
A Memetic Algorithm with Population Management for the Generalized Minimum
Vertex-Biconnected Network Problem

Anna Pagacz
Vienna University of Technology

Favoritenstrasse 9–11/1861
1040 Vienna, Austria

anna.pagacz@gmail.com

Bin Hu
Vienna University of Technology

Favoritenstrasse 9–11/1861
1040 Vienna, Austria
hu@ads.tuwien.ac.at

Günther R. Raidl
Vienna University of Technology

Favoritenstrasse 9–11/1861
1040 Vienna, Austria

raidl@ads.tuwien.ac.at

Abstract—We consider the generalized minimum vertex-
biconnected network problem (GMVBCNP). Given a graph
where nodes are partitioned into clusters, the goal is to find a
minimal cost subgraph containing exactly one node from each
cluster and satisfying the vertex-biconnectivity constraint. The
problem is NP-hard. The GMVBCNP has applications in the
design of survivable backbone networks when single component
outages are considered. We propose a Memetic Algorithm with
two crossover operators, three mutation operators, and a local
search component based on two neighborhood structures. Fur-
thermore, two different population management approaches
are investigated. Experimental results document the efficiency
of the new approach. In particular, the local search component
and the population management strategies have a substantial
impact on solution quality as well as running time.

Keywords-network design; biconnectivity; memetic algo-
rithm; local search; population management

I. INTRODUCTION

The generalized minimum vertex-biconnected network
problem (GMVBCNP) is defined as follows. We consider an
undirected, weighted, complete graph G = (V, E, c) with
node set V , edge set E, and edge cost function c : E → R+.
Node set V is partitioned into r pairwise disjoint clusters
V1, V2, . . . , Vr. A solution to the GMVBCNP defined on G
is a subgraph S = (P, T) with P = { p1, . . . , pr} ⊆ V and
T ⊆ E connecting exactly one node from each cluster, i.e.,
pi ∈ Vi, ∀i = 1, . . . , r. We denote P as the set of spanned
nodes. Furthermore, S may not contain any cut nodes. A
cut node is a node whose removal would disconnect the
graph. An example is given in Figure 1. The cost of such
a vertex-biconnected network S is its total edge costs, i.e.,
C(T) =

∑
(u,v)∈T c(u, v) and the objective is to identify

a feasible solution with minimum costs. The GMVBCNP
appears in the design of survivable backbone networks that
should be fault tolerant to a single component outage.

For this problem we suggest a memetic algorithm (MA)
that uses problem specific variation operators, local im-
provement procedures to enhance the solution quality, and
population management techniques to control the diversity
and to avoid over-hasted convergence.

V1 V2

V3
V4

V5

p1

p2

p3 p4

p5

V6

p6

Figure 1. Example for a solution to the GMVBCNP.

II. PREVIOUS WORK

There are many works in the literature on to classi-
cal vertex-biconnectivity augmentation problem (VBCAP).
However the generalized version is rather new. VBCAP
was first investigated by Eswaran and Tarjan [1]. They
showed that it is NP-hard and introduced the so-called
“block-cut graph” that allows efficient detection of cut
vertices. This basic principle is used here as well. From
the complexity of VBCAP it directly follows that also
GMVBCNP is strongly NP-hard. A similar problem is the
generalized minimum edge-biconnected network problem
(GMEBCNP) where only edge-biconnectivity is required.
It was introduced by Huygens [6] who proposed integer
programming formulations, but no practical results were
published. Hu et al. [3] presented variable neighborhood
search (VNS) approaches for the GMEBCNP based on
several types of neighborhood structures. They are adapted
for the GMVBCNP in this work. Preliminary results of the
MA were published in [5], and in this article the approach
is extended particularly by a new population management
technique. Further details can also be found in the first
author’s master thesis [8].

III. A MEMETIC ALGORITHM FOR THE GMVBCNP

We use a standard memetic algorithm (MA) framework
[7] for approaching the GMVBCNP as illustrated in Al-

Algorithm 2: Memetic Algorithm for GMVBCNP
randomly create initial population Π
repeat

select two parental solutions S1, S2 ∈ Π
create a new solution Snew by crossover on S1, S2

mutate Snew with probability pmut

locally improve Snew with probability pls

apply population management
until no new better solution found in last l iterations

gorithm 2. Tournament selection with a size of two and a
worst solution replacement strategy are used. We apply two
population management techniques which can be used either
separately or in combination.

