
Pop, Kern and Still in [28] proposed approximation algorithms and heuristics. Furthermore
Pop [29] utilized underlying idea of his MIP formulation in a Simulated Annealing approach
which allows solving larger instances. To solve more general and larger instances several
metaheuristics has been suggested by Ghosh [9]. In his paper he studied performance of
neighborhood searches based on tabu search and variable neighborhood search (VNS). He
implemented and compared Tabu Search that incorporates recently based memory and aspi-
ration rules, Tabu Search (TS2) that incorporates frequency based memory, reduced Variable
Neighborhood Descent, VNS that combines deterministic and stochastic changes of neighbor-
hoods and Variable Neighborhood Decomposition search (VNDS) that does not look at the
whole neighborhood of investigated problem only does an exhaustive search on the subset of
clusters. Comparing this approaches Ghosh concluded that TS2 and VNDS perform best on
the average. Golden, Raghavan and Stanojevic [12] presented two heuristic search techniques
- local search and a genetic algorithm. They proposed as well a simple lower and upper
bound heuristics for GMST problem. Hu, Leitner and Raidl [15] proposed VNS approach
which uses three different types of neighborhoods. Two of them work in complementary ways
in order to maximize search effectiveness whereas for the third they applied Mixed Integer
Programming (MIP) to optimize local parts within candidate tree’s solution.

The application of d-MST in the design of electrical circuits has been pointed out by
Narula and Ho [27]. They proposed primal and dual heuristic procedures and a branch and
bound algorithm. The branch and bound algorithm which makes use of an edge elimination
procedure based on edge exchange has been proposed by Savelsbergh and Volgenant [33].
Volgenant [36] proposed also edge exchanges used in branch and bound algorithm based on
Lagrangian relaxation. Ribeiro and Souza [32] proposed a VNS based on dynamic neighbor-
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hood model and using a variable neighborhood descent iterative improvement algorithm for
local search. Knowles and Corne introduced in [19] a novel tree construction algorithm called
the Randomized Principal Method (RPM) which builds degree constrained trees of low cost
from solution vectors. They applied RPM in three iterative methods: simulated annealing,
multistart hillclimbing and genetic algorithm. Another several heuristics including simulated
annealing and genetic algorithms has been presented by Krishnamoorthy, Ernst and Sharaiha
[20]. They proposed as well a method based on problem space search (PSS), which as they
concluded works best over all the problems. An efficient Evolutionary Algorithm proposed
by Raidl [30] produces only a feasible candidate solutions and provides substantially stronger
locality than most previous approaches. Raidl and Julstrom [31] proposed representation of
spanning trees in EAs directly as sets of their edges and developed initialization, recombina-
tion, and mutation operators for this representation. The operators offer locality, heritability,
and computational efficiency. The adapting edges procedure presented further in this the-
sis has been inspired by [5]. Feketea, Khullerb, Klemmsteina, Raghavacharic and Young
considered degree constraint for a graph and proposed modification of a given spanning tree
representing an unfeasible solution by using adoptions to meet the degree constraint. A novel
network-flow based algorithm has been introduced as well.

3.3 Neighborhood Structures

This section introduces description and basis of common approaches for both VNS and MA
implemented for the Generalized Degree Constrained Minimum Spanning Tree Problem (d-
GMSTP). When considering the d-GMSTP, it is possible to divide it into two subproblems:

� compute the solution based on selection of nodes from the clusters

� compute the solution based on the connections between clusters.

The subproblems above define two different strategies, their corresponding solution represen-
tations and their neighborhood structures. However the structures proposed in [21] has been
modified to satisfy degree constraint considered in this thesis.

n-Node Exchange Neighborhood

The idea of this approach is to first select one node per cluster [9]. When the nodes
are selected we can apply either the classical Kruskal Algorithm and adapting edges proce-
dure (AEP) afterwards to fix the nodes violating degree constraint or the degree constrained
Kruskal Algorithm (d-Kruskal) producing feasible solutions representing the Generalized De-
gree Constrained Minimum Spanning Tree on selected nodes. The details of both approaches
AEP and d-Kruskal are presented in the next section. The solution is stored as vector
P = { p1, p2, . . . , pr} where r denotes the number of clusters and pi denotes the node in
cluster Vi, i = 1, ...., r.

This representation is a basis for the used neighborhood structure called 1-Node Exchange
Neighborhood (1-NEN), that was originally proposed by Ghosh [9] and successfully involved
by [21]. In this neighborhood we can determine all |V | solutions derived from exchange of
node in vector P , that is precisely for one cluster Vi the node pi is replaced by a different
node p′i of the same cluster. Since a single MST can be computed in time O(r2), e.g. by

43



Prim the evaluation of the whole neighborhood to find the best neighboring solution can be
derived in O(|V | · r2) time when involving d-Kruskal or using the classical Kruskal Algorithm
and AEP the upper bound equals O(|V | · r2 ·mlogm), where m is the number of all possible
edges of the graph G.

The NEN structure can be generalized by simultaneously replacing n ≥ 2 nodes. In
this thesis the version with exchange of two nodes (2-NEN) is also used as neighborhood
structure. However this structure considers only the pairs of clusters that are adjacent in
current solution and is the most expensive one. Its complete evaluation takes a lot of time for
large instances, therefore I terminate its exploration after certain time limit. It returns the
so-far best solution instead of the best solution. For more details concerning those structures
please refer to [21].

Figure 3.2: Finding solution by approach proposed by Ghosh.

Figure 3.2 presents the example of approach proposed by Ghosh: Given the selected nodes,
one of the approaches, the classical Kruskal with AEP or d-Kruskal algorithm determines the
most suitable edges in order to find d-GMST.

Edge Exchange

This neighborhood is based on so-called global graph therefore its formal definition is
introduced here. Given a clustered graph G = (V,E) the global graph denoted by Gg =
(V g, Eg) consists of nodes corresponding to clusters in G, i.e. V g = V1, V2, ..., Vr and edge set
Eg = {(Vi, Vj) | ∃ (u, v) ∈ E ∧ u ∈ Vi ∧ v ∈ Vj}. Each global connection (Vi, Vj) represents all
edges {(u, v) ∈ E | u ∈ Vi ∧ v ∈ Vj} of graph G.

