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Kurzfassung

Das Traveling Tournament Problem (TTP) ist ein NP-schweres kombinatorisches Opti-
mierungsproblem, welches für seine praktische Schwierigkeit bekannt ist. Das Ziel ist es,
einen Ligaspielplan für eine Doppelrundenturnier bei einer vorgegebene Anzahl an Teams
zu entwerfen, wobei die von allen in Summe zurückgelegte Wegstrecke so gering wie mög-
lich sein soll. Jedes Team beginnt und beendet die Saison an ihrem Heimspielort und reist
bei zwei aufeinander folgenden Auswärtsspielen direkt vom ersten Spielort zum zweiten.
Die Anzahl der aufeinanderfolgenden Heim- und Auswärtsspiele, die ein Team bestreiten
darf, ist begrenzt. Zudem können zwei Gegner nicht in aufeinanderfolgenden Runden
gegeneinander antreten. Diese Einschränkungen erschweren es zusätzlich, eine geeignete
Lösung zu finden. Derzeit können von den Standard-Benchmark-Sets nur jene mit bis
zu 10 Teams optimal gelöst werden, solche mit 12 Teams nicht. In dieser Arbeit werden
konstruktive Lösungsalgorithmen für das Problem untersucht und mit independent lower
bound (ILB) basierten Heuristiken erweitert, welche als Tourenplanungsproblem mit be-
schränkter Kapazität formuliert sind. Aufbauend auf einer Zustandsraum-Repräsentation
für das TTP stellen wir einenMAX -MIN Ameisenalgorithmen vor, welcher auf einer
erfolgreichen Anwendung aus der Literatur basiert. Darüber hinaus erweitern wir einen
randomisierten Beam Search Ansatz, um Instanzen mit bis zu 26 Teams bewältigen zu
können, indem wir die Guidance-Heuristik näherungsweise mit Google OR-Tools berech-
nen. Die Auswirkungen zahlreicher Parameter des Algorithmus (etwa die Verwendung
einer eingeschränkten Kandidatenliste oder eine unterschiedliche Balkengröße bei Beam
Search) bei der Lösung der Tourenplanungsprobleme und der TTP werden systematisch
untersucht. Bei sorgfältig eingestellten Anfangsparametern werden diese durch automati-
siertes Parameter-Tuning weiter verbessert und validiert. Die Algorithmen werden anhand
der NL-, NFL-, galaxy-, CIRC- und Super-Instanzen mit 10 bis 26 Teams evaluiert. Unser
ACO-Ansatz weist eine Differenz in der relativen Optimalitätslücke von ca. 15-20% zu
den besten bekannten Lösungen auf, was zu dem Schluss führt, dass eine Hybridlösung
mit einer auf lokaler Suche basierten Methode notwendig ist, um konkurrenzfähig zu sein.
Bei unserem Beam Search Ansatz ist der Effekt der Guidance-Heuristik größer: hier sind
die relativen Optimalitätslücke zu den besten bekannten Lösungen kleiner als 6%; im
Durchschnitt betragen sie nur 2,7%.
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Abstract

The traveling tournament problem (TTP) is an NP-hard combinatorial optimization
problem famous for its practical hardness. The goal is to construct a double round robin
sport league schedule for a certain number of teams, minimizing the sum of the total
traveled distance over all teams. Each team starts and ends the season at their home
venue and, when playing two away opponents in a row, will travel directly from the first
venue to the second. There is a limit on the number of consecutive home and away
games that a team is allowed to play and two opponents cannot face each other in two
consecutive rounds. As of today, from the standard benchmark sets only instances up to
ten teams have been solved to optimality, those with 12 have not.

The goal of this work is to study the behavior and augment constructive approaches with
guidance by independent lower bound based heuristics formulated as capacitated vehicle
routing problems (CVRPs). Building upon a state-space formulation for the TTP, we
propose aMAX -MIN ant system algorithm, based on a successful application in the
literature. Furthermore, we extend a randomized beam search approach to be able to
tackle instances up to 26 teams by calculating the guidance heuristics approximately
using Google OR-Tools.

The effects of numerous algorithmic parameters (e.g., using a restricted candidate list
during construction, varying the beam width for beam search) when solving the CVRPs
and the TTP itself are presented in a detailed computational study. Sensible choices
of parameters are performed by manual tuning and further strengthened by automated
parameter tuning. A final comparison is performed on the NL, NFL, galaxy, CIRC
and Super benchmark instances up to 26 teams. Our ant colony optimization approach
generally presents relative gap differences to the best known solutions of around 15-20%,
which leads us to conclude that the hybridization with a local search based method is
necessary to reach competitive results. The beam search approach profits much more
from the heuristic guidance and shows relative gaps to the best found solution not higher
than 6% and in the mean of only 2.7%.
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CHAPTER 1
Introduction

The Traveling Tournament Problem (TTP) is an optimization problem introduced in
2001 by Easton, Nemhauser and Trick [ENT01]. It emerges from the hardness to create
schedules for big tournaments such as the National Football League (NFL) or the Major
League Baseball (MLB). In the TTP, a league consists of a double round robin schedule
where every team needs to play against every other team twice, once at their own home
venue and once at their opponent’s venue. The goal of the problem is to minimize the
total distance over all teams during the season. There are two additional constraints to
the problem, namely the no-repeat and at-most constraints. The no-repeat constraint
prevents two teams from playing each other in consecutive rounds, while the at-most
ensures that any given team does not play more than three times consecutively at home or
away. Since its first formulation in 2001, the problem proved to be extremely challenging:
at the time of writing, there are no proven optimal solutions for leagues with more than
10 teams for most of the common benchmark instances in the literature, except for the
special case where all teams are the unit distance apart. Those instance and their latest
solutions can be found on Michael Trick’s website 1.

The goal of this thesis is to analyze the behavior and improve constructive approaches
with guidance by independent lower bound based heuristics formulated as capacitated
vehicle routing problems (CVRP). For this reason we propose aMAX -MIN ant system
algorithm, based on the approach adopted by Uthus et al. [URG09a]. Moreover, we
extend the randomized beam search approach presented by [FNR20] by calculating the
guidance heuristics approximately using Google OR-Tools, so that it can tackle instances
up to 26 teams.

We test our approaches to understand the impact that different parameters have on
the results yielded when solving the CVRPs and the TTP itself, and we present our
findings in a detailed computational study. Sensible choices of parameters are performed

1https://mat.tepper.cmu.edu/TOURN/
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1. Introduction

by manual tuning and further strengthened by automated parameter tuning using
irace [LIDLP+16].Our ant colony optimization approach generally presents relative gap
differences to the best known solutions of around 15-20%, which leads us to believe that
in order to reach competitive results it is necessary an hybridization with a local search
based method. The beam search approach profits much more from the heuristic guidance
and shows relative gaps to the best found solution not higher than 6% and in the mean
of 2.5%.

1.1 Aim of the Work

In 2019, Frohner, Neumann and Raidl published a paper [FNR20] where they presented
a beam search approach to the problem. The results look very promising and they are
worth further exploration. In particular, it would be interesting to find different methods
to calculate a heuristic estimate for partial solutions. Since the current method is based
on precalculating the lower bounds, it struggles to deal with larger instances for memory
and runtime reasons due to the combinatorial explosion of the underlying problem. To
tackle instances with more than 18 teams, it could be reasonable to use a heuristic value
calculated on the fly, to see whether randomized constructive approaches on the same
state space could be as successful as the previous method. In the paper by Frohner,
Neumann and Raidl, it is clear that lower bounds are a major factor for evaluating
the quality of partial solutions during the construction of solutions. The current idea
to obtain lower bounds stems from the one introduced by Easton et al. [ENT01], the
independent lower bounds (ILB), which was later refined by Uthus et al. [URG09b]
for partial solutions. More specifically, the problem is approximated by a series of
Capacitated Vehicle Routing Problem (CVRP) (see [URM07]), one for each team. The
sum of the optimal solution values for each team will be a lower bound to the optimal
feasibility completion in a corresponding state of the given TTP problem instance. This
is a reasonable model because by setting up the demand of each city to 1 and limiting
the capacity to a maximum of 3, it is easy to enforce the at-most constraint; the bound
still neglects the no-repeat constraint.

In the paper [FNR20], the lower bounds are precalculated for all the states that can
occur in the given instance. This approach works very well for smaller problems but
quickly becomes unsustainable when the number of teams is higher than 18–20 due to
the huge computation time required. We therefore want to calculate the lower bounds
only when it is needed. This process can be done using Google OR-Tools [PF] by solving
the vehicle routing problems heuristically, and in this work we want to ensure that the
results are of a comparable quality and are obtained in a reasonable time. OR-Tools is
an open source suite for optimization developed by Google, that contains several state
of the art solvers tuned for some of the more common optimization problems such as
integer and linear programming, constraint programming, vehicle routing and flows.

The second part of the thesis focuses on developing a randomized construction algorithm
for the TTP that makes use of the heuristic of the first part. This algorithm will also have

2



1.2. Methodological Approach

modular improvements such as Backtracking, Backjumping and Restricted Candidate
List to quickly create feasible solution of already reasonable quality. Moreover, there
will be several methods to calculate the heuristic values. This should be subsequently
integrated into an Ant Colony Optimization (ACO) algorithm, to improve the quality
of the found solutions over time by reinforcement learning. This would not be the first
time someone attempts to use an ACO algorithm for TTP, with Uthus, Riddle and
Guesgen [URG09a] being one notable example. What would differentiate our approach
from the previous paper would be to successfully combine the use of pheromones with the
heuristic information (provided either by lower bound precalculation or Google OR-Tools).
Uthus, Riddle and Guesgen [URG09a] also incorporated heuristic information (taking t
he increase of the travel distance for playing a game), but they had more success without
any

1.2 Methodological Approach
The methodological approach is as follows:

• At first a literature research will be conducted. The goal is to familiarize with the
problem and get up to speed with the state of the art for both the TTP problem
in general and the tools that will need to be used;

• We will formally model TTP, as well as a version of CVRP that applies to partial
solutions to be used as a lower bound for beam search.

• An independent implementation of the CVRP calculation with Google OR-Tools
will be written, in order to be able to test the running times and the quality of the
lower bounds in comparison to the already existing ones. A computational study
will then be conducted to verify the feasibility of this approach;

• The implementation of CVRP will be integrated to the existing version of beam
search to provide lower bound guidance.

• We will then test how CVRP performs in beam search and compare it with existing
results from the literature.

• The ACO Algorithm will be modeled theoretically. During this section, we will
decide what specific variants of ACO could be interesting to explore and what
modular improvements we want to implement;

• Afterwards, an iterated randomized construction algorithm will be implemented;
after a first simple version, different heuristic methods and other modules will be
implemented;

• A first computational study will be conducted, to evaluate the quality of the
different heuristic methods and compare the effectiveness of the modules of running
time and solution quality. Furthermore, a first parameter tuning will be performed;

3



1. Introduction

• The pheromones will be added in respect to the model previously designed;

• Using irace [LIDLP+16], the algorithmic parameters will be tuned to optimize its
performance;

• Another computational study will be performed to find the best performing setup
and compare the results to relevant papers.

1.3 Structure of the Work
In Chapter 2 we will present an overview of the literature for the main topics of the
thesis. Specifically we will discuss the state of the art approaches to tackle the TTP
and CVRP. Chapter 3 will give an overview on the methodologies used to create the
solution approaches for this thesis such as Heuristic Optimization, ACO and Lower
Bound Based Heuristics. Chapter 4 will formally define the TTP problem, including a
space formulation to represent the solution space. In Chapter 5 we will describe in detail
how we calculate guiding heuristics based on the independent lower bound for the TTP,
how we develop the randomized construction algorithm and the ant colony optimization
approach. In Chapter 6 an overview of the computational results will be given. Finally,
in Chapter 7 we will critically analyze our approach, sum up the findings of the thesis
and discuss possible future work.

4



CHAPTER 2
State of the Art

In this chapter we will discuss the state of the art of the traveling tournament problem
and the capacitated vehicle routing problem, providing an explanation for both problems
as well as a summary of the more successful and meaningful attempts to solve them.

2.1 Traveling tournament problem
In this section we will discuss the traveling tournament problem, its complexity and some
solution approaches that yielded interesting results.

2.1.1 Overview

The Traveling Tournament Problem was originally formulated in 2001 by Easton,
Nemhauser and Trick [ENT01]. A double round tournament is a set of games where an
even number of teams n plays against each and every other of them exactly twice. Of
the two matches that a team plays against each opponent, exactly one of them is played
at their home venue and one at their opponent’s home venue. A game is defined as an
ordered couple of different teams. The schedule for a double round robin of n teams
requires exactly 2n− 2 rounds, with n

2 games in each round. If a team plays multiple
away games in a row, it travels from the venue of the first opponent to the venue of the
second without having to go back to its own home venue; we call this a road trip. If
instead it plays multiple home games in a row it just does not travel any distance, and
that is called a home stand. The length of a road trip or a home stand is not measured
in actual distance but in the number of opponents played. At the start and at the end of
the tournament, each team has to be at their own home venue. Therefore the teams that
play their last game of the season away need to get back as an additional trip. To store
the respective distances between the teams, we use an n by n distance matrix named D.

We can now introduce the formal definition of TTP introduced by Easton et al. [ENT01]:

5



2. State of the Art

Definition: The TTP is defined as follows:

Input: n, the number of teams; D an n by n integer distance matrix; L, U integer
parameters.

Output: A double round robin tournament on the n teams such that

– The length of every home stand and road trip is between L and U inclusive, and

– The total distance traveled by the teams is minimized.

When the value of U is small, teams will be forced to return home more often and
therefore the total traveled distance will be higher. In contrast, if we assign U = n− 1
a team could potentially take a road trip where it visits all the other teams before
going back home; this trip would be equivalent to a traveling salesperson tour. In this
thesis we only consider U = 3, as is common in the literature. Furthermore, Thielen
and Westphal [TW11] proved that the corresponding decision variant of the problem is
strongly NP-complete by a reduction from 3-satisfiability (3-SAT). This result follows
the finding presented in [Bha09], where it was proven that the TTP variant where the
at-most constraint is not considered is NP-hard.

2.1.2 Literature

After the paper from Easton et al. [ENT01], several authors tried to tackle the problem
in different ways. In this section, we will give an overview of some of the most significant
ones.

Easton et al. [ENT02] propose a branch-and-price algorithm that manages to find the
first provable optimal solutions for an instance of size 8. Their approach combines integer
programming for the master problem and constraint programming to solve the pricing
problem and as a primal heuristic.

Stefan Irnich [Irn10] presents another branch-and-price approach that manages find
proven optimal solutions for some instances such as NL8 by using a restricted shortest
path problem as pricing problem.

In 2006, Anagnostopoulos et al. [AMVHV06], they present a traditional simulated
annealing approach. The algorithm explores both feasible and infeasible schedules using
a large neighborhood generated by complex moves. A reheating is performed to balance
the exploration of the neighborhood and escape local minima when the temperature gets
too low. This approach seems to be especially robust since the worst solutions are still
quite decent. The following year Van Hentenryck and Vergados propose in [VHV07] a
population-based simulated annealing algorithm, that runs in parallel and is organized in
a series of waves. After each wave a macro-intensification is performed, by restarting
a majority of the runs from the best found solution. Furthermore, there are some elite
waves that survive opportunistically to obtain diversification. This method is the one
that, so far, provides the best solutions for the larger instances of NL and CIRC.