For the solution representation we first introduce the
so-called global graph. Given a clustered graph G =
(V,E, c) the global graph denoted by Gg = (V g, Eg)
consists of nodes corresponding to clusters in G, i.e.,
V g = {V1, V2, . . . , Vr}, and the complete edge set Eg =
{(Vi, Vj) | Vi, Vj ∈ V g, Vi 6= Vj}. Hereby, each global
connection (Vi, Vj) represents all edges {(u, v) ∈ E | u ∈
Vi ∧ v ∈ Vj} of graph G. When given some feasible
candidate solution S = 〈P, T 〉 to the GMVBCNP, its
corresponding global structure is defined as the induced
global graph’s subgraph Sg = 〈V g, T g〉 with the global
connections T g = {(Vi, Vj) ∈ Eg | ∃(u, v) ∈ T ∧ u ∈
Vi ∧ v ∈ Vj}. Figure 2 illustrates a global structure of the
solution in Figure 1.

A feasible candidate solution S = (P, T) is characterized
by P , the set of spanned nodes that are connected from
each cluster, and the corresponding global structure T g

containing the global connections between clusters, i.e.,
T g = {(Vi, Vj) ∈ Eg | ∃(u, v) ∈ T ∧ u ∈ Vi ∧ v ∈ Vj}.
Using either P or T g alone is insufficient, since decoding
the solution would become NP-hard subproblems.

The initialization procedure for creating starting solutions
is inspired by the fact that Hamiltonian cycles represent
feasible solutions to the GMVBCNP: We first fix the set
of spanned nodes P by randomly selecting pi ∈ Vi, ∀i =
1, . . . , r, and then connect them in random order to a cycle.

V1
V2

V3
V4

V5

V6

Figure 2. Global structure corresponding to solution in Figure 1.

V1 V2

V3
V4

V5

p1

p2

p3 p4

p5

V6

p6

V1 V2

V3
V4

V5

p1 p2

p3

p4

p5

V6

p6

a) Solution S1 b) Solution S2

V1 V2

V3
V4

V5

p1

p2

p3

p4

p5

V6

p6

c) Solution Snew after merging edges

V1 V2

V3
V4

V5

p1

p2

p3

p4

p5

V6

p6

d) Solution Snew after
removing redundant edges

Figure 3. Example for greedy crossover operator.

A. Recombination

For generating a new solution Snew = (Pnew, Tnew) from
two parental solutions S1 = (P1, T1) and S2 = (P2, T2)
we use two operators, the node-oriented crossover and the
greedy crossover. A common step for both is the inheritance
of spanned nodes. To determine Pnew we apply classical
uniform crossover, i.e., we randomly choose the spanned
node of each cluster either from P1 or P2. Next we build
the global structure T g

new. Since the spanned nodes are
already fixed, each global connection (Vi, Vj) ∈ T g

new now
corresponds to a specific edge (pi, pj) ∈ E, pi ∈ Vi ∧ pj ∈
Vj ∧ pi, pj ∈ Pnew.

For node-oriented crossover, T g
new is derived by visit-

ing all clusters sequentially and for each cluster Vi ∈
P g

new, ∀i = 1, . . . , r, we randomly decide from which
parental edge set T g

1 or T g
2 the incident edges will be

added. Hereby we favor the edges from the parent with
lower connection cost by choosing it with probability 0.7.
The resulting solution is checked by a depth-first-search
algorithm and additional edges are introduced to eliminate
eventually discovered cut nodes. On the other hand, greedy
crossover generates T g

new by simply merging all global
connections of both parental solutions, i.e., T g

new = T g
1 ∪T

g
2 .

So far, both crossover operators create solutions that in
general contain more edges than needed – especially greedy
crossover. Therefore, in the next step we remove edges as
long as the biconnectivity constraint is not violated. During
this process we consider only edges (pi, pj) ∈ Tnew with
deg(pi) > 2 ∧ deg(pj) > 2, where deg(pi) denotes the
degree of node pi. These edges are considered in a particular

order for removal:
• α: decreasing costs
• β: decreasing perturbed costs c′(pi, pj) · ρ, where ρ is

a uniformly distributed random value ∈ [0.5, . . . , 1.0]
• γ: random order

Sequence α obviously emphasizes intensification whereas
γ yields a higher diversification. Each time one of the
crossover operators is applied, we select the sorting criterion
for edge removal randomly with probabilities (pα, pβ , pγ).
These values are initially set to (0.5, 0.3, 0.2) and dynam-
ically adapted during the search process by the population
management procedure, which observes the diversity in the
current population, see Section III-D. In particular, if the
diversity factor div will be too small or too high, then pγ is
increased and pα decreased, respectively.

