

Similarity Searching in
Complex Business Events
and Sequences thereof

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing
eingereicht von

Hannes Obweger

Matrikelnummer 0425962

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuer/Betreuerin: Univ.-Prof. Dipl.-Ing. Dr.techn. Günther Raidl

Wien, 23.03.2009 _______________________ ______________________
 (Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

2

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten Quellen und

Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und

Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf

jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 23.03.2009 Hannes Obweger, Bsc.

3

Abstract

This thesis contributes to the field of complex event-data analysis novel and formally well-founded methods for

similarity searching, both on the level of single events and on the level of sequences of events. As event-based

systems may produce highly diverse data sets, the main focus of our considerations is on highest possible

flexibility. Also, the approaches shall be intelligible to business analysts and, of course, generate meaningful

and intuitive results. Finally, the approaches shall be conceptually independent from concrete Complex Event

Processing solutions and instead build upon abstract and generally accepted definitions of events, event types,

etc.

Our approach on single-event similarity builds upon geometric ideas of similarity, with event attribute values

defining the relative positioning of two events in an n-dimensional space. Thereby, the similarity between two

events is calculated from weighted attribute-level similarities.

The proposed approach on event-sequence similarity outperforms existing approaches by allowing analysts to

consider event-level similarities, order, and relative and absolute temporal structures in a highly flexible

manner. It builds upon an assignment-based understanding of sequence similarity, where each unit of the

pattern sequence is considered either represented by a certain event of the target sequence or missing therein.

Our algorithm finds the best-possible assignment of the target sequence using a Branch & Bound strategy. This

assignment is then used for calculating the similarity between the given sequences.

We conclude this work with a practical evaluation, where we apply the approach on event-sequence similarity

in real-world scenarios from three application domains. We figured out that the algorithm performs excellent

for short and sharp-edged sequences where a majority of events constitute clear and significant characteristics

of the event sequence.

4

General remarks

The on-hand thesis results from a long-term research project on event-based similarity searching and serves as

a basis for further extensions and improvements as presented by Martin Suntinger in his thesis, “Event-Based

Similarity Search and its Application in Business Analytics”.

Content as presented in the following section was elaborated in collaboration with him and can be found in a

more or less equivalent form in his thesis [49]:

• Section 1: Introduction

• Section 7: Application and results

5

Content

1 Introduction .. 8

1.1 Complex Event Processing .. 8

1.2 Similarity searching in historic event data .. 9

1.3 Objectives ... 9

1.3.1 A generic approach on event similarity .. 10

1.3.2 An interest-driven approach ... 10

1.3.3 Leaving control up to the expert ... 10

1.4 Overview ... 11

2 Related Work .. 12

2.1 Similarity between single events .. 12

2.2 Similarity between sequential data .. 12

2.3 Similarity between event sequences .. 13

2.3.1 Simple events in a certain order ... 13

2.3.2 Complex events in a certain order .. 13

2.3.3 Simple events at certain time stamps ... 14

2.3.4 Complex events at certain time stamps ... 14

3 Terms, definitions and notations .. 16

3.1 Similarity ... 16

3.1.1 Similarity measures ... 16

3.1.2 Distance and similarity .. 17

3.1.3 Metrics, pseudo-metrics and similarity-measures in the strict sense .. 17

3.1.4 Certain equality ... 19

3.2 Events ... 19

3.2.1 Event types ... 20

3.2.2 Illustration ... 21

3.3 Event sequences ... 21

3.3.1 Event-sequence signature... 22

3.3.2 Illustration ... 22

4 Technological background ... 24

4.1 The SARI event model ... 24

4.1.1 Event types ... 24

4.1.2 Correlations... 25

4.2 Architectural overview.. 26

4.3 The EventAnalyzer .. 27

4.4 Event Access (EA) expressions .. 28

6

5 Finding similar events ... 30

5.1 Basic considerations and evolving requirements ... 30

5.1.1 An attribute-driven approach ... 30

5.1.2 Requirements to an event-similarity framework .. 30

5.2 A geometric approach on event similarity .. 31

5.2.1 Similarity measures and event types .. 32

5.3 Measuring event similarity ... 33

5.3.1 A basic similarity measure for events ... 33

5.3.2 Weights ... 33

5.3.3 Summary ... 34

5.4 Possible extensions ... 35

5.4.1 Attribute functions .. 35

5.4.2 Required attributes/attribute-functions ... 37

5.4.3 Summary ... 37

5.5 Measuring attribute-level similarities ... 40

5.5.1 Runtime types ... 40

5.5.2 Collections and Dictionaries .. 42

5.5.3 Event types/nested events ... 42

5.5.4 Dealing with null, NaN and infinity ... 43

5.6 Example .. 44

5.6.1 Defining a similarity measure for single events .. 44

5.6.2 Calculating event similarities .. 44

5.7 Discussion ... 46

5.7.1 Pros and cons .. 46

5.7.2 Properties.. 46

5.7.3 Complexity .. 47

6 Finding similar sequences of events .. 48

6.1 Basic considerations and evolving requirements ... 48

6.1.1 The basic dimensions of event-sequence similarity ... 48

6.1.2 Full-sequence-, sub-sequence- and *-linked matching .. 51

6.1.3 Requirements .. 52

6.2 An assignment-based approach on sequence similarity .. 52

6.3 Measuring event-sequence similarity ... 53

6.3.1 Basic terms and concepts ... 54

6.3.2 Assigning costs to solutions .. 57

6.3.3 Compatibilities and valid solutions ... 59

6.3.4 Summary ... 61

6.4 The base algorithm ... 61

6.4.1 Finding all valid solutions .. 61

6.4.2 Calculating the overall costs of solutions .. 64

6.4.3 Branch & Bound .. 67

6.4.4 A restriction to sub-sequence matching ... 69

7

6.5 Cost functions ... 69

6.5.1 Cost-function A: Single-event similarities ... 70

6.5.2 Cost-function B: Order .. 74

6.5.3 Cost-function C: Absolute temporal structure .. 80

6.5.4 Cost-function D: Relative temporal structure ... 84

6.5.5 Similarity measures and event-sequence signatures.. 86

6.6 From sub-sequence matching to full-sequence matching .. 87

6.6.1 Additional characteristics ... 87

6.6.2 Introducing start- and end-events .. 88

6.6.3 Adapted weighting .. 90

6.6.4 A “mainly” consistent approach on matching modes ... 90

6.7 Discussion ... 91

6.7.1 Pros and Cons ... 91

6.7.2 Properties.. 92

6.7.3 Complexity .. 93

7 Application and results ... 95

7.1 C1 - Online gambling: User activity histories .. 95

7.1.1 Objectives and evaluation focus ... 96

7.1.2 C1.a - Order and sub-sequence matching ... 96

7.1.3 C1.c – Order, temporal structures and full-sequence matching ... 98

7.1.4 C1.d - Order and single-event similarities ... 98

7.1.5 Performance summary ... 99

7.2 C2 - Trouble tickets: Change history sequences ... 100

7.2.1 Objectives and evaluation focus ... 101

7.2.2 C2.a – Searching the complete data set for a known event sequence 101

7.2.3 C2.b – Finding reassignment scenarios ... 103

7.2.4 C2.c – Considering alert events and the order of assignments .. 105

7.3 C3 - Credit card transaction: Sequences of purchases.. 106

7.3.1 Objectives and evaluation focus ... 107

7.3.2 C3.a – Data integration and preprocessing ... 107

7.3.3 C3.b – Getting started with the mining process ... 108

7.3.4 C3.c – Finding sequences of purchases ... 108

8 Conclusion and future work .. 111

Index of figures .. 113

Index of tables ... 114

Index of algorithms .. 114

Bibliography ... 115

8

1 Introduction

1.1 Complex Event Processing

Event-based systems and particularly the concept of Complex Event Processing (CEP) [27] have been developed

and used to control business processes with loosely coupled systems. CEP enables monitoring, steering and

optimizing business processes with minimal latency. It facilitates automated, near real-time closed-loop

decision making at an operational level to discover exceptional situations or business opportunities. Typical

application areas are financial market analysis, trading, security, fraud detection, customer relationship

management, logistics like tracking shipments and compliance checks.

In an event-based system, any notable state change in the business environment is captured in the form of an

event. Events are data capsules holding data about the context of the state change in so called event-attributes.

Chains of semantically or temporally correlated events reflect complete business processes, sequences of

customer interactions or any other sequence of related incidents.

Figure 1: The sense and response model
1

Figure 1 illustrates the closed-loop decision processes employed by CEP software. One common conceptual

(business) model is the so-called sense and respond model. Hereby, each cycle consists of five steps: In the

“sense” step, adapters capture input data from the IT landscape of an enterprise (which is a reflection of the

physical business world). Interpretation refers to understanding, transforming, preparing and enriching the

1
 Figure by courtesy of SENACTIVE Inc. [46]

9

data. This step is followed by an analysis step which tries to illuminate the given situation and context. Finally, a

decision can be made and carried out by responding to the business environment. Typically a system of

configurable rules is used for the decision process.

1.2 Similarity searching in historic event data

In addition to the real-time processing, during the past years one requirement has clearly emerged: The

success of event-driven business solutions depends on an ongoing learning process. It is an iterative cycle

including the analysis and interpretation of past processing results and the conversion of them into the event-

processing logic. Analysis tools are required which are tailored to the characteristics of event data to answer

questions like: Where did irregularities occur in my business? Did processes change over time? Which patterns

can be recognized in my business? To answer these questions, the analyst has to be equipped with a whole

range of supporting tools such as extensive retrieval facilities to extract required data sets. Expressive

visualizations are necessary to navigate through event data and recognize recurring patterns and irregularities

that influence the business performance.

For the analysis of historical event data, but also for the operational system, one question is of particular

interest: Having an event or a whole sequence of events on hand, which other entities are similar to this? For

data analysis, answering this question helps for searching the historic data for incidents and event patterns

similar to a known reference pattern. In the operational system, the discovery of similarities can be integrated

into the decision processes for automated system decisions to react in near real-time to certain event patterns.

In addition, it can be used for forecasting of events or process measures based on similar historic incidents.

1.3 Objectives

This thesis contributes to the field of Event Data Warehousing [42] (EDWH)/Complex Event Data Analysis

comprehensive and formally well-founded approaches on similarity searching in historic event data, both on

the level of

• single events, and

• sequences of events.

For the purpose of this thesis, there is no restriction on a certain technique or a certain understanding of

similarity that should underlie our solutions. Yet, the approaches shall be intelligible to business analysts, and,

of course, generate meaningful and somewhat natural results. Also, the approaches shall be conceptually

independent from a concrete CEP solution, and instead build upon abstract and generally accepted definitions

of complex events, complex-event sequences, etc. The concrete prototype implementation, however, shall

build upon SENACTIVE’s InTime [46], one of the most promising CEP frameworks at the time of writing. Finally,

as always for similarity searching and search algorithms in general, computational complexity and performance

are critical issues. Yet, as there is little research done on this topic and the character of the on-hand thesis is a

largely explorative one, we do not claim optimal performance but instead seek to define a solid groundwork for

further optimizations.

In the following, let us define three basic, direction-giving requirements for similarity searching in the context

of CEP. Applied to the on-hand thesis, these requirements are relevant both for single-event- and event-

sequence similarity. Further, topic-specific requirements will be listed in the corresponding sections below.

10

1.3.1 A generic approach on event similarity

Over the past few years, complex event processing has gained more and more importance in several business

domains. Two such domains do not necessarily have much in common: Complex event processing was proven

to be useful in such different business domains as fraud-detection [50][51] and medical care [39]. It is easy to

see that event-based systems may produce highly diverse data sets. Hence, an approach towards event-

similarity that is intended to extend a generic complex event processing framework must not only fulfill the

requirements for one specific domain (and likely fail in all others); it must instead be generic and flexible

enough for any possible set of business events.

It is essential to understand that in the on-hand thesis, we do not aim for a single, all-purpose event-similarity

measure. Yet, we aim to develop a consistent and coherent strategy that allows defining event-similarity

measures among all kinds of complex business events and domain-specific problems.

1.3.2 An interest-driven approach

Today’s real-world business processes are complex entities that execute in socio-economic systems of even

higher complexity. When analyzing such business processes, the analyst always does so with a certain (possibly

vague and imprecise) question in mind, with a certain focus. Some factors and characteristics are emphasized,

while others are considered to be less important or even completely ignored. In complex event processing, an

event represents a state change or action that occurs in a business environment. Consequently, when analyzing

such events and sequences thereof, it always depends on the analyst certain interest whether two events are

assessed to be similar and or not. It is easy to see that there is no single similarity measure for all purposes.

Instead, similarity measures must be designed per interest, per “focus of analysis”.

What we call an “interest-driven approach” on event-similarity supports the detailed and target-oriented

analysis of business events. Especially for complex scenarios that comprise several relevant aspects, it may

come along with quite a large number of similarity measures, though. In order to achieve optimal efficiency, a

framework is required that allows managing event-similarity measures in a quick and straightforward fashion.

1.3.3 Leaving control up to the expert

In the previous section, we have pointed out that a similarity measure for complex events is intrinsically tied to

a certain interest, to a certain point of view. At this point, one might think of a magic black box that takes the

analyst’s interest as input, makes some chattering noises and creates a perfect-fitting similarity measure. Life is

not a walk in the park, though.

We claim that in order to achieve efficient and powerful event-similarity searching, defining a similarity

measure must actively involve the domain expert. Hereby, the domain expert must be granted extensive

control over all relevant aspects of the similarity measure. Such degree of involvement may, of course, be

costly. Yet, we think that in real-world scenarios, only the domain expert himself has sufficient knowledge

about the data’s possibly complex semantics and its unique characteristics. Furthermore, we think that only if

the business analyst knows how a similarity measure works, e.g., by configuring it “by hand”, he or she can

adequately interpret the measure’s results in their certain context, and adapt the similarity measure if

necessary.

11

We have stated that leaving control up to the domain expert allows target-oriented similarity searching even in

complex event data. This may, indeed, be costly. Therefore, a toolkit is required that assists the domain expert

where possible. First of all, it must allow the quick and simple definition of a similarity measure.

1.4 Overview

The on-hand thesis is structured as follows: In section 2, we will discuss related work and give an overview

about the current state of research. In section 3, we will clarify basic terms and define those concepts that form

the base for later considerations. The technological background that underlies our ideas will be presented in

section 4. In section 5, we will present the first key part of this thesis, a distance-based approach on single-

event similarity. The second key part of this thesis, a new, assignment-based approach on event-sequence

similarity, will be presented in section 6. Eventually, we will evaluate our approaches by applying them in real

world-scenarios in section 7. The thesis is concluded by section 8, where we will summarize the most relevant

parts of our work and also present future research topics.

12

2 Related Work

This section discusses related work and gives an overview about the current state of research. The subsections

correspond to single aspects of the on-hand thesis and discuss the according contributions in detail.

2.1 Similarity between single events

Similarity between single, multivariate data objects has attracted much attention in the database domain. The

approaches proposed are of certain interest for our work, since records in a database can be considered being

somehow equivalent to complex events. As a record is of contained in a table of a certain schema and

composed from a number of primitive fields, a complex event is of a certain type and provides a number of

attributes.

Nearest neighbor (NN) searching, or, more generally, top-k searching is a heavily discussed feature. A top-k

search returns the k objects that are nearest, i.e., in a certain sense most similar, to a given query object.

Numerous contributions discuss the efficient handling of such queries in relational database management

systems (RDBMS) [8][13][10]. Since our solution builds upon an existing framework that does not support top-k

searches, we must compare runtime-objects efficiently.

Several database maintenance tasks require record linkage [34][43][20], or record matching. Record linkage is

the task of detecting records that refer to one and the same real-world entity but differ in one or more fields.

One usually assumes two records to be duplicates in the sense of semantic equality if the measured similarity

between them is beyond a certain, domain-dependent threshold. Data cleansing [24] targets the elimination of

such duplicates. The merge/purge problem [18] aims at merging the possibly incomplete and inconsistent

duplicate records yielding one single representation that is as complete and correct as possible.

2.2 Similarity between sequential data

The ability to capture, process and maintain sequential data has been crucial for several business domains for

decades. Recently, the focus has shifted towards gaining knowledge from accumulated sets of sequential data.

Applications come, for instance, from stock market analysis, the medical domain, or voice recognition. Most of

the work that contributes to searching sequential databases deals with exact searches, i.e., searches that

return sequences that are certainly equal to a given query. Yet, several contributions emphasized the demand

for vague queries that focus on finding sequences similar to a given query rather than being certainly equal [4]

[37].

Note that the majority of contributions on sequence similarity treat time-series, i.e., sequences of numeric

values, either single-dimensional [7][52] or multi-dimensional [55]. Our contribution deals with similarity

search in sequences of complex events. Nevertheless, we adopt certain ideas and parts of the domain-specific

terminology.

13

2.3 Similarity between event sequences

Recently, notable attention has been paid on analyzing sequences of events. Though, one must differentiate

between the various understandings of event sequences that underlie the proposed solutions.

In the following sections, we discuss the possible models of event sequences, ranging from rather simple to

complex. The solution proposed in the on-hand thesis is designed to operate on the most complex model.

Though, we decided to discuss existing methods for event-sequence similarity-searching that are suitable for

simpler models. These may not be directly adaptable to work on complex event-sequences, but may reveal

commonalities or alternative - and possibly opposed - viewpoints.

In addition to traditional similarity measures, we pay some attention on the various kinds of pattern matching.

Usually, pattern matching is strict: A sequence of entities matches a certain pattern, or it does not – there’s

nothing in between. Yet, pattern matching can be applied for a certain, admittedly restricted kind of similarity-

search. From a given event sequence, one could evolve a slightly generalized pattern. The resulting set of

matches is then similar to the original sequence – in a certain, previously defined sense. The basic approach

proposed in the on-hand thesis does not apply pattern matching or underlying concepts.

2.3.1 Simple events in a certain order

In simple models, an event is of a certain event type but does not contain any additional information

concerning the corresponding action or state change and its context. Further on, event sequences have a

defined order, while the exact occurrence time of an event and the elapsed time span between two

consecutive events are omitted. Therefore, a so-defined event sequence corresponds to an ordered collection

of discrete values. Applications that build upon the described model come, for instance, from sociology [1][36].

The described event model is somehow simplistic. Though, the analysis of so-defined event sequences allows

utilizing well-discussed algorithms and data structures from the sequence-analysis domain. String comparison

deals with measuring the similarity between sequences of characters [16]. In the bio-informatics domain,

several tools exist that calculate the similarity between DNA or RNA sequences [2]. Regular expressions can be

used to detect event sequences that match a certain pattern [18][36]. Weighted regular expressions [6] assign

costs to each pattern element and may guide the way to flexible and configurable similarity searching in event

sequences at the described level of abstraction. Real-world applications, however, have not yet been

described.

2.3.2 Complex events in a certain order

Some domains require complex events that adequately describe the underlying action or state change, while

the exact temporal relationships between events can be omitted. In such cases, an event sequence

corresponds to an ordered collection of complex data objects. Applications that typically build upon this model

come from the sales domain [5].

Lots of attention has been paid on detecting frequent patterns in so-defined event sequences [5][56]. In the

data mining discipline, one could be interested in analyzing basket data to detect certain chains of product

purchases that appeared frequently. The evolving knowledge could then be used to implement automatic

recommendation systems that do not only provide related products but also take the temporal order of other

customers’ purchases into account.

14

Note that certain equality between so-defined event sequences can be extremely rare. Nevertheless, an

adequate similarity model which is applicable in practice has not yet been published. Complex events often

represent a set of certain entities. Consequently, a relation between event sequences can be defined upon

subset relations between the constituting events.

2.3.3 Simple events at certain time stamps

In some domains, analysts rather focus on the temporal relationships between certain types of events than on

the detailed characteristics of the underlying actions or state changes. Therefore, it is sufficient to use simple

events, i.e., events that are of a certain event type but do not contain additional information. In the described

model, event sequences correspond to time-stamped sequences of discrete values. Applications that build

upon this model come, for instance, from network traffic analysis [34].

Mannila and Ronkainen [31] show an exact approach that calculates the similarity between two so-defined

event sequences by computing the minimal edit distance. The edit distance is a similarity measure well known

in string comparison and reflects the work that is required to transfer one sequence into another. The

proposed measure adapts the move-operations’ cost-function in order to reflect the time span an event was

shifted by in time. Continuing work [34] addresses the rather tricky topic of assigning costs to the various edit

operations and applies the proposed similarity model on telecommunication alarms and WWW page requests.

We adopt some of the basic ideas, but address subsequence searching as well as similarity at the level of single

events.

Mannila and Seppänen [33] follow an approximate approach by generating k-dimensional vectors from event

sequences that serve as “fingerprints”. These fingerprints are calculated from k-dimensional random vectors

that are associated with the occurring event types. Event sequences with similar fingerprints are likely to have

a quite low edit distance. The proposed approach does not attain similarity on the level of events and is again

restricted in comparing event sequences of different length. Hence, it allows the high-performing pre-selection

of potential similarity matches under certain conditions.

A rudimental kind of pattern matching for so-defined event sequences was proposed by Mannila et al. [31]. The

approach is restricted to process temporally short patterns, so called episodes. Asarin et al. [5] introduced

timed regular expressions that extend the regular expressions’ original expressiveness and allow dealing with

time spans between consecutive entities. Presently, applications in analyzing real-world event sequences have

not yet been described.

2.3.4 Complex events at certain time stamps

Tightening competition in various business domains has lead to complex event models that allow gaining

knowledge from both, complex and expressive events and the temporal relations between them. In such

models, an event sequence corresponds to a time-stamped sequence of complex data objects.

15

Little research has been done on analyzing so-defined event sequences. Mannila and Toivonen [30] extended

the rudimental pattern matching approach proposed by Mannila et al. [31] to allow restrictions on event

attributes. Again, patterns are restricted to a small set of events and relatively short time spans. Similarity

measures, by the way, have not been proposed at all.

In the on-hand thesis, we introduce a similarity measure for complex event sequences as described above. The

measure considers both, similarity at the level of single events as well as temporal relationships between them.

The proposed algorithm is highly configurable and can easily be adapted to various business domains.

Furthermore, it allows processing event sequences at a lower level of complexity, such as described in 2.3.1,

2.3.2, and 2.3.3. Specialized algorithms are assumed to perform much better at these levels, though.

16

3 Terms, definitions and notations

In section 2, we have introduced the concepts of similarity and events and event sequences in a pragmatic and

fairly informal fashion. The goal of this section is to fully clarify those concepts, to define according notations

that will be used in the remainder of this thesis, and also to present our idea of illustrating event types, events,

and sequences thereof.

3.1 Similarity

The concept of similarity, describing the perceived degree of resemblance of an entity � to an entity �, is

somewhat inherent to the human mind and should be familiar to readers: More or less implicitly, one assessed

the similarity between faces, ideas, pop songs, etc., in everyday’s life. Musing on the meaning of similarity in

psychology and philosophy, however, is far outside the scope of the on-hand thesis (and, by the way, even

further outside the “scope” of the author); let us end this odyssey with the words of James’ Principles of

Psychology [22]: “This sense of Sameness is the very keel and backbone of our thinking”.

What exactly makes an entity similar to another one solely depends on the certain context, and can, of course,

not be defined in a general manner. In the following, let us therefore introduce those terms and concepts that

allow defining and characterizing the (arithmetic and highly context-specific) measurements of similarity in

mathematics and computer science.

3.1.1 Similarity measures

In computer science, much effort has been spent on calculating meaningful and somewhat “natural”

similarities between however-defined entities. Functions and algorithms that perform such calculation are

usually referred to as similarity-measures, often regardless of the function’s co-domain, and other properties.

In the on-hand thesis, we consider a similarity measure “in the broad sense”
2
 a function or algorithm that

returns values between 0 and 1, with a higher result indicating greater similarity. Formally, it can thus be

defined as follows:

 3

Note that for a similarity measure in the broad sense, we explicitly do not require the property of symmetry:

Given a set of entities �, two entities �, � ∈ � and a similarity measure ���: � × � → �0,1�, �����, �� (the

similarity “of � to �”) is not necessarily equal to �����, �� (the similarity “of � to �”). Therefore, to avoid

ambiguities, we will speak of similarities of target entities to pattern entities in the following.

2
 We will define the term similarity-measure in a strictly mathematical sense in section 3.1.3.

3
 Due to its boundedness, we will consider the interval �0,1� the co-domain for so-defined similarity measures, i.e., given a

set of entities �, we will write ���: � × � → �0,1� instead of ���: � × � → ℝ. We will behave accordingly for all later

definitions of similarity-measures and distance-functions.

Definition: Given a set of entities �, we refer to a function ���: � × � → ℝ as a similarity-measure (in

the broad sense) for � if for all �, � ∈ �

1. 0 ≤ �����, �� ≤ 1

2. �����, �� = 1 if � = �

17

3.1.2 Distance and similarity

A concept that is strongly related to the idea of similarity (and sometimes used more or less synonymously) is

that of distance, or, equivalently, of costs.
4
 So-called geometric similarity-models base upon the idea that a

(possibly conceptual) distance between two entities is inversely related to the perceived similarity between

them: The larger the distance between two entities, the smaller the similarity, and vice versa. Thus, in

accordance with similarity-measures “in the broad sense”, let us define distance-functions “in the broad sense”

as follows:

Working with distances instead of similarities has notable advantages: Often, distance-function arise more or

less directly from the data’s certain characteristics; consider, for instance, the geometric distance between

cities, or the absolute difference between two numbers. Also, calculations may be easier to perform on

distances rather than on similarities. Similarities, on the other hand, are bound to a �0,1�-interval and may thus

be easier to comprehend. A statement such as “� resembles � to a degree of 64%”, for instance, might be more

useful than “The distance between � and � is 1492” in many cases.

It is easy to see that for using the advantages of both concepts, transformations between distances and

similarities are indispensable. Generally, this can be done in a variety of ways. In the on-hand thesis, we will

follow Shepard [46], who proposed an exponential relation:

Given a set of entities � and a similarity-measure ���: � × � → �0,1�, a corresponding distance function �: � × � → ℝ�� is defined as follows:

���, �� = − ln �����, ��

Equivalently, given a distance-measure �: � × � → ℝ��, a corresponding similarity measure ���: � × � →�0,1� is defined as follows:

�����, �� = �����,��

3.1.3 Metrics, pseudo-metrics and similarity-measures in the strict sense

The above definitions of similarity-measures and distance-functions are natural and should be generally

acceptable among all understandings of similarity.
5
 In a strictly mathematical sense, however, more rigorous

4
 When using the term costs instead of distance, one might understand them the costs of reaching � from �, or,

alternatively, the costs of transforming � into �.
5
 Depending on the certain similarity model, very different requirements exist on similarity-measures. A brief introduction

on the most relevant similarity models is given by Suntinger [49].

Definition: Given a set of entities �, we refer to a function �: � × � → ℝ as a distance-function (in the

broad sense) for � if for all �, � ∈ �

1. ���, �� ≥ 0

2. ���, �� = 0 if � = �

18

criteria exist on distance-functions, and, following from that, on similarity-measures. These additional criteria

are valuable when calculating similarities between larger sets of entities.
6

The most rigorous conditions exist on metrics (i.e., on distance-functions in the strict sense):
7

In many cases, condition 2 (i.e., returning a distance of 0 for identical entities only) is too restrictive. We refer

to a distance-function that fulfils conditions 1, 3, and 4 and a less restrictive version of condition 2, 2’, as

pseudometric:

Following from the above definitions, let us now define (strong) similarity-measures in the strict sense and

weak similarity-measures in the strict sense:

6
 Consider, for instance, a distance function �: � × � → ℝ�� fulfilling the triangle-inequality. Here, when searching for all

pairs of entities that are close to each other, calculating a distance between two entities � and !, �, ! ∈ �, can be omitted if

both ���, ��, � ∈ �, and ���, !� are great.
7
Metric and pseudometric are fundamental terms in mathematics. In their notation, however, the according definitions

follow Moen [35].