6



2.1. Traveling tournament problem

Ribeiro and Urrutia [RU07] tackle the mirrored variant of TTP with a combination of
GRASP and iterated local search metaheuristics that makes use of a strong neighborhood
based on ejection chains. Mirrored TTP is a variation of TTP where every team plays
every other team exactly once in the first n − 1 rounds forming the first half of the
schedule, followed by the same schedule with reversed venues. Some of the solutions
found are, especially for large instances of size 24, better than the ones found by other
approximate algorithms for regular TTP at the time of writing. This is especially
impressive considering that mirrored TTP is a significant restriction. Furthermore, they
present a fast and very effective construction algorithm.

Di Gaspero and Schaerf [DGS07] propose a competitive Tabu Search algorithm that uses
a complex combination of neighborhood structures.

Uthus, Riddle and Guesgen [URG09b] present an hybrid between a depth-first branch-
and-bound and an exact iterative deepening A* approach (IDA*). Later on they also
propose [URG12] several techniques to improve IDA* like disjoint pattern databases,
symmetry breaking, subtree skipping, forced deepening and elite paths. These methods
managed to solve instances up to ten teams to proven optimality.

Uthus, Riddle and Guesgen [URG09a] make use of a MAX-MIN Ant System (MMAS)
algorithm with ACS selection rule to drastically improve the quality of ACO algorithms
for TTP. The novelty of this approach is in the hybridization with forward checking,
pattern matching and conflict-directed backjumping, but the basis of it is a traditional
MMAS as presented in [SH00]. They also use the ACS rule as presented in [DG97].
Another notable example of usage of an ACO was presented by Chenet al. [CKB07]
and uses a framework to solve the TTP that makes use of an Ant Algorithm as a
hyper-heuristic.

Miyashiro et al. [MMI12] construct a randomized approximation algorithm that makes
use of a new lower bound that, for instances with n teams, provides feasible solutions
with approximation ratio smaller than 2 + (9/4)/(n− 1). This is the first approximation
algorithm where the approximation ration is constant and smaller than 2 + 3/4.

Goerigk et al. [GHKW14] publish a graph-theoretic approach to TTP, where they generate
a new “canonical” schedule in which, for every team, their road trips of size three match
up with the graph’s minimum-weight P3-packing. This schedule is used as input for an
hybrid algorithm [GW16] that combines local search and integer programming, finding
best solutions for five benchmark instances. The algorithm makes use of a powerful
commercial integer programming solver.

Finally, in Frohner, Neumann and Raidl [FNR20], a Beam Search approach is presented.
In order to evaluate the quality of the partial solutions, they make use of the lower
bound derived from a state as introduced by Uthus et al. [URG09b, URG12]. This paper
finds new best feasible solution for two benchmark instances and will be crucial in the
development of this thesis.

7
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Figure 2.1: Example of a CVRP instance. For this example we consider the euclidean
distances between points. Four vehicles with capacity 42 fulfill the demands of several
clients. Each color represents the path of a vehicle. The green and the purple vehicle
satisfy 38 requests each, blue 36 and orange 41. After visiting their clients, they go back
to the depot.

2.2 Capacitated Veichle Routing Problem

The Capacitated Veichle Routing Problem (CVRP) is a popular problem in the field
of heuristic optimization. In this section we will give a small overview of the problem,
showing some of its variants and discussing its complexity. We will then briefly present a
review on the more significant solution approaches in the literature.

2.2.1 Overview

We will mainly follow the formulation that Toth and Vigo present in the first chapter
of “An Overview of Vehicle Routing Problems” [TV02]. The Vehicle Routing Problem
(VRP), also known as Vehicle Scheduling Problem, is a combinatiorial optimization
problem with the goal of finding the optimal set of routes taken by a fleet of vehicles,
initially located in depots, to deliver goods to final users (customers) and then return
to their starting depots. The vehicles perform their movements through a road network.
The road network is generally represented by a directed graph where vertices are depot,
customers and road junctions and arcs are road sections. Each arc has a cost associated
to it that represent its length. To each customer we assign a demand, i.e. the amount of

8



2.2. Capacitated Veichle Routing Problem

good requested. If it is not possible to meet the demand of every customer, there could
be a system of priority and penalities for each customer. The vehicles have a specific
depot called home depot, where it must start and end its route. Every vehicle also has a
cost associated to its use.

Several objectives can be considered for VRP. Some examples include: minimizing the
total cost of vehicles, minimizing the number of vehicle used, minimize the penalties
associated to the lack of service to some clients in cases where it is impossible to satisfy
the demand of everyone. It is also possible to combine different objectives. VRP is
trivially NP-hard because it includes TSP as a special case [AFGG11]. This is also the
case for the CVRP variant when the capacity of the vehicles is greater than 2, as proven
in [AMS05].

The Capacitated Vehicle Routing Problem (CVRP) is a variant of VRP where the demands
of the clients are deterministic, known in advance and cannot be split. Furthermore,
vehicles have a maximum capacity and are all identical and based in a single central
depot. The objective is to minimize the total cost needed to satisfy the demands of all
the customers.

The k-Customer Vehicle Routing Problem (kVRP) restricts the maximum number of
customers that can be visited by each vehicle before going back to its depot. Hassin
and Rubinstein [HR05] prove that UNWEIGHTED -kVRP is NP-hard for k ≥ 3 by reducing
it from a (k-1) size instance of the Partition into Paths of Length k (kPP) and that
DIRECTED UNWEIGHTED -kVRP is NP-complete for k ≥ 3 by using a reduction from 3-
Dimensional Matching. From this, they derive the corollary that DIRECTED -kVRP is not
2 p(n) approximable for any k ≥ 3 and a polynomial p, unless P = NP. Furthermore,
they prove that there is a polynomial 4-approximation algorithm for 3VRP, i.e. there
exists a polynomial algorithm that can calculate a solution of 3VRP within a factor of 4
times the optimal solution length.

2.2.2 Literature

This literature review will mainly follow the fifth and sixth chapter from “An Overview
of Vehicle Routing Problems” by Toth and Vigo [TV02]. There is a history of exact
approaches for CVRP that were successful, like the branch-and-cut algorithm proposed by
Augerat et al. [ANB+95], that is especially strong for large instances, or the branch-and-
price algorithm that Christiansen and Lysgaard [CL07] apply to the variant of CVRP with
stochastic demands. These methods are extremely good for smaller instances, but quickly
become unfeasible as the size of the instances grows, forcing us to use heuristics. Since the
problem is extremely popular, during the years several approaches have been proposed.
They could be grouped in two families, namely classical heuristics and metaheuristics.
The methods that belong to the first family are, generally speaking, quite modest in the
size of the search space, but typically guarantee decent solutions in limited computing
time. Classical Heuristic are also relatively easy to generalize or adapt between different
variants of CVRP. Metaheuristics, on the other hand, are much more dependent on the

9



2. State of the Art

specific context and on the fine tuning of the parameters. Furthermore, they require
significantly more computational power. In exchange, the quality of the solutions is much
higher.

The more straight forward heuristic methods are the so-called constructive methods and
attempt to build a feasible solution step by step while keeping the solution cost in check.
Clarke and Wright [CW64] is a very well known heuristic for the VRP that introduced
the concept of savings; when we can merge two routes (0, ..., i, 0) and (0, j, ..., 0) into
a single feasible one (0, ..., i, j, ..., 0), we generate a saving sij = ci0 + c0j − cij . These
merges can be applied until there are feasible ones. Another very popular approach to
constructive heuristics is the sequential insertion method that consists on starting with
empty routes and then expand them one node at the time. A notable example can be
found in a paper by Mole and Jameson [MJ76], where they start with a partial route,
calculate the cost of inserting all the vertices that are not in the route yet and insert the
best one according to parameters µ and λ. These two parameters will modify the criterion
of choice for the best candidate, i.e. minimum extra distance, smallest sum of distances
between two neighbours, vertex furthest from the depot. Another example of constructive
heuristic was presented by Christofides et al. [Chr79]. Their insertion heuristic starts
from the same two user-controlled parameter algorithm as Mole and Jameson [MJ76] but
is developed in two elaborate phases that guarantee a better coverage of the search space.
This method requires half the computing time and yields results that are consistently
better.

Several metaheuristic methods have been applied to CVRP. Osman [Osm93] presented a
very successful Simulated Annealing (SA) algorithm that can operate on an unspecified
number of vehicles. Toth and Vigo presented a Granular Tabu Search (GTS) algorithm
[TV03] that yielded excellent results for CVRP with maximum route length constraints.
The idea behind it comes from the observation that is very rare that a long edge of
the graph is part of an optimal solution. Eliminating the edges that are bigger than a
granularity threshold, we can easily filter out several unpromising solutions. Van Breedam
[VB96] implemented a Genetic Algorithm (GA) for CVRP, but mostly to compare the
impact of different parameters of GA in terms of efficiency of search. In [LLLY10], an
Enhanced Ant Colony Optimization (EACO) is presented; the EACO uses of SA to
provide ACO a good starting solution. This approach performs better than SA and ACO
on their own. Finally, [HT19] proposed a Neural Network (NN) approach that integrates
a deep neural network to provide a learned heuristic to apply in a large neighborhood
search (LNS) framework. The LNS applies a destroy and repair paradigm to feasible
solution where the deep neural network, trained via policy gradient reinforcement learning,
is in charge of the repairing. This method performs better than the best machine learning
approaches existing at the time and gets close to the performance of state of the art
methods.

Google released Google OR-Tools [PF], an open source software suite that offers solvers
for a wide variety of optimization problems such as Scheduling, Bin Packing and several
variants of VRP (including CVRP) and provides different metaheuristics, e.g. Greedy
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2.2. Capacitated Veichle Routing Problem

Descent, Guided Local Search, Simulated Annealing and Tabu Search. In Chapter 5 we
will explain the relevant aspects of Google OR-Tools in detail.
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CHAPTER 3
Methodology

In this chapter we define and explain the concepts that will be used to design and
implement our algorithms. In particular, we will define an optimization problem, introduce
the concept of heuristic optimization and explain the ideas that originated beam search
and ant colony algorithms. For this introductory section we will follow Papadimitriou
and Steiglitz [PS98].

The Traveling Tournament Problem is a combinatorial optimization problem. A problem
in the field of computational complexity could be a satisfaction problem or an optimization
problem. In the former we are interested in answering a question with a boolean answer,
such as “is it possible to create a path that connects a set of cities?” or “Is there a
path that connect a set of cities that is shorter than a value k?”. In the latter the
question would be “what is the shortest path that connects a set of cities?”. This
introduces the concept of quality of a solution: just finding a generic solution is not
enough, but we are interested in the best one. The quality of a solution is measured
by an objective function, which assigns each solution a value, its objective value. We
call a problem a minimization problem when the goal is to find a solution with the
smallest objective value, while a maximization problem aims to find a solution with the
largest. A maximization problem can be trivially converted to a minimization problem
by multiplying the objective value by −1. Therefore, for consistency reasons, we will
treat every problem as minimization problems in this thesis. The set of solutions for a
problem could be continuous or discrete. In the latter case we call it a combinatorial
optimization problem, in contrast with continuous optimization problems where we have
uncountably many solutions. Optimization is, in other words, finding the minimal (or
maximal) solution for a given problem from the set of all the possible solutions according
to a specific metric. Therefore, we formally define a combinatorial optimization problem
as follows:

Definition 3.1 (Combinatorial Optimization Problem) A combinatorial optimiza-
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3. Methodology

tion problem is a set of instances. An instance is a pair (S, f), where S is the finite set
of all feasible solutions (also known as a solution space or search space) and f is a cost
function f : S → R, often called objective function. The problem is to find an x ∈ S so
that f(x) ≤ f(y) ∀y ∈ S, which is called a globally optimal solution.

3.1 Heuristic Optimization
Naively, in order to find the optimal solution for a given combinatorial optimization
problem instance, one could to enumerate all the possible solutions and select the one
with the one with the smaller objective. This is possible since the solution space is by
definition finite. But when the search space of a problem is especially big, this approach
has the obvious drawback of an extremely big cost in terms of computational time. Most
popular optimization problems nowadays are NP-hard. Therefore, since just enumerating
all the possible solutions would be an impossible task for any machine, there needs to
be a quicker and more feasible technique, that allow to solve problems to optimality
thanks to speed-ups or pruning of the search space. For example, branch and bound
algorithms [LD10] use upper and lower bounds to choose which branch of the search space
to explore: if a branch b of a minimization problem has a lower bound that is greater
than the upper bound of a branch b′, there is no reason to look into b because following
b′ will always yield a better solution. Branch and bound as a paradigm is the bases for
a plethora of other very popular and successful algorithms like branch-and-cut [PR91]
and branch-and-price [BJN+98]. Another exact algorithm that is especially popular
for graph traversal and path searching is A∗ [HNR68]. This method was introduced in
1968 it is based on selecting the path that minimizes f(s) = g(s) + h(s), where g(s) is
the cost of the path from the start to the node s and h(s) is a heuristic function that
estimates the cost of the cheapest path from s to the goal. A∗ also introduced the concept
of admissibility, a necessary property of h(s). We define h∗(s) as the optimal cost of
reaching a goal (complete feasible solution) from state s: a heuristic h(s) is admissible if
and only if h(s) ≤ h∗(s) for every state s. In other words, a heuristic is admissible if it
never overestimates the cost of optimally completing the current partial solution [RN02].
A∗ is a very popular and still widely used, for example in [URG12].

The aforementioned exact methods can solve surprisingly big instances to optimality, but
still have exponential runtimes. To more reliably be able to solve bigger instances we
need to make a compromise and give up optimality, and pursue methods that can still
find good non optimal solution in polynomial time. In order to explain some possible
approaches to this issue, we will from now on use the very popular and well known
Minimum Hamiltonian Cycle Problem (MHCP) as a running example [BH83]. Let
G = (V,E) be a directed weighted graph with V vertices that represent a set of cities
and E edges that represent that two cities are connected. The weights of the edges
represent the distances between them. G is not necessarily complete. The goal of MHCP
is to find the smallest cycle for every vertex v ∈ V . A cycle is a set of nodes where the
first and the last are the same and there are no other duplicates. In other words, we
are interested in finding the shortest tour that visits every city exactly once and gets
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3.1. Heuristic Optimization

Figure 3.1: Example of an instance of the Minimal Hamiltonian Cycle Problem. The
weights of the edges are the euclidean distances between the two vertices.

back to the starting city. Figure 3.1 shows an example of an instance of MHCP. The
Traveling Salesperson Problem is a special case of MHCP in which G is complete. The
number of possible permutations is (n)!, that can be reduced to (n− 1)! by fixing the
starting point to break the rotational symmetry. Furthermore, the inversion symmetry
can be broken as well, resulting into (n− 1)!/2 equivalence classes. If the graph is not
complete some of these permutations will not produce valid solutions, for example when
two cities that are not connected are next to each other. In short, this means that with a
sufficiently big value of n it is impossible to enumerate these solutions. The approach of
Heuristic Optimization is to find a good solution, even if it is not the global best, within
reasonable time. We now discuss two well-know paradigms from heuristic optimization:
construction and improvement.