Figure 3 presents an example for the greedy crossover
operator. Preliminary experiments suggested to use greedy
crossover with probability 0.95 and node-oriented crossover
significantly less frequently with probability 0.05 since it has
a much stronger heuristic bias.

B. Mutation

Each time a new solution Snew is generated, it is mutated
with probability pmut=0.6. We have three mutation operators
which introduce a small amount of randomness and ensure
that all solutions in the search space have the possibility of
being examined:
• Change the spanned node of a random cluster.
• Add a global connection between two random clusters.
• Exchange the set of incident edges of two random

clusters.
These operators are, again according to preliminary results,
applied with probabilities 0.5, 0.4, 0.1, respectively.

C. Local improvement

After mutation each solution is further optimized via local
improvement with probability pls. In [3], a graph reduction
technique has been introduced and successfully applied to
the GMEBCNP, which we also use here. The motivation is
to reduce the search space for some neighborhood structures
which the local improvement procedures are based on.
Considering the global structure, we distinguish between
branching clusters having a degree greater than two and
path clusters having a degree of two. Note that there are
no clusters with degree one, since this would violate the
biconnectivity constraint.

Formally, for any global structure Sg = 〈V g, T g〉, we
define a reduced global structure Sgred = 〈V gred, T

g
red〉.

Vred denotes the set of branching clusters, i.e. V gred =
{Vi ∈ V g | deg(Vi) ≥ 3}. T gred consists of
edges which represent sequences of path clusters con-
necting these branching clusters, i.e. T gred = {(Va, Vb) |

V1
V2

V3
V4

V5

V6

V2

V3

Figure 4. Example for applying graph reduction on the global structure
in Figure 2.

(Va, Vk1), (Vk1 , Vk2), . . . , (Vkl−1 , Vkl
), (Vkl

, Vb) ∈ T g ∧
Va, Vb ∈ V gred∧Vki

/∈ V gred, ∀i = 1, . . . , l}. Corresponding to
the reduced global structure Sgred = 〈V gred, T

g
red〉 we define a

reduced graph Gred = 〈Vred, Ered〉 with nodes representing
all branching clusters Vred = {v ∈ Vi | Vi ∈ V gred} and edges
between any pair of nodes whose clusters are adjacent in
the reduced global structure, i.e. (i, j) ∈ Ered ⇔ (Vi, Vj) ∈
T gred,∀i ∈ Vi, j ∈ Vj . Each such edge (i, j) corresponds
to the shortest path connecting i and j in the subgraph of
G represented by the reduced structure’s edge (Vi, Vj), and
(i, j) therefore gets assigned this shortest path’s costs. Figure
4 shows an example for applying graph reduction on the
global structure in Figure 2. V2 and V3 are branching clusters
while all others are path clusters.

Based on this graph reduction technique, we make use of
two neighborhood structures: The Node Optimization Neigh-
borhood (NON) emphasizes the selection of the spanned
nodes in the branching clusters while not modifying the
global structure. First graph reduction is carried out on
the current solution S. When Vred is the set of branching
clusters, NON consists of all solutions S′ that differ from S
by exactly one spanned node of a branching cluster. A move
within NON is accomplished by changing pi ∈ Vi ∈ Vred

to p′i ∈ Vi, pi 6= p′i, i ∈ {1, . . . , r}. By using the graph
reduction technique, spanned nodes of path clusters are
computed in an efficient way. The pseudocode is given in