Definition: Given a set of entities �, we refer to a function ���: � × � → ℝ as a weak similarity measure in

the strict sense for � if for all �, �, ! ∈ �

 1. 0 ≤ �����, �� ≤ 1

 2’. �����, �� = 1 if � = �

 3. �����, �� = �����, ��

 4. if � and � and � and ! are similar then � and ! are also similar

Definition: Given a set of entities �, we refer to a function ���: � × � → ℝ as a (strong) similarity measure

in the strict sense for � if for all �, �, ! ∈ �

 1. 0 ≤ �����, �� ≤ 1

 2. �����, �� = 1 iff � = �

 3. �����, �� = �����, ��

 4. if � and � and � and ! are similar then � and ! are also similar

Definition: Given a set of entities �, we refer to a function �: � × � → ℝ as a pseudometric for � if for all �, �, ! ∈ �

 1. ���, �� ≥ 0

 2’. ���, �� = 0 if � = �

 3. ���, �� = ���, ��

 4. ���, !� ≤ ���, �� + ���, ��

Definition: Given a set of entities �, we refer to a function �: � × � → ℝ as a metric for � if for all �, �, ! ∈ �

1. ���, �� ≥ 0

2. ���, �� = 0 iff � = �

3. ���, �� = ���, ��

4. ���, !� ≤ ���, �� + ���, ��

19

3.1.4 Certain equality

We have stated that with both similarity-measures in the broad sense and weak similarity-measures in the strict

sense, pairs of non-equal entities may result in a similarity of 1. Yet, it is essential to differentiate between

“traditional” equality and non-equality (“� = �”, “� ≠ �”), and absolute similarity (i.e., a similarity of 1) and

absolute dissimilarity (i.e., a similarity of 0). We therefore opted for a separate terminology, defined following

Monge and Elkan [36]:

3.2 Events

The term “event” is heavily used in computer science and has more or less different meanings across the

various domains and contexts it is appears in. In this section, we seek to give a brief introduction on events in

the context of Complex Event Processing (CEP); in the literature, such events are often referred to as complex

events.

A commonly used definition of events in the context of CEP comes from Luckham’s standard work on CEP, The

Power of Events [27]:

An event is an object that is a record of an activity in a system. The event signified the

activity. An event may be related to other events. [27]

From that rather general starting point, let us go into more detail on the certain characteristics of complex

events: Rozsnyai [40], listing a good many definitions from various domains, derives the following definitions:

Definition 1: Events are defined as observable actions or relevant state changes that

can be absorbed by IT systems.

Definition 2: Events can be decomposed to several causally related events. Several

events can be aggregated to high level events.

Definition 3: Events mark a specific point in time or in an aggregated form the

timespan of an activity. [40]

As aggregated events (composed events, high-level events) are out of the scope of the on-hand thesis, we skip

Definition 2 (and narrow Definition 3) of Rozsnyai’s congregation, and instead assume atomicity as suggested

by Zimmer and Unland [57], among others.

Definition: Events…

• are defined as observable actions or relevant state changes that can be absorbed by IT systems,

• are atomic, i.e., they cannot be further dismantled and happens completely or not at all, and

• mark a specific point in time.

Definition: Given a similarity-measure ���: � × � → �0,1�, we refer to two entities � and �, �, � ∈ �, as

certainly equal with respect to ��� if �����, �� = 1. We refer to � and � as certainly unequal with respect

to ��� if �����, �� = 0.

20

Thus, from a computation point of view, we consider an event an immutable entity that describes a state-

change or action, together with the context that state-change or action occurs in, through publicly available,

named and strongly-typed properties - the so-called event attributes. The certain set of event-attributes that

are available for a certain event, of course, fully depends on the context, on the certain meaning of that event;

hence, the only event-attribute that must be available across all events is the time of occurrence.

It is easy to see that the described understanding of events is in general accordance with the concept of objects

in modern object-oriented programming languages such as C# or Java: An event can be considered an object

meeting according constraints. From a computation point of view, we therefore build upon the following

understanding of events:

As the time of occurrence must be available for each so-defined event, we can define the time span between

two events regardless of the events’ actual form.

We will use the above notations, i.e., $%: & → ℝ� for addressing the time of occurrence of an event and & for

addressing the set of all so-defined events, throughout the on-hand thesis. More generally, we will address the

value of an attribute � of type ' in an event � through a function $�: & → ', i.e., through $����.

3.2.1 Event types

Event types define the structure, i.e., the set of event attributes, of a certain class of events, both in its syntax

and (more or less explicitly) in its semantics. As each event must be an instance of a certain event type, event

types relate to the concept of classes in OOP as events relate to objects.

Formally, we understand an event type (a set of tuples (=)��*, '*�, ��+, '+�, … , ��- , '-�., with �/ being the

name and '/ being the domain of the �th
 event attribute defined in (. With 0 denoting the set of all so-defined

event types, we address the event type of an event � through a function 123�45: & → 0, i.e., through 123�45���.

Event models may also implement the concept of subtyping for event types. As in this respect, event types can

be considered equivalent to classes, we will not go into further detail here. Yet, if event types (and 6 are in a

(however-specified) subtype-relationship, with (being the subtype of 6 and 6 being the supertype of (, we

write (<: 6.

Definition: An event type defines the structure of a class of events. The structure of an event is

represented by a collection of event attributes. Each event is an instance of exactly one event type.

Definition: Let & denote the set of events, and let a function $%: & → ℝ� address the time of occurrence of

an event. Given two events � and 5, we refer to the result of a function 1: & × & → ℝ, 1��, 5� = $%�5� −$%���, as the (absolute) time span between � and 5.

Definition: An event is an immutable object, providing its time of occurrence and other, context-

dependent information about the represented state-change/action and the context that occurs in through

- and only through - publicly available fields. We refer to the fields of an event as event-attributes.

21

3.2.2 Illustration

Throughout the following chapters, we will depict both events and event types as rectangular nodes,

horizontally separated into a header and a body area.

For events, the header shows a (locally unique) label that allows addressing the represented event throughout

the certain context, as well as its type’s name in squared brackets. The body lists the according event

attributes’ labels, together with their values. For event types, the header shows the name of the represented

event type. Here, the body lists the defined event attributes’ labels, together with their data types in squared

brackets. Figure 2 below shows exemplary illustrations an event � and its event type 8.

Figure 2: Illustrating events and event types

In both cases, equally colored headers indicate equal event types. Also, event attributes that are irrelevant in

the given context may be omitted.

3.3 Event sequences

We have stated that an event represents a single action or state-change that occurs in a business environment.

Complex happenings in such business environment, such as business-process instances, etc., thus result in

amounts of related, successive events. We refer to such collections of events as event sequences:

8

In various contexts, one might be interested in the “extent” of a certain event-sequence. We distinguish

between the size and the length of a solution:

8
 We assume unique time stamps for the sake of simplicity, in order to ensure a defined temporal order of events. In real-

world scenarios, however, several events may occur in one and the same time stamp: Here, one can establish a unique

order by taking another unique attribute, e.g., a unique ID, into account.

Definition: Given an event sequence 6 = ��*, �+, … , �9�, we refer to a sequence 6: = ��-, �-�*, … , �;� with < ≥ 1, = ≤ > and < < = as a sub-sequence of 6, 6′ ⊆ 6.

Definition: Given an event sequence 6 and an event � ∈ 6, we refer to the result of a function 3A���, 6� =|)5|5 ∈ 6, $%�5� ≤ $%���.|, i.e., the number of events in 6 with a time of occurrence smaller than or equal

to �, as the position of � in 6. Hence, we refer to an event � ∈ 6 with 3A���, 6� = � as the �th
 event in 6.

Definition: An event sequence 6 is a list of events ordered by their times of occurrence, i.e., 6 =��*, �+, … , �9�, where v%��/� < v%��/�*� ∀� = 1, … , > − 1.

22

Finally, let us specify some relations between events of an event-sequence:

3.3.1 Event-sequence signature

Listing the according event types instead of concrete events allows viewing event sequences from a much

higher level of abstraction. Particularly relevant for event-sequence similarity-measures as proposed in section

6, we refer to such construct as event-sequence signature:

In the following, we will address the signature of an event-sequence 6 through a function ��E>�1FG�45�6�. As

usual, we will address the size of a signature H, i.e., the number of event types in H, through |H|.
As solely build upon event types, an “�� �” relationship between event-sequence signatures can be defined

from subtype-relationships between comprised event types:

3.3.2 Illustration

Throughout the following chapters, we will depict an event sequence 6 as follows: Along a horizontal time axis,

we draw nodes representing the single events in 6. Unless otherwise stated, the vertical position (from the left

to the right) of a certain node corresponds to the according event’s position in 6, but says nothing about the

event’s exact occurrence time.

Definition: Given two event-sequence signatures H and J, with (/ addressing the �th
 event type in H and K/ addressing the �th

 event type in J, H �� � J if |H| = |J| and (L < : KL ∀ M = 1 … |H|.

Definition: Given an event-sequence 6, with �/ addressing the �th
 event in 6, we refer to a sequence of

event types H, H = �(*, (+, … , (N�, (L = 123�45O�LP ∀ j = 1 … |6|, as the signature of 6.

Definition: Given an event sequence 6 and two events �, 5R6, we refer to the result of a function 1S��, 5, 6� = TU�V��TU�W�;�X� as the relative time span between � and 5 in 6.

Definition: Given an event sequence 6 and two events �, 5R6, we refer to the result of a function ���, 5, 6� = 3A��5, 6� − 3A���, 6� as the distance between � and 5 in 6. In the case that ���, 5, 6� = 1, we

refer to � and 5 as successive in 6.

Definition: Given an event sequence 6 with �/ addressing the �th
 event in 6, we refer to the result of a

function =�6� = $%O�|X|P − $%��*� as the length of 6.

Definition: Given an event sequence 6, we refer to the number of events in 6 as the size of 6. We address

the size of an event sequence 6 through |6|.

23

In scenarios where event-attributes are irrelevant, we illustrate single events as circles. If available, the label

inside a node displays a (locally unique) name that allows addressing the corresponding event throughout the

certain context.
9
 Figure 3 below shows an exemplary illustration of an event sequence 6 = ��, 5, E, ℎ�:

Figure 3: Illustrating event sequence, hiding event attributes

Otherwise, in scenarios where event-attributes are relevant, we illustrate single events as presented in section

3.2.2. Figure 4 below shows an exemplary illustration of 6:

Figure 4: Illustrating event sequence, showing event attributes

In both cases, equally colored nodes indicate equal event types.

9
 For the sake of comprehensibility, we often use names that refer to the certain event’s type. In such case, we refer to the

earliest event of a type � as �* (or, alternatively, ��), to the second earliest as �+ (��), etc.

24

4 Technological background

Before reaching the key parts of our thesis - approaches on single-event- and event-sequence similarity - let us

take a look at the technological background our considerations build upon: Originally, the proposed algorithms

were designed to work as a complement of SENACTIVE InTime [46]. The InTime product suite is one of the most

promising CEP solutions and was awarded “innovative, impactful and intriguing” in Gartner’s Cool Vendor

Report 2008 [16]. In section 4.1, we will describe the SARI event model that underlies InTime and, following

from that, our implementations of the proposed algorithms. InTime’s basic architecture will be presented in

section 4.2. In section 4.3, we will present InTime’s most prominent analytical application and also the

framework for similarity searching, the SENACTIVE EventAnalyzer. Event Access (EA) expressions, used for

accessing events throughout SENACTIVE’s product line on event processing, will finally be presented in section

4.4.

Always keep in mind, however, that from a conceptual point of view, the proposed approaches on event

similarity are independent from the concrete CEP application, but instead build upon events, event types and

event-sequences as defined in section 3 above.

4.1 The SARI event model

Various event models have been proposed in the literature, with complexity ranging from trivial to

sophisticate. SENACTIVE InTime, according applications and also our implementations of the proposed

approaches on similarity searching build upon the SARI (“sense and response infrastructure”) event model

which originally proposed by Schiefer and Scheufert [44] and described in more detail by Rozsnyai et al. [40].

4.1.1 Event types

Figure 5 shows the essential parts of SARI’s event-type model: An event type can inherit from a more general

“super event-type”. Each event type contains an arbitrary number of event attributes. Hereby, each event

attribute corresponds to an event attribute type. Possible attribute types are single-value types, collection

types, and dictionary types. A single-value type can either be a base runtime type, such as a string, an integer,

etc., or another event type. Attributes of another event type we refer to as nested events. Runtime types,

however, are the lowest-level attribute types.

Figure 6 shows an exemplary implementation of the SARI event model. Here, a base TransportEvent has the

runtime-type attributes TransportAmount and Destination. From the base TransportEvent, two event types

inherit: TransportStarted and TransportEnded. TransportStarted extends the base event type by three runtime-

type attributes. TransportEnded adds a runtime-type attribute RecipientID and a nested event StartEvent of

type TransportStarted.

25

Figure 5: The SARI event type model [41]

Figure 6: An exemplary implementation of the SARI event type model

4.1.2 Correlations

In many cases, single events have a certain context and are semantically related to other events: A TaskStarted-

event, for instance, is probably semantically related to a TaskCompleted-event with the same task identifier. In

SARI, correlations [45] are sequences of semantically related events. Correlation sets are user-defined template

definitions for how “relatedness” is identified. The correlation set defines tuples of attributes whose values

must match in order for events to correlate.

Figure 7 provides an example of a correlation set. Several events of different event types are correlated to a

coherent sequence if the value of the attribute Username matches. Such a correlation is not limited to a single

event attribute, but can be defined based on multiple attributes. The red items are a group of matching tuples,

each matching each other event type. Also, the order of the events occurring is not decisive. In case of a cash-in

event occurring first and a cash-out event occurring second, these events will also be correlated. A sequence of

correlated events may contain an arbitrary number of events of each event type. Thus, an event sequence

based on the above correlation set may contain, for instance, ten BetPlaced- and two CashOut-events.

26

Figure 7: An exemplary correlation set definition

As detected in the underlying event-processing logic and stored in the data repository, correlations form a set

of “pre-defined” event sequences in analytical applications. For our implementation of event-sequence

similarity, they therefore serve as a starting point for the definition of pattern sequences and also as a basic

“universe” for event-sequence similarity-searching. Note, however, that generally, our implementation is fully

independent from the concept of correlations and instead could be applied to any other kind of event-

sequence.

4.2 Architectural overview

In an upcoming paper [42], we outline SARI’s overall architecture as shown in Figure 8 and describe it as

follows:

“The bottom of the figure shows source systems (i.e., the event producing components) continuously generate

event notifications. The Sense Layer represents the adapters of SARI that can be docked to the event producing

systems or the communication infrastructure. The adapters can gather events in either a push or pull process

and propagate them into the event processing realms.

The internal communication infrastructure uses an event bus for publishing the received events to the event

processing models. SARI uses sockets as a generic interface for sending and receiving events to and from event

processing models. The processing of event streams is performed in event processing maps where the event

processing flow is modelled with various components according to the business requirements. For the event

data storage, SARI uses sockets for “forwarding” event data to the database. In other words, users can define

for any type of socket, whether the received events of the socket should be stored in the database.

The EventBase extends SARI’s event processing model with an efficient up-to-date operational storage

together with retrieval mechanisms for business events for analytical as well as operational purposes. [...] The

core access component of the EventBase is a query engine supporting SARI-SQL. It is set on top of the

EventBase data repository and exposes its services through programming interfaces and a graphical user

interface. “

27

Figure 8: Architectural overview [42]

Event-similarity searching as proposed in the on-hand thesis was intended to set up on SARI’s Event Data

Warehouse implementation, the EventBase, and to retrieve event data via the afore-said programming

interface. As event-similarity unleashes its full value in combination with tailored query mechanisms, event

data visualizations etc., we decided to integrate our implementations into the first grown-to-maturity,

EventBase-based analysis framework, the EventAnalyzer.

4.3 The EventAnalyzer

The SENACTIVE EventAnalyzer
TM

 is a business intelligence tool built on top of the EventBase and the most

successful analytical application in SENACTIVE’s product line. It allows the user to query the event data and

generate interactive graphical views of events. Its major components are a search and query module, the

patented event tunnel visualization looking into the historic events like a cylinder, event charts, several

configuration parameters for the visualizations such as colors mapping, size mapping, shape mapping and

positioning of data points and utilities such as a snapshot functionality to capture analysis results and create

ready-to-use view templates or a details view to browse all attribute values of an event. Figure 9 below shows a

view of the EventAnalyzer with some of the named modules. For further information on the visualizations

provided by the EventAnalyzer, the interested reader may refer to Suntinger et al. [50].

28

Figure 9: The SENACTIVE EventAnalyzer

Together with diverse extensions, we implemented the proposed approaches on event-similarity as extensions

of the Event Analyzer: From a given (single) event or a given correlation, the business analyst may either start a

similarity search directly or derive a pattern differing from the original entity. For more details on the

integration of the proposed algorithms into the EventAnalyzer, the pattern editor and the visual presentation

of calculated similarities, the reader may refer to Suntinger [49].

4.4 Event Access (EA) expressions

Throughout SENACTIVE’s product line-up on complex event processing, accessing events and sets thereof plays

a central role in various features and tasks; consider, for instance, the EventAnalyzer’s color-coding feature,

where historic events are colored based upon certain event-attribute values. Event access (EA) expressions

have been developed in order to gain such access through an easy to understand syntax. Following a simple

and intuitive notation, they allow performing arbitrary calculations on single events, possibly comprising one or

more event attributes, and also complex operations on sets of events.

Digging deeply into EA expressions’ theoretic background and their exact syntax, however, is far out of the

scope of the on-hand thesis, and so is much of their functionality and power. We will therefore restrict our

discussion on EA expression to those (in fact, very basic) aspects that are relevant for calculating similarity

between single events. For a more detailed description of EA expressions, the interested reader is referred to

Rozsnyai [40].

29

The simplest EA expression is of the form EventType.SingleValueAttribute and addresses a single-value event

attribute.
10

 Applied to an event of type EventType, it returns the event’s certain SingleValueAttribute-value.

The dot-notation also allows addressing event-type attributes (a.k.a. nested events) recursively: An expression

EventType.EventTypeAttribute.SingleValueAttribute addresses the SingleValueAttribute of a nested event

EventTypeAttribute. Furthermore, EA expressions gain access to collection- and dictionary-typed event

attributes: A certain element of a collection can be accessed through EventType.CollectionAttribute[i], where �

is the index of the requested element. Similarly, elements of a dictionary can be accessed through

EventType.DictionaryAttribute[key].

Finally, note that EA expressions are non-destructive; access to an event through an EA expression is always

read-only and does not allow altering an event’s attribute values. Furthermore, EA expressions are strongly

typed, i.e., an EA expression’s return type is known a-priori. These two characteristics play a central role in

single-event similarity-searching and will be referred to in section 5.4.1.

10

 If explicitly declared for a certain event type, referring to this type can be omitted. For sake of simplicity, we will presume

such explicit declaration in the following sections.

Example: Consider an event � of event type TransportEnded as shown below.

Table 1 lists a few exemplary EA expressions defined for event type TransportEnded and their results if

applied on �.

EA expression Result for Z

Location “Brussels”

Location = “Brussels” true

Amount / 1000 1.2

TransportID + Amount 1301621

StartEvent.Location “Vienna”

OccurrenceTime – StartEvent.OccurenceTime 99h, 29m, 45s, 880millis

Table 1: Exemplary EA expressions and results thereof

30

5 Finding similar events

After successfully clarifying the basic terminology and the technical background that underlies our

considerations, let us now continue to the first key part of the on-hand thesis: Finding similar (single) events.

Both functional and valuable on its own, the proposed approach will play a central role in the subsequent,

second key part of the on-hand thesis, similarity searching for sequences of events.

In section 5.1, we will present basic considerations on event similarity and summarize evolving requirements.

In section 5.2, we will demonstrate underlying ideas with a simple example. Concepts derived therein will be

formalized in section 5.3, where a basic approach on event-similarity will be presented. The basic approach will

be further extended in section 5.4. In section 5.5, we will discuss the most relevant attribute-level similarities.

For a more practical understanding, we will present a real-world example in section 5.6. Finally, in section 5.7,

we will summarize the pros and cons of the proposed algorithm and also take a look on its properties and its

computational complexity.

5.1 Basic considerations and evolving requirements

In section 1.3, we have listed three general demands on similarity searching in event spaces. In this section, let

us discuss one further aspect specific to single-event similarity-searching, and, finally, summarize evolving

requirements.

5.1.1 An attribute-driven approach

In order to outperform purely subjective (and, in fact, arbitrary) assessments, a comprehensible similarity

measure must be based upon objectively given, measurable properties and features. This simple and intuitive

rule holds for any kind of complex entity, be it geometric shapes, apples, pears, Bob Dylan songs - or complex

events.

When talking about “objectively given properties” of an event, one will immediately think of event attributes as

discussed in section 3.2. There are, however, other objectively given characteristics that are usually not

accessible through event attributes; consider, for instance, an event’s size in memory. Yet, one major aspect of

the complex event processing paradigm is a shift from a more technical to a more business-oriented

perspective on business intelligence: For a business analyst, an event represents a certain state change or

action in a business process, with event attributes describing it in detail. Technical issues are out of his or her

scope. As a consequence, we decided to restrict the set of possibly relevant characteristics to event attributes.

Following the motto “Whatever makes up an event should be accessible through its event attributes”, this

approach abstracts from the concrete implementation and allows focusing on the content of the data. Event

similarity becomes a toolkit for business analysts. Also, in the rather uncommon case that “purely technical”

characteristics shall be part of a similarity measure, an additional attribute can be defined and set accordingly

in the event processing logic.

5.1.2 Requirements to an event-similarity framework

From the above discussion and the preliminary notes on similarity searching, we derive the following

requirements:

31

1. An approach on event similarity should be generic and flexible enough to apply for all possible kinds of

business events, and all possible business scenarios these events are generated in.

2. The similarity between two events solely depends on event attributes.

3. A similarity measure is always defined based upon a certain interest.

4. A similarity measure is always defined under the active involvement of the domain-expert.

5. A framework for event-similarity allows both defining and managing similarity-measures in a quick and

straightforward fashion.

5.2 A geometric approach on event similarity

Due to its specific structure, an event can easily be considered a point in an >-dimensional space, with each

dimension corresponding to a certain event attribute. For such data, geometric understandings of similarity

where proven useful. Yet, as an event may contain non-numeric attributes, the distance between two such

points is not “naturally” given.
 11

In order to calculate the relative positioning of two events, we therefore consider an additional “layer of

abstraction” and let an expert (i.e., someone that knows about the events’ semantics) define a distance-

function for each event attribute considered relevant. These functions are then applied on the two events’

attribute-values:

By introducing distance functions, the relative positioning of two events in an >-dimensional space is uniquely

defined. Calculating an overall distance between two such points is trivial; distance metrics such as the city

block distance or the Euclidean distance are well-known and easy to understand.

11

 In fact, even for numeric attributes, a variety of distance measures are possible. A few approaches are discussed section

5.5.1.3.

Example: Consider two events � and 5 as shown below.

For positioning � and 5 in a 2-dimensional space, let us use the (algebraic) difference and the Levenstein

distance [26] for � and [, respectively.

32

Yet, we should keep in mind that distance functions as defined in section 3.1.2 may return infinite for certainly

unequal values; consider, for instance, a distance function for Boolean values. This implies, however, that in

such case, the distance between two events is infinite regardless of all the other attributes’ distances. Clearly,

this conflicts with common expectations. Attribute-level distance measures must therefore be bound to a

certain range, as, for instance, 0 and 1. As discussed in section 3.1.1, such binding is implied when using

similarity measures instead of distance functions.

Again, consider two points in an >-dimensional space, each representing an event. The two points’ relative

positioning is now defined with respect to a set of similarity measures, each returning a value in the �0,1�-

interval.

Here, the overall set of attribute-level similarities corresponds to the “geometric closeness” of two points in an > -dimension space. An overall closeness, i.e., an overall event-similarity, can now be calculated in a

straightforward fashion; one could, for instance, compute the average attribute similarity.

5.2.1 Similarity measures and event types

Event similarity as shown in the above section comprises some or all of the compared events’ attributes. This

leads to a fairly intuitive conclusion: A similarity measure is always bound to a certain set of event attributes.

These event attributes must be available in order to successfully apply the similarity measure. Consider, for

instance, a similarity measure that comprises an event attribute that holds the location where the event was

originally created: The similarity measure will hardly yield meaningful results if applied to a pair of events that

simply do not contain such an attribute.

In the event model that underlies our solution, such sets of event attributes can be defined through event

types. Each event implementing a certain event type provides the event attributes declared therein, each

having the defined name and being of the defined type. Therefore, in order to “take a walk on the (type-)safe

side”, one could bind each similarity measure to a certain event type. A similarity measure for event type (, for

instance, is then restricted to the event attributes declared in (, and can only be applied to events of (or of

subtypes of (.

In our approach, we opted for such bindings: Event similarity becomes type-safe.

Example: Consider two events � and 5 as shown in the previous example. � and 5 shall now be positioned

according to similarities calculated with a Levenstein-based similarity and the relative absolute difference

similarity (see section 5.5.1.3):

33

5.3 Measuring event similarity

Let us now formalize the above-presented, distance-based approach on single-event similarity:

5.3.1 A basic similarity measure for events

Consider an event type (defining > event attributes, and let �/ and '/ address the name and the type of the � th
 event attribute in (. We now let the user define a collection of attribute-level similarity-measures ���*, ���+, … , ���9 with ���/: '/ × '/ → �0,1� ∀ � = 1 … >, i.e., one similarity measure per event attribute

defined in (. Also, we let the user define an aggregation function 5: �0,1�9 → �0,1� that allows calculating an

overall similarity from > attribute-level similarities.

A basic similarity measure ���: (× (→ �0,1� on events of type (is then defined as follows:

�����, 5� = 5 \����] ^$�]���, $�]�5�_ , … , ����` ^$�`���, $�`�5�_a

The similarity between two events is thus calculated from the attribute-level similarities that exist between

according attribute-values of the compared events.

It is easy to see that selecting appropriate attribute-level similarity-measures is the decisive step in defining an

event-level similarity-measure: By declaring which values are assessed to be similar and which are not, one

“formalizes” the semantics that underlie an event attribute. We have already stated that defining a similarity-

measure for complex events must involve the domain expert; at this point, this should become apparent: Only

the domain expert can decide how similar “4” is to “7” with respect to a certain event attribute, defined in a

certain event type, used in a certain business domain.

5.3.2 Weights

Configured adequately, the present definition of a similarity measure yields meaningful results for any kind of

business events. Note, however, that each event attribute has an equal impact on the overall event-similarity.

This clearly conflicts with the idea of a flexible and generic approach on event similarity. With different

questions in mind, business analysts will assess one and the same event attribute to be essential on one day

and of little importance, or even irrelevant, on another.

In section 5.2, we have stated that our approach is based upon geometric ideas on similarity. When considering

pairs of events as points in an >-dimension space in a relative positioning to each other, it becomes obvious

that each dimension - event attribute, respectively - could be scaled by a distinct scale factor.

Again, consider an event type (defining > event attributes, and let �/ and '/ address the name and the type of

the �th
 event attribute in (. In addition to attribute-level similarity-measures, we now let the user define a

collection of weights b*, b+, … , b9 with b/ ∈ �0,1� ∀ � = 1 … > and ∑ b/9Ld* = 1 (i.e., summing to unity), with bL defining the impact of �L on the overall similarity between two events.

34

With an extended aggregation function 5: �0,1�9 × �0,1�9 → �0,1� that allows taking weights into account,
12

 a

weighted similarity-measure ���e: (× (→ �0,1� on events of type (is then defined as follows:

���e��, 5� = 5 ^���* ^$�]���, $�]�5�_ , … , ���9 ^$�`���, $�`�5�_ , b*, … , b9_

5.3.3 Summary

Let us recapitulate our approach on single-event similarity presented thus far: Given an event type (defining > event attributes, with �/ and '/ addressing the name and the type of the �th
 event attribute in (, configuring

a similarity-measure on single-events can be considered defining a 3-tuple

f6, g, 5h,
where

• 6 is a collection of attribute-level similarity-measures ���*, ���+, … , ���9 with ���/ : '/ × '/ →�0,1� ∀ � = 1 … >; each in accordance with the certain semantics of the corresponding event attribute,

• g is a collection of weights b*, b+, … , b9 with b/ ∈ �0,1�∀ � = 1 … > and ∑ bL9Ld* = 1; each defining

the impact of the corresponding event attribute on the similarity between two events, and

• 5 is an aggregation function 5: �0,1�9 × �0,1�9 → �0,1�.

In order to overcome some abstractness, allow us to anticipate some attribute similarity measures in the

following example. The attribute similarity measures which will be discussed in detail in section 5.5.