Construction In the construction paradigm, we start with an empty solution and add
new elements to it until a complete solution is reached. This possible for problems, where
the solutions can be decomposed into elements in a meaningful way. When the solution is
not complete yet, it is called partial solution. A partial solution is stored in a state, that
keeps all of the information necessary to continue to construct the solution. An example
of this approach would be the nearest neighbor heuristic, a greedy algorithm in which
the next city chosen when construction a tour is the closes one. Construction methods
cannot guarantee neither the feasibility nor the optimality of the solution. Techniques
like backtracking and backjumping [Dec90] are ways of guaranteeing feasibility. With
backtracking, when reaching an unfeasible solution, the last constructive step is reverted
and blacklisted. In backjumping, a more steps are reverted at the time. In Figure 3.2 we
can see that the last city visited during a greedy construction with the nearest neighbor
heuristic in our MHCP problem instance could not be connected to the first and therefore
the solution is not feasible. When constructing a solution, we use heuristics to evaluate
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Figure 3.2: Example of a greedy construction of a MHCP instance, starting from node
1. Note how it is impossible to reach node 4 from node 11, making this solution non
feasible.

extensions and to give an estimate of the cost of completing it. A heuristic is, in fact,
a function that maps a state that would result when an extension would be chosen. A
risk that we incur when using heuristic is that they could be myopic and only consider a
“local environment” without taking the whole problem into consideration. A heuristic
could be lower bound based if its value is always smaller than the actual value that it is
estimating. Similarly, it could be upper bound based. An example of a reasonable lower
bound based heuristic for MHCP would be the sum of the shortest incident edge on every
vertex that is still to be inserted. Examples of constructive algorithms are Beam Search
and Ant Colony Algorithms, that we will discuss in more detail further in the chapter.

Improvement We will now briefly discuss the improvement paradigm, where we start
from a valid and sub-optimal solution and we perform local changes to improve it. We
do not know if the starting solution is optimal. A neighborhood structure is a criterion
with which we define what solutions are neighbors with the current solution. The set of
neighbors N(x) for a solution x is the neighborhood of x. To navigate the neighborhood
we could perform a local search until we reach a local minimum, i.e. a solution that is
better than all of its neighbors. As much as we want to reach a local minimum, we also
want avoid stagnating in a weak one. For these reason techniques like tabu search [Glo86]
and simulated annealing [KGV83] manage to escape local minimums to find improvement
further away from our current solution. Tabu search in particular keeps track of the
already visited states and blacklists them for a short period of time, increasing the chance
of exploration (i.e. traversing the search space very quickly with the hope of finding
promising solutions yet to be refined) over exploitation (i.e. focusing on improving a
small amount of promising solutions). On a similar note, simulated annealing uses a
temperature parameter that represents the likelihood of moving towards a state that is
worse than the current one. The temperature will start very high, promoting exploration,
and will decrease in time, to promote exploitation.

16



3.2. Beam Search

3.2 Beam Search
In this section we are going to explain the idea behind Beam Search, which is a famous
constructive approach, as well as some practical applications.

3.2.1 Overview

Beam Search is a heuristic search algorithm presented for the first time in 1967 by
Lowerre in [Low76]. The term “Beam Search” was coined by Ray Reddy in 1977
in [R+77]. [Sam17] defines Beam Search as a heuristic search algorithm that is the
combination of breadth-first search (BFS) and best-first search. Beam search acts just
like a BFS algorithm but instead of keeping every possible state in memory, it only
pursues the β most promising nodes per each level of the search tree and discards the
others. This gives a space requirement of O(βn) (n is the number of decisions to be
made to construct a solution) but, since it is in essence still a greedy algorithm, has no
guarantee of finding the optimum. A bigger value of β will in general provide a more
accurate search at the price of a higher computational cost. In order to select the most
promising nodes of every level, a heuristic estimation of the objective is needed. The
f -value of a state s will be defined as follows:

f(s) = g(s) + h(s)

where g(s) is the evaluation of the state s and h(s) is a heuristic value estimating the
optimal feasible completion of s. The heuristic value h(s) is an estimate of the optimal
cost of reaching a complete solution and its goal is to provide a guide to the search.
Therefore there is a trade-off between precision, and therefore better guidance, and
running time. Furthermore, we are interested in a tight heuristic value: setting every
h(s) = 0 would be a very fast and simple, but not very precise, heuristic. Choosing the
tightest heuristic helps to provide better guidance to our search method. A lower bound
is defined as a value that is smaller than every element in a set [PS03]. The same idea in
reverse works for upper bounds. The closer the upper and lower bounds are, the more
precise our estimate will be. If the upper bound is the same value as the lower bound, in
fact, that is the exact value. In Figure 3.3 we show an example of how a beam search
with β = 2 solves a complete instance of MHCP of size 4. For every layer, we only check
the neighbours of the β solutions that have been selected. It is interesting to see how a
greedy selection method would have selected the path on the left over the one on the
right based on the second selection, but eventually the one on the right is the better of
the two. An example of using lower bounds as guidance could be found in [Blu05].

3.2.2 Literature

In this section we present applications of beam search from the literature in the fields of
continuous speech recognition and job scheduling problems.

Ney et al. [NMNP87] present Time-Synchronous Beam Search for continuous speech
recognition, a variant that processes one observation after the other and all active
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Figure 3.3: Example of a beam search of β = 2 on an instance of MHCP of size 4. Left:
distance matrix of the instance. Right: representation of how beam search constructes
the solutions. The f values of the nodes are in parenthesis, and the values of the edges
are the cost between two nodes. For the sake of simplicity, h(s) = 0 and when there
is a tie we select a random node between the tied ones. We start from an empty root
state, and to reach the terminal state (rectangular node) we go back to the first node we
selected to close the cycle. Note how the red path looks more promising than the green
one at the beginning, but turns out to be infeasible.

hypotheses refer to the same point in time, in order to make comparison faster and
easier. Steinbiss et al. [STN94] further improved Time-Synchronous Beam Search with
two robust pruning methods, achieving a much faster average and peak search effort.
The first method, called Histogram Pruning, removes areas of search space where the
values of a histogram on the hypothesis score are smaller than a threshold. The second
method is a look-ahead system for the vocabulary tree.

Ow et al. [OM88] publish a variant of Beam Search named Filtered beam search and
apply it to a scheduling problem that, despite being computationally simple, produces
high quality solutions. The idea behind it is that since it is rather expensive to evaluate
a solution, a faster filtering method allows to apply the costly evaluation only to more
promising nodes.
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3.3. Ant Colony Optimization

In [SB99], Sabuncuoglu and Bayiz apply Beam Search to the Job Shop Scheduling
problem, achieving very promising results that hold up against other state of the art
methods at the time of publication.

Ortmanns and Ney [ON00] show a two look-ahead technique applicable to Beam Search
for large vocabulary continuous speech recognition that achieve a great improvement in
performance. The two techniques are incorporated in the pruning phase of Beam Search
and they are called language model look-ahead and phoneme look-ahead. With these
improvements the size of the search space is reduced by 30-fold, while the computational
effort is reduced by a factor of 5.

Zhou et al. [ZH05] present Beam-Stack Search, that integrates backtracking with Beam
Search and guarantees to find an optimal solution. The algorithm finds a good sub-
optimal solution quickly with Beam Search and then backtracks and continues to find
other solutions that are better than the starting one, until eventually it converges to an
optimal one.

Finally, Blum [Blu05] tackles the Open Shop Scheduling problem with an hybrid approach
between Beam Search and Ant Colony Optimizaton (ACO, see Section 3.3), called Beam-
ACO. This method takes advantage of the fact that ACO explores the search space
in a probabilistic way, while solutions generated by BS are usually deterministic. In
Beam-ACO, the beam is filled governed by the probabilistic selection rules of ACO
instead of always taking the β best successors. Using an hybrid between these two
methods allows a better exploration of the search space that translates in solutions that
are state-of-the-art for the problem for a wide range of benchmark instances.

3.3 Ant Colony Optimization

In this section we are going to present Ant Colony Optimization and some of its variants,
together with a brief summary on interesting applications. The main reference will be
Chapter 8 of the book Handbook of Metaheuristic: Ant Colony Optimization: Overview
and Recent Advances, by Marco Dorigo and Thomas Stützle [DS10]. Ant Colony Op-
timization (ACO) is a metaheuristic inspired by the behavior of ants in nature that is
used to solve hard combinatorial optimization problems. Ants in search for food leave
a trail of pheromones on their path in order to communicate with other ants. ACO
algorithms use pheromone trails to guide (artificial) ants towards constructing solutions.
By making probabilistic decisions based both on the trails and, if available, some heuristic
information, the ants implement a randomized construction heuristic. An example could
be seen in Algorithm 3.1. For this reason, ACO is commonly regarded as an improvement
and an extension to construction heuristics. The crucial difference between ACO and
a traditional construction heuristics lies in the fact that ACO algorithms stores the
information accumulated during iterations of search in the form of pheromones in order
to use it later on.

The first practical example of an ACO algorithm is Ant System (AS), proposed in
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Algorithm 3.1: Ant colony optimization metaheuristic
Result: A feasible solution

1 initialization of pheromone trail ;
2 while termination conditions not met do
3 ConstructAntSolutions ;
4 ApplyLocalSearch {optional} ;
5 UpdatePheromones ;
6 end

[DMC96] and applied to the Traveling Salesperson Problem. In AS, the problem is solved
in t discrete timesteps. In every timestep, every ant creates a complete solution. The
next element in the solution is chosen by ant k with a probability given by the following
formula:

pkij =


[τij ]α·[ηβij ]∑
l∈Nk

i
[τil]α·[ηβil]

if j ∈ Nk
i

0 otherwise
(3.1)

Where τij is the intensity of the pheromone trail from i to j, ηij is a matrix for local
information, Nk

i is the list of valid neighbors (extensions to the partial solution) and α
and β are parameters that control the ratio between pheromones and local information.
After timestep t, the used paths are updated for t+ 1 with the following formula:

τij(t+ 1) = τij(t) +
m∑
k=1

∆τkij(t) (3.2)

with

∆τkij(t) =
{

1/length(T k(t)) if (i, j) ∈ T k(t)
0 otherwise

(3.3)

where T k is the constructed tour for ant k. Furthermore, an evaporation will be applied
to the pheromone matrix using a parameter 0 < ρ ≤ 1 as the pheromone persistance:

τij(t+ 1) = ρ · τij(t) (3.4)

More specifically, Algorithm 3.2 shows an example of pseudocode for AS on MHCP would
look like the following:

The results of AS looked promising at the beginning, for example being able to find
a good solution for a 75-city TSP problem [DMC96]. During the years AS has been
applied to a wide variety of problems, sugh as probabilistic TSP [BBS+09], a variation
of TSP in which there each city has a probability of being visited and the goal is to find
an a-priori tour that minimizes the expected value of tours, sequential ordering [GD00],
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3.3. Ant Colony Optimization

Algorithm 3.2: Ant System algorithm
Output: A feasible solution S

1 for t← 1, ..., tmax do
2 foreach ant k = 1, ...,m do
3 Choose initial city c;
4 while list of unvisited cities C 6= ∅ do
5 Choose a city j from the neighborhood Nk

i of i according to pi,j ;
6 remove i from C;
7 i← j;
8 end
9 end

10 Apply pheromones to paths;
11 Evaporate pheromones;
12 return S;
13 end

scheduling [CDMT94, Blu05], 2D-HP protein folding [SH05], DNA sequencing [BVB08],
and packet-switched routing in Internet-like networks [DCD98].

AS is also the baseline for several variants that obtained competitive results. Stützle
and Hoos [SH97] introduced MAX-MIN ant system (MMAS), a variant of AS where the
pheromone values are limited by τmax and τmin to avoid premature stagnation. MMAS
is one of the most successful ACO algorithms. Another very popular AS variation was
presented by Dorigo et al. [DG97] and is called Ant Colony System (ACS). In ACS the
choice of the next city j while constructing a solution is done following the following
procedure:

j =

argmaxl∈Nk
i
[ταil · η

β
il] if q ≤ q0

N if q > q0
(3.5)

where N is a city selected with the AS rule and q is a uniformly distributed random
variable 0 ≤ q ≤ 1. With a low value of q0, we will have a strong diversification, because
the selection will be the same as AS. On the contrary, with a high value of q0 we will
perform intensification, since we will be utilizing already gained information. Furthermore,
in addition to the global pheromone update that was presented for AS, a local pheromone
update was introduced, in which the pheromone is updated immediately after using a
specific edge with the help of parameter ξ:

τij(t) = (1− ξ) · τij(t) + ξ · τ0 (3.6)

Update the pheromone locally means that the procedure will construct different solution
if the ants build solutions in parallel or sequentially. Optionally, after the solutions have
been constructed and before updating the pheromone value, one could perform a problem
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specific action, commonly called daemon action [DDC99]. They generally consist in
applying local search to the constructed solution, but they could also perform other
problem specific centralized actions that cannot be performed by the single ants. We
then use the locally improved solutions to update the pheromone.

ACO proved to be a solid metaheuristic, being able to find good results in several famous
problems such as quadratic assignment [MC99, GTD97], graph coloring [CH97], vehicle
routing [BHS99] and vehicle routing with time windows [GTA99]. It has also been applied
to the traveling tournament problem in multiple occasions. In [CVO03], Crauwels et
al. investigate how a basic ant system with local improvement techniques performs on
NL instances of sizes from 4 to 16, obtaining extremely underwhelming results. The
explanation that they provide is that ACO may perform well for the optimization side of
the problem, but could be lackluster in the feasibility part. A more successful approach
is presented by Chen et al. in [CKB07], where a framework that employs ant algorithms
is used as a Hyper-heuristic for ten low level heuristics such as swap teams and shift
move is able to produce good quality solution in comparison to other state-of-the-art
methods. The strongest results so far were achieved by [URG09a], where ACO with the
ACS selection rule is hybridized with forward checking and conflict-directed backjumping,
as well as using pattern matching and other strategies for constraint satisfaction, to
address the feasibility aspect of the problem. This method is able to outperform other
ACO approaches at the time and produces solutions of comparable quality to results
from the literature.
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CHAPTER 4
Problem Formalization

In this chapter we provide formal definitions for the capacitated vehicle routing problem
used to derive lower bounds for the traveling tournament problem, as well as the state
space formulation that we use to represent the states of TTP while constructing a solution.

4.1 Traveling tournament problem
In this section we will provide a mathematical model for TTP as well as a State Space
Formulation to represent the solution space of the TTP. Unless explicitly stated otherwise,
we will adopt the notation used by Frohner et al. in [FNR20].

4.1.1 Mathematical Model

The input of our problem is a set V = {1, ..., n} of n teams where n is even and a distance
matrix d, where d(i, j) is the distance that team i has to travel from its home venue to
reach team j’s home venue, ∀i, j ∈ V . The goal is to find a schedule that minimizes the
sum of the distances traveled in a double round robin tournament by all the teams. Each
team starts and ends at its home venue and is subject to the following two constraints:
the at-most constraint, that prevents a team from playing more than U games away or
at home, and the no-repeat constraint, that prevents teams from playing against each
other in consecutive rounds.

For the remaining part of the chapter, we will adopt the formulation presented by De
Werra in [DW80] and used in [RU07] and [FNR20] to represent a tournament schedule as
a 1-factorization of a graph. The model consists of a complete weighted directed graph
G = (V,A) where each node of G represents a team and weights are the distances defined
by d. As double round robing schedule is then modeled as an ordered partitioning of the
arcs into 2n−2 perfect matchings, or 1-factors. The corresponding ordered 1-factorization
T = (G1, ..., G2n−2) with Gr = (V,Ar) represents the 2n− 2 ordered rounds. An example
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Figure 4.1: Example two 1-factors for an instance with 6 teams.

of two 1-factors can be seen in Figure 4.1. An arc between i and j in Gr means that
team i is playing against team j at their venue during round r. This concept is also
represented by i→r j.