Algorithm 3: Node Optimization (solution S)
compute reduced structure Sgred = 〈V gred, T

g
red〉

forall Vi, Vj ∈ V gred ∧ Vi 6= Vj do
forall u ∈ Vi 6= pi do

change used node pi of cluster Vi to u
forall v ∈ Vj do

change used node pj of cluster Vj to v
if current solution better than best then

save current solution as best
restore initial solution

restore and return best solution

Algorithm 4: Cluster Re-Arrangement (solution S)
compute reduced structure Sgred = 〈V gred, T

g
red〉

for i = 1, . . . , r − 1 do
for j = i+ 1, . . . , r do

swap adjacency lists of nodes pi and pj
if Vi or Vj is a branching cluster then

recompute reduced solution
Sgred = 〈V gred, T

g
red〉

else
if Vi and Vj are in same reduced path P
then

update P in Sgred
else

update the path containing Vi in Sgred
update the path containing Vj in Sgred

if current solution better than best then
decode and save current solution as best

restore initial solution and Sgred
restore and return best solution

Algorithm 3.
With the Cluster Re-Arrangement Neighborhood (CRAN)

we try to improve a solution with respect to the arrangement
of the clusters. Given a solution S with its global structure
Sg = (V g, T g), let adj(Va) and adj(Vb) be the sets of adja-
cent clusters of Va and Vb in Sg , respectively. Moving from
S to a neighbor solution S′ in CRAN means to swap these
sets of adjacent clusters, resulting in adj(V ′a) = adj(Vb)
and adj(V ′b) = adj(Va) with V ′a and V ′b being the clusters
in S′ corresponding to Va and Vb in S, respectively. S′ is
further improved by performing shortest path calculations to
re-choose the spanned nodes in the path clusters. Whenever
two path clusters are swapped only incremental updates on
the paths that contain them is necessary. In case at least
one of these clusters is a branching cluster, the structure
of the whole solution graph may change, and consequently
the graph reduction procedure is completely re-applied. The
pseudocode is given in Algorithm 4.

D. Population management

Local improvement can lead to premature convergence.
For this reason we apply population management in order
to maintain a certain degree of diversity when new solutions
are generated and added to the population. We propose
two techniques. For delta management we measure the
Hamming distance between the new solution Snew and each
of k randomly chosen solutions in the current population
Π . If the minimal distance is lower than a certain limit,
Snew is mutated until the distance to the solutions in the
population is sufficiently high. To save computation time the

new solution is compared only with 10% of the population,
i.e. k = b0.1 · |P |c.

The second technique is called edge management. It
examines the percentage of the global connections cov-
ered by the solutions in the population in relation to all
possible global connections. This ratio is calculated every
t=50 iterations, and when it drops under a given threshold
pedge < 70% then the crossover parameters (pα, pβ , pγ) are
set to (0.2,0.2, 0.6) to increase population diversity. On the
other hand, when the ratio becomes higher than pedge again,
these parameters are reset to (0.5, 0.3, 0.2).

To conclude, if the number of covered global connections
is too low, diversity is increased in the population. If it is too
high, we put more emphasis on intensification. Parameters
k and t control the granularity and time effort for the
population management.

IV. COMPUTATIONAL RESULTS

We tested our MA on Euclidean TSPlib1 instances with
geographical center clustering [2]. They contain up to 442
nodes partitioned into 89 clusters. The number of nodes
per cluster varies. All experiments have been performed on
an AMD Opteron Processor 2214 with 8GB RAM. The
program was written in C++ and gcc version 4.1.3 was
used. The stopping criterion for the MA was 200 generations
without improvement of the so far best solution. In order to
compute average solution values and corresponding standard
deviations, 30 independent runs have been performed for
each instance. In the default setting for the MA we use
population size |P | = 100, local improvement probability
pls = 0.2 and apply delta population management. These
settings are justified by the following tests where best results
are marked bold.

First we vary the population size between 50, 100, 150 and
200 individuals and keep the other parameters unchanged.
Results are given in Table I. Listed are average objective val-
ues of finally best solutions C(T), corresponding standard
deviations σ, and CPU-times time in seconds. We see that
best results are obtained with |P | = 100 and |P | = 150.
Due to population management, using a larger population
size causes more computation time. This is the reason why
|P | = 100 is preferred as the default value for |P |.

Next we show results for different probability values of
applying local improvement values in Table II. We observe
that local improvement has a high impact on the solution
quality as well as runtime. By comparing in particular the
settings of pls = 0.2 and pls = 1.0, we see that final results
were better by 1 to 5% in the latter case. However, the
search process took 30% to 125% more time. Therefore the
following tests have been performed with pls = 0.2 for good
balance.