12

 In our implementation, we use the weighted average originally proposed by Gowser [19]. As the name implies, it

calculates the weighted average of the attribute-level similarities:

5e�O��*, �+, … , �9�, �b*, b+, … , b9�P = i��/ ∗ b*�9
/d*

The weighted average is a highly intuitive and should be appropriate in most cases. Dey et al. [12], however, point out that

the distance between complex entities can be calculated in a variety of ways. In real-world scenarios, one usually chooses a

metric from the Minkowski family of metrics, from which the weighted average is the simplest case.

Example: Consider an event type TransportEvent as shown in Figure 6. The business analyst wants to

define a similarity measure that takes the event attributes TransportID, Location and Amount into account.

Based upon both the business analyst’s interest and the data’s semantics, the business analyst chooses

similarity measures and weights as shown in Table 2.

Event attribute Similarity measure Weight

TransportID Lookup table similarity for numeric values 0.4

Location Lookup table similarity for strings 0.3

Amount Normalized absolute difference 0.3

Table 2: Exemplary attribute-level similarity-measures and weights

The two remaining attributes, GUID and OccurrenceTime, are not taken into account and weighted by zero.

35

5.4 Possible extensions

An approach on single-event similarity as presented thus far should be flexible enough for covering a wide

range of business scenarios and problems. Yet, we found out that in practice, business analysts may require

(apparently specific) features and options that exceed the original expressiveness. Unlike the above-presented

“building blocks” of a similarity-measure, however, according configurations are not required for a similarity-

measure to work; we thus understand them as possible extensions to a functional base approach. In the on-

hand section, we will present two extensions - attribute functions and required attributes – and, finally,

summarize the resulting “full-featured” approach on single-event similarity.

Unless otherwise stated, the full-featured approach as summarized in section 5.4.3 is assumed throughout the

following sections.

5.4.1 Attribute functions

By handling each event attribute separately and completely independently from all others, the present

approach results in surprisingly simple similarity-measures even for complex events. It is, however, not possible

to comprise “event-internal” relations between attributes, such as, for instance, the difference between two

numeric attributes A and B. Hence, a business analyst cannot assess two events to be similar if in both events,

two or more attributes are in a “similar” relation to each other. Consider the following example:

In order to address such issues, we decided to extend the original approach by providing a mechanism that

allows performing arbitrary calculations on the event attributes of events. Before going into details, however,

let us define the concept of attribute functions on a given event type (:

13, 14

13

 The stated conditions are implicitly given for functions in a strictly mathematical sense. In practice, however, attribute

functions may be implemented in languages that allow both the definition of non-typed functions and modifying event

data.

Definition: Given an event type (⊆ & and a set of supported return types k, we refer to a function 5: (→ ', ' ∈ k, as attribute function if

1. 5 is strongly typed, i.e., the type of its output must be known a-priori, and

2. 5 is non-destructive, i.e., it does not alter the event’s state.

Example: TransportEnded-events contain information about a transport’s start- and end-time, among

others. To avoid redundancies, the application designer decided not to implement a distinct attribute

holding a transport’s duration.

A business analyst may now be interested in transports that are of a similar duration, certainly

independent from a transport’s certain start time. Intuitively, one would suggest considering both the

event’s start-time attribute and the event’s end-time attribute, e.g., by weighting them equally. This

approach fails, however, as it clearly considers the transport’s actual time of execution instead of its

duration only.

36

With a so-defined attribute-function, a user can access any given relation between the attributes of an event.

He or she may, for instance, calculate the difference between two numeric attributes, or concatenate two

strings. Thus, in telling us “something” about the underlying state-change or action, attribute functions can be

considered somewhat equivalent to “ordinary” event attributes.

An intuitive consequence is that of treating attribute functions in the same way as event attributes, i.e., to

allow taking them into account for event-similarity. Let us go one step further: Elementary attribute-functions

simply return a certain event-attribute’s value. Taking such functions into account for event-level similarity is

thus equivalent to comprising the according event-attributes themselves.

Hence, for the sake of consistency, let us reject the original idea of measuring similarities between “plain”

attribute-values. Instead, let us add a further layer of abstraction and measure attribute-level similarities

between the results of user-defined attribute-functions:
15

Thus, given an event type (, we let the user define a collection of attribute-functions �5*, �5+, … , �5- with �5/: (→ '/ , '/ ∈ k ∀ � = 1 … <. For each attribute function, we now let the user choose an adequate

attribute-level similarity-measure, i.e., we let the user define a collection of attribute-level similarity-measure ���*, ���+, … , ���- with ���/ : '/ × '/ → �0,1� ∀ � = 1 … <. Also, we let the user define a collection of weights b*, b+, … , b- with b/ ∈ �0,1� ∀ � = 1 … < and ∑ bL-Ld* = 1, with bL defining the impact of �5L on the overall

similarity between two events.

With an extended aggregation function 5: �0,1�- × �0,1�- → �0,1�, a similarity measure ����V: (× (→ �0,1�

featuring attribute functions is then defined as follows:

����V��, 5� = 5O���*O�5*���, �5*�5�P, … , ���-O�5-���, �5-�5�P, b*, … , b-P

Note that in the following, we will speak of attributes, attribute-level similarity-measures and attribute-level

similarities also when, in fact, attribute-functions are used.

14

 In our solution, we realize attribute functions with EA expressions. Besides being both strongly typed and non-destructive,

EA expressions are used among numerous features of the SENACTIVE EventAnalyzer and hence should be familiar to the

user. Some restrictions must be made, though, to ensure that an EA expression returns a supported type.
15

 Keep in mind that most event-level similarity-measures are still based upon “plain” attribute-values, i.e., on elementary

attribute-functions. In the EventAnalyzer, we therefore “hide” that additional layer of abstraction to a large extent:

Primarily, we let the user choose event attributes and generate the according, elementary attribute-functions implicitly.

Only when complex calculations are required, attribute functions must be formulated explicitly.

Example, continued: As part of his or her similarity measure for TransportEnded-events, the business

analyst defines an attribute function that calculates the difference between the event-attributes EndTime

and StartTime; with EA expressions, a so-defined attribute function is written

TransportEnded.StartTime – TransportEnded.EndTime.

The business analyst chooses the normalized absolute difference similarity (see section 5.5.1.3) and

weights the attribute function by 1.0.

37

5.4.2 Required attributes/attribute-functions

In certain cases, business analysts may consider two events certainly unequal if one or more attributes are not

certainly equal with respect to the selected attribute-level similarity-measures. In other words, when

calculating the similarity between two events, a similarity-value of 0 is expected in any case where one or more

required attribute-level similarities, i.e., similarity-values resulting from required attributes, are below 1.

Otherwise, if all required attribute-level similarities are 1, an event-level similarity – one may call it “base

similarity” – shall be calculated as usual. Consider the following example:

In order to address such issues, we decided to extend our approach as follows:

Given an event type (, a set of supported return types k and a (however-defined) base similarity-measure ���: (× (→ �0,1� on events of type (, we let the user define an additional collection of required attribute-

functions �5′* , �5′+, … , �5′; with �5′/ : (→ '′/ , '′/ ∈ k ∀ � = 1 … =. Also, we let the user choose adequate

attribute-level similarity-measures ���′*, ���′+, … , ���′; with ���′/ : '′/ × '′/ → �0,1� ∀ � = 1 … =.

A similarity measure ���S: (× (→ �0,1� featuring required attributes is then defined as follows:

���S��, 5� = l�����, 5�, ���′/O�5′/���, �5′/�5�P = 1 ∀ � = 1 … =0, A1ℎ�Gm��� n

5.4.3 Summary

At this point, let us recapitulate the extended, “full-featured” approach on single-event similarity: Given an

event type (and a set of supported attribute-types k, configuring a similarity-measure on single-events can be

considered defining a 5-tuple

fo, 6, g, 5, o′, 6′h,

Example, continued: The business analyst chooses the default similarity measure for Boolean values

(section 5.5.1.2) for the AlarmTriggered-flag and marks the attribute as required. Based upon the

remaining attributes, the analyst defines a similarity measure just as usual. When executing the similarity

search, a similarity value of zero is calculated for all events that have triggered a fraud alarm.

Example: After exposing a previously undetected fraud case, the betting broker is interested in finding

similar betting scenarios in its legacy data. The analyst plans to perform a similarity search on a

characteristic BetPlaced-event, but wants to exclude events that have already triggered a fraud alarm from

the result set. Intuitively, one would argue to simply include the AlarmTriggered-attribute into the

similarity measure and weight it adequately. This would, in fact, reduce the similarity score of events that

have already triggered a fraud alarm. Excluding them, however, would require messing around with a

threshold, which is imprecise, time-killing and likely to eliminate too large parts of the result set.

38

where

• o is a collection of attribute-functions �5*, �5+, … , �5- with �5/: (→ '/ , '/ ∈ k ∀ � = 1 … <,

• 6 is a collection of attribute-level similarity-measures ���*, ���+, … , ���- with ���/: '/ × '/ →�0,1� ∀ � = 1 … <; each in accordance with the certain semantics of the corresponding attribute

function,

• g is a collection of weights b*, b+, … , b- with b/ ∈ �0,1� ∀ � = 1 … < and ∑ b/-Ld* = 1; each defining

the impact of the corresponding attribute function on the similarity between two events,

• 5 is an aggregation function 5: �0,1�- × �0,1�- → �0,1� that allows calculating an overall event-level

similarity - not taking required attributes into account - from attribute-level similarities and weights,

• o′ is a collection of required attribute-functions �5′* , �5′+, … , �5′; with �5′/ : (→ '′/ , '′/ ∈ k ∀ � =1 … =, and

• 6′ is a collection of attribute-level similarity-measures for required attribute functions ���′*, ���′+, … , ���′; with ���′/ : '′/ × '′/ → �0,1� ∀ � = 1 … =; each, again, in accordance with the

certain semantics of the corresponding attribute function.

Due to the increased level of complexity, let us demonstrate the “full-featured” calculation of event-level

similarities in pseudo code:

39

Name: getSimilarity

Description: Calculates the similarity between two events.

Input: e: The first event.

f: The second event.

functions: A field of attribute functions.

simMeasures: A field of similarity measures for functions.

weights: A field of weights for functions.

aggr: An aggregation function.

requFunctions: A field of required attribute functions.

requSimMeasures: A field of similarity measures for requFunctions.

Output: A similarity between 0 and 1.

Variables: i: An index.

eResult: The result of an attribute-function on e.

fResult: The result of an attribute-function on f.

similarity: An attribute-level similarity.

similarities: A field of attribute-level similarities.

01: // Evaluate required similarities

02: for i = 0 to requFunctions.length step 1

03: double eResult = requFunctions[i](e);

04: double fResult = requFunctions[i](f);

05: double similarity = requSimMeasures[i](eResult, fResult);

06: if (similarity < 1) then

07: return 0;

08: end

09: end

10:

11: // Return “1.0” if no “regular” attribute functions were chosen

12: if (functions.length == 0) then

13: return 1;

14: end

15:

16: // Calculate attribute-level similarities

17: double[] similarities = new double[functions.length];

18: for i = 0 to functions.length step 1

19: double eResult = functions[i](e);

20: double fResult = functions[i](f);

21: double similarity = simMeasures[i](eResult, fResult);

22: // Add to attribute-level similarities

23: similarities[i] = similarity;

24: end

25:

26: // Calculate event-level similarity

27: return aggr(similarities, weights);

Algorithm 1: Calculating event-level similarities

40

5.5 Measuring attribute-level similarities

In our framework for measuring event similarity, we allow the analyst choosing from a large set of type-specific

attribute-level similarity-measures. In the following, let us discuss the most prominent attribute-level similarity-

measures for all attribute types defined in the SARI event model. As those types are considered supported for

our implementation of attribute functions, the discussed similarity-measures can be used consistently among

both the basic approach as discussed in section 5.3 and the extended approach as discussed in section 5.4.

5.5.1 Runtime types

5.5.1.1 Lookup tables

Before discussing the various, type-specific similarity-measures provided “out of the box”, let us pay some

attention to a simple but particularly useful extension to regular similarity measures.

Anderberg [3] suggests lookup tables, where the user “manually” assigns similarity values to arbitrary pairs of

values. Thus, by letting the user define a function explicitly, lookup tables allow creating similarity measures

from scratch. This has two notable advantages: Besides working for all runtime types declared in the SARI event

model, it allows expressing highly purpose-specific, “semantic” relationships. Consider for, instance, the

following lookup-table similarity-measure from the sports domain:
16

Term 1 Term 2 Similarity

Rugby American Football 1.0
17

Free throw Penalty 0.7

Penalty Direct free kick 0.2

Table 3: An exemplary lookup-table similarity-measure from the sports domain

It is easy to see that defining a lookup table requires at least partly knowledge about the set of possible

attribute values. Such knowledge, however, is available in many cases. A business analyst that analyses a

betting broker’s legacy data, for instance, knows about possible values for attributes that hold the sport type

that is assigned to some of the captured events.

5.5.1.2 Booleans

Measuring the similarity between two Boolean values is somehow insipid: It should be easy to follow that zero

is certainly unequal to non-zero, and vice versa. A similarity function for Boolean values ����:)0,1. ×)0,1. →)0,1. must therefore be defined as follows.

������, �� = l1, � = �0, � ≠ �n
We omit an example for obvious reasons. Keep in mind, however, that comprising Boolean values into an

event-similarity measure may be highly valuable in combination with a well-considered weighting model.

16

 A similarity function defined via a lookup table is, of course, symmetric. At this point, one might argue that a transitive

relation is implied as well; one could, for example, expect a certain similarity relation between the terms “Free throw” and

“Direct free kick”, as ����"Free throw", "Penalty"� = 0,7 and ����"Penalty","Direct free kick"� = 0,2 . In our

implementation, such relation is not given per se: If required in the certain domain, the user must define appropriate value-

pairs explicitly.
17

 Experts in physical ball sports may forgive my ignorance.

41

5.5.1.3 Numeric types

The SARI event model that underlies our solution defines several numeric attribute types, such as Integer, Float

or Double. Similarity measures that are based upon arithmetic operations usually apply to all of these; so do

the measures presented below.

As one can perform however-defined transformations on the absolute distance between two values, most

distance measures for numeric types can be calculated in a relatively straightforward fashion. A similarity

measure that has been excessively used in cluster analysis is the absolute difference between two values,

normalized on a �0,1�-scale. With � ⊂ ℝ addressing the overall set of values existing in the given context, the

normalized absolute difference similarity ���9�� : � × � → �0,1� is defined as follows:
18

���9����, 2� = 1 − | � − 2 |max�∈� � − min�∈� �

In certain cases, a relative similarity measure may be more appropriate. We therefore provide the relative

absolute difference similarity, ���9��: ℝ × ℝ → �0,1�, which is calculated as follows:

���S����, 2� = 1 − | � − 2 |maxT∈)�,�. $

The above similarity measures work well for numeric attributes that have continuous or ordinal values, such as

amounts, prices, grades, etc. In many scenarios, though, one will use numeric attributes for holding categorical

information: Consider an event that shall contain a reference to a complex (database) entity, as, for instance, a

certain customer entity in a customer relationship management system (CRMS). With adaptability in mind, the

application designer will probably define a numeric attribute CustomerID that holds the primary database key

of the referenced entity. In such a case, the above similarity measures are obviously useless: A business analyst

will be interested in similar customers rather than in similar customer IDs.

Thus, when using numeric attributes for holding categorical data, one usually needs a similarity measure that

takes underlying semantics into account. Besides the ever-present possibility to implement a special-purpose

similarity-measure by oneself (that could, for instance, query the corresponding database entities and perform

a domain-specific comparison on the customers’ purchases during the last few months), the business analyst

may apply a lookup table similarity for numeric values. A detailed description of the generic lookup-table

similarity-measure was given in section 5.5.1.1.

5.5.1.4 Time stamps and time spans

As both kinds of data can be transformed into (de-facto continuous) amounts of sufficiently small units, time

stamps as well as time spans can be considered numeric types in the proposed approach on event-similarity:

For time spans, the transformation is trivial. For time stamps, a constant reference time stamp is required;
19

 all

possible time stamps can then be transformed into temporal differences - i.e., time spans - to the given

reference point. As based upon the UNIX (or POSIX) time, such a reference point is implicitly given with the

April 1
st

, 1970 in most modern programming languages.

18

 Note that normalizing the difference requires a-priori knowledge about the overall range of the attribute’s values. In our

architecture for attribute similarities, we provide a mechanism that allows read-only access to the current set of events,

and can be used to analyze the current set of events, and to configure the similarity measure accordingly.
19

 Note that when applying the relative absolute difference similarity, the reference time stamp may have seemingly

paradox effects on the similarity between two time stamps.

42

5.5.1.5 Strings

For decades, string similarity has been a major topic in information technology. Discussing prominent

approaches, however, is outside the scope of this thesis; interested readers may refer to the rich body of

according literature (see, for instance, [16] and [58]).
20

5.5.2 Collections and Dictionaries

For collection-types such as sets and lists, we allow choosing a set-based similarity-measure in accordance with

Sjoberg’s feature-based understanding of similarity [48]: With ' denoting an arbitrary single-value type, a

similarity measures on collections of 's, �����;: '� × '9 → �0,1�, �, > ∈ ℝ��, is defined as follows:

�����;��, g� = |� ∩ g||� ∪ g|
For dictionaries, a similarity measure ����/�% is defined equivalently.

The above similarity measures calculate “overall” similarities between collections of either values or key/value

pairs, i.e., they take all the collections’ elements into account. Also, eventual orders (as, for instance, given in a

list) are not considered at all. �����; and ����/�% are thus well suitable if there is no specific, “meaningful”

structure in the values of a collection-typed attribute, or if such structure is not considered relevant by an

analyst.

Consider, however, an event type WebshopVisit with a list-typed attribute VisitedProducts holding product IDs

in the order of visits. Here, a business analyst may be interested in all customers that started their shopping

trip with visiting a product somewhat similar to the latest Bob Dylan single. It is easy to see that such scenarios

are far too specific for providing according similarity-measures out of the box. Yet, depending on the

expressiveness of the certain implementation, attribute-functions may be used to access multi-value attributes

in a directed manner. With EA expression, for instance, the above product ID was accessed through

WebshopVisit.VisitedProducts[0].

5.5.3 Event types/nested events

Event-typed attributes, a.k.a. nested events, may provide extensive information to the business analyst and

thus require highly purpose-specific attribute similarity-measures. As the on-hand approach on event similarity

was designed to address such issues, it seems obvious to also use it on the level of event attributes.

The described, recursive approach allows highest precision, but to the expense of a fairly longsome definition

process. Alternatively, when addressing only a few of the nested event’s attributes, it may be sufficient to

address these by defining appropriate attribute functions. Attribute functions are required in any case where

calculations on both top-level attributes and sub-level attributes shall be performed. Again, a sufficiently

expressive implementation of attribute function is required.

20

 In our implementation, we integrated Sam Chapman’s excellent SimMetrics library [9] and allow the user

choosing from the variety of string-similarity measures available therein.

43

5.5.4 Dealing with null, NaN and infinity

In the CEP solution that underlies our implementation, all types of event attributes are implemented as

reference types. Consequently, both complexly and primitively typed attributes may hold null-values. Also,

attributes of numeric types may hold exceptional values, i.e., NaN (not a number), positive infinity and negative

infinity. In C#, NaN results from dividing zero by zero. Similarly, positive or negative infinity is the result of

dividing a positive or negative value by zero.

When calculating the similarity between events, both null-values and exceptional numeric values may lead to

problems.

5.5.4.1 Calculating similarities

It is easy to see that without an exceptional handling of the above values, most of the presented similarity-

measures fail on null-values. In our solution, the implementation of such handling is left to the similarity-

technique. In the similarity-techniques that are provided out of the box, however, we follow a simple approach

that follows the default comparison implementation in C#:

Given a however-defined attribute-level similarity-measure ���: ' × ' → �0,1� , we define an extended

similarity-measure ���′: '′ × '′ → �0,1� with ': = ' ∪)>F==, ���, +∞, −∞. , adding the handling of

exceptional values to ���, as follows:

 ���� �Z� +∞ −∞ � ∈ ' ���� 1 0 0 0 0 �Z� 0 0 0 0 0 +∞ 0 0 1 0 0 −∞ 0 0 0 1 0 � ∈ ' 0 0 0 0 �����, 2�

Table 4: Dealing with exceptional values

Note that in C#, the expression ��AF�=�. ��� == �AF�=�. ���� yields 5�=�� , wherefore ���’����, ���� = 0.
Unfortunately, the presented approach is certainly insufficient in many cases. Alternatively, one can use

attribute function to transform exceptional values (e.g., to zero or an empty string), or apply a lookup-table

similarity measure, which allows defining domain-specific similarities for �>F==, >F==� , ����, ���� , �>F==, ����, etc.

5.5.4.2 Normalizations

In 5.5.1.3, we have discussed the Normalized absolute difference similarity, which is calculated by normalizing

the absolute difference between two numeric values. When including (positive and/or negative) infinity into

the total range of values, such normalization must yield unsatisfying results, as

�±∞ = 0 ∀ � ∈ ℕ.
In our implementations of similarity-measures, infinity is already handled exceptionally. We therefore decided

to ignore infinity when calculating the overall range or values. Other implementations, however, may follow a

different approach.

44

5.6 Example

In the above sections, have defined a generic approach on event-level similarity and discussed a variety of

attribute-level similarity-measures to build upon. Let us now demonstrate the proposed approach with a real-

world example.

5.6.1 Defining a similarity measure for single events

Consider two event types from the logistics-domain, TransportEnded and TransportStarted, as shown in Figure

10. Note that besides a number of runtime-typed attributes, TransportEnded-events contain a nested

TransportStarted-event:

Figure 10: The structure of TransportEnded- and TransportStarted-events

Based upon his or her certain interest, the business analyst defines an event-level similarity measure as shown

in Table 5. Here, attribute functions are depicted as EA expressions:

Attributes/Attribute functions Return type Similarity measure Weight/Required

StartEvent.EstimatedDuration -

(CreationTime -

StartEvent.CreationTime)

Timestamp Normalized absolute

difference

0.6

Amount Integer Relative absolute difference 0.2

Location String Lookup table similarity 0.2

 Brussels – Amsterdam � 0.9

 Brussels – Barcelona � 0.3

RecipientID Integer Normalized absolute

difference

Required

Table 5: Attribute-level similarity measures

5.6.2 Calculating event similarities

Let us now apply the above-defined similarity measures to a pair of TransportEnded-events, � and 5, as shown

in Figure 11:

45

Figure 11: Exemplary TransportEnded-events

Table 6 below shows the attribute-level similarities calculated for � and 5. As using the normalized absolute

difference for the delay (i.e., for “StartEvent.EstimatedDuration - (CreationTime - StartEvent.CreationTime)”),

let us assume that delays between -10h and 70h are calculated for the overall set of TransportEnded-events.

� Z�� Z����� Z����� ����O�Z�����, Z�����P

1 StartEvent.EstimatedDuration -

(CreationTime -

StartEvent.CreationTime)

52h 50h 0.975

2 Amount 1200 1400 0.858

3 Location “Brussels” “Barcelona” 0.300

4 RecipientID 459 459 1.000

Table 6: Attribute-level similarities

As the only required attribute function, “RecipientID”, results in an attribute-level similarity of 1.0, the “basic”

similarity is calculated. Table 7 below thus shows the calculation of the overall, event-level similarity between �

and 5. As an aggregation function, we use the weighted average:

� ����O�Z�����, Z�����P �� ����O�Z�����, Z�����P ∗ ��
1 0.975 0.6 0.585

2 0.858 0.2 0.172

3 0.300 0.2 0.060

 i ���/O5�5/���, �5/�5�P ∗ b/
�

�d� = �. �¡

Table 7: Calculating the event-level similarity from attribute-level similarities

With the above defined similarity-measure, a similarity of 0.817 is calculated between � and 5.

46

5.7 Discussion

Thus far, we have discussed a simple yet powerful approach on event-sequence similarity and demonstrated it

in a concrete example. Finally, in the on-hand section, let us summarize the “pros and cons” of the proposed

algorithm and also take a look on its properties and its complexity.

5.7.1 Pros and cons

As building upon the somewhat “straightforward” geometric understanding of similarity, the presented

approach on event-sequence similarity is highly intuitive and should be easy to understand for business

analysts. Yet, by extending the very basic distance-based approach on similarity between vectors by two user-

configurable „layers of abstraction“, attribute-functions and corresponding attribute-level similarity-measures,

it gains a broad expressiveness and should be applicable in most scenarios. Also, note that the proposed

approach handles times of occurrence just like any other event-attribute. Therefore, it is generally conceivable

to use the on-hand approach for “time-independent” complex entities, such as, for instance, entity beans.

Keep in mind, however, that the great flexibility of the proposed approach requires lots of configuration and

the intensive involvement of domain-experts. All the more clearly, a sophisticated management of existing

filter management is required; one might, for instance, think of a “library” of valuable event-similarity

measures. The SENACTIVE EventAnalyzer serving as a framework for our implementation allows the user

choosing from all stored similarity-measures that are generally compatible with a given pattern event. Also, the

user can add various meta-information to a similarity measure, such as, for instance, an informal description of

its certain semantics.

5.7.2 Properties

In section 3.1.3, we have described similarity measures in the strict sense as generally favourable when

calculating similarities between large amounts of entities. So, which “kind” of similarity measure is the

proposed one? Obviously, as the similarity between two events is derived from attribute-level similarities, the

nature of a similarity measure depends on the attribute-level similarity-measures comprised therein:

A similarity-measure as proposed in the on-hand thesis is a strong similarity measure in the strict sense iff

a. it does not comprise required attributes/attribute-functions,

b. the aggregation function is a linear combination of attribute-level similarities and weights,

and

c. all comprised attribute-level similarity measures are (strong) similarity measures in the strict

sense.

Consequently, a similarity measure is a weak similarity measure in the strict sense iff

a. it does not comprise required attributes/attribute-functions,

b. the aggregation function is a linear combination of attribute-level similarities and weights,

and

c. all comprised attribute-level similarity measures are strong or weak similarity measure in the

strict sense.

In all other cases, a similarity measure is a similarity measure in the common sense.

47

5.7.3 Complexity

Finally, given a similarity-measure ��� comprising > attribute-functions/attribute-level similarity-measures, let

us examine the algorithm’s runtime both without and with required attributes:

5.7.3.1 Without required attributes

Let us come back to Algorithm 1 as shown in section 5.4.3, assuming that ��� does not comprise required

attributes: Here, as each single attribute-level similarity affects the overall similarity between two events, all

attribute-functions and according attribute-level similarities must be calculated independently from eventual

intermediate results. Therefore, the runtime of the proposed algorithm solely depends on the runtimes of the

comprised attribute-functions and attribute-level similarity-measures. Assuming attribute-functions evaluating

in constant time and letting ��W¢%, ��T£ and �e�S¢% address the best-case, average-case and worst-case runtime

throughout all available event-level similarity measures, a so-defined similarity measure without required

attributes has the following, asymptotic runtimes:

(�W¢%�>� = > ∗ ��W¢%

(�T£�>� = > ∗ ��T£

(e�S¢%�>� = > ∗ �e�S¢%
5.7.3.2 With required attributes

Per definition, the similarity between two events is 0.0 when one or more required attributes have a similarity

smaller than 1.0. As we evaluate required similarities at the beginning of Algorithm 1, the “best case” is that

where the first required similarity is smaller than 1.0; here, the calculation can be cancelled right after

evaluating one attribute-level similarity measure:

(�W¢%�>� = 1 ∗ ��W¢% = ��W¢%

The average-case runtime depends on the probability 3 that the results of an attribute-function are certainly

equal across pairs of events: The higher 3, the more calculations can be cancelled “early” within required

attributes. Given a probability 3, a function 3: ℤ� → �0,1� calculating the probability that the proposed

algorithm can be cancelled with the �th
 required attribute in ��� is defined as follows:

3��� = ¥ 3, � = 1O1 − 3�� − 1�P ∗ 3, � > 1n
The average-case run-time of the proposed algorithm with required attributes is then calculated as follows:

(�T£�>� = i�3��� ∗ ���
/d* + §1 − i 3����

/d* ¨ ∗ >

The worst-case runtime remains unchanged.

48

6 Finding similar sequences of events

Similarity searching for single events as proposed in the previous section may serve a useful tool for business

analysts. In certain scenarios, however, the analyst may focus on whole sequences of events, possibly

representing complex, composite actions and processes in the business environment. In the on-hand section,

let us therefore present the second key part of the on-hand thesis, an approach on similarity-searching for

sequences of events.