Pop [29] has shown that the reverse process to NEN can be used: starting from the
spanning tree with given selected global connections of so-called ”global graph” it is pos-
sible to determine optimal nodes. The set of possible solutions is quite huge, however the
search space can be limited by implementation of dynamic programming. The solution in
this neighborhood is represented by the set of edges of global graph. The basic idea of this
neighborhood is to remove one of the solution’s edges, that divides the spanning tree into
two subtrees and in the next step to introduce a new edge connecting subtrees in minimum
cost way. As in this thesis the Generalized Degree Constrained Minimum Spanning Tree
Problem is considered the new global edge (Vi, Vj) can be introduced to solution S′ only if
deg(Vi) < dmax ∧ deg(Vj) < dmax. The size of this neighborhood depends basically on the
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number of edges O(r) that can be removed and it requires O(r2) moves in order to exploit all
possible ways of reconnecting the resulting two components. In order to evaluate all neighbors
in an efficient way, incremental dynamic programming has been applied. The whole dynamic
programming is performed only once at the beginning and all costs are kept. The data are
updated incrementally only for each considered move and the values of cluster Vi are recalcu-
lated only if it gets a child, loses a child or the costs of its successor change. The pseudocode
of Algorithm 14 presents the neighborhood of Edge Exchange (EEN) that involves dynamic
programming. The main idea is to root the global spanning tree at an arbitrary cluster
Vroot ∈ V g and to direct all edges towards the leafs. Then the tree is traversed in recursive
depth-first manner and the minimum costs for the subtree rooted at Vk are calculated for
each cluster Vk ∈ V g and for each node v ∈ Vk when v is the node to be connected from Vk.
Let us consider global graph Gg = 〈V g, Eg〉 consisting of nodes corresponding to clusters in
G, V g = {V1, V2, ..., Vr} and edge set Eg = {(Vi, Vj) | ∃ (u, v) ∈ E ∧ u ∈ Vi ∧ v ∈ Vj}. Let us
consider now a spanning tree Sg = 〈V g, T g〉 on this global graph. This tree represents the
set of all feasible generalized spanning trees on G which contains for each edge (Va, Vb) ∈ T g

a corresponding edge (u, v) ∈ E with u ∈ Va ∧ v ∈ Vb ∧ a 6= b. Then we can determine the
minimum costs of a subtree by following recursion:

C (T g, Vk, v) =

{
0 if Vk is a leaf∑

Vl∈Succ(Vk)minu∈Vl
{c (v, u) + C (T g, Vl, u)} otherwise

where Succ (Vk) identifies the set of all successors of Vk in T g. For more details please refer
to [15].

Figure 3.3: Finding solution by approach proposed by Pop.

Figure 3.3 presents the approach proposed by Pop: Given the so-called ”global graph”,
the optimal nodes are determined.

3.4 Adapting edges and degree constraint Kruskal

In this thesis I consider the degree constraint for Generalized Minimum Spanning Tree Prob-
lem, therefore it was necessary to use an algorithm that examines if all nodes u in the solution
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Algorithm 14 Edge Exchange Neighborhood with degree constraint
forall global edges (Vi, Vj) ∈ T g do

remove (Vi, Vj)
M1 =list of clusters in component Kg

1 containing Vi

M2 =list of clusters in component Kg
2 containing Vj

forall Vk ∈M1 do
root Kg

1 at Vk

forall Vl ∈M2 do
root Kg

2 at Vl

if degree (Vk) < dmax ∧ degree (Vl) < dmax then
add (Vk, Vl)
use incremental dynamic programming to compute the solution and the
objective value

if current solution better then best then
save current solution as best

remove (Vk, Vl)

restore and return best solution

S = (P, T ) have degree deg(u) ≤ dmax, ∀u ∈ P , where dmax is a given upper bound of global
edges adjacent to u.

In overall the degree of each cluster is stored in a vector degree separate one for each
single solution. The degree value is updated each time when an edge is removed or added to
the solution. Before an edge is introduced to create a feasible solution, it is examined if it will
not exceed the degree constraint and if it will not introduce a cycle. I propose two approaches
for solving the d-GMSTP: Adapting Edges Procedure (AEP) and degree constrained Kruskal
(d-Kruskal) algorithm.

Adapting Edges Procedure (AEP)

The pseudocode of Algorithm 15 presents the adaptation edge heuristic, that fixes the
nodes violating the degree constraint. The effectiveness of this method has been tested in
conjunction with memetic algorithm, called further a-MA. It is run after the classical Kruskal
algorithm, if any node in the solution S′ violates degree constraint.

Before the search for a suitable edge that can be added is performed I create the list of all
possible edges ALLEDGES, sorted by cost ascending, which can be introduced into solution.
The list includes the set of E = {(u, v) | ∃ (u, v) ∈ E ∧ u ∈ Vi ∧ v ∈ Vj} ∧ i = 1, ..., r ∧ j =
1, ...r ∧ i 6= j. As an input the LIST containing all nodes violating the degree constraint is
created as well. It is performed only once at the beginning of adapting edge procedure as any
node that violates degree constraint will not be introduced by AEP. Once the input lists are
created we start removing the edges with highest connection cost that are adjacent to node
u ∈ LIST . When an edge (u, v) is removed the tree is divided into two components: K1

containing u and K2 containing v respectively. In order to connect the components we try
to introduce the edge (k, l) with the lowest connection cost satisfying following constraints:
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Algorithm 15 Adapting Edges Procedure (AEP)
input : LIST =vector storing all nodes that violates degree constraint
ALLEDGES =list of all possible edges sorted by cost ascending
t = 0

forall nodes in LIST do
if degree (u) > dmax, u ∈ LIST then

remove edge (u, v) adjacent to u with the highest connection cost
update degree (u) and degree (v)
M1 =list of nodes in component Kg

1 containing u
M2 =list of nodes in component Kg

2 containing v
repeat

examine edge (k, l) ∈ ALLEDGES[t]
if edge does not exist in current solution then

if k ∈M1 and l ∈M2 then
if degree (k) < dmax and degree (l) < dmax then

add (k, l)
update degree (k) and degree (l)
edge can be added = true

t+ +

until edge can be added = false

� the edge (k, l) must not exist in current solution (1),

� k and l must belong to different components (2),

� degree (k) < dmax ∧ degree (l) < dmax (3).