1http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.html

Table I
RESULTS OF THE MA FOR DIFFERENT POPULATION SIZES, WITH PROBABILITY pls = 0.2 OF APPLYING LOCAL IMPROVEMENT.

Instance popsize = 50 popsize = 100 popsize = 150 popsize = 200

Name C(T) σ time C(T) σ time C(T) σ time C(T) σ time
gr137 448.5 6.0 1.1 444.4 4.7 2.0 443.1 4.9 2.7 445.6 5.3 3.0
kroa150 11765.8 227.9 1.4 11809.5 289.0 2.3 11744.1 275.8 3.3 11752.6 289.7 7.4
d198 10869.1 152.4 2.6 10840.6 115.4 5.2 10844.4 128.0 6.9 10889.8 156.1 7.7
krob200 13821.6 316.8 2.7 13896.5 325.1 4.5 13831.3 296.0 6.3 13873.3 297.2 6.9
gr202 326.5 4.5 2.6 323.1 4.9 4.7 324.1 5.2 6.3 323.5 4.7 7.2
ts225 71394.7 1720.5 3.2 70296.9 754.5 5.4 70285.3 538.0 7.7 70305.6 444.2 8.7
pr226 67992.0 1609.3 2.8 66939.4 1186.9 5.4 66905.7 950.2 7.2 67088.4 702.2 8.1
gil262 1147.0 41.3 5.5 1132.3 27.2 10.4 1142.9 35.1 13.7 1154.6 33.0 15.2
pr264 32196.6 837.6 6.3 32031.5 511.1 10.5 31945.2 763.2 14.8 32151.3 729.4 16.8
pr299 24409.5 628.2 7.3 23801.5 682.3 14.1 23726.0 640.1 18.7 24063.4 823.5 21.0
lin318 22184.1 393.6 8.5 21811.0 396.2 15.1 21785.0 477.9 22.3 21961.4 419.9 24.0
rd400 7203.2 153.4 16.6 7142.8 137.5 30.5 7225.6 176.1 39.9 7234.6 182.8 47.1
fl417 10366.4 246.2 14.7 10277.4 201.4 27.7 10292.3 174.1 38.2 10304.6 224.1 44.2
gr431 1316.7 17.7 19.8 1306.1 13.2 36.6 1306.4 12.4 52.7 1308.7 11.4 58.6
pr439 63950.2 1718.7 20.1 62462.2 1448.1 36.4 62259.6 1132.1 51.0 62412.4 1008.9 57.2
pcb442 23986 594.0 22.3 23350.9 524.8 43.4 23745.3 604.9 57.4 24084.7 578.6 58.2

Table II
RESULTS OF THE MA FOR DIFFERENT PROBABILITIES pls OF APPLYING LOCAL IMPROVEMENT, POPULATION SIZE 100.

Instance pls=0 pls=0.2 pls=0.6 pls=1.0
Name C(T) σ time C(T) σ time C(T) σ time C(T) σ time
gr137 476.5 17.8 1.5 444.4 4.7 2.0 441.3 2.5 2.9 440.8 1.7 3.9
kroa150 12994.5 691.1 2.1 11809.5 289.0 2.3 11619.8 150.3 3.6 11601.8 90.7 4.7
d198 11708.1 407.8 3.8 10840.6 115.4 5.2 10753.6 102.9 7.6 10730.6 97.9 9.3
krob200 15153.4 655.9 3.9 13896.5 325.1 4.5 13573.2 192.4 7.2 13531.6 167.5 9.2
gr202 355.7 11.0 3.4 323.1 4.9 4.7 320.0 2.3 7.3 319.7 2.5 9.1
ts225 78642.1 3100.0 4.7 70296.9 754.5 5.4 69910.2 307.4 8.9 69768.5 332.9 13.0
pr226 75712.8 3632.2 4.3 66939.4 1186.9 5.4 66687.1 966.5 7.4 66126.3 980.8 9.9
gil262 1 351.7 102.3 6.7 1132.3 27.2 10.4 1108.3 23.2 15.3 1099.1 18.9 20.7
pr264 36185.4 1799.4 7.0 32031.5 511.1 10.5 31409.1 847.7 17.4 30860.8 816.1 23.2
pr299 29313.8 2361.7 9.3 23801.5 682.3 14.1 23313.6 442.2 22.2 23016.5 325.0 28.1
lin318 28387 1927.6 9.7 21811.0 396.2 15.1 21562.3 373.3 24.8 21368.9 189.5 31.9
rd400 9678.5 689.5 15.8 7142.8 137.5 30.5 6958.8 122.5 51.2 6887.7 114.8 70.4
fl417 13307 844.6 18.5 10277.4 201.4 27.7 10156.3 198.4 41.5 10129.1 177.7 49.0
gr431 1716.6 120.4 18.7 1306.1 13.2 36.6 1296.0 10.4 60.5 1290.4 8.7 81.9
pr439 88956.3 6915.2 22.1 62462.2 1448.1 36.4 61284.5 670.3 59.6 61132.1 552.0 78.8
pcb442 32272.0 2432.3 23.1 23350.9 524.8 43.4 22877.7 295.2 69.6 22481.1 277.9 94.9