In section 6.1, we will present basic considerations on event-sequence similarity and summarize evolving

requirements. In section 6.2, we will demonstrate underlying ideas with concrete example. Following from

that, we will derive the basic concepts of an approach on event-sequence similarity in 6.3. In section 6.4, we

will present a concrete implementation of the presented approach. Concrete cost-function, being an essential

part of the presented approach, will be listed in section 6.5. In section 6.6, we will discuss a possible extension

of the proposed approach, allowing us to calculate similarity based upon different matching modes. Finally, in

section 6.7, we will summarize pros and cons and also discuss the properties and the computational complexity

of so-defined similarity measures.

6.1 Basic considerations and evolving requirements

In section 1.3, we have listed three general demands on similarity searching in event spaces. Again, before

getting serious about a possible approach, let us discuss some further aspects specific to event-sequence

similarity-searching. In section 6.1.1 , we will discuss the concept of dimensions of event-sequence similarity. In

section 6.1.2, we will differentiate between four so-called matching modes. Finally, in section 6.1.3, we will

summarize evolving requirements.

6.1.1 The basic dimensions of event-sequence similarity

Events as defined in section 3 are complex entities, and even more so are sequences thereof. Yet, when

comparing two sequences of events, one will hardly take all given characteristics and properties into account.

Depending on the actual context and interest, one might instead focus on certain “aspects”, such as, for

instance, the order or events or event-level similarities.

With the requirement of generality in mind, we claim that an approach on event-sequence similarity should

allow handling possible “aspects” of event-sequences in a largely independent and decoupled manner. Thus,

when defining a concrete similarity measure, an analyst may comprise only those aspects that he or she

considers relevant. Also, we claim that an approach on event-sequence similarity should allow weighting

selected aspects, i.e., defining their impact on the overall similarity. In the following, we will refer to those

aspects that are covered by a certain approach as dimensions of the so-defined event-sequence similarity.

Let us now define four essential dimensions of event-sequence similarity that we consider required for any

feasible approach on event-sequence similarity. For practical use cases, the reader may refer to Suntinger [49].

6.1.1.1 Single-event similarities

Single events are the building blocks of event-sequences, and event-attributes make event-sequences a

certainly more powerful data-structure than sequences of “simple”, discrete values. Consider an event-

49

sequence from the logistics domain, representing a complete transport processes: Here, the nature and the

quantity of the goods to be carried, the vehicle’s ID, or, most important, waypoints and corresponding time

stamps, are available through (and only through) event-attributes. It is easy to see that an expressive and

flexible approach on event-sequence similarity should allow for taking event-level similarities into account.

Thus, we consider single-event similarities the first dimension of event-sequence similarity, and consider two

event-sequences © and ª similar if © and ª contain similar events.

6.1.1.2 Order

A dimension that is inherent to many approaches on string similarity is that of the order, i.e., entities are

considered similar when their elements are in a similar order. Particularly useful whenever the exact temporal

structure of events is of little or no relevance for the analyst, we decided to adopt the concept of order and

consider it the second dimension of event-sequence similarity: We consider two event sequences © and ª

similar if their events are in a similar order.

6.1.1.3 (Absolute) temporal structure

The order of events defines the general structure of an event-sequence. Yet, it is independent from the exact

times of occurrence. In many cases, however, a business analyst may be interested in the temporal structure of

an event sequence:

Example: Consider three event sequences 6*, 6+ and 6N as shown below. With respect to the order, one

would intuitively agree that there is a higher similarity between 6* and 6+ than between 6* and 6N:

Example: Consider three event sequences 6*, 6+ and 6N as shown below. With respect to single-event

similarities, one would intuitively agree that there is a higher similarity between 6* and 6+ than between 6*

and 6N:

50

We consider absolute temporal structures the third dimension of event-sequence similarity, and consider two

event-sequences © and ª similar if their events are in a similar absolute temporal structure.

6.1.1.4 Relative temporal structure

Above, we have identified the absolute temporal structure as one possible dimension of event-sequence

similarity. Scenarios may arise, though, where an analyst focuses on relative temporal structures rather than on

absolute ones:

We consider relative temporal structures the fourth and last dimension of event-sequence similarity, and

consider two event-sequences © and ª similar if their events are in a similar relative temporal structure.

Example: Consider three event sequences 6*, 6+ and 6N as shown below, with labeled arrows indicating the

relative time spans between successive events. With respect to the relative temporal structure, one would

intuitively agree that there is a higher similarity between 6* and 6+ than between 6* and 6N:

Definition: We understand the relative temporal structure of an event-sequence 6 the exact time spans

between the events in 6 relative to the overall length of 6 , i.e., a collection 1S*,+, … , 1S|X|�*,|X| with

1SL,- = 1S ^O�L , �-P, 6_ = %^OW«,W¬P,X_;�X� and �/ addressing the �th
 event in 6.

Example: Consider three event sequences 6*, 6+ and 6N as shown below, with labeled arrows indicating the

absolute time spans between successive events. With respect to the absolute temporal structure, one

would intuitively agree that there is a higher similarity between 6* and 6+ than between 6* and 6N:

Definition: We understand the (absolute) temporal structure of an event-sequence 6 the exact time spans

between the events in 6 , i.e., a collection of time spans 1*,+, … , 1|X|�*,|X| with 1L,- = 1O�L , �-P and �/
addressing the �th

 event in 6.

51

6.1.2 Full-sequence-, sub-sequence- and *-linked matching

When talking about the similarity between two sequences 6 and (, one naturally assumes that similarity is

calculated between 6 and (both “as a whole” so that each single element in 6 and each single element in (

has a however-defined impact on the overall similarity. Without a doubt, this can be considered the “regular”

and very basic understanding of similarity between two sequences; throughout the following sections, we will

refer to it as full-sequence matching.

In the context of event-sequence analysis, however, analysts may often be interested in all sequences

containing a sub-sequence similar to a given pattern-sequence 6 ; eventual preliminary and eventual

subsequent events are considered irrelevant and are not taken into account. With this in mind, we define an

alternative understanding of sequence similarity, sub-sequence matching, as follows: Given two sequences 6

and (and a regular (i.e., full sequence) similarity-measure ���:)6. ×)(. → �0,1�, the sub-sequence similarity ���’ of (to 6 can be considered the full-sequence similarity between 6 and the best-matching sub-sequence (′�W¢% of (, i.e., ���:�6, (� = max:∈J ����6, (′� with J denoting the set of all sub-sequences of (. Obviously,

a similarity measure performing sub-sequence matching is always asymmetric.

Full-sequence mapping and sub-sequence matching are by far the most relevant understandings of sequence-

similarity. In special cases, something “in between” full-sequence matching and sub-sequence matching may be

required, though: A business analyst may be interested in sequences with a beginning similar to a certain

pattern sequence, while preliminary events have no impact on the overall similarity. Similarly, a business

analyst may be interested in sequences with an ending similar to the pattern. We refer to these matching-

modes as start-linked matching and end-linked matching respectively. For the sake of brevity, we omit both

formal definitions and examples. Again, both matching modes can be considered asymmetric in general.

It is easy to see that in general, any similarity measure that allows full-sequence matching can be used for all

other matching modes as well: In accordance with the above, formal definition of sub-sequence matching, on

could calculate full-sequence similarities between the pattern sequence 6 and any valid sub-sequence of a

sequence (in a fully independent manner. In the on-hand thesis, however, we seek for an approach on event-

sequence similarity that allows utilizing possible cross-sub-sequence redundancies and, thus, calculating

alternative matching modes efficiently.

Example: Consider two event-sequences 6* and 6+ as shown below. Assuming that for a given similarity

measure 6+’ is the best-matching sub-sequence of 6+ with respect to 6* , the sub-sequence similarity

between 6* and 6+ conforms to the full-sequence similarity between 6* and 6+.

52

6.1.3 Requirements

From the above discussion and the preliminary notes on similarity searching, we derive the following

requirements for an approach on event-sequence similarity:

1. An approach on event-sequence similarity should be generic and flexible enough to apply for all

possible kinds of event-sequences and all possible business scenarios these sequences are generated

in.

2. An approach on event-sequence similarity allows handling different “aspects” of event-sequences

separately and generally independently from each other. Featuring single-event similarities, order,

absolute and relative temporal structures, it allows the analyst choosing from the four basic

dimensions of event-sequence similarity.

3. An approach on event-sequence similarity allows the efficient calculation of full-sequence-, sub-

sequence-, start- and end-linked similarities.

4. A similarity measure is always defined based upon a certain interest.

5. A similarity measure is always defined under the active involvement of the domain-expert.

6. A framework for event-sequence similarity allows both defining and managing similarity-measures in a

quick and straightforward fashion.

6.2 An assignment-based approach on sequence similarity

In section 6.1.1.2, we have shown two event sequences 6* and 6+ that are apparently similar with respect to

the aspect of order:

So, what exactly makes 6* appear similar to 6+?

We suppose that more less unconsciously, viewers establish a set of “cognitive connections” between the

elements of the compared sequences. With that assignment, each element of the pattern sequence is mapped

to (at most) one distinct element of the target sequence. The target-sequence element can then be considered

a representation of the according pattern-sequence element in the target sequence. Figure 12 below shows an

exemplary assignment of 6+ to 6*:

Figure 12: A possible assignment between two sequences of events

53

Still focusing on the aspect of order, the above assignment seems somewhat “natural”.
 21

 Keep in mind,

however, that several other assignments are possible as well. Consider, for instance, an alternative assignment

of 6+ to 6* as shown in Figure 13:

Figure 13: An alternative assignment between two sequences of events

The latter assignment is certainly less natural regarding the aspect of order; it might, however, link events with

higher element-level similarities. Consider the following event attributes for �*.*, �*.+, �+.* and �+.+:

The reader will agree that depending on the certain interest and focus, different assignments can be

considered “most obvious”.

As a basis for our approach on event-sequence similarity, we suppose that the overall similarity between two

event sequences is derived from however-defined deviations and commonalities between the “originals and

representations” in a cognitively established assignment from the target sequence to the pattern sequence.

We furthermore suppose that thereby, the viewer intuitively chooses an assignment that is optimal with

respect to the viewer’s certain interest and focus.

6.3 Measuring event-sequence similarity

For our approach on event-sequence similarity, we build upon the above-presented, assignment-based idea of

sequence similarity: Given a pattern sequence 6® and a target sequence 6%, we calculate the overall similarity

of 6% to 6® from the quality, i.e., from the however-defined overall costs, of the best-possible assignment of 6%

to 6®. The quality/costs of an assignment are thereby calculated from (and only from) the mappings defined in

the certain assignment.

With the basic ideas clarified, it’s time to go into some more detail: First, to avoid possible ambiguities, let us

reject the (somewhat common) term “assignment” and use the term “solution” instead. Given a pattern

sequence 6® and a target sequence 6%, we understand a solution a function �: 6® → 6% ∪)¯. that - plainly

21

 Note that linked events do not necessarily have to be of one and the same event type. Yet, when understanding linked

events as representations of one another, such restriction is apparently natural. We will address the question of whether an

event � is generally “considerable” to represent another event 5 in section 6.3.3. Implicitly used above, we will also define

the event-type compatibility building upon the subtype-relationship between event-types.

54

spoken - maps each event of 6® either to “nowhere” (“¯”) or to one distinct event of 6%. A more formal

definition of solutions will be given in section 6.3.1 below.

So, how do we find the “best-possible solution” of 6% for 6®? Conceptually, we calculate > so-called cost-factors

for any valid solution �: 6® → 6% ∪)¯. of 6% for 6®. These cost-factors express the solution’s overall distance

from an ideal solution �� in an >-dimensional space.
22

 The exact amount and “nature” of the certain cost-

factors depends on the focus of the similarity-search, and thus may vary from case to case; yet, in accordance

with the general requirements presented in section 6.1, we allow the analyst choosing from four so-called cost-

functions, deriving cost-factors from the four key dimensions of event-sequence similarity, i.e., from single-

event similarities, order, and from absolute and relative temporal structures. In any case, the “best-possible”

solution ����1: 63 → 61 ∪)¯. is that with lowest overall costs, i.e., with the smallest distance to ��.

Finding the best-possible solution of a certain target sequence can indeed be considered the key part of our

approach. Therefore, throughout the following sections, we will examine that part of our approach in great

detail. Calculating the sequence-level similarity of 6% for 6® from the overall costs of the best-possible solution,

however, is almost trivial: Here, we apply a natural transformation from distance/costs to similarities as

presented in section 3.1.2. Thus, on the level of solutions, the on-hand approach can be considered distance-

based, i.e., geometric.

In section 6.3.1, we will give formal definitions of the term “solution” and concepts related therewith. In

section 6.3.2, we will go into more details on the assignment of costs to solutions. What makes one solution

valid and another one invalid will be discussed in section 6.3.3. Finally, in section 6.3.4, we will summarize the

building blocks of our approach.

6.3.1 Basic terms and concepts

Above, we have introduced solutions as a building block of the on-hand approach on event-sequence similarity.

To a large extent, a solution can be considered an injective mapping from the events of a pattern-sequence to

events of a target-sequence. Yet, to allow one or more events of the pattern sequence not being mapped to

events of the target sequence, we decided to introduce an auxiliary unit ¯, indicating that there is no

“counterpart” for the certain event of the pattern sequence.
23

 Formally, a solution is thus defined as follows:

A so-defined solution �: 6® → 6% ∪)¯. can be considered injective on 6% and non-injective on)¯.. Hence, for

two event-sequences 6® and 6%,

> = i ° ±6®±!O±6®± − <P!³ ∗ °|6%|< ³´µ¶O±X·±,|XU|P
-d�

22

 An “ideal” solution we understand a mapping between sequences that are equal in all relevant respects.
23

 Mappings to ¯ and their meaning for the on-hand approach will be discussed in more detail in section 6.3.1.2 below.

Definition: Given two event-sequences 6® and 6% , we refer to a function �: 6® → 6% ∪)¯. with ���� ≠��5� ∀ �, 5 ∈ ¸E±E ∈ 6®, ��E� ≠ ¯¹ as a solution of 6% for 6®. We refer to 6® and 6% as pattern-sequence and

target-sequence, respectively. Despite being an auxiliary construct rather than an event in the strict sense, ¯ ∉ &, we refer to ¯ as the null-event.

55

different solutions of 6% exist for 6®.
24

 In the following, given a pattern sequence 6® and a target sequence 6%,

let »O6% , 6®P = ¼�½�: 6® → 6% ∪)¯., ���� ≠ ��5� ∀ �, 5 ∈ ¸E±E ∈ 6® , ��E� ≠ ¯¹¾ denote the set of all possible

solutions of 6% for 6®.

In many cases, we will be interested in the result of a solution when “applied” to one particular event of the

pattern-sequence. We therefore define the notion of mappings:

As mappings can be considered “associated” with the events of the pattern-sequence, one can easily adopt the

order of pattern-sequence events (in their certain pattern-sequence) for mappings:

It is easy to see that a solution �: 6® → 6% ∪)¯. can be defined by listing all mappings defined in �; one could,

for instance, write � = ¸O�, ����P±� ∈ 6®¹. Alternatively, if 6® is clear from the context, one can list the results

of � for all pattern-sequence events, ordered in accordance with the pattern-sequence event’s positions in 6®.

We will use this notion in the following example, and also throughout later sections.

6.3.1.1 Illustration

In many cases, graphic illustration solutions may be much easier to understand than formal descriptions as

shown above. Throughout the following sections, we will illustrate a solution �: 6® → 6% ∪)¯. by literally

“linking” those events in 6® and 6% that are mapped to each other in �. In case of null-mappings, no connection

is shown for the according pattern-sequence event. Figure 14 below illustrates an exemplary solution �: 6® → 6® ∪)¯. with � = ��, <, ¯, M�.

Figure 14: Illustration of an exemplary solution

24

 Not claiming mathematical rigor, this is an “� out of >”-thing without replacement of ¯, with ordering.

Example: Consider two event sequences 6® and 6% , 6® = ��, 5, E� , 6% = �ℎ, �, M� . Among others, the

following solutions of 6% exist for 6®: �* = �ℎ, �, M�, �+ = ��, ℎ, M�, �N = �ℎ, �, ¯�, �¿ = �¯, M, ¯�, �À = �¯, ¯, �� , �Á = �¯, ¯, ¯�.

Definition: Given a solution �: 6® → 6% ∪)¯. and a mapping O�, ����P, � R 6®, with 3A�O�, 6®P = �, we refer

to O�, ����P as the �th
 mapping in �. Consequently, two mappings O5, ��5�P and OE, ��E�P, 5, E R 6®, we

refer to as successive if �O5, E, 6®P = 1.

Definition: Given a solution �: 6® → 6% ∪)¯., we refer to a pair of events O�, ����P, � R 6®, ���� R 6% ∪)¯.,

as mapping. Consequently, given an event � R 6®, we refer to ���� R 6% ∪)¯. as the mapping for � in �. If ���� = ¯, we refer to a mapping as null-mapping. Otherwise, if ���� ≠ ¯, we refer to it as a normal

mapping.

56

Alternatively, if the pattern-sequence is clear from the context and the focus is on the order of target-sequence

events in a solution, we will depict solutions by connecting those events of the target-sequence that are

mapped to successive pattern-sequence events, i.e., to pattern-sequence events � and 5 , �, 5 ∈ 6, with �O��, 5�6P = 1. Figure 15 below shows a so-defined illustration of s:

Figure 15: Reduced illustration of an exemplary solution

It is easy to see that null-mappings cannot be depicted in the described way. In such cases, we add an “¯”-

symbol to the path as shown above.

6.3.1.2 Null-mappings

Null-mappings as defined above are may not be immediately intuitive for readers. Yet, for two reasons, they

are an essential part of the on-hand approach on event-sequence similarity. On the one hand, null-mappings

are required in all solutions �: 6® → 6% ∪)¯. where ±6®± > |6%|, i.e., when there are more events in the pattern

sequence than in the target sequence. Here, as a solution is injective on the target-sequence, there are no

distinct counterparts in 6% for < = ±6®± − |6%| events of the pattern sequence. Thus, in a solution of 6% for 6®, at

least < events of the pattern sequence must be mapped to ¯. Note that with compatibilities as defined in

section 6.3.3, the number of required null-mappings can further increase.

On the other hand, null-mappings may play an important role in finding the best-possible solution of a certain

target-sequence: Given a pattern-sequence event �, scenarios may arise were all possible “normal” mappings

for � are extremely costly with respect to the analyst’s certain interest; there may, for instance, be very low

event-level similarities. Here - again depending on the analyst’s interest - it may be more natural not to map �

at all, but instead consider it missing in the target sequence. Thus, when assigning costs to solutions as

described in section 6.3.2, the fact that an event is missing in the target sequence may be considered less costly

than available but “poor” representations.

Example: Consider two event sequences 6% and 6®as shown below. Obviously, as there is a very low event-

level similarity between �� and �*, one might consider a solution �: 6® → 6% ∪)¯. with ����� = ¯, i.e., not

defining a representation of �� in 6% as “best-possible” with respect to the dimension of single-event

similarities.

57

6.3.2 Assigning costs to solutions

We have stated that the on-hand approach on event-sequence similarity builds upon finding the best-possible

solution of the certain target sequence. So, where do the costs of a solution “come from”? What makes one

solution costly and another one cheap?

6.3.2.1 Assigning costs to single mappings

Naturally, costs may arise from (however-defined) relations between “corresponding” events, i.e., events that

are mapped to each other. As part of a similarity-measure for sequences of events, let us therefore introduce

cost-functions that apply on single mappings:

A possible cost-function on single mappings builds upon the single-event (dis-)similarity between mapped

events. We will discuss this issue in section 6.4.4.

6.3.2.2 Assigning costs to pairs of mappings

The second possible source for cost might seem a little more subtle; yet, it will become clear with concrete

cost-functions as described in section 6.5.2, 6.5.3 and 6.5.4: Costs may arise from (however-defined) relations

between successive mappings, i.e., between mappings for pattern-sequence events that succeed each other in

the pattern-sequence. Therefore, as a further part of an event-sequence similarity-measure, let us introduce

cost-functions that apply on pairs of mappings.

6.3.2.3 Calculating the overall costs of a solution

With cost-functions, we have presented mechanisms for calculating cost-factors from single mappings and pairs

of mappings. Now, how do we calculate the overall costs of a solution?

Consider a solution �: 6® → 6% ∪)¯. together with a collection of cost-functions on single mappings !¢*, !¢+, … , !¢� and a collection of cost-functions on pairs of mappings !®*, !®+, … , !®9. When each cost-

function on single mappings is applied to each single mapping O�, ����P in �, � ∈ 6®, and each cost-function on

pairs of mappings is applied to each pair of successive mappings ^O5, ��5�P, OE, ��E�P_ in � , 5, E ∈ 6® , �O5, E, 6®P = 1, < = ^� ∗ ±6®± + > ∗ O±6®± − 1P_ cost-factors !*, !+, … , !- are calculated. As these cost-factors

define the relative positioning of � and an ideal solution �� in a <-dimensional space, overall costs can be

calculated in a straightforward manner; one might, for instance, calculated the Euclidean distance between �

and ��.

Keep in mind, however, that we consider generality a major requirement on any valuable approach on event-

sequence similarity. In addition to the various cost-functions on single mappings and pairs of mappings, we

Definition: Given a pattern sequence 6®, we refer to a function !: ^6® × �& ∪)ε.�_ × ^6® × �& ∪)ε.�_ →ℝ�� as a cost function on pairs of mappings. Given a solution �: 6® → 6% ∪)¯., we refer to the result of a

cost function for a pair of mappings ^O�, ����P, O�, ����P_, �, 5 ∈ 6®, as the cost-factor of ! for � and 5 in �.

Definition: Given a pattern sequence 6®, we refer to a function !: 6® × �& ∪)ε.� → ℝ�� as a cost function

on single mappings. Given a solution �: 6® → 6% ∪)¯., we refer to the result of a cost function for a

mapping O�, ����P, � ∈ 6®, as the cost-factor of ! for � in �.

58

therefore let the user define a collection of weights b*, b+, … , b- with bL ∈ �0,1� ∀ M = 1 … < and ∑ bL-Ld* =1, i.e., that sum to unity. Thereby, b/ defines the impact of the �th
 cost-factor !/ on the overall costs of �. Given

an however defined aggregation function 5: ℝ��- × �0,1�- → ℝ�� , a function !A�1: 6® × O6® → & ∪)¯.P

calculating the overall costs of a solution �: 6® → 6% ∪)¯. is defined as follows:

!A�1O6®, �P = 5�!*, … , !- , b*, … , b-� =
= 5 ÃÄ °!¢/O�*, ���*�P, … , !¢/ \�±X·±, � ^�±X·±_a³9

/d* ∪ Ä °!®/O�*, ���*�, �+, ���+�P, … , !®/ \�±X·±�*, � ^�±X·±�*_ , �±X·±, � ^�±X·±_a³�
/d* ,

�b*, … , b-� Å

A function !A�1e�: 6® × O6® → & ∪)¯.P calculating the overall costs based upon the weighted average of cost

factors is thus defined as follows:
25

!A�1e�O6®, �P = i i ^!¢/ ^�L , �O�LP_ ∗ b�/�*�∗±X·±�L_±X·±
Ld*

�
/d*
+ i i ^!®- ^O�;, ���;�P, O�;�*, ���;�*�P_ ∗ b�∗±X·±��9�*�∗O±X·±�*P�;_±X·±�*

;d*
9

-d*

25

 At this point of the on-hand thesis, !A�1e� serves as valuable example. Note, however, that it will play a central role in

the concrete implementation of our approach as presented in section 6.4.

Example: Consider a solution �: 6® → 6% ∪)¯. as shown below.

Given two however-defined cost-functions on single mappings !¢* and !¢+ and a however-defined cost-

function on pairs of mappings !®, 11 cost factors are calculated from �. Table 8 below lists exemplary cost-

factors together with corresponding, user-defined weights. From these, overall costs are calculated based

upon the weighted average.

 �ZZ, Z�� �ÆZ, Æ�� �ÇZ, ÇÈ� �ÉZ, É�� �ZZ, Z��, �ÆZ, Æ��

�ÆZ, Æ��, �ÇZ, ÇÈ�

�ÇZ, ÇÈ�, �ÉZ, É�� Ç�� 33 / 0.1 85 / 0.05 10 / 0.05 22 / 0.1 - - - Ç�È 60 / 0.2 10 / 0.02 4 / 0.02 1 / 0.06 - - - ÇÊ - - - - 106 / 0 121 / 0 3 / 0.4 ÇË�Ì�O©Ê, �P = ÈÍ, ��

Table 8: Exemplary cost-factors and weights

59

6.3.3 Compatibilities and valid solutions

In section 6.3.1, we have stated that given a pattern sequence 6® and a target sequence 6% , ∑ \ O±X·±P!O±X·±�-P!a ∗ O|XU|- P´µ¶O±X·±,|XU|P-d� different solutions of 6% exist for 6®. Unfortunately, that’s quite a lot: For a

pattern sequence with |6®| = 10 and a target sequence with |6%| = 12, for instance, 2581284541 solutions

exist.

It is easy to see that in order to find an optimal solution efficiently, one should try to restrict the set of

“considerable” solutions as much as possible. So, which kind of solution is “considerable”, and which is not?

Keep in mind that the optimal solution should comprise those parts of the target sequence that, as a whole, fit

the pattern sequence best: Thus, one might argue that some events of the target sequence can not and in no

way correspond to a certain event of the pattern sequence: One might, for instance, argue that an event must

be substitutable by its representation in an object-oriented sense, i.e., that an event of type (must be mapped

to events either of (or of a subtype K of (, (: > K. The definition of which events are generally “compatible”

to each other is, however, up to the user and certainly depends on the given context.
26

As costs can be assigned to both single mappings and pairs of mappings, it might seem natural to simply assign

infinite costs to mappings between incompatible events; an invalid solution should then have infinite costs as

well. This approach, however, fails for certain weighting configurations (zero-weights, to be exact) as discussed

in section 6.3.2.3. Hence, we do not take such mappings between incompatible events into account at all:

Solutions that comprise such mappings are not evaluated but instead are omitted from the start. Considering

incompatible pairs of events may therefore result in a considerable reduction of “considerable” – i.e., valid –

solutions:

26

 In most cases, the described, type-based understanding of compatibility should meet the analyst’s requirements.

Consider a pattern-sequence 6® and a function !Î: 6® →)0,1. defining whether an event of the pattern sequence is

compatible to ¯, i.e., whether null-mappings are valid for a pattern-sequence event �, we refer to a compatibility !: 6® × �& ∪)ε.� →)0,1. with !��, 5� = !Î��� if 5 = ¯ and !��, 5� = l1, 123�A5���: > 123�A5�5�0, A1ℎ�Gm��� n otherwise, as event-

type compatibility. Unless otherwise stated, we will presume event-type compatibility to apply throughout the following

sections and examples.

Definition: Given a solution �: 6® → 6% ∪)¯. and a compatibility !, we refer to � as valid with respect to !

if all mappings in � are valid, i.e., if !O�, ����P = 1 ∀ �R6®. Otherwise, if !O�, ����P = 0 ∃ �R6®, we refer to � as invalid with respect to !.

Definition: Given a solution �: 6® → 6% ∪)¯. and a compatibility !, we refer to a mapping O�, ����P, � ∈6®, as valid with respect to ! if !O�, ����P = 1. Otherwise, if !O�, ����P = 0, we refer to the mapping as

invalid with respect to !.

Definition: Given a pattern sequence 6®, we refer to a function !: 6® × �& ∪)ε.� →)0,1. as compatibility.

Two entities � and 5, � ∈ 6®, 5 ∈ & ∪)ε. with !��, 5� = 1 we refer to as compatible with respect to !.

Otherwise, if !��, 5� = 0, we refer to � and 5 as incompatible with respect to !.

60

In real-world scenarios, it is usually more efficient to list those mappings that are valid rather than those that

are not. We therefore introduce the notion of matches:

Example: Consider the following sequences 6® and 6%:

On the understanding, however, that a.) null-mappings are considered valid for �� and invalid for all other

events of the pattern sequence and b.) two events are compatible iff they are of the same event type, the

following matches exist for the given pattern-sequence events:

Definition: Given a pattern sequence 6®, a target sequence 6% , two entities � and 5 with � ∈ 6® and 5 ∈ 6% ∪)ε. and a compatibility !, we refer to 5 as a match for � with respect to ! if � is compatible to 5,

i.e., if !��, 5� = 1 . The set Ð of target-sequence events that are compatible to � , Ð =)E|E ∈ 6% ∪)ε., !��, E� = 1., we refer to as matches for � in 6% with respect to !.