Let us consider an example presented by solution S on Figure 3.4. The solution S posses
one node in cluster V1 that violates degree constraint and we need to remove one of the edges
adjacent to this node. Let us assume that an edge (u, v), u ∈ V1 ∧ v ∈ V2 has the highest
connection cost among the edges adjacent to node u. By removing the edge (u, v) we split
the tree into two components: K1 and K2. Let us assume that the edge (v, l), v ∈ V2∧ l ∈ V3

has the lowest connection cost to merge components and satisfies the constraints (1)-(3).
Therefore we say that node l adopts neighbor of node u and the final solution S′ is the
feasible one. AEP is generally called after crossover and initialization, as well as after local
improvement in a-MA, if any node of solution S′ violates degree constraint. As the list of
all edges is created and sorted by their cost the procedure requires O(mlogm) time in the
worst case, where m denotes edges of the set ALLEDGES.

Degree Constrained Kruskal Algorithm (d-Kruskal)
The proposed degree constrained Kruskal algorithm, Algorithm 16, builds the GMST

considering simultaneously the degree constraint. An edge (u, v) is added to the tree if it
does not violate the degree constraint. In some cases the set Tk of edges provided by 1-NEN
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Figure 3.4: Adapting edges for d-GMST with dmax=3.

or 2-NEN can be insufficient in order to construct the d-GMST, therefore it is necessary to
introduce an edge from F = E \Tk. The neighborhoods provide the set of edges created after
replacement of the node pi with node p′i. Removing pi and all its incident edges from the
solution S forms a graph consisting of l ≥ components K1, ...,Kl. So, the set Tk consists of:

� the edges of S after removing pi and its incident edges,

� all edges (p′i, pj) with j = 1, ..., r ∧ i 6= j,

� the shortest edges between pairs of the components K1, ...,Kl.

If the subset (p′i, pj) with j = 1, ..., r∧ i 6= j contains more edges with lower cost, they will be
sequentially introduced to solution. The structure will be shuffled and it will be not possible
to create a complete solution from the remaining subset of edges because of degree constraint.

To inherit as many edges as possible from Tk the proposed d-Kruskal algorithm assigns to
each edge the weight based on its cost and parameter β ∈ (0, 0.1) that leads to a stronger bias
towards edges from set Tk. To all edges (Vi, Vj) ∈ Tk the weight =cost·β is assigned, whereas
the edges of F obtain weight =cost. In the next step the edges are sorted by the weight
in ascending order and the d-GMST is built. The computational effort of the procedure is
O(mlogm).
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Algorithm 16 degree constrained Kruskal (d-Kruskal)
input : T = ∅, S = ∅
i =1
ALLEDGES =list of all possible edges sorted by weight ascending

forall nodes in ALLEDGES do
repeat

if deg (u) < dmax ∧ deg (v) < dmax ∧ (u ∧ v not conencted in T )) then
T = T ∪ (u, v)
union the sets containing u and v
update degree (u) and degree (v)

i+ +
until S has more than one set

3.5 Variable Neighborhood Search

Initial solutions

The greedy Minimum Distance Heuristic (MDH) used by Ghosh [9] has been applied for
initialization of solutions when running VNS. In MDH the nodes with the lowest connection
cost to all nodes of other clusters are used, and the tree is spanned on those nodes, forming
the minimum spanning tree, Algorithm 17. Using d-Kruskal algorithm it yields to O(|V |2 +
r2 log r2) time complexity.

Algorithm 17 Initialization of solutions in VNS for the d-GMST
for i = 1, ..., r do

choose node pi ∈ Vi with minimal
∑

v∈V \V{i} c(pi, v)

calculate d-GMST by means of d-Kruskal on nodes P = {p1, ..., pr}

Shaking

The goal of the shaking is to perturb the solution S and to provide a good starting point S′

for the local search [2]. During the local search the set of neighborhood structures is used,
but the search is not restricted only to this set. At the end of local search the new solution
S′ is compared with S, and in case it is better it replaces S and the algorithm starts again
with k =1, where kmax is the size of shaking. Otherwise, k is incremented and the shaking
is performed. Therefore the shaking phase introduces a diversification of the search. For
shaking, see Algorithm 18, I use two approaches: 1-NEN and EEN. In 1-NEN shaking starts
with four moves, whereas in EEN starts with exchange of five edges, because some edges
selected for insertion might be discarded due to degree infringements.
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Algorithm 18 Shake
input : S, k - size

for i = 1, ..., k do
remove random edge (Vi, Vj) ∈ T g diving tree into components Kg

1 and Kg
2

if deg (Vk) < dmax ∧ deg (Vl) < maxdegree then
insert random edge (Vk, Vl) connecting Kg

1 and Kg
2

else
insert edge (Vi, Vj)

use dynamic programming to recalculate used nodes
for i = 1, ..., k + 2 do

randomly change the used node pi of randomly chosen cluster Vi

recalculate MST by d-Kruskal

VNS Framework

In this thesis the general VNS schema with VND as local improvement is used. During
VND approach it is alternated between 1-NEN, 2-NEN and EEN in the order described by
Algorithm 19. This sequence has been proposed by Leitner [21] and determined according
to computational complexity of searching the neighborhoods. The Algorithm 19 presented
in this section considers the degree constraint. Inside EEN an edge (Vk, Vl) connecting two
components Kg

1 and Kg
2 is introduced only if degree(Vk) < dmax ∧ degree(Vl) < dmax. In

1-NEN, 2-NEN the d-Kruskal recalculates the spanning tree of the new solution S′.

3.6 Memetic Algorithm

The results obtained by running MA for GMVBCNP were satisfactory so I decided to test
d-GMST using memetic algorithm as well. However for d-GMSTP I distinguish two kinds of
MA, which differ from the used approach fixing the nodes violating degree constraint: a-MA
involves AEP after crossover and local improvement, see Algorithm 20 whereas k-MA builds
the new offspring by means of d-Kruskal algorithm, see Algorithm 21.

For selection, the standard tournament selection with tournament size of two is applied.
The designed framework for both MA’s is based on the steady state EA and it involves
local improvement technique to improve the quality of solutions. The applied operators and
approaches are described in the next subsections.