Table III
RESULTS OF MA WITH DIFFERENT POPULATION MANAGEMENT STRATEGIES, pls=0.2.

Instance no management delta management edge management delta & edge management
Name C(T) σ time C(T) σ time C(T) σ time C(T) σ time
gr137 445.8 6.3 1.8 444.4 4.7 2.0 446.6 6.2 2.5 444.4 5.2 3.9
kroa150 11898.2 418.2 2.3 11809.5 289.0 2.3 11858.9 328.1 3.1 11618.3 110.2 5.3
d198 10836.2 125.1 4.7 10835.2 115.4 5.2 10796.3 136.8 7.6 10798.4 124.9 12.7
krob200 13811.9 362.1 4.8 13896.5 325.1 4.5 13856.7 359.5 6.6 13658.4 197.7 10.8
gr202 326.5 6.1 4.4 323.1 4.9 4.7 325.7 5.8 6.5 321.9 4.1 10.3
ts225 70520.5 7 65.2 5.5 70296.9 754.5 5.4 70127.6 430.4 8.2 70092.1 517.6 14.4
pr226 66215.1 1247.7 4.8 66939.4 1186.9 5.4 66039.0 877.5 8.0 66852.2 816.9 16.1
gil262 1145.2 34.3 9.2 1132.3 27.2 10.4 1155.3 38.9 14.0 1140.7 31.3 26.8
pr264 31765.4 940.9 9.9 32031.5 511.1 10.5 31733.9 962.0 15.9 31661.1 760.6 29.6
pr299 24258.9 964.7 12.6 23801.5 682.3 14.1 24284.7 883.0 19.2 23727.3 532.6 37.7
lin318 21917.6 514.2 14.3 21811.0 396.2 15.1 21860.7 415.4 22.6 21733.0 358.1 42.2
rd400 7273.1 190.2 28.9 7142.8 137.5 30.5 7213.8 164.2 48.0 7081.8 149.1 82.3
fl417 10193.5 291.9 26.7 10277.4 201.4 27.7 10105.7 182.6 48.8 10212.1 181.2 104.8
gr431 1309.2 17.5 34.6 1306.1 13.2 36.6 1305.7 13.4 57.9 1308.2 12.5 111.9
pr439 62793.0 1587.9 36.7 62462.2 1448.1 36.4 62713.4 1882.5 55.3 62686.3 1716.5 56.4
pcb442 23473.8 633.5 42.0 23350.9 524.8 43.4 23782.3 653.4 63.6 24022.6 634.7 62.9

Table IV
RESULTS OF MA WITH DEFAULT CONFIGURATION AND EXTENSIVE

CONFIGURATION.

Instance default configuration extensive configuration
Name C(T) σ time C(T) σ time
gr137 444.4 4.7 2.0 441.6 2.7 8.3
kroa150 11809.5 289.0 2.3 11631.4 155.4 10.3
d198 10835.2 115.4 5.2 10716.0 100.9 24.9
krob200 13896.5 325.1 4.5 13646.2 245.8 22.2
gr202 323.1 4.9 4.7 321.8 4.5 21.1
ts225 70296.9 754.5 5.4 69706.9 418.8 28.9
pr226 66939.4 1186.9 5.4 65468.5 966.2 27.8
gil262 1132.3 27.2 10.4 1127.7 22.3 49.3
pr264 32031.5 511.1 10.5 30662.5 638.2 58.3
pr299 23801.5 682.3 14.1 23424.8 865.0 77.6
lin318 21811.0 396.2 15.1 21517.0 318.2 88.8
rd400 7142.8 137.5 30.5 7163.6 173.9 176.1
fl417 10277.4 201.4 27.7 10091.8 160.6 171.1
gr431 1306.1 13.2 36.6 1300.5 13.6 239.1
pr439 62462.2 1448.1 36.4 61654.0 817.3 233.7
pcb442 23350.9 524.8 43.4 23011.6 430.2 155.1