Example: Consider two event sequences 6® and 6% as shown below.

Without any restrictions on event compatibility, 501 solutions of 6% for 6® exist (for obvious reasons, we

omit depicting them in detail). On the understanding, however, that a.) all null-mappings are considered

invalid and b.) two events are compatible iff they are of the same event type, only two solutions of 6% for 6®, �* and �+, are considered valid:

61

6.3.4 Summary

Before presenting a concrete implementation, let us recapitulate the presented approach on event-sequence

similarity: Given a pattern-sequence 6®, configuring a similarity-measure on sequences of events can be

considered defining a 6-tuple

fÑ¢, Ñ®, g, 5, !, �h,
where

• Ñ¢ is a collection of cost-functions on single mappings !¢*, !¢+, … , !¢9 with !¢/: 6® × �& ∪)ε.� →ℝ�� ∀ � = 1 … >,

• Ñ® is a collection of cost-functions on pairs of mappings !®*, !®+, … , !®� with !®/: ^6® × �& ∪)ε.�_ ×^6® × �& ∪)ε.�_ → ℝ�� ∀ � = 1 … �,

• g is a collection of weights b*, b+, … , b�∗±X·±�9∗O±X·±�*P with b/ ∈ �0,1� ∀ � = 1 … � ∗ ±6®± + > ∗
O±6®± − 1P and ∑ b/�∗±X·±�9∗O±X·±�*PLd* = 1; each defining the impact of the corresponding cost-factor

on the overall costs of solutions for 6®,

• 5 is an aggregation function 5: ℝ���∗±X·±�9∗O±X·±�*P × �0,1��∗±X·±�9∗O±X·±�*P → ℝ�� that allows

calculating the overall costs of a solution from cost-factors and weights, and

• ! is a compatibility !: 6® × �& ∪)ε.� →)0,1. defining the set of valid solutions of the certain target

sequence.

• � is a matching mode; full-sequence matching, sub-sequence matching, start-linked matching, or end-

linked matching.

The similarity between 6® and a target sequence 6% is then calculated from the overall costs of the best-

possible valid solution �: 6® → 6% ∪)¯..

6.4 The base algorithm

Thus far, we have presented a solution-based approach on event-sequence similarity in a general and

algorithm-independent manner. In the on-hand section, we will propose a possible implementation of the

presented approach, building upon Dynamic Programming. As the basic ideas of our approach are strictly

decoupled from concrete cost-functions, the presented approach can be considered a “structural framework”

that may be extended by actual cost-function implementations. We will describe these parts of the algorithm in

section 6.4.4.

In section 6.4.1, we will present an intuitive, tree-based approach on finding all valid solutions with respect to a

given compatibility. From this, we will derive the actual algorithm in section 6.4.2. In section 6.4.3, we will

address the issue of performance by introducing a Branch & Bound strategy.

6.4.1 Finding all valid solutions

In the above sections, we have introduced the concept of compatibility, allowing us a notable reduction of

relevant solutions: A certain solution is considered only if all comprised mappings are valid, i.e., if the mapped

unit matches the certain pattern-sequence event. Yet, we have not addressed the set of solutions that

62

“remain” with respect to a certain set of matches. With the upcoming steps of our approach on event-

sequence similarity in mind, we calculate the set valid solutions with a tree-based algorithm:

To a root node, we add nodes representing all matches for the first pattern-sequence event. To each of these

nodes, we add nodes representing all matches for the second event of the pattern sequence, and so on. The

levels of the tree therefore “correspond” to the events of the pattern sequence. Yet, to ensure injectivity on

the target sequence, a node representing a target-sequence event that is already part of a certain path (from

the root node to a certain leaf) is not added to this path again.
27

 Thus, at the end of the algorithm, the set of

paths from the root node to the leafs of the tree represents the overall set of solutions that are valid with

respect to the given compatibilities.

In pseudo code, the algorithm can be described as follows:

Name: createSolutionsTree

Description: Creates a tree representing the set of valid solutions. If no such solution exists, the tree

remains incomplete. With root being a tree node, the execution of the recursive algorithm is

initiated by calling createSolutionsTree(root, 1).

Input: node: The parent node.

index: The current level of the tree.

Output: -

Variables: i: An index.

match: A match at the current level of the tree.

child: A tree node representing the current match.

State: matches: A field containing set of matches in the order of the corresponding

pattern-sequence events

01: // Iterate through the matches for the corresponding pattern-sequence events

02: for i = 1 to matches[index].length step 1

03: Event match = matches[index][i];

04:

05: // Check whether event is already part of the so-far path

06: if ((match ≠ ¯) and (parent.isInPathToRoot(match))) then

07: continue;

08: end

09:

10: // Create child node and add to parent

11: TreeNode child = new TreeNode(match);

12: parent.add(child);

13:

14: // Do recursive method call

15: if (index < matches.length) then

16: createSolutionsTree(child, index + 1, matches)

17: end

18: end

Algorithm 2: Calculating valid solutions from sets of matches

27

Note that such validation is not necessary for nodes representing null-matches.

63

The below example depicts the algorithm’s result for certain event-sequences and compatibilities. Here and in

all further examples and figures, we will depict tree nodes in the same way as the represented target-sequence

events. Null-matches will be depicted as white circles with a gray border. Also, the “levels” or the tree will be

separated by dashed lines, with labels referring to the corresponding pattern-sequence events.

Example: Consider two event sequences 6% and 6® as shown below:

On the understanding that a.) events of the same event type are compatible to each other, and b.) null-

mappings are invalid, the following tree is generated with the above algorithm. Note that the created

solutions (i.e., paths from the root node to the leaf nodes) do not contain “duplicate” nodes, i.e., mappings

that comprise one and the same target-sequence event:

Figure 16: Exemplary results of Algorithm 2

Based upon the above definitions, six distinct solutions of 6% for 6® exist. When null-mappings are assessed

to be valid for all pattern-sequence events, however, 52 solutions exist. Figure 17 shows parts of the

corresponding tree:

Figure 17: Exemplary result of Algorithm 2, including null-mappings

64

6.4.2 Calculating the overall costs of solutions

In section 6.3, we have introduced the overall costs of a solution as a combination of weights and

corresponding cost factors, calculated from both single mappings and pairs of mappings. Given a pair of

sequences, cost functions and weights, one could, of course, calculate the overall costs of all valid solutions in a

separate and fully independent manner. Before doing so, let us come back to the tree-based algorithm above:

When using a linear combination of cost-factors and weights as an aggregation function, calculating costs along

the branches of such tree gives us a notable reduction of redundant calculations:

Consider, for instance, the weighted average, a natural and highly valuable aggregation function. Given a

pattern sequence 6®, cost functions on single mappings !¢*, !¢+, … , !¢�, cost functions on pairs of mappings !®*, !®+, … , !®9 and weights b*, b+, … , b�∗±X·±�9∗O±X·±�*P, a function !A�1e� : 6® × O6® → & ∪)¯.P calculating

the overall costs of a solution �: 6® → 6% ∪)¯. from weighted average of cost factors is defined as follows:

!A�1e�O6®�P = i i ^!¢/ ^�L, �O�LP_ ∗ m�/�*�∗±X·±�L_±X·±
Ld*

�
/d*

+ i i ^!®- ^O�; , ���;�P, O�;�*, ���;�*�P_ ∗ m�∗±X·±��9�*�∗O±X·±�*P�;_±X·±�*
;d*

9
-d*

Hereby, note that

i i ^!¢/ ^�L , �O�LP_ ∗ m�/�*�∗±X·±�L_�
Ld*

�
/d*

and

i i ^!®/ ^�L , �O�LP, �L�*, �O�L�*P_ ∗ m�∗±X·±��9�*�∗O±X·±�*P�L_��*
Ld*

9
/d*

solely depend on the first A mappings comprised in a certain solution �: 6® → 6% ∪)¯.; these values are equal

for all solutions that have the first < mappings in common. Therefore, when calculating a tree as shown in

Algorithm 2, the overall costs of solutions can be calculated stepwise along paths from the root node to the

various leafs.

We thus extend the above algorithm, letting each tree node hold the sum of costs that are associated to the

(single and pairs of) mappings represented by itself and its predecessors in a property sum. It is easy to see that

for each node, sum can be calculated by summarizing

a. the weighted cost factors calculated from the represented, �th
 mapping,

b. for � > 1, the weighted cost factors calculated from the pair of mappings that is constituted by the �th

and the �� − 1�th
 mapping, and

c. for � > 1, sum of the node’s direct predecessor.

In pseudo-code, the resulting algorithm can be described as follows:

65

Name: createSolutionsTree2

Description: Creates a tree representing the set of valid solutions; if no such solution exists, the tree

remains incomplete. Each node has a property sum holding the so-far costs of the

represented solution(s). With root being a tree node, the execution of the recursive

algorithm is initiated by calling createSolutionsTree2(root, 1).

Input: node: The parent node.

index: The current level of the tree.

Output: -

State: pattern: A field of events representing the pattern sequence.

matches: A field containing set of matches in the order of the corresponding

pattern-sequence events.

cfSingle: A field of cost functions on single mappings.

cfPairs: A field of cost functions of pairs of mappings.

weights: A field of weights.

Variables: i: An index.

match: A match at the current level of the tree.

child: A tree node representing the current match.

cs: Weighted cost factors for single mappings.

cp: Weighted cost factors for pairs of mappings.

01: Event lastPEvent = pattern[index - 1]; Event pEvent = pattern[index];

02:

03: // Iterate through the matches for the corresponding pattern-sequence events

04: for i = 1 to matches[index].length step 1

05: Event match = matches[index][i];

06:

07: // Check whether event is already part of the so-far path; see Algorithm 2

08: ...

09:

10: // Calculate weighted cost factors for single mappings and pairs of mappings

11: double cs = 1; double cp = 0;

12: for j = 1 to cfSingle.length step 1

13: cs += cfSingle[i](patternEvent, match) * getCorrespondingWeight(i, j);

14: end

15: if (index > 1) then

16: for j = 1 to cfPairs.length step 1

17: cs += cfPairs[i](pEvent, match, lastPEvent, parent.Match) *

18: getCorrespondingWeight(i, j);

19: end

20: end

21:

22: // Create child node and add to parent

23: TreeNode child = new TreeNode(match);

24: parent.add(child);

25: // Set “so far” costs to child node

26: child.Sum = parent.Sum + cs + cp;

27:

28: // Do recursive method call

29: if (index < matches.length) then

30: createSolutionsTree2(child, index + 1);

31: end

32: end

Algorithm 3: Calculating the overall costs of valid solutions

66

In the following, we will depict the algorithm’s intermediate results by listing the variables !�, !3 and �F� right

below the corresponding tree-node, or, for !3, right below the connection between a pair of tree-nodes.

Example, continued: Let us come back to the example presented in section 6.4.1, and apply the extended

version of the original algorithm. Therefore, consider two cost functions, !¢ (on single mappings) and !® (on

pairs of mappings). The resulting, weighted cost-factors are listed below:

 �ZZ, Z�� �ZZ, ZÈ� �ZZ, Z�� �ZÆ, Z�� �ZÆ, ZÈ� �ZÆ, Z�� �ZZ, Æ�� �ÇZ, Ç�� Ç� 4 100 3 8 12 6 6 5

Table 9: Weighted cost factors as resulting from Ç�

 �ZZ, Z��, �ÆZ, Æ��

�ZZ, ZÈ�, �ÆZ, Æ��

�ZZ, Z��, �ZZ, Z��

�ÆZ, Æ��, �ÇZ, Ç��

�ÇZ, Ç��, �ZÆ, Z��

�ÇZ, Ç��, �ZÆ, ZÈ�

�ÇZ, Ç��, �ZÆ, Z�� ÇÊ 4 7 6 8 2 6 6

Table 10: Weighted cost factors as resulting from ÇÊ

Figure 18 below shows the algorithm’s results. It is easy to see that for the given configuration, �N =�aN, b*, c*, a*� is the best-possible solution of SÔ for SÕ.

Figure 18: Calculating overall costs of solutions with Algorithm 3

67

6.4.3 Branch & Bound

The above algorithm calculates the overall costs for all valid solutions. Keep in mind, however, that with

respect to our approach on event-sequence similarity, we are not interested in all possible solutions, but only

in the best one, i.e., in the “cheapest” one.

Consider the following intermediate step in calculating the tree from section 6.4.2:

Figure 19: Intermediate results of Algorithm 3

Here, as the marked node is associated with very high costs, it is already clear that not even in the best case,

i.e., with matches for �� and !� with costs of 0, overall costs lower than the best solution so far will be achieved

proceeding from �+. From this, it follows that no solution (i.e., no leaf) proceeding from �+ will affect the

overall similarity between 6® and 6%: The execution of paths proceeding from �+ can hence be omitted without

affecting the optimal solution.

It is easy to see that at this point, a Branch-&-Bound strategy is valuable.
28

 We thus extend the current

approach by a dynamic threshold 1, being initialized with a (user-defined) value 1/9/%/�; . A node is added to the

tree only if the best-case similarity proceeding from it is higher than the actual threshold. Hence, if an end node

is reached, the resulting overall costs ! of the certain solution � is certainly lower than 1; we then update 1 and

set 1 = !. If 1 = 1/9/%/�; at the end of the algorithm, no solution with costs lower than the initial threshold

was found; we assume an event-sequence similarity of 0. Otherwise, 1 holds the costs of the optimal solution.

It is easy to see that in order to chose an adequate value for 1/9/%/�; , one must balance performance and

accuracy: The lower 1/9/%/�; , the more solutions can be excluded early in the calculation. Yet, for all solutions

with overall costs higher than 1/9/%/�; , information about the exact costs (i.e., the exact similarity value) is lost.

In pseudo-code, the resulting algorithm can be described as follows:

28

 At this point, experienced readers might suggest an alternative and certainly faster approach building upon Dynamic-

Programming. We will discuss this issue in section 6.7.3.1 below.

68

Name: createSolutionsTree3

Description: Calculates the overall costs of the best-possible solution for a given set of matches. If no

valid solution exists with overall costs below the initial threshold, the threshold remains its

initial value; otherwise, threshold holds the best-possible costs. With root being a tree node,

the execution of the recursive algorithm is initiated by calling createSolutionsTree3(root, 1).

Input: node: The parent node.

index: The current level of the tree.

Output: -

Variables: lastPEvent: The previous pattern-sequence event.

pEvent: The current pattern-sequence event.

i: An index.

match: A match at the current level of the tree.

child: A tree node representing the current match.

cs: Weighted cost factors for single mappings.

cp: Weighted cost factors for pairs of mappings.

State: pattern: A field of events representing the pattern sequence.

matches: A field containing sets of matches in the order of the corresponding

pattern-sequence events.

cfSingle: A field of cost functions on single mappings.

cfPairs: A field of cost functions of pairs of mappings.

weights: A field of weights.

threshold: The current threshold; initialized with a used-defined value 1/9/%/�;

01: Event lastPEvent = pattern[index - 1]; Event pEvent = pattern[index];

02:

03: // Iterate through the matches for the corresponding pattern-sequence events

04: for i = 1 to matches[index].length step 1

05: Event match = matches[index][i];

06:

07: // Check whether event is already part of the so-far path; see Algorithm 2

08: ...

09:

10: // Calculate weighted cost factors for single mappings and pairs of mappings;

11: // see Algorithm 3

12: ...

13:

14: // Check whether so-far costs are below the current threshold

15: if (parent.Sum + cs + cp < threshold) then

16: // Create child node and add to parent

17: TreeNode child = new TreeNode(match);

18: parent.add(child);

19: // Set “so far” costs to child node

20: child.Sum = parent.Sum + cs + cp;

21:

22: // Do recursive method call or set threshold if a leaf is reached

23: if (index < matches.length) then

24: createSolutionsTree3(child, index + 1);

25: else

26: threshold = child.Sum;

27: end

28: end

29: end

Algorithm 4: Finding the best-possible solution with a user-defined threshold

69

6.4.4 A restriction to sub-sequence matching

Note that given a pattern sequence 6® and a target sequence 6%, the set »O6® , 6%P of all possible solutions of 6%

for 6® comprises all possible solutions of all sub-sequences Ö�6%� of 6%, i.e., »O6®, 6%P ⊇ »O6® , 6%′P ∀ 6%′ ∈ Ö�6%�. Also, note that the above, tree-based algorithm finds the best-possible solution from all (valid) solutions

of a given target sequence 6% . As a consequence, the so-calculated, best-possible solution of 6% can be

considered best-possible not only across 6% but also across all sub-sequences Ö�6%� of 6%. Not immediately

intuitive, a similarity-measure building upon overall costs as resulting from the above algorithm therefore

implements sub-sequence matching as defined in section 6.1.2.

From all matching-modes, one may usually consider sub-sequence matching the most complex one and most

difficult to calculate. “Deriving” other matching modes from the present algorithm is not trivial, though. We will

present a possible extension, allowing to perform both full-sequence matching and *-linked matching, in

section 6.6. Yet, as building upon the concrete cost-function implementations from section 6.5, the given

approach cannot be considered “fully general” with respect to the basic ideas presented thus far.

6.5 Cost functions

Thus far, we have clarified both the underlying concepts and the basic implementation of our approach on

event-sequence similarity. It’s now the time, however, to put some “flesh on the bones”: In the on-hand

section, we will discuss four concrete cost-functions in accordance with the four essential dimensions of event-

sequence similarity as presented in section 6.1.1, i.e., for single-event similarities (6.5.1), order (6.5.2), and

absolute (6.5.3) and relative temporal structures (6.5.4). Finally, in section 6.5.5, we will show that with the

proposed cost-functions, a so-defined similarity measure on sequences of events could be defined “per event-

sequence signature”.

Example, continued: Let us repeat the above example, but use a threshold in order to improve the

calculation’s performance. Based upon our certain interest, we choose an initial threshold of 40. For sub-

nodes of a common predecessor, the vertical order depicts the order of creation. Nodes that exceed the

threshold are marked red.

Figure 20: Exemplary results of

70

6.5.1 Cost-function A: Single-event similarities

In a first step, let us define a cost-function !¢/� in accordance with the dimension of single-event similarities, so

that low cost-factors are calculated for sequences that contain similar events and high cost-factors otherwise.

As likely based upon single-event similarities as discussed in section c, calculating costs for “normal” pairs of

events is almost trivial. Null-mappings, however, require exceptional handling. The according strategy

described in section 6.5.1.2 is simple yet serves as a basis for further, certainly more complex cost-functions.

6.5.1.1 From event-level similarities to costs

When single-event similarities shall serve as the criterion of whether two event sequences are similar to each

other, the costs of a single mapping should inversely relate to the event-level similarity between pairs of

mapped events. In other words, a mapping comprising events that have a high similarity value should have low

costs, and vice versa.

Consider an exemplary pattern sequence 6® as shown below:

It is easy to see that for mappings comprising the pattern sequence’s A-event, the assessment of event-

similarity will be based upon different criteria than for mappings comprising, for instance, the B-event – if only

because of typing issues. For highest expressiveness, we therefore let the user define a collection of event-level

similarity-measures ���*, ���+, … , ���±X·± with ���/ : & × & → �0,1� ∀ � = 1 … ±6®± , where ���/ reflects the

specific semantics of the �th
 event of the pattern sequence. Given a solution �: 6® → 6% ∪)¯., the event-

similarity for a mapping O�, ����P, with � being the Mth
 event of 6® is then calculated as ���L��, 5�.

The proposed approach on event-sequence similarity, however, requires a single cost-function on single

mappings instead of similarity measures. Luckily enough, we have discussed a natural transformation between

distance/costs and similarities in section 3.1.2: Given a set of entities � and a similarity-measure ���: � × � →�0,1�, a corresponding distance function �: � × � → ℝ�� is defined as follows:

���, �� = − ln �����, ��

Thus, given a pattern sequence 6® and a set of similarity measures ���*, … , ���±X·± as defined above, a

function !¢/�′: 6® → & introducing the costs of single-event dissimilarities is defined as follows:

!¢/�′��, 5� = − ln \���®�¢OW,X·P��, 5�a

It is easy to see that the results of the above function strongly depend on the set of event-level similarity-

measures. Together with weights, these similarity-measures therefore serve as a major configuration option for

all those event-sequence similarity-measures that take event-level similarities into account. Note, however,

that the described cost function does not necessarily depend on single-event similarity-measures as proposed

in section 5, but can instead build upon any similarity-measure that meets the specified requirements.

71

6.5.1.2 Null-mappings

The above function returns valid costs for “normal” mappings, i.e., for mappings that link a certain event of the

target sequence to a certain event of the pattern sequence. Anyway, depending on whether null-mappings are

considered valid or not, events of the pattern sequence may also be linked to ¯. Obviously, an implementation

of the above formula will fail on such input.

In addition to event-level similarity measures, we therefore let the user define a collection of “explicit” cost-

factors for null-mappings !Î*!Î+, … , !Î±X·± with !Î/ ∈ ℝ�� ∀ 0 < � ≤ ±6®±. 29
 Thereby, !ÎL defines the costs of

mappings from the Mth
 event of the pattern sequence to ¯. In case of null-mappings, the cost function returns

the certain explicit cost-factor instead of fruitlessly applying the original formula. An extended and thus “full-

featured” version of !¢/�’, !¢/�: 6® → & ∪)¯., is therefore defined as follows:

!¢/���, 5� = ¥���®�¢OW,X·P��, 5�, 5 = ¯!Î®�¢OW,X·P, 5 ≠ ¯n
So, which costs are suitable in case of null-mappings? Once again, let us repeat the meaning of solutions with

respect to the on-hand approach on event-similarity: A solution �: 6® → 6% ∪)¯. defines a certain

“representation” of a pattern-sequence 6® in a target-sequence 6%. Hence, the “cheapest” solution defines

those events of 6% that constitute the best-possible representation of 6®. In case of null-mappings, a solution �

does not define “counterparts” for certain events of the pattern sequence; in other words, these pattern-

sequence events are missing in �. At a certain degree of dissimilarity between pattern-sequence events and

matched target-sequence events, however, � may be considered better than a solution �′ not comprising null-

mappings. Therefore, in order to find adequate costs in case of null-mappings, one can ask the following

question:

At which degree of dissimilarity between a pattern-sequence event � and a target sequence event 5 is

it more natural to prefer a null-mapping over a mapping to 5?

From that threshold, a cost-factor can be calculated with the above transformation from similarities to costs.

29

 In practice, cost factors are only required for those null-mappings that are considered value based upon the given

compatibility.

72

6.5.1.3 Pseudo code

In pseudo code, an implementation of the proposed cost-function can be described as follows:

Name: getCostsA

Description: Calculates a cost-factor based upon single-event similarities.

Input: pEvent: An event of the pattern sequence.

tEvent: The corresponding event of the target sequence, or ¯.

simMeasures: A map linking the events of the pattern sequence to their user-defined

similarity measures.

nullMappingCosts: A map linking the events of the pattern sequence to the corresponding

cost-factors for null-mappings.

Output: A cost-factor from ℝ��.

Variables: similarity: The similarity between two events.

distance: The distance calculated from similarity.

01: // Check if “normal mapping” or “null mapping”

02: if (tEvent ≠ ¯) then

03: // Calculate similarity and distance

04: double similarity = simMeasures[pEvent](pEvent, tEvent);

05: double distance = -ln(similarity);

06: return distance;

07: else

08: // Return corresponding cost-factor for null-mappings

09: return nullMappingCosts[pEvent];

10: end

Algorithm 5: A cost-function for the aspect of single-event similarities

6.5.1.4 Example

Consider two event sequences 6® and 6% as shown below:

Using 6® as a pattern-sequence, the business analyst defines single-event similarity-measures for the events in 6® as shown in Table 11. Also, as null-mappings will be considered valid for �� ∈ 6®, he or she defines a cost-

factor for null-mappings of ��, !Î* = 0.8.

73

� ∈ ©Ê Event-level sim. measure Attribute Attribute-level sim. measure Weight ZZ ���� Fish Edit Distance Required

 Amount Normalized absolute difference

(min: 0, max:120)

1,0

ÆZ ���È Location Lookup table similarity 1,0

 Berlin – Hamburg � 0.7

 Berlin – Köln � 0.6 ÇZ ���� Location Lookup table similarity 1,0

 Wien – Baden � 0.9

Table 11: Exemplary single-event similarity-measures

Thus, with !¢/� as defined above, the following cost-factors are calculated:

� ∈ ©Ê � ∈ ©Ê ∪)Ù. ���ÊË�O�,©ÊP��, �� Ç�����, �� ZZ Z� 0.75 0.287 ZZ Ù - 0.8 ÆZ Æ� 0.6 0.510 ÆZ ÆÈ 0.7 0.357 ÇZ Ç� 0.9 0.105

Table 12: Exemplary cost-factors as calculated with Ç���

Assuming a cost-function !¢/� as defined above, an event-type compatibility that allows null-mappings for ��

and uniformly distributed weights, we calculate the overall costs of a best-possible solution ��W¢%: 6® → 6% ∪)¯.

as follows:
30

Therefore, with respect to the given configuration, the best-possible solution of �+: 6® → 6% ∪)¯. has overall

costs of 0.250.

30

 Certainly outside the scope of the on-hand example, we will not use a threshold as described in section 6.4.3. This will

apply to all further cost-function examples as well.

74

6.5.2 Cost-function B: Order

As a second cost-function, let us define !�S�WS in accordance with the dimension of order, so that low cost-

factors are calculated for sequences whose events are in a similar order, and high cost-factors otherwise. Now,

what makes a solution costly with respect to the order? How can costs be derived from the orders of two

sequences? In the following sub-sections, will introduce the degree of order (“orderdness”) of solutions, and

show how the overall orderdness of a solution can be derived from what we call “local” degrees or order.

Finally, we will show that to integrate the aspect of order into our approach on event-sequence similarity, cost-

functions on pairs of mappings come into play.

Note that the approach on null-mappings as discussed in section 6.5.2.4 is generally equivalent for the

proposed cost-functions on the aspects of order, absolute temporal structure and relative temporal structures.

The approach will be presented in full detail here; sections 6.5.3.4 and 0, however, will skip most of the

common parts.

6.5.2.1 The orderdness of solutions

In short, a solution �: 6® → 6% ∪)¯. defines mappings between the events of a certain pattern sequence 6® to

events of a certain target sequence 6%. Thereby, both the pattern-sequence events and those events of the

target sequence that are comprised in �, ¸5±5 ∈ 6% , ���� = 5 ∃ � ∈ 6®¹, can be considered in a certain order as

defined by their certain event-sequence, i.e., in an certain order in 6® and 6%, respectively. By “linking” events

of both sequences, � establishes a relation between these two orders: The order of target-sequence events can

more or less comply with the order of their “corresponding” events in 6%. We understand the described relation

as the degree or order, or orderdness, of a solution.

Let us demonstrate the above considerations in a concrete example. Consider two event sequences 6® and 6%

as shown below:

Assuming event-type compatibility as described in section 6.3.3, the following solutions, �* and �+, exist:

It is easy to see that for �*, the pattern-sequence events are in the same order in 6® as their representations in 6%, i.e., 3A���*���, 6%� < 3A���*�5�, 6%� holds for each pair of events ��, 5� with �, 5 ∈ 6® and 3A�O�, 6®P <3A�O5, 6®P . For �+ , however, this is not the case. Here, 3A���+����, 6%� > 3A���+�!��, 6%� holds while 3A�O�� , 6®P < 3A�O!� , 6®P; in other words, �� and !� are in different order in 6® than their representations, �*

and !*, in 6%. Figure 21 depicts this deviation by connecting target-sequence events that are mapped to

successive pattern-sequence events, with arrows indicating the order of the corresponding pattern-sequence

events.

75

Figure 21: Comparing the order of solutions

6.5.2.2 Assessing orderdness locally

In the above example, we have assessed the degree of order of a solution �: 6® → 6% ∪)¯. by comparing the

positioning of the pattern-sequence events with the positioning of the corresponding target sequence events.