We define pri ∈ V as the position of team i in round r. The values of p are determined by
the arcs that are incident to i in Ar. A schedule T will then have the following objective
value:

z(T ) =
n∑
i=1

(
d(i, p1

i ) +
2n−2∑
r=2

d(pr−1
i , pri ) + d(p2n−2

i , i)
)
. (4.1)

Therefore, let T be the set of all 1-factorizations of G, i.e. the set of all possible feasible
round robin tournaments with n team, we define TTP with U = 3 as:

min
T∈T

z(T ), (4.2)

subject to:

((j1 →r i) ∧ (j2 →r+1 i) ∧ (j3 →r+2 i))⇒ (i→r+3 j4)
∀i, j1, j2, j3, j4 = 1, ..., n i 6= j1 6= j2 6= j3 6= j4 ∀r ∈ 1, ..., 2n− 5

(4.3)

((i→r j1) ∧ (i→r+1 j2) ∧ (i→r+2 j3))⇒ (j4 →r+3 i)
∀i, j1, j2, j3, j4 = 1, ..., n i 6= j1 6= j2 6= j3 6= j4 ∀r ∈ 1, ..., 2n− 5

(4.4)

(i→r j)⇒ ¬(j →r+1 i) ∀i, j = 1, ..., n i 6= j (4.5)

where 4.3 models the at-most constraint for home games, 4.4 the at-most constraint for
away games and 4.5 the no-repeat constraint.

An example of a distance matrix and a feasible round robin schedule for NL6 can be
found in Figure 4.2.
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Distance matrix of NL6

d =



0 745 665 929 605 521
745 0 80 337 1090 315
665 80 0 380 1020 257
929 337 380 0 1380 408
605 1090 1020 1380 0 1010
521 315 257 408 1010 0



Round robin schedule

−5 4 6 −2 1 −3
3 −5 −1 −6 2 4
−6 −4 −5 2 3 1

2 −1 −6 5 −4 3
6 5 4 −3 −2 −1
4 −3 2 −1 6 −5
−3 −6 1 −5 4 2
−2 1 −4 3 −6 5
−4 6 5 1 −3 −2

5 3 −2 6 −1 −4


Figure 4.2: Left: The NL6 problem instance from [ENT01] shown as a distance matrix.
Right: A feasible double round robin tournament schedule represented by a (2n− 2)× n
matrix. For every row r, the team t plays against the entry j at (r, t). If j is negative,
the game will be played at |j|’s venue, if it is positive at i’s.

4.1.2 State Space Formulation

For this section we will follow the formulation presented in [FNR20]. In order to represent
the solution space of a TTP instance (V, d), we use a state graph. A state graph is a
rooted directed acyclic graph. We will, from now, refer to the nodes of this graph as
states. It has a source node that we will call root state and a sink node that we will call
terminal state. Each path from the root to the terminal represents a feasible schedule
for the given instance. The states are organized in l = 1, ..., n2 − n regular layers that
contain the states representing the configurations after the l-th game in addition to layer
0 that contains the root state sr and layer n2 − n+ 1 that contains the terminal state st.

Each state will contain the information about the set P si of games, for each team
i, that can be played in accordance to the constraints and is represented as a tuple
(Ms,ys, rs,ps,hs,os). Ms = (M s

i,j)i,j∈V ∈ {0, 1}n×n is an incidence matrix that contains
the list of games that are still left to schedule. ys = (ysi )i∈V is a vector that represents
the opponents currently forbidden for team i. The forbidden opponents are important
to implement the no-repeat constraint and to make sure that each team is playing an
opponent only twice. rs = (rsi )i∈V and ps = (psi )i∈V are the current round rsi and the
location psi for team i. Finally, hs = (hsi )i∈V and os = (osi )i∈V represent the number
of home games (hsi ) and away games (osi ) in a row left to play to respect the at-most
constraint.

For every state s, we define the transition to the state s′ as the game i →r j, i.e. the
game played in round r by i at j’s venue. There will be n2 − n+ 1 transitions, one for
each regular layer plus one for the root state. We assign to each state transition a weight
∆z(s, s′) , that we define as the sum of the distance that i and j have to travel in order
to reach the venue of the game played between state s and s′ from the venue where they
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played in their last match:

∆z(s, s′) = d(psi , ps
′
i ) + d(psj , ps

′
j ). (4.6)

A very important aspect of this representation is that we build the solution round by
round, meaning that we cannot start a new round before we decide all the games for the
current one. The partial schedule will start from the root state and grow in ascending
order until it either ends on the terminal state, meaning that the solution we built is
feasible, or it reaches a state with no further transitions, representing an partial schedule
that cannot be continued and therefore is infeasible. Root and terminal states will have
special rounds that are reserved to them, namely r = 0 and r = 2n− 1. In these rounds
every team will be at their home location. The root state will be the following:

sr =

M sr , ysr =

−1
...
−1

 , rsr =

 0
...
0

 , psr =

 1
...
n

 , hsr =

U...
U

 , osr =

U...
U


 (4.7)

with M sr being a matrix of ones with diagonal zeros, allowing each team to play against
everyone else. ysi is −1 when there is no forbidden team for i in state s. The assignment of
psr and rsr make sure that each team starts at their own home at round 0. The terminal
state will have all the teams at their own home venue as well. To achieve this, transitions
to the terminal state are special because they do not correspond to played games but just
send every team home. M st will be a matrix of zeros because in a successful schedule
everyone played all the available games:

st =

M st , yst =

−1
...
−1

 , rst =

2n− 1
...

2n− 1

 , pst =

 1
...
n

 , hst =

 0
...
0

 , ost =

 0
...
0


 .
(4.8)

Regular transitions from a state s at layer l to a state s′ at layer l + 1 will be performed
by selecting a game between two teams that are left to play in the current round. This
means that ri = rj = mini∈V ri. After selecting team i from the list of available teams,
we will select a game against a team j from the list of allowed games P si . The game will
either be (i, j) or (j, i) depending on the chosen location. After choosing the next game,
if there exists a dead team, i.e. a team i with P si = ∅, the solution we are building is
not feasible. The order in which we select teams in a specific round is irrelevant as for
the model, but it becomes relevant in practice because we do not enumerate the whole
search space. For this reason we introduce an ordering for the teams. An ordering is a
permutation π : V → V for which, when we play a game from P sπi , i and rπi must be
minimal in every state of layer l.

After a transition (i, j) is selected for state s, the new state s′ will be very similar to s,
but with some differences. In Figure 4.3 we can see an example of how the state s′ gets
built when playing a game. As we can see, Ms′ will be a copy of Ms except for M s′

i,j = 0.
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Partial schedule

−5 4 6 −2 1 −3
3 −5 −1 −6 2 4
−6 −4 −5 2 3 1
− − − − − −
− − − − − −
− − − − − −
− − − − − −
− − − − − −
− − − − − −
− − − − − −



Ms =



0 1 1 1 0 0
1 0 1 0 0 1
0 1 0 1 1 1
1 0 1 0 1 0
1 1 1 1 0 1
1 1 0 1 1 0


→ Ms′ =



0 1 1 1 0 0
1 0 1 0 0 1
0 1 0 1 0 1
1 0 1 0 1 0
1 1 1 1 0 1
1 1 0 1 1 0



xs =



1
2
3
2
2
1


→ xs′ =



1
2
3
2
3
1


os =



3
3
3
2
1
1


→ os′ =



3
3
3
2
0
1


hs =



2
1
2
3
3
3


→ hs′ =



2
1
1
3
3
3



Figure 4.3: Left: Partial schedule of NL6 instance. The next game we select to play is
between team three and five at three’s venue. The teams appear in bold in the partial
schedule. Top right: we update the M matrix, so that the game that we just played is
not available anymore. Bottom right: updates of xs, os, hs. We omitted rs and ys for
space reasons.

This removes i and j from the list of teams available for a game in the current round
as well. ys′ will be a copy of ys with the following difference: if M s

i,j = 1, ys′
i = j and

ys
′
j = i; if M s

i,j = 0, ys′
i = ys

′
j = −1. Furthermore, we set every ys′

k that is equal to either
i or j to −1. This way we are making sure of not violating the no-repeat constraint. rs′

will be different from rs only in the fact that rs′
i and rs′

j will be increased by one. In
the same fashion, ps′ , hs′ and os′ will update respectively the current position and the
number of home and away games left for team i and team j. These changes make sure to
respect the at-most constraint: if hs′

j = 0, j will be forced to play away from their home
venue; similarly, os′

i = 0 will prevent i from playing away again.

4.2 Capacitated vehicle routing problem

We use the Capacitated Vehicle Routing Problem (CVRP) to derive lower bounds for
the TTP. In [URM07], Urrutia et al. present a integer programming formulation with for
the involved CVRP that we adapt to allow taking an arbitrary state corresponding to a
partial schedule as an input to derive a lower bound for the optimal feasible completion
of the schedule. In this section we will present said formulation.

4.2.1 Mathematical Model

We now define our vehicle problem CVRPt[s] for a given TTP state s and a single team t.
For each team t, we are given the set Ot ⊂ 2{1,...,t−1,t+1,...,n} of the venues still to visit, its
position pt ∈ {1, . . . , n}, and its away streak at ∈ {0, . . . , U − 1}. This information can
be derived from the t-th row of the incidence matrix Ms of the games left, the t-th entry
of the position vector ps and the vector of the remaining games allowed os. Furthermore,
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pt will have distance 0 from the depot and no arcs coming from the other teams and
demand equal to the streak length at. Each team t has to start its schedule from the
depot.

The goal is to find the tours of minimum costs so that the team visits all the remaining
opponents exactly once with every tour visiting at most U opponents. We define
Wt = Ot ∪ {t, pt} as the vertices of the graph on which we solve the problem, where the
weights of the arcs At correspond to the distances between the teams and t corresponds
to the depot. Each customer (modeling a remaining venue) has demand equal to one
and each vehicle has capacity of U , ensuring that all the remaining venues are visited
and that the team does not play more than U away games in a row.

The problem is formulated with the following integer programming model, ∀t ∈ {1, . . . , n}:

bCVRP
t (s) = min

∑
i∈Wt

∑
j∈Wt

dijxij (4.9)

subject to: ∑
j∈Ot

(xij + xji) = 2 ∀i ∈ Ot (4.10)

∑
i∈S

∑
j 6∈S

(xij + xji) ≥ 2d|S|/Ue ∀S ⊂ Ot, (4.11)

xij ∈ {0, 1} ∀i, j ∈ At (4.12)

Furthermore, if pt 6= t, i.e. when team t is currently away, the following constraints must
be added:

xtpt = 1 (4.13)

In this model, we consider binary decision variables xij , where xij = 1 if team t travels
from the venue of i to the venue of j, otherwise xij = 0. In equation 4.9 we show the
objective function for the problem, that returns the minimum distance dist(t) that t has
to travel to visit every opponent. Constraint 4.10 ensures that every venue is reached and
left only once. Constraint 4.11 makes sure that there is not a tour longer than U venues.
Since these are exponentially many constraints, a branch-and-cut solver would add these
constraints gradually and only when they are violated. Constraint 4.13 connects the
depot to pt and is only introduced if team t is currently not at its own venue but at pt.

Finally, the lower bound of the optimal completion of a partial solution in state s is given
by the sum of the team bounds of every team:

bCVRP(s) =
n∑
t=1

bCVRP
t . (4.14)

On Figure 4.4 we show an example of a vehicle routing problem belonging to a single
team t to calculate the independent lower bound bCVRP for a given examplary partial
solution with corresponding state.
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6 (1)
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Figure 4.4: Visual representation of our model for CVRP. Left: partial solution where t
is in the middle of a tour and is currently at 9’s location. Right: we assign dt9 = 0 and
demand of 9 to two.
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CHAPTER 5
Solution Approaches

In this chapter, we will present our solution approaches to the TTP and the related
CVRP, which we both formalized in Chapter 4. We will start in Section 5.1 by describing
our incarnation of an ant colony optimization algorithm for the TTP. It is based on
the ACO approach by Uthus et al. [URG09a], with the key difference that no tabu
search is applied for each ant but as a novelty a stronger heuristic guidance based on
the CVRP lower bound. We solve the latter either by exact precalculation following
Uthus et al. [URG09b, URG12] and Frohner et al. [FNR20], or approximately on-the-fly
with the help of Google OR-Tools [PF], presented in more detail in Section 5.3. Finally,
we describe in Section 5.2 our randomized beam search approach to the TTP, which
is based on [FNR20], but uses the approximate CVRP solution as heuristic guidance.
This allows to tackle instances with up to 30 teams, where the approach with exactly
precalculated bounds is limited to 18 teams. A comparison of our approaches with state
of the arts methods from the literature will the be presented in the subsequent Chapter
6, the computational study.

5.1 Ant Colony Optimization Approach
The workhorses of every ACO approach are the virtual ants, which are realized as
runs of a randomized construction algorithm. The probabilities of the decisions during
the construction change over time as ants communicate the quality of their discovered
solutions by means of pheromones. The overall goal is to reinforce good decisions to
increase the probability of creating high-quality solutions, while still retaining a certain
amount of diversification in the search, to not prematurely converge to a local optimum.

At first, we discuss how ants construct solutions for the TTP by exploring the state space
presented in Section 4.1.2. We will then introduce the different heuristic functions used
to guide the randomized construction and how the pheromone information is handled
and integrated in the algorithm. Finally, we will present further techniques that we used
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to improve the performance of the algorithm like backtracking and backjumping to find
feasible solutions far more quickly and a restricted candidate list to focus on high-quality
extensions during the construction.

In Algorithm 5.1 we list the high-level pseudocode of our ACO algorithm. The procedure
receives as first input parameters the number of successful ants Nants and the number
of iterations Niter. It then lets the ants construct solutions layer-by-layer, i.e., game by
game until Nants feasible solutions have been constructed. We call the group of successful
ants a batch. After each batch, we select the best solution of the batch as well as the
updating ant to update the pheromone. We repeat this process Niter times.

Each ant seeks to create a feasible solution for the TTP. For this, it traverses the state
space starting from the initial state sr until it has either found the terminal state st
following the state transition rules as described in Section 4.1.2. It adds games one by
one, where each game being played amounts to a state transition. The games are added
round per round, meaning that we will not start filling up round r before round r − 1
is complete. It continues until a feasible solution has been found; in case it hits a dead
end, a retraction mechanism has to be employed, where we make use of restarting and
backjumping, which will be described in more detail in Section 5.1.3.

Anm-partial schedule (or partial solution) is an ordered sequence ofm games (g1, . . . , gm),
which we generically denote with T . A complete schedule has n2 − n games. We further
keep the list of encountered states during the construction of one solution in a sequence
S to allow for backtracking as we will see later. When an ant is at state s, it performs
the following actions to select the next game, corresponding to the innermost loop of
Algorithm 5.1.

1. It selects a team i for state s by calling the method next-team(s). For each state s
there is an ordered list of available teams, i.e., which have not played in current
round r (the minimal round over all teams). The ordering is given by a permutation
π of the teams fixed in the beginning, either the identity permutation or a random
one. next-team(s) returns the first element of this list.