Initial solutions

The initial population is created in random order to provide as much diversity as possible.
Each solution includes one random node per cluster. Once the coincidental nodes are selected
in a-MA the classical Kruskal algorithm is applied in order to build a tree spanned on selected
nodes. Because some of the nodes can violate degree constraint AEP is called in order to
make the solutions feasible. On the other hand in k-MA once the nodes are selected the
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Algorithm 19 VND for the d-GMST
l=1
repeat

switch l do
case 1 : 1-NEN

for i = 1, ..., r do
forall p′i ∈ Vi \ pi do

change used node pi of cluster Vi to p′i
recalculate MST by d-Kruskal
if current solution S′ is better than the best then

save S′ as the best

case 2 : EEN
call edge exchange()

case 3 : 2-NEN
forall clusters Vi and Vj adjacent in current solution do

forall p′i ∈ Vi \ pi and p′j ∈ Vj \ pj do
change used node pi of cluster Vi to p′i
change used node pj of cluster Vj to p′j
recalculate MST by d-Kruskal
if current solution S′ is better than the best then

save S′ as the best

restore the best solution

if solution improved then
l =1

else
l = l+1

until l > 3

d-Kruskal creates the initial individuals. However both approaches creates a feasible initial
population of individuals.

Crossover operator

For recombination a simple uniform crossover operator has been implemented. For each gene
it is individually decided from which parent it will be inherited. Once the genes are selected,
similar to initialization either classical Kruskal and next AEP or d-Kruskal is performed to
connect selected nodes in feasible way forming d-GMST.

Mutation Operator

The mutation operator swaps chosen nodes within clusters. The number of nodes that is
exchanged is determined each time randomly. See Figure 3.5a where nodes within clusters
V2 and V3 were exchanged. However for some solutions swapping the node leads to exchange
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of an edge as well, as the tree is recalculated and spanned on currently selected nodes with
minimal connection cost, see Figure 3.5b.

Local improvement

The local improvement is applied with probability plocim. Because the used neighborhood
structures: 1-NEN and 2-NEN are very time consuming the value of plocim should be kept as
small as possible. For local improvement three other parameters are involved:

� locimbest, determining the use of local improvement whenever new best solution is found

� lsprob, probability determining if the new found solution should be improved by local
search

� locimstartgen, determining after which generation the local improvement should be used.

Usually in the begin stage the MA results are improved without involvement of local search.
However after some number of generations the results are not bettered as fast as at the
beginning, applying methods like local search explores the search space more efficiently. As

Algorithm 20 Memetic Algorithm for the d-GMST using AEP (a-MA)
create random initial population P
AEP(P )
repeat

select two parental solutions S1 ∧ S2 ∈ P
create a new solution SN by crossover on S1 ∧ S2

AEP(SN )
mutate a new solution SN with probability pmut

locally improve SN with probability pimp

AEP(SN )
replace one parental solution by SN

until termination condition

Algorithm 21 Memetic Algorithm for the d-GMST using d-Kruskal (k-MA)
create random initial population P using d-Kruskal

repeat
select two parental solutions S1 ∧ S2 ∈ P
create a new solution SN by crossover on S1 ∧ S2 using d-Kruskal
mutate a new solution SN with probability pmut

locally improve SN with probability pimp and calculate SN by d-Kruskal
replace one parental solution by SN

until termination condition
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Figure 3.5: Mutation of d-GMST, with dmax = 4.

Algorithm 22 Mutation operator for the d-GMST Memetic Algorithm
k =number of clusters which nodes are swapped
for i = 1, ..., k do

randomly change the used node pi of a random cluster Vi

recalculate d-MST

mentioned above the applied neighborhoods are time consuming, therefore in order to save
some computation time, the local improvement is applied after locimstartgen generation.

Solution Archive

MA creates new solutions from already known solutions, therefore with increasing number of
generations the solutions get more and more similar or even identical. The simplest method
to avoid this issue is to compare the new solution to all solutions in the current population,
however once the individual is withdrawn from population, the information about its existence
is lost as well. Here comes up the idea of an archive creation, implemented by Wolf [38]. He
proposed a complete solution archive for GAs that effectively transforms duplicates into
similar so far unconsidered candidate solutions. I use this concept for MA as well. Each
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time a new solution is generated I check if it was considered before. In case it was, it will
be transformed. All archive relevant operations like insert, find and transform require O(r)
time, where r is the number of clusters.
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3.7 Computational results for d-GMSTP

For the d-GMSTP Euclidean instances with up to 442 nodes have been used for testing, see
Table 3.1. For more details please refer to chapter ”Computational results for GMVBCNP”.

Table 3.1: TSPLib instances with geographical clustering [6]. Number of nodes vary for each
cluster.

Instance Name |V | |E| r

kroa150 150 11175 30
krob200 200 19900 40
ts225 225 25200 45
pr226 226 25425 46
gil262 262 34191 53
pr264 264 34716 54
pr299 299 44551 60
lin318 318 50403 64
rd400 400 79800 80
fl417 417 86736 84
gr431 432 92665 87

The preliminary tests showed that the best obtained results for all instances have average
degree 3 ≥ d ≥ 4. Monma and Suri [24] proved that there always exist a MST with degree
no more than five for trees in Euclidean plane. As the GMST is an extension of the MST
the definition holds.

The set of tests have been performed on a grid engine system, that from the software
point of view consists of one large machine with multiple cores/CPUs providing all the same
technical infrastructure with respect to environmental settings. It is also permanently chang-
ing with respect to the number of available CPUs and hardware settings. For each setting
of algorithm the tables show the objective values for the average values of the final solutions
C(T ) during 20 runs, their standard deviations and the average degree d of the nodes of
the final solutions. The d-GMSTP has been tested with VNS and memetic algorithm (MA),
however for MA we distinguish a-MA, involving adapting edges procedure for solution repair
and k-MA involving the d-Kruskal algorithm creating always feasible solutions. Both k-MA
and a-MA have been tested with different parameter settings as well as with and without
solution archive proposed by [38] for avoiding duplicates.