We’ve done so in a fairly informal matter, though. In a first step, let us now do that comparison “locally”, i.e.,

for two pairs of mappings O�, ����P and O5, ��5�P, �, 5 ∈ 6®, in �: By comparing the relative positioning of � and 5 in 6® with the relative positioning of ���� and ��5� in 6%, we can assess the orderdness of � locally with

respect to the given pairs of events.

For a clear terminology throughout the following sections, let us introduce the concept of distance between

pattern-sequence events in a certain solution.

In the following, we will examine the various scenarios that may arise in solutions. With later considerations in

mind, we will restrict our discussion to pairs of successive mappings. Figure 22a depicts a case where the

distance between two successive pattern-sequence events � and 5 in a certain solution � is 1, i.e., where the

match for the succeeding pattern-sequence element directly succeeds the match for the preceding pattern-

sequence element. It is easy to see that with respect to a.) the order, and b.) the certain pair of mappings, SÕ

and its solution � of SÔ fit perfectly. The distance in � may, of course, also be greater than 1 (Figure 22b), or

even negative (Figure 22c, Figure 22d).

Figure 22: Comparing the distances between succeeding mappings

In cases where the distance in � is greater than 1, � and 5 are in a “correct” order in �, i.e., 3A������, 6%� <3A����5�, 6%�. Yet, as > = ���, 5, �� − 1 other events (one might call them “additional” in the given context)

are positioned between ���� and ��5� in 6%, 5 does not succeed � directly in �. In cases where the distance in �

Definition: Given a solution �: 6® → 6% ∪)¯. and two pattern-sequence events �, 5R6®, we refer to the

result of a function �O��, 5�, �P = 3A����5�, 6%� − 3A������, 6%� as the distance of � and 5 in �.

76

is negative, � and 5 are in a “wrong” order in � , i.e., 3A������, 6%� > 3A����5�, 6%� while 3A�O�, 6®P <3A�O5, 6®P. Furthermore, if ���, 5, �� < −1, > = 1 − ���, 5, �� additional events are positioned between ����

and ��5� in 6%. In all of the above scenarios, deviations of more or less “extent” exist between 6® and its

solution � of 6%, again, of course, with respect to the order and the certain locality.

6.5.2.3 From local deviations to costs

In the above section, we have assessed the orderdness of solutions purely locally, i.e., with respect to certain

pairs of mappings. So, let us consider a case where for a certain solution �, the local “degrees of order” for all

pairs of succeeding mappings in � are given. It is easy to that - at least in some respect - the overall order of � is

characterized by the sum of local orders: A solution that comprises several “large” distances between

succeeding pattern-sequence events, for instance, will be considered more or less improper with respect to the

order. Instead, a solution where each such distance is 1 clearly fits the pattern-sequence perfectly.

Deriving the overall orderdness of a solution from local (and generally independent) orders allows us to

integrate a so-defined order into the proposed, dynamic algorithm. Consider a solution �: 6® → 6% ∪)¯. and

two pattern-sequence events � and 5, �, 5 ∈ 6®. Obviously, the absolute difference between �O�, 5, 6®P and ���, 5, ��, i.e., absolute difference between the distances from � to 5 in 6® and �, may serve as starting point

for such cost function. As in 6®, the distance between two succeeding pattern-sequence events is always 1, a

cost-function !�S�WS ′: 6® × & × 6® × & → ℝ�� on pairs of mappings may be a however-defined transformation 1: ℝ�� → ℝ�� of |���, 5, �� − 1|:
!�S�WS′O�, ����, 5, ��5�P = 1�|���, 5, �� − 1|� = 1�|������, ��5�, 6% � − 1|�

Note that 1 has two functions: First, it can be used to adapt the range of !�S�WS′ to other cost-functions. More

interesting, it may be used to further specify the business analyst’s certain priorities: For a business analyst, for

instance, scenarios where the distance between two succeeding pattern-sequence events � and 5 in a solution � is negative, i.e., where � and 5 are in the “wrong order” in �, may have much stronger impact on the

perceived, overall similarity than scenarios where there are “just” additional events between ���� and ��5�.

6.5.2.4 Null-mappings

As yet, we have assumed that only normal mappings are valid, i.e., that all valid mappings comprise certain

events of the target sequence. The above formula will, of course, fail if the input comprises one or two null-

mappings.

In section 6.5.1.2, we have used explicitly-defined costs in order to extend the original cost-function for event-

level similarities. Generally, this strategy applies in the present case as well: Given a pattern sequence 6®, we

let the define a collection of explicit cost-factors in case of null-mappings !Î*, !Î+, … , !Î±X·±�*. With � being a

however-defined solution �: 6® → 6% ∪)¯. and �/ addressing the �th
 event of 6®, !ÎL defines the costs of pairs

of mappings \^�L, �O�LP_ , ^�L�*, �O�L�*P_a, ���� = ¯ ∃ � ∈ ¸�L , �L�*¹, i.e., comprising one or two null-mappings.

In order to find adequate costs in case of null-mappings, one can now ask the following question:

At which degree of local disorderdness shall it be more efficient to prefer a null-mapping over a given,

normal mapping?

77

The above approach has shortcomings, though: Consider a pattern-sequence 6® and a target-sequence 6% as

shown below:

Assuming event-type compatibility, two solutions, �* and �+, of 6% exists for 6®:

With the above approach on null-mappings, equal overall costs are calculated for �* and �+. As there are

additional events between �+���� and �+�!��, this clearly conflicts with common expectations, though. We

therefore adapt the original approach as follows:

Consider a solution �: 6® → 6% ∪)¯.. For a pair of succeeding mappings in �, ^O�, ����P, O5, ��5�P_, with ���, 5, 6%� = 1 and ��5� = ¯, i.e., where the succeeding mapping is a null-mapping, we return the certain,

explicitly defined cost-factor as shown above. For the further steps of the algorithm, however, we “virtually”

assign 5 the position in � of its predecessor �, i.e., we “virtually” set 3A��5, �� = 3A���, ��. Consequently, in

case of further null-mappings, the described virtual position in � is carried forward, i.e., for a pattern-sequence

event E with ��5, E, 6%� = 1 and ��E� = ¯, we set 3A��E, �� = 3A��5, �� = 3A���, ��.

Henceforth, when a normal mapping succeeds a (virtually positioned) null-mapping, we do not return an

explicitly defined cost-factor, but instead calculate costs based upon the null-mappings virtual position in �. If a

solution begins with one or more null-mappings, no virtual position is available, though. Here, when a normal

mapping succeeds such null-mapping, the certain, explicitly-defined cost-factor is returned anyway.

78

Example: Consider two event sequences 6% and 6® as shown below:

Given a cost-function !�S�WS: 6® × �& ∪)ε.� × 6® × �& ∪)ε.� → ℝ�� based upon !�S�WS ′O�, ����, 5, ��5�P = 2 ∗ O1 − ���, 5, ��P, uniformly distributed weights an and explicit cost-factor in

case of null-mappings, !Î* = 8, the following, overall costs are calculated:

79

6.5.2.5 Pseudo code

In pseudo code, the proposed cost-function can be described as follows:

Name: getCostsB

Description: Calculates a cost-factor from the local orderdness of two successive mappings. Requires that

the tree is created depth-first.

Input: prevPEvent: An event of the pattern sequence.

prevTEvent: The corresponding event of prevPEvent in the target sequence, or ¯.

pEvent: The event succeeding prevPEvent in the pattern sequence

tEvent: The corresponding event of pEvent in the target sequence, or ¯.

index: The current level of the tree.

nullMappingCosts: A map linking the first event of a pair of successive pattern-sequence

events to the corresponding cost-factors for null-mappings.

t: A user defined transformation function.

Output: A cost-factor from ℝ��.

Variables: posTEvent: The position of tEvent in the target sequence.

lastPosition: The position of the last target-sequence event in the given solution.

State: lastPositions: A field holding the position of the last target-sequence event in a

solution for each level of the tree. Used for the “virtual positioning” of

null-mappings. Initialized with lastPositions[1] = null;

01: // Set lastPosition, update lastPositions

02: Integer lastPosition;

03: if (prevTEvent = ¯) then

04: lastPosition = lastPositions[index – 1];

05: else

06: // For a normal mapping, set “last position” to the position of the pair’s first target-

07: // sequence event.

08: lastPosition = getPositionInTargetSequence(prevTEvent);

09: end

10: lastPositions[index] = lastPosition;

11:

12: // Check whether both position are available

13: if (tEvent = ¯) or (lastPosition = null) then

14: // Return user-defined cost factor for null-mappings

15: return nullMappingCosts[prevPEvent];

16: else

17: // Calculate cost factor “as usual”

18: int posTEvent = getPositionInTargetSequence(tEvent);

19: return t(|1 – (posTEvent – lastPosition)|);

20: end

Algorithm 6: A cost-function for the aspect of order

6.5.2.6 Example

Consider two event sequences 6® and 6% as shown below:

80

As the business analyst knows about the data’s certain characteristics, he or she considers null-mappings valid

only for !� and defines an explicit cost-factor !Î+ = 20 . With a cost-function !�S�WS based upon !�S�WS ′O�, ����, 5, ��5�P = 10 ∗ O1 − ���, 5, ��P and uniformly distributed weights, the best-possible solution ��W¢%: 6® → 6% ∪)¯. is then calculated as follows:

Thus, with overall costs of 16,3, the best-possible solution �+: 6® → 6% ∪)¯. comprises the following target-

sequence events:

6.5.3 Cost-function C: Absolute temporal structure

As a third cost-function, let us define !�%/�W in accordance with the dimension of absolute temporal structures,

so that low cost-factors are calculated for sequences whose events are in a similar absolute temporal structure,

and high cost-factors otherwise. In many respects, the approach presented here follows the same principles as

the approach on order as discussed in section 6.5.2: From a conceptual point of view, the (overall or local)

temporal quality of a solution corresponds to the (overall or local) orderdness of a solution. With this relation in

mind, we won’t step into too much detail here and instead keep things brief and simple.

6.5.3.1 The temporal quality of solutions

In a first step, let us walk through the general idea of a temporal quality of solutions: Given a solution �: 6® → 6% ∪)¯., both the pattern-sequence events, ¸�±� ∈ 6®¹, and those events of the target sequence that

are comprised in �, ¸5±5 ∈ 6% ∩ ���� = 5 ∃ � ∈ 6®¹, can be considered in a certain temporal structure. By

“linking” events of both sequences, � establishes a relation between the two structures: The temporal

structure of target-sequence events can more or less comply with the temporal structure of their

“corresponding” events in 6%, i.e., of the events they are mapped to in �. We understand the described relation

as the temporal quality of a solution.

81

6.5.3.2 Assessing the temporal quality locally

In section 6.5.2.2, we have derived the overall order of a solution from what we called “local orders”. Thereby,

local orders are calculated by comparing the relative positioning of two succeeding pattern-sequence events in

the pattern-sequence and in the certain solution. Regarding the temporal quality of a solution, a very similar

strategy can be applied. First, however, let us introduce the time span between two pattern-sequence events in

a solution:

Consider a solution �: 6® → 6% ∪)¯. and two succeeding pattern-sequence events � and 5 ; �, 5 ∈ 6® , �O�, 5, 6®P = 1. One can now assess the quality of � - locally with respect the given mappings - by comparing 1O�, 5, 6®P and 1��, 5, ��, i.e., by comparing the time span between � and 5 in 6® and in �.

6.5.3.3 From local deviations to costs

Given the above context, it is easy to see that the absolute difference between 1��, 5� and 1��, 5, ��, |1��, 5� − 1��, 5, ��|, can serve as a metric for the local temporal quality of a solution �. A cost-function !�%/�W ′: 6® × & × 6® × & → ℝ�� on pairs of mappings may hence be a however-defined transformation F: ℝ�� → ℝ�� of |1��, 5� − 1��, 5, ��|:
!�%/�W ′O�, ����, 5, ��5�P = F�|1��, 5� − 1��, 5, ��|� = FO±1��, 5� − 1O����, ��5�P±P

Again, F may be used to adapt the range of !�%/�W ′ to other cost-functions, and also to further specify the

business analyst’s certain priorities.

6.5.3.4 Null-mappings

As the above formula’s domain is restricted to pairs of normal mappings, input comprising one or two null-

mappings requires special handling. The proposed strategy, however, clearly resembles the approach

presented in section 6.5.2.4:

For a pair of succeeding mappings in �, ^O�, ����P, O5, ��5�P_, with ���, 5, 6%� = 1 and ��5� = ¯, i.e., where the

succeeding mapping is a null-mapping, we return a certain, explicitly-defined cost-factor. For the further steps

of the algorithm, we “virtually” assign 5 the time of occurrence in � of its predecessor �, i.e., we set $%�5, s� =$%��, s�. 31 Henceforth, when a normal mapping succeeds a (virtually timed) null-mapping, we do not return an

explicitly defined cost-factor, but instead calculate costs based upon the null-mappings “virtual” time of

occurrence in �. If a solution begins with one or more null-mappings, no virtual occurrence time is available,

31

 This is, in fact, equivalent to what we have done in section 6.5.2.4, where we have set a “virtual” position in �.

Definition: Given an event sequence 6, we refer to the result of a function 1: 6 × 6 × �6 → &� with 1��, 5, �� = 1O����, s�5�P = $%O��5�P − $%O����P as the time span between � and 5 in � . Again, for a

function �′: 6 → & ∪)¯. with �:��� = ¯ and/or �:�5� = ¯, 1��, 5, �′� is not defined.

Definition: Given an event sequence 6, we refer to the result of a function $%: 6 × �6 → &� with $%��, �� =$%O����P as the time of occurrence of � in �. Note that for a function �′: 6 → & ∪)¯. with �:��� = ¯, $%��, �′� is not defined.

82

though. Here, when a normal mapping succeeds such a null-mapping, the certain, explicitly-defined cost-factor

is returned anyway.

6.5.3.5 Pseudo code

In pseudo code, the proposed cost-function can be described as follows:

Name: getCostsC

Description: Calculates a cost-factor from the absolute temporal deviations in two successive mappings.

Requires that the tree is created depth-first.

Input: prevPEvent: An event of the pattern sequence.

prevTEvent: The corresponding event of prevPEvent in the target sequence, or ¯.

pEvent: The event succeeding prevPEvent in the pattern sequence

tEvent: The corresponding event of pEvent in the target sequence, or ¯.

index: The current level of the tree.

nullMappingCosts: A map linking the first event of a pair of successive pattern-sequence

events to the corresponding cost-factors for null-mappings.

t: A user defined transformation function.

Output: A cost-factor from ℝ��.

Variables: pATimeSpan: The absolute time span between between prevPEvent and pEvent.

tATimeSpan: The absolute time span between between lastTimeStamp and tEvent.

lastTimeStamp: The time stamp of the last target-sequence event in the given solution.

State: lastTimeStamps: A field holding the time stamp of the last target-sequence event in a

solution for each level of the tree. Used for the “virtual positioning” of

null-mappings. Initialized with lastTimeStamps[1] = null;

01: // Set lastTimeStamp, update lastTimeStamps

02: TimeStamp lastTimeStamp;

03: if (prevTEvent = ¯) then

04: lastTimeStamp = lastTimeStamps[index – 1];

05: else

06: // For a normal mapping, set “last time stamp” to the time stamp of the pair’s first

07: // target-sequence event.

08: lastTimeStamp = $%(prevTEvent);

09: end

10: lastTimeStamps[index] = lastTimeStamp;

11:

12: // Check whether both position are available

13: if (tEvent = ¯) or (lastTimeStamp = null) then

14: // Return user-defined cost factor for null-mappings

15: return nullMappingCosts[prevPEvent];

16. else

17: // Calculate cost factor “as usual”

18: double pATimeSpan = $%(pEvent) - $%(prevPEvent);

19: double tATimeSpan = $%(pEvent) - lastTimeStamp;

20: return t(|pATimeSpan – tATimespan|);

21: end

Algorithm 7: A cost-function for the aspect of absolute temporal structures

83

6.5.3.6 Example

Consider two event sequences 6® and 6% as shown below:

The business considers null-mappings invalid for all events of the pattern sequence. With a cost-function !�%/�W

based upon !�%/�W ′O�, ����, 5, ��5�P = ±%�W,V�� %O¢�W�,¢�V�P±*�� and uniformly distributed weights, the best-possible

solution ��W¢%: 6® → 6% ∪)¯. is then calculated as follows:

Thus, with overall costs of 7, the best-possible solution �*: 6® → 6% ∪)¯. comprises the following target-

sequence events:

84

6.5.4 Cost-function D: Relative temporal structure

As a fourth and final cost-function, let us now define !S%/�W in accordance with the dimension of relative

temporal structures, so that low cost-factors are calculated for sequences whose events are in a similar relative

temporal structure, and high cost-factors otherwise. Note that from the four cost-functions presented in the

on-hand section, !S%/W plays a somewhat “special role”: Unlike !¢/�, !�S�WS and !�%/�W , it is applicable in case of

full-sequence matching only. We will discuss this issue in detail section 6.5.4.1. Our approach on full-sequence

matching and *-linked matching will be presented in section 6.6.

Generally, it seems highly natural that comparing the absolute and comparing the relative temporal structure

of two event sequences should follow mainly equivalent principles. In accordance with the absolute time span

between two events, let us therefore introduce the relative time span between two pattern-sequence events in

a solution:

We have now defined relative time spans between events, both in event-sequences (section 3.3) and in

solutions. Given a solution �: 6® → 6% ∪)¯. and two succeeding pattern-sequence events � and 5, �, 5 ∈ 6®, �O�, 5, 6®P = 1, we therefore calculate the local quality of � by comparing 1SO�, 5, 6®P and 1S��, 5, ��, i.e., by

comparing the relative time span between � and 5 in 6® and in �. A cost-function !S%/�W′: 6® × & × 6® × & →ℝ�� on pairs of mappings that introduces the relative temporal structure is then defined in equivalence to !�%/�W ′ as described in section 6.5.3, but builds upon relative time spans instead of absolute ones. Given the

above context and a however-defined transformation F: ℝ�� → ℝ��, !S%/�W ′ is thus defined as follows:

!S%/�W′O��, 5�, �P = F ^½1S ^��, 5�, 6®_ − 1SO��, 5�, �P½_.
Null-mappings, finally, are handled as described in section 6.5.3.4.

6.5.4.1 Restriction to full-sequence matching

It is easy to see that in order to calculate the relative time span between two pattern-sequence events in a

solution �: 6® → 6% ∪)¯., the overall length =��� must be available. In the proposed, dynamic algorithm,

however, each cost-factor is potentially calculated for several, distinct solutions. The only case were the overall

length of all solutions that follow from a certain tree-node is a.) equal and b.) known a-priori is full-sequence

mapping. Here, for all solutions of a target sequence S, =��� = =�6� holds. Therefore, with the on-hand

approach, the relative temporal structure can be taken into account in case of full-sequence matching only.

Definition: Given a solution �: 6® → 6% ∪)¯. and two pattern-sequence events � and 5, �, 5R6®, we refer to

the result of a function 1S: 6® × 6® × O6® → &P with 1S��, 5, �� = TUO¢�V�P�TUO¢�W�P;�¢� as the relative time span

between � and 5 in � . For a function �′: 6 → & ∪)¯. with �:��� = ¯ and/or �:�5� = ¯ , 1��, 5, �′� is not

defined.

=��� = maxLd*…±X·± ∧ ¢OW«PÞÎ ^3A�O�O�LP, 6%P_ − minLd*…±X·± ∧ ¢�W¬�ÞÎO3A�����-�, 6%�P
Definition: Given a solution �: 6® → 6% ∪)¯., with �/ addressing the �th

 event in 6®, we refer to the result

of a function =: O6® → & ∪)¯.P → ℝ�� with

as the overall length of �.

85

6.5.4.2 Pseudo code

In pseudo code, the proposed cost-function can be described as follows:

Name: getCostsD

Description: Calculates a cost-factor from the relative temporal deviations in two successive mappings.

Requires that the tree is created depth-first.

Input: prevPEvent: An event of the pattern sequence.

prevTEvent: The corresponding event of prevPEvent in the target sequence, or ¯.

pEvent: The event succeeding prevPEvent in the pattern sequence

tEvent: The corresponding event of pEvent in the target sequence, or ¯.

index: The current level of the tree.

nullMappingCosts: A map linking the first event of a pair of successive pattern-sequence

events to the corresponding cost-factors for null-mappings.

t: A user defined transformation function.

Output: A cost-factor from ℝ��.

Variables: pRTimeSpan: The relative time span between between prevPEvent and pEvent.

tRTimeSpan The relative time span between between lastTimeStamp and tEvent.

lastTimeStamp: The time stamp of the last target-sequence event in the given solution.

State: lastTimeStamps: A field holding the time stamp of the last target-sequence event in a

solution for each level of the tree. Used for the “virtual positioning” of

null-mappings. Initialized with lastTimeStamps[1] = null;

01: // Set lastTimeStamp, update lastTimeStamps

02: TimeStamp lastTimeStamp;

03: if (prevTEvent = ¯) then

04: lastTimeStamp = lastTimeStamps[index – 1];

05: else

06: // For a normal mapping, set “last time stamp” to the time stamp of the pair’s first

07: // target-sequence event.

08: lastTimeStamp = $%(prevTEvent);

09: end

10: lastTimeStamps[index] = lastTimeStamp;

11:

12: // Check whether both position are available

13: if (tEvent = ¯) or (lastTimeStamp = null) then

14: // Return user-defined cost factor for null-mappings

15: return nullMappingCosts[prevPEvent];

16. else

17: // Calculate cost factor “as usual”

18: double pRTimeSpan = getRelativeToPatternSequence($%(pEvent) - $%(prevPEvent));

19: double tRTimeSpan = getRelativeToTargetSequence($%(pEvent) - lastTimeStamp);

20: return t(|pRTimeSpan – tRTimespan|);

21: end

Algorithm 8: A cost-function for the aspect of relative temporal structures

86

6.5.4.3 Example

Consider two event sequences 6®, =O6®P = 28s, and 6%, =�6%� = 49s, as shown below:

The business considers null-mappings invalid for all events of the pattern sequence. With a cost-function !S%/�W

based upon !S%/�W′ = 100 ∗ O±1SO�, 5, 6®P − 1S��, 5, ��±P and uniformly distributed weights, the best-possible

solution ��W¢%: 6á → 6% ∪)¯. is calculated as follows:

Thus, with overall costs of 6,2, the best-possible solution �+: 6á → 6% ∪)¯. comprises the following mappings:

6.5.5 Similarity measures and event-sequence signatures

In section 6.3, we have stated that similarity measures on sequences of events as described in the on-hand

thesis are defined “per pattern sequence”. Keep in mind, however, that a certain collection of weights could be

87

used for all pattern-sequences of a certain size. Also, !�S�WS , !�%/�W and !S%/�W as defined above are generally

independent from the concrete pattern-sequence and the events therein.

Therefore, with single-event similarity-measures that are defined per event type (such as, for instance,

described in section 6.5.1), a similarity-measure building upon the above cost-functions could be defined “per

event-sequence signature”. It is easy to see that this makes similarity-measures reusable across all pattern

sequences having a certain signature and thus a certainly more powerful toolkit for business analysts. Yet,

when other, event-specific cost-functions come into play, this may not be possible anymore. In neither case

there is any kind of restriction on target sequences.

6.6 From sub-sequence matching to full-sequence matching

Throughout the last few sections, we have used the proposed algorithm solely for what we call sub-sequence

matching, i.e., for finding the similarity of best-matching sub-sequence of a certain target-sequence. In the on

hand section, we will show how the algorithm can be used for full-sequence matching, and also for start-linked

matching and end-linked matching. It is essential to note, however, that the on-hand approach was designed in

accordance with the above-defined, concrete cost-functions in mind; thus, it cannot be considered “fully

general” with respect to the base algorithm as described in section 6.3. For possible other cost-functions, the

present approach may be inappropriate; here, a wide adaption of the algorithm may be required.

6.6.1 Additional characteristics

Obviously, in case of full-sequence matching, certain characteristics of the target-sequence must be taken into

account that are ignored in case of sub-sequence mapping. Consider a solution �: 6® → 6% ∪)¯. as shown

below:

Figure 23: Exemplary sub-sequence matching

It is easy to see that in case of sub-sequence matching, certain events of the target-sequence - �*, �+, �*, �N,

and �+ - are not taken into account at all.
32

 Thus, from a calculation point of view, it doesn’t make a difference

whether � is of 6% or of a sub-sequence 6% ′ of 6% as marked in the above figure.
33

Now, let us reconsider the above example, assuming that full-sequence matching is requested by the business

analyst. What else characteristics of 6% must be taken into account? Let us observe the problem with respect

32

 Note that !* is taken into account, even though it is not comprised in mappings as defined in �. Yet, it affects the

distances between �� and ��, and �� and !�, in �, and therefore has an impact on the overall costs of �.
33

 More generally, given a solution �: 6® → 6% ∪)¯., with �/ addressing the �th
 event of 6% , calculating the overall costs is

equal for all sub-sequences 6% ′ of 6% , 6% : = O�L , … , �-P, with M ≤ minV∈X·O3A����5�, 6%�P, < ≥ maxV∈X·O3A����5�, 6%�P.

88

to the various aspects of event-sequence similarity. In the following, �®/ and �%/ address the �th
 event of 6® and 6% , respectively.

Regarding single-event similarities, there is no difference between sub-sequence matching and full sequence

mapping. In both cases, the events of the pattern-sequence are compared to their certain counterparts in the

target-sequence.

Regarding order, the fact that there are

a. > events before � ^�®*_ in 6% , and

b. � events after � \�®±X·±a in 6% ,
must be taken into account. In the above example, > = 3 (�*, �+, and �*), and � = 2 (�N and �+).

Regarding the temporal structure, the time spans between

a. � ^�®*_ and �%*, i.e., 1 ^� ^�®*_ , �%*_, and

b. � \�®±X·±a and �%|XU|, i.e., 1 \� \�®±X·±a , �%|XU|a,

must be taken into account. Figure 24 below depicts these time spans in the given example:

Figure 24: Temporal structures in case of full-sequence matching

6.6.2 Introducing start- and end-events

In order to provide full-sequence matching as been described in section 6.1.2, the above characteristics must

affect the overall costs of a solution. In the on-hand section, we will introduce a simple “trick”, allowing us

considering the described characteristics while leaving both the base algorithm and the proposed cost-

functions unchanged.

Consider a solution �: 6® → 6% ∪)¯.. In case of full-sequence mapping, let us “conceptually” extend both the

pattern-sequence and the target-sequence by two virtual events �¢ (the start-event) and �W (the end-event).

Thereby, with �/ addressing the �th
 event of an event-sequence 6, �¢ and �W have the following characteristics:

3A���¢, 6� = 0

$%��¢� = $%��*�

3A���W , 6� = |6| + 1

89

$%��W� = $%O�|X|P

Thus, according to their positions in the certain event-sequence, one may refer to start- and end-events as the

0
th

 and the �|6| + 1�th
 event in 6, respectively.

Furthermore, we assume that the start-event of the target-sequence is the only match for the start-event of

the pattern-sequence, and that the end-event of the target-sequence is the only match for the end-event of

the pattern-sequence. Hence, each solution �: 6® → 6% ∪)¯. comprises two “additional” mappings, linking a.)

the two start-events, and b.) the two end-events to one another. Further on, we will refer to the additional

mappings as start- and end-mappings, respectively.

Let �/ address the �th
 event of 6®. As part of the proposed algorithm, we now apply each given cost-function on

pairs of mappings on both ^O��, �����P, O�*, ���*�P_ and °\�±X·±, � ^�±X·±_a , \�±X·±�*, � ^�±X·±�*_a³. With the

thereby generated, additional cost-factors, all relevant characteristics as discussed in section 6.6.1 gain impact

on the overall costs of �. Note that since start-events and end-evens are auxiliary constructs that have no

attributes, !¢/� is not applied to according mappings.