2. It calculates the legal games P si for i with respect to the constraints of TTP. For
example, if osi is zero, no more away games are allowed. This set is further reduced
to P ′si by feasibility checks, to detect early that playing a certain game would result
in a state without a feasible completion. These checks include

• whether there are enough home games left for i to accomodate for remaining
longest possible away streaks and vice versa away games left for longest possible
home stands left, which would lead to a certain at-most constraint violation
otherwise,

• whether there are only two games left over all teams concering only two teams,
which would lead to a certain no-repeat constraint violation,
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Algorithm 5.1:MMAS Ant Colony System for the TTP with Randomized
Backjumping and Ant Restarts
Input: number of teams n, distance matrix d, number of ants Niter, number of

iterations Niter, pheromone initial value τinit, heuristic function η,
heuristic weight α, pheromone weight β, diversification control q0, RCL
fraction αrcl, RCL original weights ωrc, maximum number of backjumps
ζmax, maximum backjump length ζlen, target ants ωants, pheromone
resilience ρ, no improvement limit ψ, pheromone update factor τfac,
probability of applying RCL prcl,MMAS pbest, pheromone update type
τup

Output: feasible TTP schedule T
1 Tgl ← nil;ugl ←∞;
2 τ, Tre, ure ← restart-ACO(τinit);
3 for ιiter ← 1 to Niter do
4 B ← ∅;uit =∞;
5 τ, Tre, ure ← restart-ACO(τinit) if no impr. of restart-best ant since ψ

iterations;
6 for ιant ← 1 to Nants do
7 S, T, s, u← restart ant;
8 while |T | ≤ n2 − n do
9 i← next-team(s);

10 P si ← collect permitted games for team i in state s;
11 P ′si ← filter P si according to feasibility checks;
12 P ′′si ← P ′si \ B[s];
13 if P ′′si = ∅ then
14 blacklist previous game T.last() for state s;
15 S, T, s, u← restart ant if backjumping limit ζmax hit;
16 S, T, s, u← backjump by random length from {1, . . . , ζlen};
17 else
18 (j′, k′)← select-game(P ′′si , n, d, s, i, τ, η, α, β, αrcl, q0, prcl);
19 s′,∆u← play-game(s, (j′, k′));
20 S ← S ∪ s′; T ← T ∪ (j′, k′);u← u+ ∆u;
21 end
22 end
23 make transition to st by teams which are away go home;
24 conditionally update Tgl, Tre, Tit, ugl, ure, uit considering T, u;
25 end
26 update-pheromones(τ , T ′, τinit, u, ρ, τmax);
27 end
28 return best found solution Tgl;
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• whether any team would have an empty set of possible games, i.e., whether a
dead team would exist.

The first two check are computable in constant time, while the last one is more
expensive in O(n2) since remaining games for all teams have to be checked.

3. If P ′si = ∅, the ant restarts from the initial state sr. In Section 5.1.3, a far more
efficient method will be presented, namely backjumping, which randomly reverts a
number of last games played and “soft” restarts from there to keep a major part of
the partial solution.

4. The ant probabilistically selects a game from P ′si by performing the select-game(P ′si ,
n, d, s, i, τ , η, α, β, αrcl, q0) procedure listed in Algorithm 5.2. To do so, it uses
a mix of heuristic information ηsjk and pheromones τ sjk, where both indicate how
attractive it is to play game (j, k) while in state s. Subsections 5.1.1 and 5.1.2
present in detail the implementations of ηsij and τ sij .
The method select-game(P ′si , n, d, s, i, τ , η, α, β, αrcl, q0) receives, amongst
others, the parameters α and β which are used to tune the impact of heuristic
information and pheromone respectively. A probabilistic weight wjk is calculated
for each game (j, k) ∈ P ′si , where higher weight indicates a higher likelihood to be
selected. Optionally, we restrict the games to the fraction αrcl best (according to
w) games, to focus on more promising games. We then randomly select a game
(j′, k′) (either j′ or k′ is team i) following the ant colony system selection rule with
diversification parameter q0 as presented in more detail in Subsection 5.1.2.

5. Finally, the ant schedules the game between (j′, k′) by calling the method play-
game(s, (j’, k’)) This method performs a state transition to s′ as described in
Section 4.1.2, copying and updating the state, corresponding auxiliary variables
(e.g. the path length to s′, g(s′)), and the partial schedule accordingly with T ←
T ∪ (j′, k′).

When the schedule T is complete, i.e., there are no more games to be played and we are
in the last layer of our construction, we send all teams home that played their last game
in an away venue, resulting in the terminal state st with a solution value of u. In the
following sections, we describe in more detail the heuristics to construct the solutions,
the pheromone model and update rules, and finally how the randomized construction is
boosted.

5.1.1 Heuristic Information

In this section, we will discuss the different functions ηs : P ′s → R+
0 from which we choose

one as algorithmic parameter to calculate the probabilistic weights in the select-game
procedure. Such a function is parameterized by the current state s and maps from the
filtered list of games P ′s to a non-negative real value, denoted as ηsjk for a specific game
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Algorithm 5.2: select-game: Probabilistically selects game for a team
Input: filtered games P ′si , number of teams n, distance matrix d, state s,

selected team i, pheromone information τ , heuristic function η, heuristic
information weight α, pheromone information weight β, restricted
candidate list fraction αrcl, diversification control q0, probability of
applying RCL prcl, weight scaling ϕ.

Output: next game for i while state s
1 calculate heuristic values ηsjk for each game (j, k) ∈ P ′si using d;
2 calculate probabilistic weights wjk ∝ (ηsjk)α · (τ sjk)β for each game (j, k) ∈ P ′si ;
3 rescale weight wjk = ϕ(wjk) or each game (j, k) ∈ P ′si ;
4 further restrict list of games to fraction of αrcl best games with probability prcl;
5 (j′, k′)← select game using the ant colony system rule with q0;
6 return (k′, l′);

(j, k). The different function are called uniform, ∆f , ∆g, f̃ , and g̃. In the following, we
describe those functions by specifying how a single generic ηsjk is calculated, where we
denote the resulting state s′ (when game (j, k) would be played in state s).

uniform: As the name indicates, each game has the same probability of being selected,
i.e., ηs is a constant. If additionally β is set to 0, this is a very simple heuristic method
that just selects a random opponent in the list of available ones. This approach acts
as baseline for more complex methods, both for running time and quality of results.
Furthermore, we use it to test the efficacy of speedups and improvement techniques.

∆f : In Section 3.2 we defined the evaluation of a state s as f(s) = g(s) + h(s), where
g(s) is the shortest path to a state s and h(s) is a heuristic estimate for the optimal
feasible completion of s. This method calculates the difference between f(s) and f(s′),
with s being the current state and s′ the resulting state after the game in exam is played.
Therefore we define ∆f as:

∆f(s, s′) = 1
1 + f(s′)− f(s) = 1

1 + g(s′)− g(s) + h(s′)− h(s) . (5.1)

In particular, g(s′)− g(s) is the cost for both teams to reach the game location. h(s′)
and h(s) are heuristic estimate for the optimal feasible completing in the respective
states. We derive them from the independent lower bound where for each team a CVRP
is solved and summed up. Those bound could either be pre-calculated and looked up in
quasi-constant time or a corresponding vehicle routing problem be solved on the fly. We
will discuss this lower bound based heuristic in more detail in Section 5.3 in more detail.
as a lower bound based heuristic.

We take the reciprocal in order to have a higher value for better results. Since the f -value
could be the same for both states (when we make an optimal move), we add 1 to avoid a
division by zero.
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∆g: The function ∆g is defined in a similar fashion as ∆f but by assigning the heuristic
value h(s) = 0 for every state s, i.e., a myopic function. By doing this we greatly decrease
the cost of the function at price of precision in the guidance.

∆g(s, s) = 1
g(s′)− g(s) . (5.2)

f̃ : The function f̃ considers only the f -value of the target state f(s′) = g(s′) + h(s′),
not the difference as before. Therefore,

f̃(s′) = 1
f(s′) . (5.3)

g̃: The function g̃ is the myopic version of f , with h(s′) = 0. Therefore,

g̃(s′) = 1
g(s′) . (5.4)

Note that an actual (expensive) state transition from s to s′ does not need to performed
but that each of the presented functions allows an incremental evaluation.

5.1.2 Pheromone Model

In this section, we will discuss our pheromone model and the ants’ probabilistic selection
rule in more detail. We adopt the approach of Uthus et al. [URG09a] and tailor it to our
state space model. It combines aMAX -MIN Ant System (MMAS) [SH00] with an
ant colony system (ACS) selection rule. We also make use of a three-index pheromone
model τjkr, which represents how attractive it is to play game (j, k) (team j away at k’s
venue) in round r, where the corresponding pheromone matrix is uniformly initialized to
the parameter τinit.

As discussed in Section 5.1, the probabilities of the possible games for team i to play
in state s for round r are calculated following the textbook ACO rule as presented in
Section 3.3:

psijk =


(ηsjk)α·(τjkr)β∑

(j,k)∈P ′s
i
(ηs
jk

)α·(τjkr)β
if (j, k) ∈ P ′si

0 otherwise
(5.5)

This is extended in the ACS [DG97] rule by a parameter q0 ∈ [0, 1] which balances
between exploitation and diversification. For every choice by the ant, a random number
q ∈ [0, 1] is sampled to randomly switch between a greedy exploitation rule, choosing the
game with the highest probabilistic weight, and the aforementioned basic ACO rule to
select the next game (j′, k′):

(j′, k′)←

argmax(j,k)∈P ′s
i

[
(ηsjk)α · (τjkr)β

]
if q ≤ q0

AS selection rule if q > q0
(5.6)
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5.1. Ant Colony Optimization Approach

Following theMMAS, the pheromone values are bound between τmin and τmax to avoid
premature stagnation of the search. We introduced the parameter pbest, and τmax is set
to the asymptotically maximum value of the pheromone, calculated in the following way:

τmax = 1
1− ρ

1
f(sopt) (5.7)

where f(sopt) is the best f -value of the terminal state (i.e., optimum for the instance),
for which an estimate needs to be used.

We instead calculate τmin in the following way:

τmin = τmax(1− pdec)
(avg− 1)pdec

(5.8)

where

pdec = d
√
pbest (5.9)

and d is the amount of decisions that an ant has to make, that in our case is the number
of games to play n(n− 1). The value of avg is d/2.

We adopt an elitist approach and make use of restarts (pheromone reinitializiations) as
[URG09a]. During the whole run, we keep and update accordingly the solutions and their
lengths of the globally best (Tgl, ugl), the best since the last restart (Tre, ure), and the
best ant of the current iteration (Tit, uit). To avoid stagnation, we introduce a parameter
called ψ that identifies the maximum number of iterations allowed without improvement
of the restart-best ant. If this limit is reached, the pheromone matrix is reinitialized to
τinit. After a batch of ants is complete in a given iteration, we probabilistically select a
solution T ′ with length u′ among the three different ants just described for spreading
pheromones according to its solution, a slight modification of the procedure as described
by Uthus et al. [URG09a], who perform a deterministic even alternation. The parameter
τfrac controls the probability of updating with the iteration-best; if it is not selected, then
either the global-best or restart-best ant is selected, depending on another parameter τup,
which can assume the values of “global” or “restart” and is part of the tuning procedure.

To update the pheromones, we call the method update-pheromone(τ , T ′, τinit, u′, ρ,
τmax). The pseudocode for it can be found in Algorithm 5.3. The algorithm starts by
conditionally updating τmax and calculating τmin according to the MMAS rule, and
then setting ∆τ = 1/u, where u is the shortest path length of the solution used for the
update. We then apply the decay according to the pheromone persistence parameter
ρ. The auxiliary procedure games-with-rounds(T ) returns a set of triples, containing all
games with the corresponding round. Using it, we finally increase the pheromone value
of every played game tied to a round (j, k, r) by ∆τ , while respecting the bounds τmin
and τmax.
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Algorithm 5.3: update-pheromones: MMAS-updates the pheromone matrix
Input: pheromone information τ , solution T , pheromone initial value τinit,

solution length u, pheromone decay rate ρ, maximal pheromone value
τmax

Output: updated pheromone matrix τ
1 calculate τmin according to MMAS rule;
2 ∆τ ← 1/u ;
3 τ ← ρ · τ ;
4 foreach (j, k, r) ∈ games-with-rounds(T ) do
5 τjkr ← τjkr + ∆τ ;
6 τjkr ← max(τjkr, τmin);
7 τjkr ← min(τjkr, τmax);
8 end

5.1.3 Randomized Construction Boosting

In our algorithm, we apply some techniques that are aimed at the improvement of either
the quality of the solution created or the time taken to produce a feasible solution. Since
the TTP is also a difficult constraint satisfaction problem, proper modification to a
plain ACO with a purely randomized greedy construction are necessary, since dead ends
occur frequently. This is already pointed out by Uthus et al. [URG09a] who use forward
checking, conflict-directed backjumping, and ant restart to increase the rate of feasible
solution created by an order of magnitude. We also perform forward checking as discussed
in Section 5.1 by avoiding games that would leave to team without any permitted games
in the given round (empty domain) and a randomized backjumping-based backtracking
procedure as discussed in the following.

Backtracking and backjumping: When during our randomized construction a team
has no games to play in a round, we reach a dead end. Instead of starting from scratch
and lose all of the progress made, we blacklist and revert the last selection made, i.e., we
return to the state we were before the last game was played and select either another
or backtrack again if there is no other left—this correspond to classical backtracking.
The left part of Figure 5.1 shows an illustrative example of a dead end after which we
backtrack.

Sometimes backtracking only one step is not enough, because the choice that brought us
in a bad part of the search space could have been done several steps before the dead end
itself. In such a case, the classical backtracking algorithm would take several steps before
realizing it, and would waste a lot of resources exploring a non promising part of the
search space. For this reason we use a randomized backjumping prodecure. Backjumping
is a well-known technique from constraint programming [Dec90, DF02] and similar to
backtracking, but it reverts several steps instead of only one. This allows us to move
further from a dead end, to allow to take back a mistake that was made somewhat earlier
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Figure 5.1: Illustrative examples of backtracking and backjumping. Rectangular nodes
represent dead ends. Left: After reaching state 10, since it is a dead end we backtrack
to 7 and blacklist the action leading to 10. We then choose 8 and proceed from there.
Right: After reaching a dead end at 10, we jump back to state 1 and by chance continue
with state 2 (again 7 would also have been possible, since the action leading from 1 to 7
is not yet blacklisted), leading us to a better region of the state space.

in the search. An illustrative example of backjumping can be found in the right part of
Figure 5.1.

In our implementation we make use of a naive (yet effective as we will see in the
computational study) randomized backjumping on our state graph and we have two
parameters to tune it, see the corresponding lines 13 to 16 in Algorithm 5.1. The first
parameter is ζmax, and it controls the maximum number of times we retrace our steps
before giving up and restart our construction from beginning. Since the search space
of TTP is massive, sometimes a partial solution is compromised and it could be better
to just abandon it and start a new one: this ζmax ensures that we do not spend too
many resources on a single solution. The other parameters is ζlen and controls the upper
limit of steps we retrace when we reach a dead end. In particular, the former controls
the maximum number of steps to revert when we reach a dead end, which we sample
uniformly at random from {1, . . . , ζlen}. Traditional backtracking corresponds to ζlen = 1.

To facilitate backjumping a blacklist B is maintained in form of a hash table with the
states of our state graph as keys and as corresponding values the sets of blacklisted games.
While future iterations could also benefit from the blacklist, it would grow indefinitely
and we reset it after every iteration to keep the memory demand bounded.

Weight scaling: The purpose of weight scaling is to map the probabilistic weights
between a maximum and a minimum value in order to limit the capability of strong
elements to overwhelm the others, i.e., a case of a degenerate probability distribution.
We therefore define a linear transformation ϕ(w) = αs ·w+βs where the minimum weight
is mapped to 1 and the maximum weight (corresponding to the most promising game in
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a state) is set to a parameter ϕmax. This leads to

αs = φmax − 1
wmax − wmin

(5.10)

and

βs = wmax − φmax · wmax
wmax − wmin

. (5.11)

See its use in the procedure select-game in Algorithm 5.2, where weight scaling can be
disabled by setting ϕ to the identity function.

Restricted Candidate List: An RCL is a restriction of the set of possible games to
a fraction of the most promising ones according to the metric, i.e., only games (j, k) are
kept, for which:

wjk ≥ wmax − αrcl · (wmax − wmin) (5.12)

Afterwards, a game is selected randomly from the RCL, where keep the original weights
in performing this selection. αrcl is a real value between 0 and 1 controlling the di-
versification/intensification. When αrcl = 0 we select only from the opponent with
highest weights (ties are possible), while if αrcl = 1 the RCL is the same as the original
candidate list. This is well-know technique know from GRASP [RR03]. To make it
useful for ACO and keep the whole search space in principle accessible, we introduce
another parameter prcl ∈ [0, 1], which represents the probability of applying an RCL in
the precedure select-game.