The results given in Table 3.2 present the outcome for a-MA and k-MA and for different
set up of dmax. While the results of the a-MA with archive (a-MA1) and without archive
(a-MA0) do not obviously reveal which set up is better, for the k-MA the involvement of
archive (k-MA1) certainly provides better results on all degrees for the same tcgen =200
(denoting number of generations for termination according to convergence) and the values of
d for dmax =10 are lower as well in comparison to d for the version without archive (k-MA0).
This underlines the robustness of the involved archive for population management purposes
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when considering the degree constraint inside the Kruskal algorithm that always provides
feasible solutions. One could ask why the results for dmax =3 and dmax =10 have the same
d but different outcome.

Table 3.2: Results of a-MA and k-MA: with (MA1)/without archive (MA0), pmut=0.6,
plocimp=0.05, different dmax.

a-MA0 a-MA1 k-MA0 k-MA1
no arch 1 arch, tcgen=200 no arch, tcgen=200 1 arch, tcgen=200

Instance dmax C(T ) dev d C(T ) dev d C(T ) dev d C(T ) dev d

kroa150 2 10434.5 96.7 2 10493.9 79.5 2 10331.5 121.6 2 10214.4 37.6 2
krob200 2 12345.1 60.3 2 12339.7 59 2 12247.1 112.3 2 12098.9 50.2 2
ts225 2 63948 0 2 63948 0 2 64008.9 148.6 2 63948 0 2
gil262 2 1010.4 5.6 2 1012.2 8.5 2 1036.6 23 2 1007.8 21 2
pr264 2 24359 104 2 24331.7 89.8 2 24731 252.6 2 24450.7 246.8 2
pr299 2 21660.6 51.9 2 21682.9 26.3 2 22359.6 614.3 2 21616.6 308 2
lin318 2 19997.2 308.2 2 19955.3 289.8 2 20203.8 485 2 19695.8 66.7 2
rd400 2 6633.4 93.3 2 6631.4 112 2 7090.8 77.1 2 7023 123.1 2
fl417 2 9237 109.3 2 9164.5 130.8 2 9099.1 0.3 2 9099 0 2
pcb442 2 21315.5 260.8 2 21433.8 208.1 2 23092.7 248 2 22540.3 562.6 2
kroa150 3 9837.4 37.6 3 9819.1 15.3 3 9824.4 21.6 3 9815.7 2.9 3
krob200 3 11285.4 13.2 3 11282.4 18.4 3 11273.8 38.3 3 11250 6.4 3
ts225 3 62301 52.5 3 62291.8 31.8 3 62579.7 102.6 3 62418 103.2 3
gil262 3 944.6 3.4 3 944.8 3.3 3 965.6 15.5 3 947.1 5.2 3
pr264 3 21899.3 13.2 3 21895.6 6.5 3 21919.4 37.5 3 21893.7 16.7 3
pr299 3 20467.5 26.8 3 20473.9 24.1 3 20839.3 221.4 3 20403.9 117.4 3
lin318 3 18537.7 26 3 18537 57.8 3 18770.4 210.9 3 18557.6 28.4 3
rd400 3 5978.4 18.2 3 5984.5 23 3 6335.6 33 3 6249.5 150 3
fl417 3 7982 0 3 7982 0 3 7982.3 0.9 3 7982 0 3
pcb442 3 19714.6 84.3 3 19752.8 87.9 3 21016.3 70.4 3 20888.2 198.2 3
kroa150 10 9827.9 31.8 3 9819 14.4 3 9821.9 19.1 3 9815.7 2.9 3
krob200 10 11282.7 15.3 3 11282.2 18.4 3 11286.6 106.6 3 11248 10.5 3
ts225 10 62296.8 43.4 3 62298.5 36.6 3 62596 93.8 3 62472.5 114.5 3
gil262 10 946.9 5.7 3 945.2 3.8 3 962 14.7 3.2 944.8 1.8 3.1
pr264 10 21895.9 6.6 3 21898.8 10.9 3 21933.8 63.5 3 21893.1 10.8 3
pr299 10 20466.9 25.2 3 20477.4 39.9 3 20954.2 191.1 3 20439.6 142.3 3
lin318 10 18533.2 19.1 3.1 18539.4 22.5 3.1 18693.1 159.4 3.5 18541.3 14 3.1
rd400 10 5982.8 26.1 3 5982.1 22.6 3 6360.6 28.8 3.2 6263.6 162.5 3.1
fl417 10 7982 0 3 7982 0 3 7982 0 3 7982.1 0.2 3
pcb442 10 19724.9 75.1 3 19763.9 118.2 3 21032.1 81.5 3.5 20838.7 325.1 3.5

The reason is that some low cost edges could be discarded during the search because
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their insertion could violate degree constraint when using d-Kruskal for k-MA. The same
can be observed for VNS using d-Kruskal for solution creation. Results given in Table 3.7
presents better outcome for VNS with dmax =10 than for VNS with dmax =3 however d=3
for all test instances. However comparing the versions of a-MA0 and k-MA0 without solution
archive, the proposed method for solutions repair using the adapting edges procedure pro-
vides significantly better results on all degrees and instances with number of nodes over 200.
Considering the degree constraint directly during the solution creation procedure can limit
the search space and cause premature convergence of MA. While running a-MA the number
of solutions violating the degree constraint has been measured. Some solutions created by
initialization, crossover and local improvement have deg > dmax and need to be repaired.
The average values of adapt given in Table 3.3 for a-MA determines the average number of
solutions violating degree constraint. By the results in Table 3.3 we can observe that for lower
value of dmax = 2 the number of solutions requiring repair procedure increases significantly
in comparison to adapt for dmax = 3, however those numbers depend on the test instance.
The number of adapts for a-MA1 is higher as well in comparison to a-MA0, which is caused
by the conversion method used in solution archive. Before the offspring is introduced to the
population its recurrence is examined, and in case the duplicate is discovered it is converted
until it does not represent the non-duplicate solution [38]. Each conversion of solution can
produce an infeasible individual violating degree constraint so it is necessary to call the adapt-
ing edges procedure and therefore for a-MA1 the adapt grows up respectively. The Table 3.3
does not include adapt column for VNS and k-MA03 (memetic algorithm using d-Kruskal
for solution creation with local improvement probability set to plocim =0.5) because both
approaches are based on d-Kruskal creating always feasible solutions, so no repair method is
required. Both a-MA and k-MA were tested with different plocimp settings. The results in
Table 3.6 present the outcome for k-MA and the Table 3.5 presents the outcome for a-MA.
The increase of plocimp value for a-MA does not provide significantly better results. The pre-
mature convergence produces worse results for plocimp=0.2 in comparison with plocimp=0.05
for all degrees. The differences in relative results of time presented on Figure 3.7 for a-MA
and different plocimp setting are significant for all degrees, however the results are not signifi-
cantly improved. The opposite behavior can be observed for k-MA results in Table 3.6. The
increase of plocimp setting provides solutions with lower connection cost, what can be seen on
Figure 3.6 presenting the relative results of C(T ) for k-MA, where plocimp = 0.5 equals 100%.