Example, continued: Consider a cost-function !�S�WS based upon !�S�WS′O�, ����, 5, ��5�P = |1 −���, 5, �� − 1|. With full-sequence matching and uniformly distributed weights, the algorithm results in the

following tree-path:

Example: Consider a solution �: 6® → 6% ∪)¯. as shown in Figure 23. In case of full-sequence matching,

both event sequences 6® and 6% are extended by virtual start- and end-events. These events are then

linked in start- and end-mappings as illustrated below:

Figure 25: Full-sequence matching by assuming virtual start- and end-events

90

6.6.3 Adapted weighting

In the above section, we have calculated additional cost-factors by comprising mappings between start- and

end-events. These additional cost-factors must, of course, be weighted. We therefore adapt the weighting

model as proposed in section 6.3.2.3 as follows:

Consider a solution �: 6® → 6% ∪)¯. together with a collection of cost-functions on single mappings !¢*, !¢+, … , !¢� and a collection of cost-functions on pairs of mappings !®*, !®+, … , !®9. In case of full-sequence

matching, we allow the user defining < = ^� ∗ ±6®± + > ∗ O±6®± + 1P_ weights b*, b+, … , b- with bL ∈�0,1� ∀ M = 1 … < and ∑ bL-Ld* = 1, i.e., that sum to unity. With a however-defined aggregation function 5: ℝ��- × �0,1�- → ℝ�� and !/ addressing the � th
 cost-factor calculated from � , a function !A�1: 6® ×O6® → & ∪)¯.P calculating the overall costs of a solution �: 6® → 6% ∪)¯. is then still defined as follows:

!A�1O6® , �P = 5�!*, … !- , b*, … b-�

6.6.4 A “mainly” consistent approach on matching modes

It is easy to see that both start-linked matching and end-linked matching can be implemented in full

accordance with the above-presented approach on full-sequence mapping. Consider a solution �: 6® → 6% ∪)¯., and let �/ address the �th
 event of 6®. In case of start-linked mapping, we simply weight those cost factors

that are calculated from ���, �*� by zero. Consequently, in case of end-linked mapping, we weight those cost-

factors that are calculated from ^�±X·±, �±X·±�*_ by zero. Weighting all additional cost-factors by zero, however,

allows us performing sub-sequence matching as well.

Obviously, as according weights can be become arbitrarily small, the borders between the various matching

modes are somewhat floating. Thus, by introducing virtual start- and end-events as defined above, a fully-

consistent approach on matching modes is provided for !¢/�, !�S�WS and !�%/�W as presented in section 6.4.4.

For !S%/�W , however, this is not the case: Here, even if cost-factors arising from ���, �*� and ^�±X·±, �±X·±�*_ are

weighted by zero, the according mappings affect the length of the resulting solution and, therefore, the relative

time span between the solution’s target-sequence events. As this clearly conflicts with common expectations,

sub-sequence matching including zero-weighted start- and end-mappings is conceptually wrong when relative

temporal structures shall be taken into account.

Figure 26 below illustrates the described problem: Even when the mappings between start- and end-events are

weighted by zero, =�6%� is used for calculating the relative time spans in �. Yet, in case of sub-sequence

matching, one would expect =�6%’� instead.

91

Figure 26: Conceptual problems in case of full-sequence matching

From an algorithm point of view, as the length of the various solutions is not available throughout the

algorithm, !S%/�W is applicable in case of however-weighted but “real and aware” full-sequence matching only.

We have discussed this issue in section 6.5.4.1 above.

6.7 Discussion

Again, let us end this section with discussing the various “pros and cons” of the proposed approach, its

properties and its complexity.

6.7.1 Pros and Cons

The presented approach on event-sequence similarity builds upon an intuitive, assignment-based

understanding of sequence similarity. Thus, despite of an undeniable degree of complexity, it should appear

somewhat natural to business analysts. Also, by letting the analyst choosing cost-functions, weights and

compatibilities freely, it allows great flexibility and should be applicable in most scenarios: With the basic cost-

functions as proposed in section 6.5, the essential dimensions of event-sequence similarity are covered. When

other, previously undiscovered aspects gain relevance in the given context, an arbitrary number of additional

cost-function may be defined. Furthermore, the conceptually clear separation of concerns into possible

assignments (compatibilities), sources of costs (cost-functions) and impact of costs (weights) is a solid basis for

further extensions of the algorithm - especially when the set of valid solution shall further be reduced.

Suntinger [49] presents the particularly interesting concept of “blocks” in his master thesis.

Finally, note that for the proposed algorithm, sub-sequence matching can be considered the “default matching

mode” and the starting point for all other matching modes. Applicable (at least) for the proposed, basic cost-

functions, the presented approach on full-sequence matching allows a widely consistent and somewhat

“fluent” handling of matching modes. Consequently, the proposed algorithm executes in (de facto) equal

runtime for all four matching modes.

Let us now continue to the disadvantages of the on-hand approach: In section 6.6.4, we have stated that the

dimension of relative temporal structures can only be calculated in case of full-sequence matching. There is,

however, no such restriction “in general”, and other approaches could allow considering that aspect in case of

sub-sequence matching and *-linked matching as well. Also, as before for single-event similarity-measures, the

presented approach requires lots of configuration and an even stronger involvement of the domain expert. All

in all, the user has to define and configure

92

• adequate cost-functions,

• an adequate weighting configuration, and

• an adequate compatibility.

Again, a framework for event-sequence similarity-searching should comprise a library-like, persistent

management facility allowing the reuse of proven similarity measures.
34

 Eventually, the Branch-&-Bound-based

algorithm requires considerable computational effort. We will discuss this issue in section 6.7.3 below.

6.7.1.1 Weighting pairs of mappings

Clearly making the presented approach more flexible and applicable in a variety of use cases, we have listed

the weighting model a notable pro above. Unfortunately, weighting pairs of mappings is fairly unnatural and

also leads to some conceptual weaknesses. Let us demonstrate the most problematic case with a simple

example:

As yet, we have not found a solution for the presented scenario.

6.7.2 Properties

We have stated that per definition, similarity measures performing sub-sequence matching and *-linked

matching are asymmetric. Thus, let us focus on cases where the proposed algorithm is used for full-sequence

34

 In the SENACTIVE EventAnalyzer, we allow the user choosing from all stored similarity-measures compatible with a given

pattern sequence. Also, we allow the user adding various meta-information, such as, for instance, the informal description

of a measure’s semantics. For configuring !¢/� (on single-event similarities) the repository is tightly coupled to the

corresponding repository for single-event similarities.

Example: Consider a pattern sequence 6® as shown below together a similarity measure ����S�WS

comprising !�S�WS as its only cost-function, i.e., calculating similarity solely from the aspect of order.

A business analyst may now consider ÇZ’s position in a target sequence ©Ì as irrelevant for the overall

similarity of ©Ì. So, how can this be accomplished? Actually, the business analyst has to weight all cost-

factors calculated from �ÆZ, ÇZ� and �ÇZ, ZZ�, i.e., the cost-factors “around” ÇZ , by zero. Below, the

according pairs of mappings are marked red.

With those weightings, however, not only the position of ÇZ hasn’t any impact on the overall similarity, but

also the relative positioning of ÆZ and ZZ in the target sequence. Therefore, the following solution �: 6® → 6% ∪)¯. has overall costs of zero, which results in the certain equality of 6% and clearly conflicts

with common expectations:

93

matching. Here, in cases where the pattern sequence 6® and the target sequence 6% are of the same size, ±6®± = |6%|, a similarity-measure as proposed in the on-hand section can be considered a strong similarity

measure in the strict sense iff

a. the used compatibility is symmetric,

b. the aggregation function is a linear combination of cost-factors and weights, and

c. all comprised cost-functions can be considered metrics.

For a weak similarity measure in the strict sense, conditions can be defined accordingly. Yet, in the more

general case that pattern- and target sequence are of different sizes, ±6®± ≠ |6%|, “missing events” and,

correspondingly, “additional events” do not necessarily affect the overall similarity between two sequences of

events in one and the same extent. Consequently, similarity-measures as proposed in the on-hand section can

be considered asymmetric, and, following from that, similarity measures in the common sense.

6.7.3 Complexity

It is easy to see that in general, the runtime of the proposed algorithm depends on the number of times the

loop from Algorithm 4, line 13, is executed. More plastically, this number can be considered the number of

tree-nodes in the resulting tree. The loop’s body, i.e., for the calculation of cost-factors, however, we assume

requiring a constant time !.

For the proposed algorithm, the best case is that where there are no valid mappings for the first event of the

pattern sequence. Here, a similarity of zero can be returned immediately. Though not explicitly described in

Algorithm 4, we assume that given a sets of matches for all events of the pattern-sequence, this can be found

out in a constant time !�W¢% . With > and � addressing the number of events in the pattern- and the target

sequence, the best-case runtime of the proposed algorithm is thus defined as follows:

(�W¢%�>, �� = !�W¢%

The worst case, by contrast, occurs where

a. each event of the target sequence and

b. the null-event

match each event of the pattern sequence and the threshold does not apply throughout the whole calculation.

So, how many tree-nodes are evaluated in a so-defined scenario? In section 6.3.1, we have stated that without

additional restrictions through a however-defined compatibility, ∑ \ ±X·±!O±X·±�-P!a ∗ O|XU|- P´µ¶O±X·±,|XU|P-d� solutions of a target sequence 6% exist for a pattern sequence 6®. Consequently,

as each leaf represents a distinct solution, the “worst-case” (e�S¢% of 6® and 6% has ∑ \ ±X·±!O±X·±�-P!a ∗ O|XU|- P´µ¶O±X·±,|XU|P-d� leaf nodes. Also, note that given a tree (as calculated from 6® , 6% and a

compatibility ! in Algorithm 3, the sub-tree (/ constituted from the nodes of level 1 to level � in (is equivalent

to a tree (’ as calculated from 6%, ! and a subsequence 6®/ ⊆ 6® constituted from the first � events in 6®.

Following from that, the M th
 level of the worst-case tree (e�S¢% of 6® and 6% contains ∑ ^ L!�L�-�!_ ∗ O|XU|- P´µ¶�L,|XU|�-d� tree nodes. In sum, (e�S¢% contains ∑ ^∑ ^ /!�/�-�!_ ∗ O|XU|- P´µ¶�/,|XU|�-d� _±X·±/d* nodes. The

worst-case runtime of the proposed algorithm is therefore defined as follows:

94

(e�S¢%�>, �� = i â i \ �!�� − <�!a ∗ ^�< _´µ¶�/,��
-d� ã9

/d* ∗ !

In practice, worst-case runtime is avoided through

• compatibilities, restricting the set of valid solutions, and the

• threshold, allowing us to skip costly solutions early in the calculation.

As solely depending on the given pair of sequences, stating a universally valid, average runtime is non-trivial

and outside the scope of this thesis. In general, however, the typical proportion of the above-said worst-case

runtime to “practical runtimes” can be considered equivalent to other Branch-&-Bound algorithms.

6.7.3.1 Branch & Bound vs. Dynamic Programming

As we have already touched upon, the given optimization problem - to find the best-possible solution of the

target sequence for the pattern sequence - could also be solved using Dynamic Programming. Dynamic

Programming clearly outperforms Branch & Bound strategies and allows to solve according problems in

(pseudo) polynomial runtimes instead of exponential ones.

We opted for the presented Branch-&-Bound-based algorithm in view of possible extensions of the base

algorithm, as, for instance, presented by Suntinger [49]. Consider Suntinger’s “arbitrary order” block,

weakening the order of certain pattern-sequence events: Here, resulting from dependencies across > events of

the pattern sequence, a Dynamic-Programming-based approach might require notable workarounds most

likely conflicts with the idea of a clear separation of concerns between the base algorithm and plug-in-like

extensions.

An adaption of the presented algorithm towards Dynamic Programming or a however-defined hybrid solution

is nevertheless crucial when similarity searching shall be applied to long event-sequences starting from several

hundreds of events, e.g., complete customer interactions over several years: In the evaluation part of this

thesis presented in section 7, we will see the presented approach is impracticable here, with execution

performance being one of the most obvious reasons. It is easy to see that the above-said adaption of the

presented, basic ideas of event-sequence similarity should be considered a subject of future research projects.

6.7.3.2 Enhanced branch-selection strategies

The presented Branch-&-Bound-based algorithm uses a very simple branch-selection strategy by choosing

target-sequence events in their order of occurrence. Yet, as the algorithm strongly depends on the quick

detection of “rather good” solutions (and thus reducing the threshold), a more sophisticated branch-selection

strategy might result in notable performance improvements. Again, the investigation and evaluation of tailored

selection strategies should be a subject for future work.

95

7 Application and results

In the course of this work, a comprehensive evaluation has been carried out in order to judge both algorithmic

performance and accuracy of search results. We claim to provide a generic model for event sequence similarity.

Hence, in order to prove the generic character of our approach, we decided to evaluate results based on

strongly varying input data from different application domains. In addition, we defined different objectives for

each evaluation scenario. These are reasoned by the idea to cover different interests of our software’s end

users. For each scenario, the evaluation is spilt up into two parts, the results of performance measures and the

judgment of search results including a discussion on the degree to which we see initial aims being fulfilled by

the gathered results. Especially the second part is done in awareness of the fact that full objectiveness is

virtually impossible when it comes to assessment of similarity search results. We therefore focus on our

concrete, application specific objectives for judging the value of the results.

The presented approaches were implemented in C#, a programming language from Microsoft’s .Net-

framework. As the implementation serves as a prototype and is part of the EventAnalyzer current production

version, we decided to abandon a sophisticated threading concept.

7.1 C1 - Online gambling: User activity histories

The first evaluation scenario aims at investigating on the algorithmic performance and correctness of search

results in a controlled and exactly defined environment. We achieve this environment by utilizing simulated

data with controlled variations in the generated event sequences. The simulation model generates events

representing the activity log of single customers of an online betting platform. Such sequences include the

following activities: opening the account (i.e., registering at the platform), cashing-in and cashing-out money,

placing bets, winning and losing bets and notifications on failed bet placements. The occurring event types and

their attributes are depicted in Figure 27.

Figure 27: Event types and correlations in evaluation scenario C1 – Online gambling

The simulation model generates several arbitrary sequences of events, whereby the simulation engine takes

care of correctness and validity of the sequence. For instance, the simulation keeps track on the virtual cash

balance of a customer during the simulation, so that b

addition to the arbitrary sequences, several

structure. These template structures have been defined based on a requirements study car

European online betting and gambling provider. In the course of this study, known, suspicious behavior pattern

have been identified and described. Yet, the descriptions are fuzzy, and the concrete sequences simulated vary

both in the number of events occurring

One possible pattern is the sleeper pattern. Sleepers are users which, after registration and maybe a few initial

bets, do not bet for a long period of time. It is then remarkable

of money, place a very high bet, and cash

insider information on a bet or places the bet for a user who is not allowed to place it, for instance ga

officials such as referees or players and other participants.

7.1.1 Objectives and evaluation focus

For the evaluation of our similarity search algorithm in the given context, we define the following objectives:

• Among the simulated account histories, 10 are

these 10 sequences, the other 9 sequences must be discovered with the similarity search.

• None of the other account history should be retrieved, except in case the arbitrary simulation

generates a pattern similar to our template.

In addition to these measureable objectives, the focus of this evaluation case is on:

• Determining the sensitivity of the model towards the similarity configuration

• Measuring the performance with different configuration paramet

In the following, different combinations of search patterns and similarity configuration options are defined

which have been executed for the case study.

7.1.2 C1.a - Order and sub

In the first scenario, we define a single

order. The following reference sequence is used as the search pattern, whereby the table lists the event type

colors. Thus, the short pattern sequence starts with an “open account” event, followed by

notification that the bet was lost. At the end of the sequence, this user won a bet and cashed out directly after.

Figure 28: Search pattern for evaluation case C1.a

model generates several arbitrary sequences of events, whereby the simulation engine takes

care of correctness and validity of the sequence. For instance, the simulation keeps track on the virtual cash

balance of a customer during the simulation, so that bet placements are simulated only if

addition to the arbitrary sequences, several account histories are generated which follow a defined template

structure. These template structures have been defined based on a requirements study car

European online betting and gambling provider. In the course of this study, known, suspicious behavior pattern

have been identified and described. Yet, the descriptions are fuzzy, and the concrete sequences simulated vary

mber of events occurring and in certain event attribute’s values.

is the sleeper pattern. Sleepers are users which, after registration and maybe a few initial

of time. It is then remarkable if such sleepers suddenly cash

of money, place a very high bet, and cash-out again immediately. This is often an indication that the user had

insider information on a bet or places the bet for a user who is not allowed to place it, for instance ga

officials such as referees or players and other participants.

Objectives and evaluation focus

For the evaluation of our similarity search algorithm in the given context, we define the following objectives:

simulated account histories, 10 are simulated based on a selected template. Using one of

these 10 sequences, the other 9 sequences must be discovered with the similarity search.

None of the other account history should be retrieved, except in case the arbitrary simulation

rn similar to our template.

e objectives, the focus of this evaluation case is on:

Determining the sensitivity of the model towards the similarity configuration.

Measuring the performance with different configuration parameters.

In the following, different combinations of search patterns and similarity configuration options are defined

which have been executed for the case study.

sub-sequence matching

the first scenario, we define a single-event similarity measures that exclusively incorporates the aspect of

The following reference sequence is used as the search pattern, whereby the table lists the event type

colors. Thus, the short pattern sequence starts with an “open account” event, followed by

notification that the bet was lost. At the end of the sequence, this user won a bet and cashed out directly after.

: Search pattern for evaluation case C1.a

96

model generates several arbitrary sequences of events, whereby the simulation engine takes

care of correctness and validity of the sequence. For instance, the simulation keeps track on the virtual cash

if money is available. In

which follow a defined template

structure. These template structures have been defined based on a requirements study carried out at a large

European online betting and gambling provider. In the course of this study, known, suspicious behavior pattern

have been identified and described. Yet, the descriptions are fuzzy, and the concrete sequences simulated vary

is the sleeper pattern. Sleepers are users which, after registration and maybe a few initial

leepers suddenly cash-in a large amount

out again immediately. This is often an indication that the user had

insider information on a bet or places the bet for a user who is not allowed to place it, for instance game

For the evaluation of our similarity search algorithm in the given context, we define the following objectives:

simulated based on a selected template. Using one of

these 10 sequences, the other 9 sequences must be discovered with the similarity search.

None of the other account history should be retrieved, except in case the arbitrary simulation

In the following, different combinations of search patterns and similarity configuration options are defined

ty measures that exclusively incorporates the aspect of

The following reference sequence is used as the search pattern, whereby the table lists the event type

colors. Thus, the short pattern sequence starts with an “open account” event, followed by a placed bet and a

notification that the bet was lost. At the end of the sequence, this user won a bet and cashed out directly after.

97

Figure 29 shows the best matches in the given scenario among the searched 438 event sequences. According to

the plot, these results intuitively appear inappropriate: Most matches are longer than the pattern sequence

and show a completely distinct shape compared to it. Yet, this results simply from the fact that we configured

subsequence searching. Thus, for most of these discovered event sequences only the first few events match

while the rest is ignored.

Figure 29: Best search results for scenario C1.a visualized in the Event Tunnel

7.1.2.1 C1.b - Order and full-sequence matching

Scenario C1.a showed that subsequence searching may lead to intuitively incorrect results for the given

dataset. This scenario is defined equally to scenario C1.a, but performs full-sequence matching instead of sub-

sequence matching. Requiring a match to start with the first event and end with the last event (everything else

decreases the similarity) retrieves sequences which intuitively appear by far more similar. The best matches are

depicted again in Figure 30.

This scenario already fulfils our initial requirement to retrieve a set of simulated event sequences, which all

have a very similar structure concerning the occurrence of different event types.

98

Figure 30: Best search results for scenario C1.b visualized in the Event Tunnel

7.1.3 C1.c – Order, temporal structures and full-sequence matching

For scenario C1.c we use the same search pattern as before, but incorporate the aspect of temporal structures.

The given evaluation scenario showed that the cost-function for absolute temporal structures is virtually

inapplicable in this context. The time spans between the events in the scenario are relatively large (e.g. several

hours to a couple of months). Thus, some of these deviations have huge absolute values and require a very

small scaling factor in order to scale them to a range comparable to other aspects such as type deviations. In

return, this scaling factor causes “minor” deviations to be almost ignored. Yet, these “minor” deviations might

also be a couple of days and decisive for the search semantic.

Considering relative temporal structures works out significantly better for the described scenario. Still, the best

matches in the previous scenario already had a very similar temporal structure (see Figure 30) so that again

these sequences have been discovered as the best matches.

7.1.4 C1.d - Order and single-event similarities

In this scenario, the following event-attributes are considered via !¢/� ; as an attribute-level similarity

technique, we decided to use the normalized absolute difference as described in section 5.5.1.3:

• BetPlaced.Amount

• BetPlaceFailed.Amount

• Cash-In.Amount

• Cash-Out.Amount

• BetPlaced.Odds

• BetPlaceFailed.Odds

99

Again, the discovered sequences for this evaluation case again differ only slightly from the retrieval results in

scenario C1.b. In the simulated data set, variations in terms of the selected event attributes are not significant,

and thus considering these attributes in addition has minimal impact on the overall similarity score. Obviously,

considering the event attributes costs some performance.

As a variation from the originally defined scenario C1.d we also tried to maximize the weight of the selected

event attributes. Using this configuration, some other event sequences consorted with the prior discovered

sequences, but all in all, we found that it is hard to adjust the weights so that absolute difference similarity

deviations in combination with order deviations allowing null-mappings return reasonable result. The problem

is similar as with temporal deviations: In order for such a combination to return meaningful results, the costs of

the absolute difference deviations must be well-adjusted with other similarity costs. In other words, if the

absolute value differences (which the user will not know up-front) are very small, deviations will show almost

no effects in combination with costs for other mappings such as null-mappings.

7.1.5 Performance summary

All of the scenarios have been executed with the following data set:

• Total number of events: 12455

• Total number of event sequences: 438

• Average number of events per event sequence: 27,043

First, the scenarios have been executed without an initial threshold. Thus, the threshold value of costs is

dynamically updated with every possible solution, but initially a set of potentially bad solutions have also been

build up completely, until the dynamic threshold bit by bit decreases and more and more solutions can be

omitted early.

Scenario Events in

pattern

Total time Algorithm

time
35

Events/sec

total

Sequences/sec

total

Events/sec

algorithm

Seq./sec

algorithm

C1.a 6 00:00:14.25 00:00:03.32 889,64 31,08 3663,24 128,53

C1.b 6 00:00:19.58 00:00:08.28 638,71 22,46 1500,60 52,65

C1.c 6 00:00:15.03 00:00:03.05 830,33 29,13 4151,23 146,66

C1.d 6 00:00:25.58 00:00:11.68 488,43 17,13 1073,71 37,35

Table 13: Performance results for evaluation scenario C1 without initial threshold

In addition, we executed the scenarios with an initial threshold for a target similarity of 0.5 with the objective

to speed up the searching process. The best matches shown above have still been discovered. Performance

results are listed below.

Scenario Events in

pattern

Total time Algorithm

time

Events/sec

total

Sequences/sec

total

Events/sec

algorithm

Seq./sec

algorithm

C1.a 6 00:00:14.99 00:00:00.97 830,88 29,21 12580,81 442,42

C1.b 6 00:00:15.91 00:00:01.01 803,84 27,52 12331,68 433,66

C1.c 6 00:00:16.55 00:00:01.17 752,56 26,46 10645,30 347,36

C1.d 6 00:00:17.96 00:00:02.05 693,48 24,38 6075,61 213,56

Table 14: Performance results for evaluation scenario C1 with initial threshold

35

 Measure the pure algorithm execution time, i.e. the total time minus the overhead for data retrieval from database and

conversion of the raw data into the processable events.

100

Remarkable is the high ratio of “overhead” time, i.e. the time for data loading and preparation in relation to

the pure algorithm time (see performance summary below). Caused by the fact that the matching is very fast in

case of the short pattern event sequence, data loading and preparation make up more than 75% of the total

search time in this scenario.

7.2 C2 - Trouble tickets: Change history sequences

Trouble tickets in general can be understood as issues and problems reported either by customers or company-

internal. Typically, a trouble ticket holds a problem or task description. It may be assigned to a certain person

or support group and has a defined priority. Common trouble-ticket systems keep track of each ticket’s status,

whereby typical states are open, assigned, resolved, incomplete etc.

The second evaluation scenario aims at analyzing sequences of trouble-ticket traces. In contrast to the first

evaluation scenario, for this case study real data from a trouble ticket system have been used instead of

simulated data. The data have been provided by an international company offering, among others, IT services

such as maintaining and monitoring other companies’ servers and IT landscapes. With thousands of customers

who all might submit issues to the trouble ticketing system, the analysis thereof becomes a demanding task.

Figure 31 depicts the relevant event types for this application example. In the concrete case, server alerts are

captured. In addition, changes on trouble-tickets are traced and reflect as “ticket created”, “ticket resolved”,

“ticket changed” and “ticket reopened” events. The figure also shows how these events are correlated to

change history sequences: All ticket events correlate via the unique ticket ID; server alerts are unique via their

event handle, server handle and date fields. In the dataset, tickets might be opened due to a server alert, but

not necessarily. Many ticket histories also contain solely the various ticket events, in case they have been

created manually without a prior alert. In addition, many alerts exist without any ticket events.

Figure 31: Event types and correlations in evaluation scenario C2 – Trouble tickets

101

In the given case, the following questions have been of particular interest:

• Which tickets have suspicious or extraordinary histories?

• Which tickets have not been resolved within the foreseen time period? Is it a repeating pattern that

always certain ticket classes are not resolved in time?

• Which tickets have many reassignments, and is there a general pattern such as “All tickets of type A

are first assigned to support group X which then assigns them to support group Y before they are again

forwarded to support group Z who’s members finally resolve these issues”?

Obviously, for certain queries such as retrieving tickets with many reassignments no similarity search is

required. Yet, in order to assess if a certain type of assignment sequence seems to be a general pattern, we

propose to apply the presented event sequence similarity model. In many cases, people also have a certain

suspicion and want to prove whether this suspicion holds on the historic data.

7.2.1 Objectives and evaluation focus

For the evaluation of our similarity search algorithm in the given context, we define the following objectives:

• For a given, interesting sequence of ticket assignments, the similarity search is able to discover further

ticket histories, if available, having a similar assignment history.

• It must be possible to assess whether the given assignment sequence can be understood as a general

pattern reoccurring several times, or whether it is not reoccurring.

In addition to these measureable objectives, the focus of this evaluation case is on:

• Measuring the performance in case of sequences with strongly varying lengths

• Measuring the performance in case of a large amount of event attributes

• Proving the applicability of the model in a real-world use case

7.2.2 C2.a – Searching the complete data set for a known event sequence

For the first evaluation scenario, we utilized a known ticket history as the search pattern. This ticket was

identified (more or less by chance) by one of the operators in the incident management department. The plot

in Figure 32 shows that this ticket has a significantly long history with several ticket changes and also

reassignments (blue, and green events).

102

Figure 32: Activity history for a known incident ticket plotted in the event tunnel

For the given use case, the sequence of reassignment is of particular interest. Figure 33 visualizes how the

ticket was assigned between different support groups, whereby each sector on the Y-axis represents one

support group. Time is on the X-axis.

Figure 33: Sequence of ticket reassignment events over time (x-axis) by assigned support groups (y-axis)
36

36

 In the chart, two areas are marked with an asterisk. At these points in time, the data set showed a longer time period

between the events which has been cut out in order to fit the figure to the page size.

103

For the first scenario, we searched for this complete event sequence in the reference data set of about 165,000

events with the objective to discover similar occurrences.

Search Parameters:

• Match must start with first event: False

• Match must end with last event: False

• Time matching mode: Relative

• Attribute similarities: Levenstein string similarity on TicketReassigned.Assignee

7.2.2.1 Search results and discussion

The search for the known, very long ticket event sequence returned no matches. This means, with the given

configuration, no solution could be found with sufficiently low costs to be at least 50% similar. Our

investigations on this result showed that there is no other event sequences of such an extreme character, i.e.,

that many reassignments and ticket changes is contained in the data set. This results in a need of multiple null-

mappings in each solution, which drastically decreases the similarity score.

Yet, our objective to figure out whether such a behavior is a reoccurring pattern is fulfilled as we figured out

that at least in our reference data set, no significantly similar event sequence is contained.

7.2.2.2 Performance summary

• Total number of events: 165841

• Total number of event sequences: 87241

• Average number of events per event sequence: 1,9

• Average number of events per event sequence with at least 1 ticket event: 8,47

• Initial threshold set for a target similarity of: 0,5

Scenario Events in

pattern

Total time Algorithm

time

Events/sec

total

Sequences/sec

total

Events/sec

algorithm

Seq./sec

algorithm

C2.a 91 00:18:43.10 00:08:11.34 147,67 77,68 337,67 177,68

Table 15: Performance results for evaluation scenario C2.a

7.2.3 C2.b – Finding reassignment scenarios

Scenario C2.a showed that a too specific or extreme pattern is hard to discover in the data. One of the reasons

why the previous scenario did not return any results was that the search was not particularly focused on what

we have actually been interested in most: the reassignments. The pattern sequence contained a whole range

of ticket changed events, which of course have also been considered during the search and influence the

matching process significantly.