5.2 Fast Memory-Limited Randomized Beam Search
The randomized construction described until now builds one solution at the time cor-
responding to a sequence of games to be played. The rough idea of beam search is to
perform a truncated breadth-first-search on the state graph. Instead of storing only one
state at a given layer, we store many promising ones and return in the end the shortest
path from the root state to the terminal state, i.e., the best found solution. Constructing
a solution via beam search would obviously be computationally much more intense than
doing so with an ant, but it helps to avoid situations in which we play a game that looks
very promising but eventually yields a not so good result. Furthermore, we can tolerate
to run sometimes into dead ends without performing backtracking since we keep multiple
options to continue to the next layer. In this section we present our extended version
[FNPR21] of the beam search approach to the TTP from [FNR20], with the focus on the
approximate CVRP based lower bound guidance using Google OR-Tools, which will be
discussed in the subsequent section.

Beam search is, in essence, a layer-by-layer breadth-first-search traversal of the state
graph. In the TTP, for each layer we select a team i and perform the transition from
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5.2. Fast Memory-Limited Randomized Beam Search

every existing state to every successor state that is allowed by the list of i’s available
games, i.e., we play for each state all of i’s permitted games leading to alive states,
employing the same feasibility check to detect dead teams as described for the ACO in
Section 5.1. The currently shortest path length and sequence of games that led to a given
state are cached for each. Given the complexity of the problem and the size of the search
space, the number of states that we keep in consideration by layer is limited by the beam
width β. Hence, the number of states considered is polynomially bounded by O(n2β).
This alone does not guarantee polynomial asymptotic runtime in n since the expansion
and evaluation of states could be NP-hard.

To decide which state is worth keeping, we rank them according to a f -value akin to the
one generally used in A∗ search and that we presented in Chapter 3, where a heuristic
estimate to complete the current solution h(s) is added to the length g(s) of the shortest
known path to reach the current state s:

f(s) = g(s) + h(s) (5.13)

We consider a fast memory-limited beam search variant in Algorithm 5.4. The current
layer is stored in a queue, and the successive layer in a priority queue of size at most β
sorted by the f -value. It is implemented as a binary max-heap combined without a hash
map that keeps the current position of a state to allow for faster perculation operations.
To still enable detection of duplicate state, we keep for each layer a set of seen states
when retrieving them from the queue. Since the queue is sorted by the f -value, we can
safely discard already seen states (to avoid traversal of isomorphic subgraphs of the state
graph), which must have an f -value at least as good. Keeping only the current and last
layer gives rise to the adjective memory-limited.

Said priority queue H contains the β best successors of all the states in the current layer.
If the beam is full, to prevent the eventuality of creating solutions that would be worse
than any other solution in the heap, we check by incremental evaluation if the f -value
of the last element of the beam is better of the f -value of the state we are about to
create. If so, we will not consider the resulting state further, reducing computational
effort, otherwise we perform a state transition to s′ and incorporate it into the beam.

Calculating the heuristic estimate h(s) of a state may be expensive. Since we base our
heuristic guidance on the independent lower bound, where (NP-hard) CVRPs are solved
for each team separately in a given state, we maintain a cache of such solved problems.
In practice, we observe a very high cache efficiency, since teams are often in the same
state over different TTP states of a layer and we can reuse the cached solutions frequently.
Another option is to precalculate all possible heuristic estimate for each team, as done
in [URG09b, URG12, FNR20]. An approximate and an exact method for solving said
CVRPs will be discussed in Section 5.3.

The aforementioned optimality and feasibility checks when in state s and considering game
(j, k) are performed by the procedure feasibility-and-optimality-check(H,β, s, b, ε, (j, k))
in an incremental fashion, avoiding unnecessary costly state transitions. To this end, we
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Algorithm 5.4: Fast Randomized Beam Search for the TTP. Adapted from
[FNR20], p. 8 and [FNPR21]
Input: number of teams n, distance matrix d, start state sr, terminal state st,

noise parameter σrel, state heuristic estimate function h, beam width β
Output: feasible schedule T

1 queue Q← {sr};
2 for l← 1 to n2 − n do
3 S ← empty set for seen states;
4 H ← empty maximum heap;
5 while Q 6= ∅ do
6 s← Q.pop();
7 discard s if s ∈ s ∈ S and continue or S ← S ∪ {s};
8 i← next-team(l, s);
9 foreach (j′, k′) ∈ {(j, k) ∈ P ′si do

10 ε← N (0, σrel(l) · h(sr));
11 if feasibility-and-optimality-check(H,β, s, h, ε, (i, j)) then
12 s′ ← copy s and make transition by playing (j′, k′) and updating

state along with cached data accordingly;
13 s′.T ← s′.T ∪ (j, k);
14 f(s′)← g(s′) + h(s′) + ε;
15 include s′ into H respecting f(s′);
16 if H.size > β then
17 remove worst element of H;
18 end
19 end
20 end
21 end
22 Q←sorted-by-f-value(H);
23 end
24 if Q 6= ∅ then
25 create going home transitions for all states in Q to st;
26 return st.T ;
27 else
28 return no feasible schedule found;

also cache the number of home and away games left, and the number of teams that have
just hit their streak limit. This enables quicker checks regarding the at-most constraint
and whether there is a team without any permitted games, when we would play game
(j, k) in s, i.e., the dead team check.

To enable some degree of diversification in different runs, we introduce a noise variable
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and consider a static random team ordering. This variable is a normally distributed
random variable with standard deviation σ that we add to the original f -value of each
state:

f̃(s) = f(s) +N (0, σ). (5.14)

It allows states that would otherwise get pruned to have a chance to survive and vice
versa. Since multiple success states may also have the same f -value, it also serves as a
random tie breaker. It is important to choose a reasonable value for σ in order to prevent
much worse solutions to survive. We use a fraction σrel of the heuristic estimate of the
root state, to ensure that we can pinpoint the order of magnitude of σ.

σ = σrel · h(sr) (5.15)

The algorithm terminates at the last layer where there are no more games to be played
in each state; we then create the transitions to the terminal state, by sending every
team that played their last game in an away venue back home and keep and return the
resulting best found schedule tied to the terminal state st.T . If we did not reach the
terminal state, we did not find a feasible solution and return this information.

5.3 Capacitated Vehicle Routing Problem

Generally speaking, to obtain a lower bound for a problem it is common to consider a
relaxed version of it, for example ignoring a constraint. A classical example is to relax
the integer constraints in integer linear programming to obtain a faster solvable linear
programming relaxation.This concept was applied to TTP by Easton et al. in [ENT01],
where they suggested the independent lower bound (ILB). ILB considers schedules for
all teams independently and therefore implicitly relaxes both the no-repeat and the
at-home part of the at-most constraint. In other words it only considers the away streaks.
Therefore ILB is, in essence, a series of capacitated vehicle routing problems for every
i ∈ V where the vehicles have capacity U , each customer has demand of 1 and the depot
is at i’s home venue. As we discussed in Section 2.2.1, CVRP is NP-hard but tractable
in practice when the number of customers is sufficiently low. Specifically, we use this
lower bound as the basis for our heuristic estimate of a state h(s) for both ACO and
beam search. The CVRP based lower bound bCV RP (s) is defined as:

bCV RP (s) =
n∑
i=1

bCV RPi (s) (5.16)

where, for a state s and a team t, we calculate bCV RPt (s) as the CVRP for the remaining
away teamsMs

t , the position pst and the remaining away streak ost . If t is at an away
location and the away streak is equal to zero, we add the distance between pst and t to
the bound, and then we set pst = t and ost = min(|Ms

t |, U).
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Given the significant cost of calculating these bounds, following Uthus et al. [URG12],
we precalculate the bounds of the possible states to speed up our algorithm. We apply
this technique to beam search as Frohner et al. did in [FNR20]. To calculate the bounds
we recursively enumerate the states of the whole solution space of each CVRP. For each
state we then calculate the shortest path to the terminal state in a backward sweep.
Since the solution space is a directed acyclic graph and we store the calculated results
in a lookup table accessible in constant time, this operation is linear in the number of
vertices and arcs and feasible for instances up to 20 teams.

For instances with more than 20 teams, this precalculation becomes too long to perform,
since the number of bounds is in O(n32n) [FNR20]. It is important to notice that since
the number of state expansions in the beam search is polynomially bounded, it is possible
to adopt an on-the-fly approach, calculating the bound approximately only when needed
using Google OR-Tools and then storing them independently for each team in a global
cache. Moreover, during a transition we only need to calculate the CVRP for two teams,
while the others can be retrieved from the cache, and also the states of either or both of
these two teams might already been encountered in another TTP state before.

Google OR-Tools [PF] is a software suite tuned for tackling some of the most common
optimization problems such as vehicle routing, scheduling and bin packing. The solver
allows different methods to find the initial solution for a given CVRP. Here we briefly
present the ones that we tested:

• Path cheapest arc: Iteratively, starting from an opponent, attempts to continue
a streak until the streak limit is hit by selecting the closest opponent to the last
added opponent and adding it to the streak;

• Local cheapest insertion: Inserts each opponent at its cheapest position;

• Global cheapest arc: Iteratively connects the two opponents that produce the
cheapest arc;

• Local cheapest arc: connects the first opponent with an unbound successor to the
opponent that produce the cheapest arc;

• First unbound min value: connects the first opponent with an unbound successor
to the first available opponent.

The algorithm allows to limit the number of solutions generated during the search with
the parameter solution-limit. After selecting an initial solution, a local search is performed
using one of the following methods, which we use as a blackbox:

• Guided local search: escapes local minima and plateaus with a penalized cost
function;
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• Greedy descent: accepts neighboring solutions only if they have a better cost, until
a local minimum is reached;

• Simulated annealing: uses an evolving temperature parameter to balance exploration
and exploitation in a guided random walk through the search landscape;

• Tabu search: escapes local minima allowing the acceptance of the best solution
from the current neighborhood, avoiding cycles and guiding the search using a
restriction mechanism.

In Chapter 6 we will present a series of tests that we performed on the different construc-
tion and local search methods provided by Google OR-Tools. Moreover, we implemented
a faster version of it in Julia as also presented in [FNPR21], of which we will present the
results.
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CHAPTER 6
Computational Study

Our experiments were conducted on the cluster of the Algorithms & Complexity Group
1 at the TU Wien with Intel Xeon E5-2640 processors with 2.40 GHz in single-threaded
mode. When not stated differently, the memory limit was set to 8GB. The algorithms
were implemented in Julia 1.6.0 [BEKS17], interfacing Google OR-Tools v7.7.7810 [PF]
with PyEval.jl 2. Our implementation is based and a continuation of the TTP beam
search code3 [FNR20, FNPR21].

We separate this chapter in four sections. In the first we will present the instances that
we used to perform our tests. The second investigates on the usage of Google OR-Tools
to solve CVRPs and the impact of different parameters on the beam search. In particular
we compare different configurations of solution construction and improvement strategies.
We then present the results yielded by beam search guided by OR-Tools for galaxy
instances of size 4 to 30 with a fixed beam width. We will also compare the solution
quality gap with varying beam widths over a number of instances to get an impression
of the impact of an increasing beam width. In the third section we perform the tuning
of our ACO approach. More specifically, we will study the impact of the RCL and of
different heuristic strategies on the randomized greedy construction and find suitable
values for backjumping and backtracking to create feasible solution quickly. Furthermore,
we will then show how the solution quality improves over time during an ACO run with
different settings of the heuristic and pheromone weight parameter α and β. We will
finally discuss the results provided by irace [LIDLP+16], a tool for automatic algorithm
configuration and compare them with our manually tuned configuration. In the last
section we will compare our ACO with the other ant approaches from the literature, and
finally compare our best results for beam search and ACO with the best known results
on the considered benchmark instances, derived by other state-of-the-art solvers.

1https://www.ac.tuwien.ac.at/
2https://github.com/JuliaPy/PyCall.jl
3https://github.com/nfrohner/ttpbeam
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6.1 Instances

There is a list of instances commonly used as benchmark available on Michael Trick’s
TTP web page 4. Instances of NL, NFL and CIRC were first introduced by Easton et
al. [VHV07] and they model, respectively, schedules for the Major League Baseball, for
the National Football League and for matrices with trivial circular solution for TSP. The
Super set of instances is a model of the Super 14 Rugby League and was introduced
by Uthus et al. [URG09b] in 2009. In 2012 [URG12] they also introduced the galaxy
instances, that model the three dimensional distances in light years that separate stars.
In our work we will also use two sets of instances I{8,10,12}

L2 and I{18,20,22}
L2 which have

groups of 30 artificially generated instances using Euclidean distances, where teams are
placed uniformly randomly on 1000 × 1000 integer grid and where each group has a
different number of teams as indicated by the superscript. These instances are used by
Frohner et al. in [FNR20, FNPR21] for parameter tuning and as a separate training, for
which we will use them as well. The set of instances that we use are listed in Table 6.1,
together with a description of their origin and the minimum and maximum instance size
available for it.

Table 6.1: List of considered TTP benchmark instances with corresponding sizes.

Name Based on Min Max

NL Major League of Baseball 4 16

NFL National Football League 16 32

galaxy Distance between stars 4 40

CIRC Matrices with trivial circular solution for TSP 4 20

Super Super 14 Rugby League 4 14

I{8,10,12}
L2 Euclidean instances small 8 12

I{18,20,22}
L2 Euclidean instances large 18 22

When referring to a specific instance, we will call it with the name and the size (e.g.,
NL14 is an instance of the instance set NL of size 14).

6.2 Lower Bound based Heuristics using Google
OR-Tools

As discussed earlier in chapter 5.3, we believe that Google OR-Tools could be used to
solve the CVRPs heuristically on-the-fly with appropriate caching for guiding the beam
search fast enough and with a reasonable optimality gap. This is of particular interest

4https://mat.tepper.cmu.edu/TOURN/
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for larger instances starting from 20 teams where is not possible to precalculate the
bounds exactly. In this section we will show the process of tuning that we performed on
OR-Tools as well as first beam search integration tests.

6.2.1 OR-Tools Method Tuning

The results analyzed in this section will also be presented in our submitted journal
publication [FNPR21]. The experiment was run on 90 IL2 instances of size 18, 20 and
22 (30 for each size). Using Gurobi 12.8 [GO21] we solve the classical independent lower
bound (ILB) (i.e., h(sr), the heuristic of the root state for each instance) to optimality for
each one of these instances. We then compare the relative optimality gaps and the running
times of different construction heuristics and search methods of Google OR-ToolsAs
construction heuristics we consider path cheapest arc (PCA), local cheapest insertion
(LCI), global cheapest arc (GCA), local cheapest arc (LCA) and first unbound min value
(FUMV), while the search methods are guided local search (GLS), greedy descent (GD) ,
simulated annealing (SA) and tabu search (TS), which we discussed briefly in Section 5.3.

To start, we investigate what is the more suitable CVRP construction heuristic for Google
OR-Tools. Each method is tested with solution limit of 20, 30, and 100 with the exception
of greedy descent that just converges to a local minimum and terminates naturally. The
solution limit is the number of iterations (steps in the neighborhood) performed by the
search. Treating Google OR-Tools mostly as a black box, we leave the other parameters
to default because we assume that they would already perform acceptably.

In Figure 6.1 we present the results of our tests as boxplots that compare relative gaps
and running times. As expected, increasing the solution limit yields slightly better gaps
at the cost of a much higher running time (y is in logarithmic scale). Since we have
to solve many CVRPs during a run of the beam search, runtime is a major concern,
potentially at the cost of losing some guidance quality. Furthermore, since we consider a
randomized beam search variant, this might still be acceptable.