Table III lists results for different settings of the popula-
tion management. It documents that population management
is highly effective w.r.t. solution quality. Obtained results
are in most cases significantly better when at least one of
the strategies is turned on and usually best when both are
applied. On the other hand, when both strategies were active,
running times also increased considerably.

Finally, in Table IV we compare results between the
default setting and an “extensive” configuration where all
parameters are set towards best results, i.e., |P | = 200, pls =
1.0, and both population management strategies activated.
We see that although the extensive configuration yields
in general better results, the computation times increase
enormously. Surprisingly, these results are not significantly
superior to those when parameters are tuned for best results
one at a time, compare to the last columns of Table II and
III.

In order to compare the MA with an exact approach based
on integer programming, we derived a multi-commodity
flow Mixed Integer Programming (MIP) model from the
GMEBCNP [3] by further adding constraints to guarantee
vertex-biconnectivity. Due to space reason the full MIP
formulation is not given here. Based on this model, by using
the general purpose MIP solver CPLEX in version 11.2 we
were able to obtain optimal solutions within reasonable time
for small instances with up to around 80 nodes. However,
the practical limit is quickly reached when the problem size
increases. Since benchmark instances used in this article
have at least 137 nodes, it was not possible to obtain optimal
solutions anymore.

V. CONCLUSIONS AND FUTURE WORK

In this paper we considered the minimum vertex-
biconnected network problem (GMVBCNP). We developed

a memetic algorithm (MA) with advanced crossover op-
erators, local improvement methods, and two population
management techniques. The parameters for crossover are
adapted dynamically during the search process by population
management. Best results were obtained when local im-
provement is always applied, but the computation time then
also grows. Two different population management strategies,
which can be either used together or separately, have been
investigated as well. Performed experiments clearly indicate
that better results are obtained when both are used, but this
configuration again requires more computation time.

Future work should include more comprehensive tests also
on other types of instances, e.g., Euclidean instances with
random clustering or non-Euclidean instances. Other types
of genetic operators might also be promising, e.g., an edge-
oriented crossover that keeps the edges but re-selects nodes.
On the other hand, the mixed integer program formulation
can be further developed and a hybridization with MA could
also be done like in [4].

REFERENCES

[1] K. P. Eswaran and R. E. Tarjan. Augmentation problems. SIAM
Journal on Computing, 5(4):653–665, 1976.

[2] C. Feremans. Generalized Spanning Trees and Extensions.
PhD thesis, Universite Libre de Bruxelles, Brussels, Belgium,
2001.

[3] B. Hu, M. Leitner, and G. R. Raidl. The generalized minimum
edge biconnected network problem: Efficient neighborhood
structures for variable neighborhood search. accepted for
Networks.

[4] B. Hu, M. Leitner, and G. R. Raidl. Combining variable
neighborhood search with integer linear programming for the
generalized minimum spanning tree problem. Journal of
Heuristics, 14(5):473–499, 2008.

[5] B. Hu and G. R. Raidl. A memetic algorithm for the gen-
eralized minimum vertex-biconnected network problem. 9th
International Conference on Hybrid Intelligent Systems - HIS
2009, pages 63–68, 2009.

[6] D. Huygens. Version generalisee du probleme de conception
de reseau 2-arete-connexe. Master’s thesis, Universite Libre de
Bruxelles, 2002.

[7] P. Moscato and C. Cotta. A gentle introduction to memetic
algorithms. In F. Glover and G. Kochenberger, editors, Hand-
book of Metaheuristics, pages 105–144. Kluwer Academic
Publishers, Boston MA, 2003.

[8] A. Pagacz. Heuristic methods for solving two generalized
network problems. Master’s thesis, Vienna University of
Technology, Institute of Computer Graphics and Algorithms,
February 2010. supervised by G. Raidl and B. Hu.