The MA has been tested with different pmut settings and the results are given in Table
3.4. The best C(T ) were obtained with pmut =0.6 and this value was used for the other
tests’ sets. The results given in Table 3.7 present the comparison of the outcomes obtained
by different approaches. The results for VNS with stopping condition tcgen =50 are the best
for all instances and dmax settings. The used value of plocimp =0.5 for k-MA provided better
results than VNS only for a couple of instances, mostly for dmax =2 and dmax =3. However
the running time for k-MA is almost two times higher than for VNS, what is presented by
the time results in Table 3.7. From the performed tests and obtained results I can conclude
that VNS is the most robust approach used in this thesis for d-GMSTP.
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Table 3.3: Results of time and adoptions numbers for a-MA: with/without archive, pmut=0.6,
plocimp=0.05,different dmax, results of time for VNS and results of time for k-MA03 without
archive and plocimp=0.5.

a-MA0 a-MA1 VNS k-MA03
without archive 1 arch, tcgen=200 tcgen=50 tcgen=200

Instance dmax time adopts time adopts time time

kroa150 2 17.1 15267 19.9 16733.6 17.7 54.2
krob200 2 25.4 12521.2 35.6 15722.9 82.6 230.0
ts225 2 7.9 2925.5 8.9 3408.2 25.1 92.0
gil262 2 120.4 33299.4 117 32500.9 127.7 515.4
pr264 2 70.7 15003.8 72.9 15673 298.9 376.8
pr299 2 75.9 14413.1 90.9 16280.2 419.5 589.1
lin318 2 151.4 37295.4 176.5 41337.1 191.3 572.1
rd400 2 158 18055.4 183.5 21971.8 344.2 760.2
fl417 2 58.7 5752.7 51 4989.3 37.5 206.2
pcb442 2 336 29117 209.4 18663.1 453.3 908.5
kroa150 3 5.4 125.4 6.3 129.8 21.4 50.0
krob200 3 9.1 217.9 11.6 263.8 62.8 158.4
ts225 3 15 69.3 17.3 72.6 199.7 363.7
gil262 3 30.7 757 33.3 758.7 204.7 347.1
pr264 3 48.6 438.4 51.4 410.9 229.4 308.6
pr299 3 58.8 3905.8 54.3 3324.3 272.7 601.8
lin318 3 46.2 1525.4 42 1504.8 306.4 634.3
rd400 3 192.3 2438.7 162.2 2237.3 469.7 770.8
fl417 3 37.4 112.7 37.7 106.4 28 251.4
pcb442 3 218.4 1229.6 165.4 1341.9 459.4 724.8
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Table 3.4: Results of a-MA with different pmut settings, plocimp=0.05, tcgen =200, without
archive.

Instance pmut =0.8 pmut =0.6 pmut =0.4
Name dmax C(T ) std dev d C(T ) std dev d C(T ) std dev d

kroa150 2 10484.3 89.5 2 10434.5 96.7 2 10465.5 79.4 2
krob200 2 12328.6 50.8 2 12345.1 60.3 2 12354.5 65.2 2
ts225 2 63967.8 88.5 2 63948.0 0 2 63948.0 0.0 2
gil262 2 1013.8 7.5 2 1010.4 5.6 2 1013.6 7.4 2
pr264 2 24346.8 88.0 2 24359 104 2 24410.6 101.7 2
pr299 2 21682.9 66.6 2 21660.6 51.9 2 21692.2 25.8 2
lin318 2 20035.4 333.0 2 19997.2 308.2 2 19866.2 148.8 2
rd400 2 6676.9 109.7 2 6633.4 93.3 2 6666.4 94.2 2
fl417 2 9237.5 116.5 2 9237 109.3 2 9252.1 107.6 2
pcb442 2 21401.1 253.9 2 21315.5 260.8 2 21375.6 162.3 2
kroa150 3 9839.0 38.5 3 9837.4 37.6 3 9822.5 23.0 3
krob200 3 11294.3 31.2 3 11285.4 13.2 3 11279.4 12.8 3
ts225 3 62296.0 48.5 3 62301 52.5 3 62298.8 48.7 3
gil262 3 947.3 6.4 3 944.6 3.4 3 945.8 3.6 3
pr264 3 21899.5 6.7 3 21899.3 13.2 3 21901.4 13.2 3
pr299 3 20485.4 47.7 3 20467.5 26.8 3 20474.4 45.5 3
lin318 3 18534.6 24.6 3 18537.7 26 3 18537.8 21.8 3
rd400 3 5976.6 13.6 3 5978.4 18.2 3 5979.4 16.8 3
fl417 3 7982.0 0.0 3 7982.0 0 3 7982.0 0.0 3
pcb442 3 19717.0 58.5 3 19714.6 84.3 3 19754.9 116.0 3
kroa150 10 9833.4 45.4 3 9827.9 31.8 3 9821.5 22.0 3
krob200 10 11285.7 12.3 3 11282.7 15.3 3 11284.0 12.7 3
ts225 10 62325.5 62.0 3 62296.8 43.4 3 62303.1 53.1 3
gil262 10 944.8 4.3 3.1 946.9 5.7 3 945.5 5.8 3
pr264 10 21895.9 10.3 3 21895.9 6.6 3 21896.8 7.5 3
pr299 10 20471.3 34.8 3 20466.9 25.2 3 20477.2 34.2 3
lin318 10 18534.5 23.6 3 18533.2 19.1 3.1 18522.8 16.8 3
rd400 10 5992.9 32.5 3 5982.8 26.1 3 5984.8 24.4 3
fl417 10 7982.0 0.0 3 7982.0 0 3 7982.0 0.0 3
pcb442 10 19745.0 91.1 3.1 19724.9 75.1 3 19725.0 85.9 3
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Table 3.5: Results of a-MA0 with different plocim settings, pmut=0.6, tcgen =200, without
archive.