GCA results are good in terms of gaps but it is also the slowest one, which is what
we would expect since it iterates over all arcs in each iteration. We observe that LCA
dominates every other method except for GCA, and is in runtime-wise only dominated
by FUMV, which has a over poor solution quality performance. Therefore LCA is the
method that we deem the best in our situation. Regarding the search methods, both
guided local search and tabu search provide good results but their running times are quite
high. On the contrary, the running time of simulated annealing is much shorter, but at
the expense of gap quality. Greedy descent has median gaps slightly above GLS and TS,
but the running times are very fast, and therefore this is our preferred choice

6.2.2 Beam Search with OR-Tools

After tuning Google OR-Tools, we incorporate it into our beam search as heuristic
guidance. In this section we perform three tests: In the first we run beam search guided
by the two most promising search methods, greedy descent and tabu search, to confirm
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Figure 6.1: Boxplots for relative gap and running times comparison for different construc-
tion methods and search method grouped by the random Euclidean instances with team
sizes 18, 20, and 22, solving the corresponding root ILB. In the left column we compare
relative gaps in %, in the right running times in seconds. The two graphs in the first row
describe the testing on instances with 18 teams, while in the second row we have the ones
with 20 and in the third with 22. The y-axes are in logarithmic scale. For every search
strategy there are five first solution strategies identified by different colors. As expected,
higher solution limits yield better gaps but make running time substantially longer. For
all of the instances, guided local search and tabu search provide slightly better gaps but
have a longer runtime, compared to simulated annealing and greedy descent.
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6.2. Lower Bound based Heuristics using Google OR-Tools

the considerations maturated from the tuning of OR-Tools. In the second we run beam
search guided by OR-Tools with LCA and GD on three instance varying the beam-width
parameter β, to see how it effects running times and quality of solutions. In the third we
are interested in showing how the running time changes over increasing the size of the
instance.

First experiment—greedy descent vs tabu search To further investigate the
subtle difference between greedy descent and tabu search, we ran another test on 90 IL2

instances of size 18, 20 and 22 (30 for each size), arbitrarily setting the solution limit
of TB to 45 so that the objective values is in the same ballpark of the ones of GD. As
can be seen in Table 6.2, the two search methods perform very similarly in terms of
mean, but there is a substantial difference in running time, with greedy descent being
consistently faster. After performing an unpaired t-test, the two-tailed p-value of the
objectives is higher than 0.84 for all three instance sizes, while the one for runtimes never
exceeds 0.001, making the runtime difference extremely statistically significant, while the
gaps are not and therefore comparable. For this reason we confirm greedy descent as our
preferred choice.

Table 6.2: Comparison of objective values and runtimes of greedy descent and tabu search
on three instances IL2 .

Instance search method objective mean ± std runtime mean ± std

I18
L2 Greedy descent 157426.50 ± 14017.31 14807.22 ± 1762.36

Tabu search 158091.64 ± 13889.89 16760.78 ± 503.98

I20
L2 Greedy descent 195345.17 ± 13777.47 20328.87 ± 4568.76

Tabu search 194628.50 ± 14264.99 23939.93 ± 890.27

I22
L2 Greedy descent 238054.80 ± 18001.28 27795.52 ± 6852.14

Tabu search 238179.07 ± 16826.68 32478.89 ± 2582.16

Second experiment—impact of β: In the first experiment we run beam search with
Google OR-Tools on NL14, circ12 and galaxy16. We set no noise and set β to 103, 2 · 103,
5 · 103, 104, 2 · 104, 5 · 104, 105, 2 · 105 and 5 · 105. The available memory for these tests
was 32GB. The goal is to get an impression of the impact that the latter parameter has
on solution quality and its cost in terms of construction time. The solution quality is
measured in the relative gap between the difference between the shortest path of the
solution found and the independent lower bound (ILB) of the instance.

As can be seen in Figure 6.2, when β increases the gaps tend to decrease, but in a rather
unpredictable way. A theoretical bound for the construction times with constant n is
O(β log β) due to the comparison based sorting of the success states we perform—the
logarithmic growth of the slope in β can be surmised in the galaxy16 run, the other runs
look noisier. It is impossible to pinpoint a value β that is better than the others, as
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it is a tradeoff between solution quality and cost (both in terms of time and memory).
Therefore the most reasonable strategy is to use the highest width that we can afford.
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Figure 6.2: Line plots that show the impact of β on beam search with OR-Tools on
circ12 (first row), NL14 (second row) and galaxy16(third row). Left: comparison of gaps
from the independent lower bound. The x-axis is in logarithmic scale. Higher beam is
not necessarily better, but there is a trend towards higher beam widths, in NL14 there
is more noise than for the other instances. Right: comparison of construction times in
seconds. The x-axis and the y-axis are in logarithmic scale. The theoretical growth
depending on β with constant n is bound by O(β log β) when using comparison-based
sorting.
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6.3. Ant Colony Optimization

Third experiment—running time of different sized instances: We perform this
test on a wide range of instance sizes from the set, the smaller being galaxy4 the biggest
galaxy32. The beam width β is set to 5 · 105, the largest one from the first experiment.
Due to the huge search space of the problem, large beam widths are desirable. Instances
of size 26 or larger were run with 32GB of memory instead of 8GB. As can be seen from
Figure 6.3, the construction time seems to grow sub-exponentially in the size of n: as
expected the construction time grows when the instance size is bigger, where a theoretical
bound without considering Google OR-Tools is O(n2(n3β + nβ log(nβ))) (O(n2) layers
where in each layer O(βn) successor states have to be considered within O(n2) plus
comparison-based sorting of the successor states). In reality, we have effects of dead
ends reducing the number of expanded nodes, fast optimality and feasibility cuts on the
successor states by incremental evaluation, Google OR-Tools heuristic solving for CVRPs
depending on n, caching of these heuristics with high cache efficiency, etc. which make a
theoretical runtime analysis much more difficult. An exceptionally lucky run happened
on galaxy32 which is faster than the run on galaxy28. For example, an instance of size
20 took approximately 72 minutes, while one of size 24 took 165 minutes.
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Figure 6.3: Line plot that presents the construction times in seconds of beam search
guided by the CVRP bound solved with OR-Tools over instances of different sizes. The x-
axis shows the size of the instance, while the y-axis (in logarithmic scale) the construction
time in seconds. The construction time spikes up with instances of size greater than 26,
with 32 being smaller than 30. The runtime seems sub-exponential but is hard to analyze
theoretically due to many competing effects (caching, incremental evaluation, Google
OR-tools runtimes, etc.)

6.3 Ant Colony Optimization
In this section we discuss our implementation of the Ant Colony Optimization (as
described in Section 5.1) and the experiments that we performed. We will start with the
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tuning of the parameters of RCL, backtracking and backjumping parameters, to follow
with an analysis on the construction time of solutions on different instance sizes. We
perform a manual tuning by making sensible parameter choices and study the impact of
different heuristic and pheromone weight combinations on solution quality over time for
examplary ACO runs, to observe the learning. We will finally use irace [LIDLP+16], an
automated parameter tuning tool, to select a good configuration of parameters for our
algorithm.

It is important to note that the ACO relies on precalculated CVRP heuristics since due
to its randomized greedy construction and more diverse search through the state space
the caching efficiency is too low for the Google OR-Tools to be efficient.

6.3.1 RCL

Firstly, we perform preliminary checks on the impact of using an RCL and the different
η (“local heuristics” in an ACO) methods on our algorithm before adding the pheromone
information τ . We run the algorithm to create 2000 feasible solutions of NL14 with
α = 1and β=0, therefore excluding the impact of the pheromones. αrcl, the percentage of
solutions retained in the RCL, was tested for the values of 0.10, 0.25, 0.50, 0.75, and 1.00.
We keep the weights after restriction and do not select uniformly at random as often done
in GRASP. We also tested every heuristic function η, i.e.,∆f , ∆g, f̃ , uniform and g̃. The
probability of using RCL prcl was set to 1. We cross-tested all the combinations of the
aforementioned parameters to investigate which effect different RCL-heuristic function
combinations have on the solution construction time and quality.As can be seen from
Table 6.3, ∆g is the method that yields the better results overall, which we also observed
for other instances, specifically in conjunction with αrcl = 0.25. As we will see later, this
does not hold when combining with pheromone information. It also seems to impact the
runtime, since we observe that it becomes more difficult to find feasible solutions, which
is also true when using other methods than ∆f (and not yet fully understood effect)—we
therefore abandon it. Still, in a pure construction randomized greedy construction with
potentially local search afterwards (i.e., GRASP).

6.3.2 Backtracking and Backjumping

Secondly, we examined the effect of backtracking and backjumping, as well as to find a
good set of parameters for them, to have a high rate of feasible solution construction.

We run our tests on five NL instances from size 6 to 14. We used the uniform random
method with α = 1 and β = 0, and we do not make use of weight scaling or RCL. The
maximum number of backtrackings allowed ζmax is a value from 1 to 1000 divisible by
10 and the size of the backjump ζlen goes from 1 to 27. The experiment consists in
constructing 1000 ants with each combination of ζmax and ζlen as we are interested in
comparing the running times in order to find the combination that is able to construct
solutions faster.
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6.3. Ant Colony Optimization

Table 6.3: Results of experiments on RCL and heuristic methods to create 2000 feasible
solutions of NL14. min u is the best solution, while ū is the average value. t is the
running time relative to the fastest setup. Smaller value of αrcl produce better results
at the cost of higher running times. ∆g is the heuristic method that yields the better
solutions, followed by ∆f . uniform performs substantially worse than the other methods,
which is an unguided random search. ∆f has the second best running time.

η αrcl min u ū trel

∆f 0.25 244628 269744.63 2.67
0.50 244356 269929.74 3.11
0.75 247130 271287.00 2.14
1.00 254600 275995.00 2.04

∆g 0.25 236509 263200.28 19.62
0.50 237581 262894.38 9.12
0.75 241575 266633.09 9.01
1.00 253898 281692.86 4.01

f̃ 0.25 252094 286581.30 32.92
0.50 260295 290933.36 44.32
0.75 266915 295152.80 47.52
1.00 267231 304078.51 1.28

uniform 0.25 291738 314979.46 1.00
0.50 290452 314912.09 1.69
0.75 289160 315021.46 1.17
1.00 287426 315077.56 1.35

g̃ 0.25 243117 279800.09 73.50
0.50 255376 284901.52 110.64
0.75 266114 290283.81 112.89
1.00 261963 299637.86 2.89

In Figure 6.4 we present five heatmaps, one for each instance, that show the runtimes
of the various combination of parameters. At first glance it is pretty clear that the
instance size does not play a substantial role: in fact, in every heatmap there is a slower
(bright) region with very high ζmax and low ζlen, which broaden slightly with increasing
n. As can be seen in more detail in the bottom part of Figure 6.4, the area that presents
the highest density of dark dots is the one with ζlen > 15 and ζmax > 760, but there is
not a particularly strong advantage in selecting one specific setup. We therefore deem
appropriate any value of ζmax around 1000, while ζlen should be in the range between 20
and 30.
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Figure 6.4: Heatmaps for backjump parameter tuning on NL instances of sizes from 6 to
14. The x-axis represents the maximum length of the backjump ζlen with is randomly
sampled and the y-axis the maximum number of backtrackings allowed ζmax. The color
represents the time needed to create 1000 feasible solutions. Lighter colored areas have
higher running times, while darker dots identify faster setups. Top: runtimes in seconds
for instances from 6 to 14. The results look quite similar for all of the instances. Bottom:
runtime in seconds for instance of size 14. When ζlen < 15 the running time spikes up
significantly. The higher concentration of black dots can be found with ζlen > 15 and
ζmax > 760. There are good setups even with ζmax < 300, but the density is much lower.
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6.3.3 Ant Construction Time

In this experiment we analyze the construction time of solutions in instances of different
size. We run ACO over NL instances of size 6 to 16, using handpicked parameters
selected by preliminary tests. The goal of the experiment is to run 1000 iterations of
ACO and measure the average construction time of a feasible solution. We run batches
of 30 ants, meaning that we will construct a total of 30000 solutions. For this test, we
set the pheromone resilience rate to ρ to 0.9, diversification contl q0 of 0.9 and update
the pheromones with the best ant of the iteration. In Figure 6.5 we can see that the
construction time exhibits exponential growth with the size of the instance n with a
factor of 0.55n; for example, a solution for NL8 is constructed in 0.002 seconds on average,
while one for NL16 takes 0.14 seconds.
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Figure 6.5: Line plot of construction time of feasible solutions over different instance sizes
using backtracking with backjump and ant restarts The tested instances were taken from
the NL set and they had from 6 to 16 teams. The construction time exhibits exponential
growth an estimated exponent of 0.55n.

6.3.4 Impact of Heuristic and Pheromone Information

Since our algorithm takes into accounts two main values, namely the heuristic information
η and the pheromone information τ , it is important to make sure that each piece of
information is playing a role and does not get overshadowed by the other. In this
experiment we want to analyze the impact of η and τ , as well as how the solutions found
by our algorithm improve along the run. A minor goal for the experiment is to compare
the effect of using the ACS rule with finite diversification parameter q0 vs without, i.e.
q0 = 0, which we also call AS rule (ant system rule) here. We execute ACO with a set of
handpicked parameters on a single instance of NL10.

We use η = ∆f without RCL and fitness scaling, ζmax = 1000 and ζlen = 30. The ant rule
is ACS with the exception of the third experiment, with q0 = 0.8 and ρ = 0.8. We have a
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non-improvement iteration limit ψ of 200. We vary the values of α and β to check the
interaction between the two parameters. We first negate the effect of the pheromone by
setting α = 1 and β = 0. Next, we attempt a balanced setup in which both parameters
are set to 1 using ACS and one using AS. The last experiment is run with α = 0 and
β = 1, to isolate the pheromone information.

In Figure 6.6 we can see how the heuristic information allows us to start from a good
baseline and the pheromone is responsible for the improvement. When we perform our
selection with only one of the two methods, the solution quality is clearly inferior. Among
the parameter setups that we tested, the better and more consistent results were given
by α = 1 and β = 1 with ACS.
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Figure 6.6: Line graphs that show the mean value (orange line, mean solution values over
a batch of ants) and the minimal value (blue line, iteration best ant solution value) for
every iteration on a NL10 instance. We run ACO for 1000 iteration with 20 ants per
batch. Top left: α = 1, β = 0; without any pheromone information, both the mean and
the minimal values are stable across the iterations. Top right: α = 1, β = 1, ACS; when
η and τ are more balanced, the solution quality is better and more stable. The algorithm
reaches a local minimum faster, restarting four times. Bottom left: α = 0, β = 1, AS;
when using AS the solution quality improves over time but not as much as ACS, and
tends to get stuck more easily in local minima. Bottom right: α = 0, β = 1, ACS; when
the heuristic information is absent, the solution quality is very low (the worst of any
other test).
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Table 6.4: Configuration space for irace and raced elite configurations with a budget of
3000 and 5 irace on the best found solutions for the I{8,10,12}

L2 instances over 1000 ACO
iterations. For the description of the parameter see Algorithm 5.1.