Instance plocim =0.05 plocim =0.2
Name dmax C(T ) std dev d time C(T ) std dev d time

kroa150 2 10434.5 96.7 2 17.1 10506.5 80 2 24.4
krob200 2 12345.1 60.3 2 25.4 12325.3 39.2 2 84.8
ts225 2 63948 0 2 7.9 63948 0 2 27.7
gil262 2 1010.4 5.6 2 120.4 1016.9 9.5 2 236.5
pr264 2 24359 104 2 70.7 24423.4 117.6 2 142.6
pr299 2 21660.6 51.9 2 75.9 21701.8 41 2 145
lin318 2 19997.2 308.2 2 151.4 20006.7 203.6 2 387.9
rd400 2 6633.4 93.3 2 158 6660 72 2 277.7
fl417 2 9237 109.3 2 58.7 9151.9 163.1 2 149.4
pcb442 2 21315.5 260.8 2 336 21435.6 228.8 2 429.9
kroa150 3 9837.4 37.6 3 5.4 9853.1 32.6 3 11.9
krob200 3 11285.4 13.2 3 9.1 11285.2 18.6 3 19.8
ts225 3 62301 52.5 3 15 62294.6 51 3 25.6
gil262 3 944.6 3.4 3 30.7 944.9 3.6 3 73.5
pr264 3 21899.3 13.2 3 48.6 21905.5 16.5 3 119.9
pr299 3 20467.5 26.8 3 58.8 20497.7 43.8 3 97.7
lin318 3 18537.7 26 3 46.2 18516.2 10.6 3 97.8
rd400 3 5978.4 18.2 3 192.3 5980.9 17.5 3 407.9
fl417 3 7982 0 3 37.4 7982 0 3 95.5
pcb442 3 19714.6 84.3 3 218.4 19720 74.6 3 451
kroa150 10 9827.9 31.8 3 8 9822.9 20.8 3 44.5
krob200 10 11282.7 15.3 3 8.5 11285.7 12.3 3 18.5
ts225 10 62296.8 43.4 3 10.4 62280.1 24.9 3 27.3
gil262 10 946.9 5.7 3 21 943.4 2.1 3 65
pr264 10 21895.9 6.6 3 26.6 21898.2 8.6 3 114
pr299 10 20466.9 25.2 3 32.1 20464.9 25.5 3 107.7
lin318 10 18533.2 19.1 3.1 32.6 18522.6 12.1 3.1 89.6
rd400 10 5982.8 26.1 3 95.5 5983.3 20.6 3 436
fl417 10 7982 0 3 21 7982 0 3 89.2
pcb442 10 19724.9 75.1 3 128.2 21867.3 34.2 3.1 330.2
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Table 3.6: Results of k-MA with different settings of plocim, pmut =0.6, tcgen =200, without
archive.

Instance k-MA01, plocim =0.05 k-MA02, plocim =0.2 k-MA03, plocim =0.5
Name dmax C(T ) std dev d C(T ) std dev d C(T ) std dev d

kroa150 2 10331.5 121.6 2 10209.2 9.8 2 10206 0 2
krob200 2 12247.1 112.3 2 12149.6 95.3 2 12076.9 2.7 2
ts225 2 64008.9 148.6 2 63967.8 88.5 2 63948 0 2
gil262 2 1036.6 23 2 1014.5 22.5 2 993.4 5.4 2
pr264 2 24731 252.6 2 24361.5 153.2 2 24243.1 106.3 2
pr299 2 22359.6 614.3 2 21680.7 355.8 2 21434.9 58.9 2
lin318 2 20203.8 485 2 19703.8 94.5 2 19657.1 43.8 2
rd400 2 7090.8 77.1 2 6947.4 175.3 2 6786.9 254.3 2
fl417 2 9099.1 0.3 2 9099 0 2 9099 0 2
pcb442 2 23092.7 248 2 22689.4 400.7 2 21999.1 691 2
kroa150 3 9824.4 21.6 3 9815 0 3 9815.7 2.9 3
krob200 3 11273.8 38.3 3 11252 10.3 3 11244.6 2.5 3
ts225 3 62579.7 102.6 3 62413.4 59.6 3 62325.3 59.5 3
gil262 3 965.6 15.5 3 946.9 5.4 3 943.3 1.8 3
pr264 3 21919.4 37.5 3 21897.6 18.1 3 21886.7 2 3
pr299 3 20839.3 221.4 3 20367.9 46.1 3 20334.4 19.9 3
lin318 3 18770.4 210.9 3 18571.5 84.6 3 18528.8 13.8 3
rd400 3 6335.6 33 3 6294.6 116.7 3 6121.8 172.9 3
fl417 3 7982.3 0.9 3 7982 0 3 7982 0 3
pcb442 3 21016.3 70.4 3 20961.2 125.7 3 20613.7 567.6 3
kroa150 10 9821.9 19.1 3 9819.3 19 3 9815 0 3
krob200 10 11286.6 106.6 3 11246.8 6.2 3 11246.2 4.5 3
ts225 10 62596 93.8 3 62449.8 85.6 3 62341.8 80.5 3
gil262 10 962 14.7 3.2 946.2 7 3 943.5 2.1 3
pr264 10 21933.8 63.5 3 21892.2 14.5 3 21886.7 2.9 3
pr299 10 20954.2 191.1 3 20451.1 187.3 3 20346.6 46.3 3
lin318 10 18693.1 159.4 3.5 18552.1 42.6 3.2 18533.4 16.9 3.1
rd400 10 6360.6 28.8 3.2 6301.5 120 3.1 6090.5 176.9 3.1
fl417 10 7982 0 3 7982 0 3 7982 0 3
pcb442 10 21032.1 81.5 3.5 20924.4 311.1 3.3 20518.9 593.4 3.3
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Figure 3.6: Relative results of C(T ) on TSPlib instances for k-MA with different plocimp and
different degree deg, where plocimp=0.5 equals 100%
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Table 3.7: Results of a-MA and k-MA with settings plocim =0.05, pmut =0.6, tcgen =200,
without archive and VNS with tcgen =50.

Instance a-MA0, plocim =0.05 k-MA03, plocim =0.5 VNS
Name dmax C(T ) std dev d time C(T ) std dev d time C(T ) std dev d time

kroa150 2 10434.5 96.7 2 37.4 10206 0 2 54.2 10206 0 2 17.7
krob200 2 12345.1 60.3 2 58.7 12076.9 2.7 2 230.0 12081 49.2 2 82.6
ts225 2 63948 0 2 31.6 63948 0 2 92.0 63948 0 2 25.1
gil262 2 1010.4 5.6 2 30.7 993.4 5.4 2 515.4 989 0 2 127.7
pr264 2 24359 104 2 120.4 24243.1 106.3 2 376.8 24178.3 118.1 2 298.9
pr299 2 21660.6 51.9 2 23.4 21434.9 58.9 2 589.1 21387.8 58.4 2 419.5
lin318 2 19997.2 308.2 2 5.4 19657.1 43.8 2 572.1 19640 40.1 2 191.3
rd400 2 6633.4 93.3 2 17.1 6786.9 254.3 2 760.2 6510.3 50 2 344.2
fl417 2 9237 109.3 2 15.9 9099 0 2 206.2 9099 0 2 37.5
pcb442 2 21315.5 260.8 2 9.1 21999.1 691 2 908.5 21151.2 70 2 453.3
kroa150 3 9837.4 37.6 3 25.4 9815.7 2.9 3 50.0 9817.6 5.3 3 21.4
krob200 3 11285.4 13.2 3 10.3 11244.6 2.5 3 158.4 11244 0 3 62.8
ts225 3 62301 52.5 3 46.2 62325.3 59.5 3 363.7 62275.6 23 3 199.7
gil262 3 944.6 3.4 3 151.4 943.3 1.8 3 347.1 942.7 1.4 3 204.7
pr264 3 21899.3 13.2 3 46.3 21886.7 2 3 308.6 21891.3 6.6 3 229.4
pr299 3 20467.5 26.8 3 218.4 20334.4 19.9 3 601.8 20323.1 12.7 3 272.7
lin318 3 18537.7 26 3 223.7 18528.8 13.8 3 634.3 18506.2 10 3 306.4
rd400 3 5978.4 18.2 3 312.5 6121.8 172.9 3 770.8 5962.1 21 3 469.7
fl417 3 7982 0 3 48.6 7982 0 3 251.4 7982 0 3 28
pcb442 3 19714.6 84.3 3 70.7 20613.7 567.6 3 724.8 19810.9 58.9 3 459.4
kroa150 10 9827.9 31.8 3 50.7 9815 0 3 47.7 9815 0 3 14.6
krob200 10 11282.7 15.3 3 58.8 11246.2 4.5 3 154.0 11244 0 3 4.8
ts225 10 62296.8 43.4 3 75.9 62341.8 80.5 3 284.3 62270.1 5.7 3 75.4
gil262 10 946.9 5.7 3 59.6 943.5 2.1 3 344.3 942 0 3 169.5
pr264 10 21895.9 6.6 3 192.3 21886.7 2.9 3 288.6 21886.4 1.6 3 230.2
pr299 10 20466.9 25.2 3 158.0 20346.6 46.3 3 545.9 20318.6 9.3 3 261
lin318 10 18533.2 19.1 3.1 169.1 18533.4 16.9 3.1 530.2 18509.6 10.8 3 282.1
rd400 10 5982.8 26.1 3 15.0 6090.5 176.9 3.1 887.1 5957.8 14.8 3 426.3
fl417 10 7982 0 3 7.9 7982 0 3 247.9 7982 0 3 21
pcb442 10 19724.9 75.1 3 14.4 20518.9 593.4 3.3 851.1 19749.3 64.6 3 491.4
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Figure 3.7: Relative results of time on TSPlib instances for a-MA with different plocimp and
different degree deg, where plocimp=0.2 equals 100%
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4 Summary and Outlook

In thesis I considered two NP-hard problems not addressed in the literature so far: the Gen-
eralized Degree Constrained Minimum Spanning Tree Problem (d-GMSTP) and the Gen-
eralized Minimum Vertex Bi-connected Network Problem (GMVBCNP). The fundamental
strategy was to design the metaheuristics allowing to find the best solutions in an efficient
way. For the Generalized Minimum Vertex Bi-connected Network Problem (GMVBCNP) the
Memetic Algorithm (MA) using two neighborhood structures as local improvement strategy
has been proposed. They are exponentially large, however the used graph reduction tech-
nique significantly limited the search for the best neighbor. The GMVBCNP was tested on
Euclidean instances with up to 442 nodes with different parameters settings. The best re-
sults were obtained for local improvement probability equalled to 1, however concerning the
computation time it was recommended to use probability equalled to 0.2 for local improve-
ment. Two different population management strategies, which can be either used together
or separately has been introduced as well. By the performed tests it has been proved that
edge population management provides better results however it requires as well much more
time than delta population management. As no reference values are available it was not
possible to compare the obtained and presented in this thesis results with different ones,
however Memetic Algorithm combined with delta population management and with local
improvement probability set to 0.2 generates high quality solutions in acceptable time.

For the Generalized Degree Constrained Minimum Spanning Tree Problem (d-GMSTP)
Variable Neighborhood Search (VNS) with VND as a local improvement and Memetic Al-
gorithm has been proposed. The VNS alternates between three neighborhood structures,
which always generate feasible solutions with respect to degree constraint. One of them is
based on the approach proposed by Pop and two of them are based on the approach proposed
by Ghosh. The Memetic Algorithm uses two neighborhood structures as local improvement
strategy and alternates between two approaches for consideration of degree constraint. One
of them repairs the solutions violating degree constraint, whereas the second generates always
the feasible individuals. The MA has been tested with different parameter settings as well
as in conjunction with solution archive for avoiding duplicates. All tests for the d-GMSTP
were performed on Euclidean instances with up to 442 nodes. The best results were obtained
for VNS which seems to be more robust than MA proposed in this thesis for solving the
d-GMSTP.

Further work can be done for both problems, and other heuristic methods can be ap-
plied, e.g. VNS for the GMVBCNP. The additional neighborhoods and the other population
management strategies can be considered. The both problems were tested only on Euclidean
instances, so it might be interesting to test them on grouped and random Euclidean instances.
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