.
Nant η α β q0 ρ ψ pbest τfac τup

CI {5, . . . , 100} {∆f,∆g,uniform, f̃ , g̃} [0.0, 3.0] [0.0, 3.0] 0 ∪ [0.1, 0.9] [0.5, 1.0] {50, . . . , 250} [0.0005, 0.5] {0.0, 0.25, . . . , 1.0} {re, gl}

C1 82 ∆f 2.316 1.307 0 0.909 226 0.274 1.0 -

C2 75 ∆f 1.440 0.912 0 0.816 200 0.360 1.0 -

C3 93 ∆f 2.153 1.588 0 0.940 217 0.391 1.0 -

C4 68 ∆f 0.937 0.683 0.482 0.795 69 0.295 1.0 -

C5 90 ∆f 2.198 1.505 0 0.952 227 0.297 1.0 -

6.3.5 Automated Parameter Tuning

Due to complexity of the configuration space of the ACO, we also perform an automated
tuning of the parameters with irace [LIDLP+16] as cross check for our manual tuning.
We train with a budget of at most 3000 runs and 5 iterations with the best found solution
over 1000 ACO iterations as metric. As first training instances we use the random
Euclidean instances I{8,10,12}

L2 , being separate instances from the benchmark instances
from literature. As an exception, we further train specifically on the circular benchmark
set due to their special structure where teams are placed on a circle and are unit distance
away from each other, where is also include weight scaling into the configuration space.

We reduce the configuration beforehand based on our manual tuning, to bias irace towards
what we believe to be more promising regions of its search space. For instance, the
restricted candidate list did not work well together in preliminary tests with ACO, which
we therefore disabled. We set the backjumping length to ζlen = 30 and the backtracking
limit to ζmax = 1000 as tuned before.

The configuration subspaces along with the five elite configurations C1, C2, C3, C4, C5 ∈ CI
and C6, C7, C8 ∈ CCIRC are shown in Table 6.4 and Table 6.5 respectively. We observe
that in the given setting it is beneficial to use ∆f along with a stronger heuristic weight
α then pheromone weight β, which is consistent over all elite configurations. In CI ,
a larger number of ants and the classic selection rule with intensification is preferred
(q0 = 0), except once, whereas in CCIRCI a higher intensification with the ACS rule and
smaller number of ants is selected. Due to the introduced bias, the ACO iteration limit
of 1000, and the neglect for runtime in the parameter search, the tuning needs to be
taken with a grain of salt. Using the ACS rule (finite q0) with fewer ants is faster than a
configuration where more ants are used with the more diverse AS selection rule (q0 = 0).
In the first case, likely due to the intensification and faster convergence, also a smaller
no-improvement limit ψ (around 100), where in a latter it is tuned towards ≥ 200. What
also meets the eye is that in all but one elite configuration we only use the iteration-best
ant for updates, indicating a desire for diversification.
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Table 6.5: Configuration space for irace and raced elite configurations with a budget
of 1400 and 3 irace on the best found solutions for the CIRC instances over 1000 ACO
iterations. For the description of the parameter see Algorithm 5.1

.
Nant η α β q0 ρ ψ pbest τfac τup φmax

Ccirc {5, . . . , 100} {∆f,∆g,uniform, f̃ , g̃} [0.0, 3.0] [0.0, 3.0] 0 ∪ [0.1, 0.9] [0.5, 1.0] {50, . . . , 250} [0.0005, 0.5] {0.0, 0.25, . . . , 1.0} {re, gl} {0, 10, 20, 50, 100, 1000}

C6 25 ∆f 2.384 0.445 0.842 0.77 90 0.181 0.5 re 1000

C7 39 ∆f 1.686 1.151 0.718 0.902 134 0.253 1.0 - 1000

C8 31 ∆f 2.431 0.808 0.701 0.598 87 0.106 1.0 - 0

6.4 Result Comparison
In this section we will compare our ACO approach with other ant approaches state-of-
the-art methods on a small set of instances. We then analyze how the results yielded by
our beam search with CVRP and ACO approach compare to the absolute best values
found in the literature on a big set of popular benchmark instances.

In Table 6.6 we compare our results to the ones obtained by other ACO approaches
from the literature. Namely, our first benchmark method will be the one presented by
Crauwels and Van Oudheusden in [CVO03], where they apply a basic first version of
ACO to TTP with local search and classic backtracking and a two-index pheromone
model. We also compare with the one presented in [CKB07] by Chen et al., in which
they use ACO as a hyper-heuristic. The last benchmark method that we use is the one
presented in [URG09a] by Uthus et al., on which our approach is also partially based.
The latter is the most successful ACO algorithm in the literature. In our ACO-CVRP
approach, we make use of our manually tuned configuration with a runs of 3000 iterations
with 30 ants, with q0 = 0.8, ρ = 0.8, τfac = 0.8, pbest = 0.05, and τup set to restart.
As exception, we use for the CIRC10, CIRC12, and CIRC14 the configuration C6 (see
Table 6.5) which improves the performance on those instances substantially. We use
backjumping with ζmax = 1000 and ζlen = 30, and do not use RCL and weight scaling,
which did not show any beneficial contribution in preliminary tests. The information is
balanced with α = 1 and β = 1, using ∆f as the heuristic function. We restart after 300
iterations with no improvement.

Crauwels and Chen do not state their averages and how much time their approach had
available, so we only report these values for Uthus and our results. We perform our
comparison on NL instances starting to size 4 to 16. Our results are substantially better
then the first two methods, but fall short in comparison to Uthus’s approach, that manages
to outperform us with much shorter running times. We followed this last approach quite
closely in our work, with some crucial differences. The pivotal innovation of our ACO
approach lies in the integration between pheromones and heuristic information: it is
possible that the heuristic information, even though it indubitably gives guidance to the
search, could eventually prevent the pheromone from exploring certain interesting areas
of the search space. Another core difference is Uthus’s usage of a local improvement
method, in particular tabu search. As previously discussed, our ACO converges quite
fast and performs several restarts. A hybridization with a fast local search method would
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Table 6.6: Comparison of our ACO approach with results from the literature on NL
benchmark instances. Our approach used 3000 iterations with 30 ants per iteration here
and a convergence iteration limit of 200. u are the solution lengths, t runtimes in seconds.
20 runs have been performed for AFC-TTP-SHORT and ACO-CVRP.

Crauwels Chen Uthus ACO-CVRP

minu minu minu ū t̃ minu ū t̃

instance

nl4 8276 8276 8276.0 8276.00 10.0 8276.0 8276.00 36.185

nl6 23916 23916 23916.0 23916.00 20.0 23916.0 24042.75 244.760

nl8 40797 40361 39721.0 39785.50 40.0 40739.0 41435.60 594.745

nl10 67871 65168 60399.0 61951.30 80.0 62796.0 64368.25 2053.700

nl12 128909 123752 115871.0 118609.10 160.0 121180.0 122671.00 6685.820

nl14 240445 225169 203205.0 208146.70 320.0 207004.0 214931.30 19589.105

nl16 346530 321037 292214.0 296220.75 640.0 295124.0 304252.20 46512.410

likely be very useful to push through the barrier of a purely constructive ACO, which
was out of scope of our work. Furthermore, we observed for the CIRC10, CIRC12, and
CIRC14 instances that the difference to the best known optimality gap could be halved
by proper parameter meeting, therefore we believe there is still some gain possible.

Finally, in Table 6.7 we show how our approaches perform on each the most popular
feasible instances from the literature, as documented on the RobinX project 5.

The values best l and best u represent, respectively, the best lower bound and the best
found solution in the literature (i.e., upper bound) for the instance. The value of best urel

is calculated as (bestu/best l)− 1, meaning that when the lower bound is equal to the
upper bound, we have an instance solved to optimality, hence an optimality gap of 0. The
results for NL, CIRC and NFL are from Van Hentenryck and Vargados [VHV07], with the
exception of circ14, circ16, and circ18 that come from Frohner et al. [FNR20, FNPR21],
the beam search approach we extend in this thesis. The one for galaxy14 comes from
Langford [Lan10], for galaxy22 they are from Hirano, Abe and Imahori, for galaxy22 from
Goerik et al. [GHKW14], and for galaxy instances with sizes, 12, 16, 18, and 20 from
the related submitted journal paper [FNPR21]. In this test, we use our two approaches.
The first one is beam search with CVRP with beam width of 105 and Gaussian noise
with relative standard deviation 0.001 added to the guiding f -value. Aside from the
noise, further diversification is achieved by randomizing the team ordering in each run.
For our ACO, we use the same parameters described above. We executed 20 parallel,
separate runs for each instance for each one of the two methods. Some of the instances
did not manage to find a feasible solution or incurred into memory problems, namely
three NFL22 instances, two NFL26, six galaxy22 and one galaxy26.

5https://www.sportscheduling.ugent.be/RobinX/travelRepo.php
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We index the results generated by beam search with 1 and the ones generated by ACO
with 2. For i ∈ {1, 2}, min ui is the best solution for the run, ūi is the average and t̄i is
the average time in hours.

The gaps min urel
i are calculated as (min ui/best l)−1 and represent how good of a result

that is in comparison with the lower bound. The gaps ∆minureli are instead comparisons
in respect with the best solution of the literature and it is calculated as the relative gap
difference between best urel and min urel

i .

As anticipated in the previous test, ACO does not perform too well, presenting ∆ min urel
2

of more than 10% on almost every instance, where we conjecture that a hybridization
with a fast local search method is necessary to be competitive. On the other hand,
the performance of beam search with CVRP is comparable to state-of-the-art methods,
managing to keep a ∆ min urel

1 of less than 6% and in the mean of 2.7% for every single
instance.
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6.4. Result Comparison

Table 6.7: Comparison with the best known lower bounds best l and upper bounds best
u from the literature over the CIRC, galaxy, NFL, NL, and Super benchmark sets of our
randomized beam search (20 runs, beam width 1.0 · 105) with random team ordering and
Gaussian noise with relative standard deviation of 0.1% of the root heuristic estimate
guided by the exact CVRPH bound (solution lengths u1) and our best performing ACO
configuration (solution lengths u2).

inst n best l best u best urel min u1 ū1 t̄1[h] min urel
1 [%] ∆ min urel

1 [%] min u2 ū2 t̄2[h] min urel
2 [%] ∆ min urel

2 [%]

nl10 10 59436 59436 0.0 59788.0 60226.2 0.2 0.6 0.6 62536.0 64624.4 0.3 5.2 5.2

nl12 12 108629 110729 1.9 113606.0 114335.6 0.4 4.6 2.6 120462.0 122472.8 0.9 10.9 9.0

nl14 14 183354 188728 2.9 197668.0 201848.7 0.7 7.8 4.9 209079.0 214039.3 2.8 14.0 11.1

nl16 16 249477 261687 4.9 269414.0 275778.5 1.2 8.0 3.1 293127.0 303019.2 6.8 17.5 12.6

nfl16 16 223800 231483 3.4 238410.0 243726.0 1.1 6.5 3.1 261126.0 268710.7 6.7 16.7 13.2

nfl18 18 272834 282258 3.5 296269.0 303252.0 1.7 8.6 5.1 320097.0 342106.1 14.9 17.3 13.9

nfl20 20 316721 332041 4.8 350773.0 359730.0 2.3 10.8 5.9 - - - - -

nfl22 22 378813 402534 6.3 416639.0 426411.2 3.4 10.0 3.7 - - - - -

nfl24 24 431226 463657 7.5 472888.0 487505.3 4.4 9.7 2.1 - - - - -

nfl26 26 495982 536792 8.2 553580.0 570067.2 5.9 11.6 3.4 - - - - -

galaxy10 10 4535 4535 0.0 4590.0 4616.4 0.2 1.2 1.2 4807.0 4965.9 0.2 6.0 6.0

galaxy12 12 7034 7180 2.1 7351.0 7447.3 0.4 4.5 2.4 7984.0 8154.6 0.5 13.5 11.4

galaxy14 14 10255 10879 6.1 11036.0 11188.0 0.7 7.6 1.5 12148.0 12603.5 1.3 18.5 12.4

galaxy16 16 13619 14648 7.6 15062.0 15183.4 1.1 10.6 3.0 16901.0 17401.6 3.2 24.1 16.5

galaxy18 18 19050 20489 7.6 20947.0 21249.8 1.6 10.0 2.4 23639.0 23957.9 6.9 24.1 16.5

galaxy20 20 23738 25818 8.8 26016.0 26538.2 2.3 9.6 0.8 - - - - -

galaxy22 22 31461 33901 7.8 35656.0 35963.9 3.3 13.3 5.6 - - - - -

galaxy24 24 41287 44526 7.8 46318.0 47015.9 4.3 12.2 4.3 - - - - -

galaxy26 26 53802 58968 9.6 61484.0 61884.6 5.9 14.3 4.7 - - - - -

circ10 10 242 242 0.0 244.0 246.6 0.2 0.8 0.8 260.0 266.9 0.3 7.4 7.4

circ12 12 388 404 4.1 416.0 420.4 0.4 7.2 3.1 440.0 451.0 0.9 13.4 9.3

circ14 14 588 628 6.8 638.0 646.1 0.7 8.5 1.7 694.0 738.3 2.2 18.0 11.2

circ16 16 846 910 7.6 924.0 941.5 1.1 9.2 1.7 1160.0 1181.3 1.3 37.1 29.6

circ18 18 1188 1284 8.1 1320.0 1342.4 1.6 11.1 3.0 1644.0 1678.3 2.7 38.4 30.3

circ20 20 1600 1732 8.3 1788.0 1816.3 2.2 11.7 3.5 - - - - -

super10 10 316329 316329 0.0 317593.0 318498.8 0.2 0.4 0.4 323740.0 333936.0 0.5 2.3 2.3

super12 12 453860 460870 1.5 461799.0 467584.2 0.4 1.7 0.2 479476.0 489334.8 1.4 5.6 4.1

super14 14 557354 571632 2.6 578363.0 585190.4 0.7 3.8 1.2 623021.0 649701.6 3.7 11.8 9.2
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CHAPTER 7
Conclusions and Future Work

In this work we investigated on the usage of the capacitated vehicle routing problems
(CVRPs) as a lower bound based heuristic guidance for solving the traveling tournament
problem with constructive approaches. We started by modeling this independent lower
bound for a given TTP state and team as CVRP to be solved either exactly by precalcu-
lation or heuristically on-the-fly with Google OR-Tools [PF]. Based on the state space
formulation as introduced in [FNR20], we proposed and implemented aMAX −MIN
ACO approach to tackle TTP using the independent lower bound as local heuristic for
the ants. We then extended the implementation of a randomized beam search variant to
the TTP, so that it can be used with Google OR-Tools to tackle instances with up to 26
teams. We compare these approaches and the effects of different algorithmic parameters
on artificial instances and on well-known benchmark instances from the literature.

The results for our ant based method were better than some other older or simpler
ant approaches, but still worse than the current best method presented by Uthus et
al. [URG09a]. As discussed in Section 6.4 we followed Uthus’s approach quite closely
with the addition of the heuristic information. The idea behind it is that the heuristic
information should serve as guidance to the ants and direct them towards better areas of
the search space faster, but in practice the results are not as good as expected. A possible
explanation is that the heuristic information is too predominant and after an initial help
prevents the pheromone to explore the search space. Another crucial difference with
Uthus is our lack of local search: some sort of daemon action may be crucial to overcome
the barrier on which ACO stops. Furthermore, our implementation has over twenty five
tunable parameters. This makes the algorithm quite challenging to optimize due to the
sheer amount of possible combinations; specific techniques (e.g., RCL) could give good
results on their own but then not work very well when combined with another technique.
Parameter tuning is a possible area of improvement and could be a focus in future works.
Another natural improvement for our ACO is to hybridize it with a fast local search
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7. Conclusions and Future Work

method, or combine it with beam search, where ants create only the first few rounds of a
solution to be continued by beam search with reasonable beam width.

In contrast to the moderate results of ACO, beam search guided by CVRP based bounds
using Google OR-tools performs comparably to other state-of-the-art methods, reporting
relative gap differences to the best known gaps smaller than 6% and in the mean of 2.7%
on a set of 28 difficult benchmark instances from the literature.
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