Scenario C2.b attempts to concentrate the similarity search to the reassignment. Therefore, we excluded the

ticket changed events totally from the search pattern. In addition, the order remains unconsidered and also the

temporal structure is omitted with the objective to simply discover if several support groups always assign the

tickets to each other, no matter in which order.

For the scenario, we furthermore chose a shorter reassignment sequence, with reassignments among 3

support departments “AT”, “DSS” and “H”. Within each of these departments support groups exist, such as

104

“AT.SUPPORT.SAP”. We tried to figure out if there are regular reassignments among these departments, which

normally should not occur as each has separate concerns.

In scenario C2.a we searched the complete data set. In fact, this is not required: event sequences containing

only an alert event but no ticket events because for this alert no ticket had been opened, as well as sequences

with less than 2 reassignment events can be pre-filtered.

7.2.3.1 Search results and discussion

Using the above described settings to narrow the search scope, the whole searching process executes more

than 10 times faster than in scenario C2.a. The results have been rather surprising: We discovered that more

than 8% of all tickets had a match of 75% similarity and higher. Figure 34 depicts the best matches regarding to

the reassignments. As can be seen from the figure, each sequence contains reassignments among named

departments. Only the order is switched, as we consciously omitted this dimension.

(a) – Ticket reassignments in search pattern

(b) – Match with sim=0.91

(c) – Match with sim=0.89

(d) – Match with sim=0.87

Figure 34: Best matches for evaluation scenario C2.b – Reassignments by support department over time

105

In addition, searching the limited data set (which can be hold in memory) drastically reduces the data retrieval

time to about 1/5
th

 of the time required when reloading sequence by sequence from the database.

The scenario shows that a targeted search, focusing on the current analysis question returns valuable results in

short execution times. Yet, this requires a knowledgeable and skilled user, and also some data preprocessing,

for instance to be able to load only sequences with more than 3 reassignments or the like. The only problem

we encountered with this scenario was how to get accurate results with string similarities. In the given case,

the naming convention for a ticket assignee was DEPARTMENT.SUPPORTGROUP.NAME. In the dataset we

found entries such as “DSS.SUPPORT.ALL” or “CSS.SUPPORT.ALL”. Looking at the string, these values are very

similar whereas from there semantics, they are almost not similar as the groups are in different departments.

We resolved this issue by splitting up the department substring into a separate event attribute which we

considered in the search with a significantly higher weight.

7.2.3.2 Performance summary

• Total number of events: 10095

• Total number of event sequences: 372

• Average number of events per event sequence: 27,14

• Initial threshold: ∞

Scenario Events in

pattern

Total time Algorithm

time

Events/sec

total

Sequences/sec

total

Events/sec

algorithm

Seq./sec

algorithm

C2.b 28 00:00:05.83 00:00:04.71 1725,38 63,81 2143,31 79,98

Table 16: Performance results for evaluation scenario C2.b

7.2.4 C2.c – Considering alert events and the order of assignments

In scenario C2.b we focused on reassignments but ignored the order of these reassignments. In the next

scenario, we considered not only the order in which the assignments happened, but also if the ticket was

created for a certain server alert. Thus, the practical question we tried to answer was: For a certain server alert,

is the opened ticket (re-)assigned in multiple cases in the same way, between the same departments.

7.2.4.1 Search results and discussion

In the pattern sequence we chose, a server alert with the message “Disk space warning: only 4,97% free on disk

[…]” triggered a ticket to be created. This ticket was then first assigned to department “CSS”, from “CSS” to “H”

and to “AT” where it was reassignment several times within the department, then back to “CSS” and finally

resolved. This sequence of reassignments is visualized over time in Figure 35 (sequence highlighted in violet).

The search among 10,000 events finished in less than 10 seconds, and revealed some interesting results: For

instance, the best match of the search, depicted also in Figure 35 (grey sequence) showed a very similar

sequence of reassignments, from “CSS” to “H”, to “AT”, only with some more reassignments within the

individual departments. Interestingly enough, the ticket was also opened due to an initial alert, and this alert

was again a disk space warning. The knowledge about such incidents is a good starting point for investigating in

detail the support process in case of disk space warnings.

Figure 35: Search pattern and best match for evaluation scenario

7.2.4.2 Performance summary

• Total number of events:

• Total number of event sequences:

• Average number of events per event sequence:

• Initial threshold:

Scenario Events in

pattern

Total time

C2.b 28 00:00:09.37

Table 17: Performance results for evaluation scenario C2.c

7.3 C3 - Credit card transaction

In scenario C3 we used a data set containing sequences of purchases from a credit card provider. As these data

are highly confidential, all of the following results and considerations are expressed in terms of anonymous

names for products, customers and purchase information.

The data set contains sequences of activities for a selected group of 4000 customers. These activities are,

besides creating or closing the account, first of all “sales” events. These events reflect that a customer paid for

something by credit card. In that case, we have the information on which shop that was (or ATM), the country

and the paid amount available for the analysis.

attributes.

37

 In the chart, two areas are marked with an asterisk

between the events which has been cut out in order to fit the figure to the page size.

: Search pattern and best match for evaluation scenario C2.c37

Performance summary

 10095

er of event sequences: 372

ts per event sequence: 27,14

 ∞

 Algorithm

time

Events/sec

total

Sequences/sec

total

Events/sec

algorithm

09.37 00:00:07.63 1077,37 39,70

: Performance results for evaluation scenario C2.c

Credit card transaction: Sequences of purchases

In scenario C3 we used a data set containing sequences of purchases from a credit card provider. As these data

are highly confidential, all of the following results and considerations are expressed in terms of anonymous

ers and purchase information.

The data set contains sequences of activities for a selected group of 4000 customers. These activities are,

besides creating or closing the account, first of all “sales” events. These events reflect that a customer paid for

omething by credit card. In that case, we have the information on which shop that was (or ATM), the country

and the paid amount available for the analysis. Figure 36 shows the occurring types of events and their

are marked with an asterisk. At these points in time, the data set showed

between the events which has been cut out in order to fit the figure to the page size.

106

Events/sec

algorithm

Seq./sec

algorithm

1323,07 48,75

purchases

In scenario C3 we used a data set containing sequences of purchases from a credit card provider. As these data

are highly confidential, all of the following results and considerations are expressed in terms of anonymous

The data set contains sequences of activities for a selected group of 4000 customers. These activities are,

besides creating or closing the account, first of all “sales” events. These events reflect that a customer paid for

omething by credit card. In that case, we have the information on which shop that was (or ATM), the country

hows the occurring types of events and their

. At these points in time, the data set showed a longer time period

107

Figure 36: Event types and correlations in evaluation scenario C3 – credit card transactions

In the previous two evaluation scenarios, we focused on the retrieval quality and execution time in case of

known pattern sequences for evaluating if other, similar sequences exist and if so, in which extend these are

similar in order to assess whether the given case is a reoccurring pattern.

In this scenario we focus on applying the similarity search in comparison to established and well-known data

mining techniques. In the given case, we did an analysis of the raw dataset with RapidMiner.
38

 The objective

was to figure out if there are certain patterns in the customer behavior for customers whose accounts had to

be closed due to illiquidity and thus unpaid invoices.

7.3.1 Objectives and evaluation focus

For the evaluation of our similarity search algorithm in the given context, we define the following objectives:

• Figure out if the similarity search is applicable for the given purpose

• Find possible improvements for supporting the analyst’s workflow given a similar task

7.3.2 C3.a – Data integration and preprocessing

Up to this point, we haven’t considered this aspect and started with data already being loaded to the event

repository and ready to be searched. Yet, when talking about data mining, it is unavoidable to first talk about

data integration and preprocessing.

7.3.2.1 Preprocessing for classical data mining

The most important preprocessing step in order to successfully apply existing data mining algorithms was the

generation of additional attributes, in order to have an utmost complete attribute space. For instance, the

occurrence date attribute had been split up into additional “month of the year”, “day of week” and “week of

month” attributes in order to make it accessible. The currency of the purchases showed too many distinct

values with only a few occurrences each, which caused inappropriate or statistically insignificant results and

had to be summarized to “EUR” and “not EUR”. Sales amounts had to be categorized into equidistant classes as

working with the discrete values was impossible.

38

 RapidMinder by Rapid-I is an open-source data mining software, providing access to a whole range of data mining

algorithms such as decision trees or lazy learners, association mining techniques and also data pre-processing and feature

selection operators.

108

7.3.2.2 Preprocessing for similarity search

Basically, the similarity search requires less preprocessing, as all attributes, i.e. also discrete values can be used

and compared directly, without categorization. In addition, it is not necessary to extract attributes such as “day

of week” into separate attributes, as attributes functions as described in 5.4.1 can be used to extract such

values on the fly.

7.3.2.3 Summary and discussion

With the use of attribute function, the effort for preprocessing is minimal in our approach. Discrete values

don’t need to be categorized and attribute functions add “virtual” event attributes on-the-fly during the

comparison, which can then be weighted accordingly. Yet, in order to optimize performance of the searching

process, we still recommend extracting derived values into separate event attributes during the data

integration to save computation time.

7.3.3 C3.b – Getting started with the mining process

The next question after preprocessing is how to start the data mining. Below, we discuss the situation we

faced.

7.3.3.1 Getting started with the “classical” data mining

Among the existing data mining approaches, we decided to apply a classification and regression tree (CART) in

order to derive simple rules such as “if customers buy more than 4 times in branch X and pay in currency Y, the

probability for illiquidity is 91%”. In fact, in order to get started with the mining process, profound knowledge

on the existing techniques is required in order to choose the right algorithm for the given purpose, but despite

of that, only some configuration parameters have to be set.

7.3.3.2 Getting started with the similarity search

The goal with similarity search was to find a sequence of certain purchases which is reoccurring in multiple

cases of known customer illiquidity. Obviously, the similarity search engine cannot be directly compared to

data mining algorithms such as decision trees or other learners in general. The greatest problem we had in the

given case was that we did not have any assumptions or reference cases to be checked for occurrence and

validity. Thus, the only thing possible was to pick a sequence more or less by chance and try to search for

similar occurrences. We tried picking several sequences, starting with the one customer where most money

was lost. Yet, this cannot be called a structured and systematic approach.

7.3.3.3 Summary and discussion

The use case shows the necessity to embed the similarity search in a greater context, for instance in the form

of a clustering algorithm, which forms groups of similar sequences based on multiple similarity comparisons. As

is, only a punctual search is possible. Without initial knowledge on the dataset, it is hard to model a suitable

reference pattern.

7.3.4 C3.c – Finding sequences of purchases

Finally, taken said limitation that we can only pick certain pattern sequences by chance and not automatically

investigate the whole data set into account, we tried to discover sequences of similar purchases for one

selected reference pattern.

109

For the search, we limited the whole dataset of 182.023 events to 14.034 events of those customers, whose

accounts have been closed. In total, these are 348 of 98.355 customers. For the search, the Levenstein string

similarity (which actually performed quite well in scenario C2) was used for the attributes “Sales.Partner” (i.e.

the shop where a purchase took place), “Sales.Currency” and “Sales.Country”. For “Sales.Amount”, normalized

absolute difference similarity was uses, as well as Boolean similarity for the attribute “Sales.InternetSale”.

Figure 37 shows how the sales events in the selected pattern sequence are distributed with respect to the

product branch (Figure 37a) and the country (Figure 37b).

(a) (b)

Figure 37: Search pattern events for evaluation scenario C3.c

7.3.4.1 Search results and discussion

Given the selected pattern sequence and configuration, the algorithm failed to return valuable results. We

tried to adjust the weights of the considered attributes, but the pattern remained too long and too specific to

be rediscovered in the data.

The apparent problems are in particular:

• The pattern sequence contains 65 sales events. Sequences with a lower number of events have to be

mapped using several null-mappings. Depending on the null-mapping costs, this decreases the

similarity score drastically and these sequences soon fall below the threshold. On the other hand, if

the null-mapping costs are low, solutions using a log of null-mappings might be preferred over

solutions taking the available events into account.

• The length of the event sequences in the data set varies from 10 up to 530 events. For such length of

an event sequence, a huge amount of solutions exist, and the approach of considering the single

events is probably not appropriate any longer. Rather, aggregation would be required.

• When looking at the rules derived from the CART, these patterns could not be discovered with the

similarity search, because they are “overruled” in the matching process by the whole range of

additional events which are not statistically cumulating in the pattern. In other words, even if we know

that 4 purchases in branch 123 in Germany have always been followed by illiquidity in the past, it

might be that we still do not discover such an event sequence as it contains, aside of these 4 events,

maybe another 100 purchases, all decreasing the similarity to the reference pattern.

110

• For very long event sequences, the weight of a single event is minimal. Thus, the matching process

continuously has to build up huge solution trees before reaching the similarity threshold. This problem

is yet inherent to the chosen approach and could only be omitted by either techniques to detect huge

deviations earlier in the matching process or weighting events at earlier stages of the mapping

processes stronger compared to the rest in order to reach the threshold faster, if a solution is bad. At

the same time, this distorts the correctness of results.

In summary, the evaluation scenario pointed out a set of shortcomings or missing features in the current

approach, some of which will be discussed again in the future work section.

111

8 Conclusion and future work

In the on-hand thesis, we presented flexible yet natural approaches for similarity searching in event data, both

within single events and sequences thereof. Serving as a basis for our considerations, we presented a rich set of

definitions and described events, event-sequences and related concept on a very high level of abstraction. Also,

we gave a brief introduction on SARI, the CEP-infrastructure underlying our concrete implementation.

Eventually, we evaluated our implementation in three real-world scenarios.

Our approach on single-event similarity builds upon geometric ideas of similarity, with, at least basically, event

attribute values defining the relative positioning of two events, i.e., the distance between them. Without a

doubt, a so-defined understanding of single-event similarity is highly intuitive and somewhat obvious, and

similar approaches have been presented, for instance, in the database domain. Yet, by extending the very

basic, distance-based approach on vector-similarity by two user-configurable levels of abstraction, attribute-

functions and corresponding attribute-level similarity-measures, the presented approach gains a broad

expressiveness and generality far beyond related concepts, and thus should be applicable in the variety of

scenarios and use-cases that complex business events may occur in. Also, we found out that at the time of

writing, there is no comprehensive and formally well-founded study on single-event similarity in the CEP

domain. We thus understand this thesis as a first groundwork for further improvements, extensions and

adaptations.

The proposed approach on event-sequence similarity can clearly be considered the key part of the on-hand

thesis. Created from scratch instead of setting up on an existing, less powerful approach on event-sequence

similarity, it builds upon an assignment-based understanding of sequence similarity were certain units from the

target sequence are considered to represent the units in the pattern sequence. Despite of an undeniable

degree of complexity, it should appear somewhat natural to business analysts. As before for single-event

similarities, the proposed approach on event-sequence similarity focuses on highest generality and flexibility.

The conceptually clear “separation of concerns” - into possible assignments (compatibilities), sources of costs

(cost-functions) and impact of costs (weights) - reflects this, and should be a solid basis for further extensions

and improvements of the algorithm. Unfortunately, the remarkably high generality of the proposed algorithm

requires lots of configuration and difficult “fine-tuning”, and thus the extensive involvement of the domain

expert. Also, the relative simplicity of the proposed Branch-&-Bound strategy comes to the expense of

performance.

Generally, the above characteristics were confirmed in the evaluation part of this thesis where we applied the

algorithm in three real-world scenarios. We figured out that the algorithm performs well (regarding both the

performance and the accuracy of results) for short and sharp-edged sequences where a majority of events

constitute clear and significant characteristics of the event-sequence, e.g., instances of clearly defined business

processes. Here, both the selection of cost-functions and the weighting process can be performed in a

straightforward manner, evaluated and improved if necessary. The proposed algorithm fails, however, for long

and noisy event sequences with no or very fuzzy structures. In such cases, it might be extremely difficult if not

impossible for a business analyst to clearly accentuate those aspects he or she considers important over the

sheer mass of events completely irrelevant for his or her certain interest. Also, as the current algorithm

considers mappings regardless of whether they are weighted zero and thus have no impact on the overall costs

of a solution, the algorithm executes impracticable slow even if there are only a few events that are actually

relevant for the similarity computation.

112

It is easy to see that there is still plenty of room for further improvements of the proposed approach on event-

sequence similarity. In his thesis [49], Suntinger presents constraint blocks, a particularly interesting extension

of the proposed algorithm allowing analysts to further specify those aspects of a pattern-sequence that are

relevant for event-sequence similarity. An analyst might, for instance, define that a number of pattern-

sequence events must occur in the correct order in the target sequence. Also, Suntinger presents the seamless

integration of a time-series similarity algorithm, addressing scenarios where a certain event attribute’s values

form a time series across sets of succeeding events.

Further research effort should, however, be spent in improvements of the base algorithm. One of the most

promising ideas is that of adapting the algorithm towards Dynamic Programming. Yet, even for the existing

Branch & Bound strategy, several performance improvements should be possible: One might, for instance,

consider the preferred evaluation of those aspects that are considered most relevant by the business analyst,

i.e., weighted heavily, so that weak solutions can be omitted earlier in the calculation process. As yet, a

notable fall in performance occurs when those mappings that are considered most relevant occur at the very

end of a pattern-sequence. Also, a variety of pre-processing steps might be valuable in order to detect those

target-sequences that are guaranteed to be dissimilar before starting the actual algorithm. It might be

valueable, for instance, to derive a certain maximum size from the given pattern-sequence that no “similar”

target-sequence may exceed. Heuristic methods and their combination with the proposed base algorithm

would make another interesting starting point for future work.

Besides performance issues, a second notable shortcoming is that of the enormous configuration effort

required from the business analyst. In future, one therefore might consider the automatic derivation of some

kind of default configuration, e.g., a suitable initial threshold and meaningful weights, from the given pattern-

sequence. Without a doubt, such “self-calibration” of the proposed algorithm requires deep knowledge in

statistical data mining techniques and would be a research project on its own.

Finally, let us say that on-hand thesis lacks a detailed, both quantitative and qualitative comparison of the

proposed algorithm with existing yet less flexible approaches as, most prominently, presented by Moen [35]

and Mannila and Seppänen [33]. For future publications on the proposed algorithm, such comparative kind of

evaluation will of course be essential. Moreover, it might be highly interesting to find out whether an edit-

distance-based approach as presented by Moan [35] can be extended by additional edit-operations in order to

gain the expressiveness of the on-hand approach.

113

Index of figures

Figure 1: The sense and response model .. 8

Figure 2: Illustrating events and event types .. 21

Figure 3: Illustrating event sequence, hiding event attributes ... 23

Figure 4: Illustrating event sequence, showing event attributes .. 23

Figure 5: The SARI event type model ... 25

Figure 6: An exemplary implementation of the SARI event type model ... 25

Figure 7: An exemplary correlation set definition .. 26

Figure 8: Architectural overview .. 27

Figure 9: The SENACTIVE EventAnalyzer ... 28

Figure 10: The structure of TransportEnded- and TransportStarted-events ... 44

Figure 11: Exemplary TransportEnded-events .. 45

Figure 12: A possible assignment between two sequences of events .. 52

Figure 13: An alternative assignment between two sequences of events ... 53

Figure 14: Illustration of an exemplary solution ... 55

Figure 15: Reduced illustration of an exemplary solution .. 56

Figure 16: Exemplary results of Algorithm 2 ... 63

Figure 17: Exemplary result of Algorithm 2, including null-mappings .. 63

Figure 18: Calculating overall costs of solutions with Algorithm 3 ... 66

Figure 19: Intermediate results of Algorithm 3 ... 67

Figure 20: Exemplary results of Algorithm 4. .. 69

Figure 21: Comparing the order of solutions .. 75

Figure 22: Comparing the distances between succeeding mappings ... 75

Figure 23: Exemplary sub-sequence matching ... 87

Figure 24: Temporal structures in case of full-sequence matching .. 88

Figure 25: Full-sequence matching by assuming virtual start- and end-events .. 89

Figure 26: Conceptual problems in case of full-sequence matching .. 91

Figure 27: Event types and correlations in evaluation scenario C1 – Online gambling .. 95

Figure 28: Search pattern for evaluation case C1.a .. 96

Figure 29: Best search results for scenario C1.a visualized in the Event Tunnel ... 97

Figure 30: Best search results for scenario C1.b visualized in the Event Tunnel .. 98

Figure 31: Event types and correlations in evaluation scenario C2 – Trouble tickets ... 100

Figure 32: Activity history for a known incident ticket plotted in the event tunnel ... 102

Figure 33: Sequence of ticket reassignment events over time (x-axis) by assigned support groups (y-axis) 102

Figure 34: Best matches for evaluation scenario C2.b – Reassignments by support department over time 104

Figure 35: Search pattern and best match for evaluation scenario C2.c .. 106

Figure 36: Event types and correlations in evaluation scenario C3 – credit card transactions........................... 107

Figure 37: Search pattern events for evaluation scenario C3.c .. 109

114

Index of tables

Table 1: Exemplary EA expressions and results thereof ... 29

Table 2: Exemplary attribute-level similarity-measures and weights ... 34

Table 3: An exemplary lookup-table similarity-measure from the sports domain ... 40

Table 4: Dealing with exceptional values .. 43

Table 5: Attribute-level similarity measures ... 44

Table 6: Attribute-level similarities ... 45

Table 7: Calculating the event-level similarity from attribute-level similarities ... 45

Table 8: Exemplary cost-factors and weights.. 58

Table 9: Weighted cost factors as resulting from !¢ ... 66

Table 10: Weighted cost factors as resulting from !® ... 66

Table 11: Exemplary single-event similarity-measures ... 73

Table 12: Exemplary cost-factors as calculated with !¢/� .. 73

Table 13: Performance results for evaluation scenario C1 without initial threshold ... 99

Table 14: Performance results for evaluation scenario C1 with initial threshold ... 99

Table 15: Performance results for evaluation scenario C2.a .. 103

Table 16: Performance results for evaluation scenario C2.b .. 105

Table 17: Performance results for evaluation scenario C2.c .. 106

Index of algorithms

Algorithm 1: Calculating event-level similarities ... 39

Algorithm 2: Calculating valid solutions from sets of matches ... 62

Algorithm 3: Calculating the overall costs of valid solutions .. 65

Algorithm 4: Finding the best-possible solution with a user-defined threshold ... 68

Algorithm 5: A cost-function for the aspect of single-event similarities ... 72

Algorithm 6: A cost-function for the aspect of order .. 79

Algorithm 7: A cost-function for the aspect of absolute temporal structures .. 82

Algorithm 8: A cost-function for the aspect of relative temporal structures ... 85

115

Bibliography

[1] Abbot A., Tsay A.: Sequence Analysis and Optimal Matching Methods in Sociology. In: Sociological

Methods & Research, 29(1). 3 – 33, 2000.

[2] Altschult S. F., Gish W., Miller W., Myers E. W, Lipman D. J.: Basic Local Alignment Search Tool. In:

Journal of Molecular Biology, 215(3). 403 – 410, 1990.

[3] Anderberg M. R.: Cluster Analysis for Applications. Academic Press, 1973.

[4] Agrawal R., Faloutsos C., Swami A. N.: Efficient Similarity Search in Sequence Databases. In:

Proceedings of the
4th

 international Conference on Foundations of Data Organization and Algorithms.

69 – 84, 1993.

[5] Agrawal R., Srikant, R.: Mining Sequential Patterns. In: Proceedings of the 1
1th

 International Conference

on Data Engineering. 3 – 14, 1995.

[6] Asarin E., Caspi P., Maler O.: Timed Regular Expressions. In: Journal of the ACM, 49(2). 172 - 206, 2002.

[7] Barron F. H., Barrett B. E.: Decision Quality Using Ranked Attribute Weights. In: Management Science,

42(11). 1515 – 1523, 1996.

[8] Bruno N., Chaudhuri S., Gravano L.: Top-k Selection Queries over Relational Databases: Mapping

Strategies and Performance Evaluation. In: ACM Transactions on Database Systems, 27(2). 153 – 187,

2002.

[9] Chapman S.: String Similarity Metrics for Information Integration. University of Sheffield, 2006.
39

[10] Das G., Gunopulos D., Koudas N., Tsirogiannis D.: Answering top-k queries using views. In: Proceedings

of the 32
nd

 international Conference on Very Large Data Bases. 451 – 462, 2006.

[11] Das G., Gunopulos D., Mannila H.: Finding Similar Time Series. In: Proceedings of the 1
st

 European

Symposium on Principles of Data Mining and Knowledge Discovery. 88 – 100, 1997.

[12] Dey D., Sarkar, S, De P.: A Distance-Based Approach to Entity Reconciliation in Heterogeneous

Databases. In: IEEE Transactions on Knowledge and Data Engineering, 14(3). 567 – 582, 2002.

[13] Donjerkovic, D., Ramakrishnan, R.: Probabilistic Optimization of Top N Queries. In: Proceedings of the

2
5th

 International Conference on Very Large Data Bases. 411 – 422, 1999.

[14] Eckenrode, R. T.: Weighting Multiple Criteria. In: Management Science, 12(3). 180 – 192, 1965.

[15] Flesca S., Furfaro F., Greco S.: Weighted Path Queries on Semistructured Databases. In: Inf. Comput.,

204(5). 679 – 696, 2006.

[16] Gassman B., Herschel G., Bitterer A., Richardson J., Chandler N.: Cool Vendors in Business Intelligence

and Performance Management. Gartner Research, 2008.

[17] Giegerich R.: Sequence Similarity and Dynamic Programming. Lecture Notes. BISS Bioinformatik

Sommerschule, Universität Tübingen, 2002.
40

[18] Goodall C.: Data analysis by regular expressions and the analysis of event sequences. In:

Bioinformatics, Images, and Wavelets. 87 – 88, 2004.

[19] Gower J. C.: A General Coefficient of Similarity and Some of Its Properties. In: Biometrics, 27(4). 857 -

871, 1971.

[20] Gu L., Baxter R., Vickers D., Rainsford C.: Record Linkage: Current Practice and Future Directions.

Technical report. CMIS Technical Report No. 03/83, 2003.

[21] Hernández M. A., Stolfo S. J.: The Merge/Purge Problem for Large Databases. In: Proceedings of the

1995 ACM SIGMOD international conference on Management of Data. 127 – 138, 1995.

39

 http://www.dcs.shef.ac.uk/~sam/stringmetrics.html, 2009/01/14.
40

 www.zbit.uni-tuebingen.de/biss2002/handouts/pdf/giegerich_part1.pdf, 2009/01/11.

116

[22] James W.: The Principles of Psychology. Dover, 1890/1950.

[23] Jensen C. S., Clifford J., Elmasri R., Gadia S. K., Hayes P., Jajodia S. [eds]: A glossary of temporal

database concepts. In: sigmod, 23(1). 52 – 64, 1994.

[24] Kirkwood C. W., Sarin R. K.: Ranking with Partial Information: A Method and an Application. In:

Operations Research, 33(1). 38 – 48, 1985.

[25] Lee M. L., Lu H., Ling T. W., Ko Y.T.: Cleansing Data for Mining and Warehousing. In: Proceedings of the

1
0th

 International Conference on Database and Expert Systems Applications. 751 – 760, 1999.

[26] Levenstein V.I.: Binary Codes Capable of Correcting Deletions, Insertions, and Reversals. In: Soviet

Physics-Doklady, 10(8). 707 - 710, 1966.

[27] Luckham D.: The Power of Events. Addison Wesley, 2005.

[28] Luckham D., Schulte R.: Event processing glossary.
41

[29] Makkonen J., Ahonen-Myka H., Salmenkivi M.: Applying semantic classes in event detection and

tracking. In: Proceeding of International Conference on Natural Language Processing. 175 – 183, 2002.

[30] Mannila H., Toivonen H.: Discovering generalized episodes using minimal occurrences. In: Proceedings

of the 2
nd

 International Conference on Knowledge Discovery and Data Mining. 146 – 151, 1996.

[31] Mannila H., Toivonen H., Verkamo A. I.: Discovery of Frequent Episodes in Event Sequences. In:

Proceedings of the 1
st

 International Conference on Knowledge Discovery and Data Mining. 210 – 215,

1995.

[32] Mannila H., Ronkainen P.: Similarity of Event Sequences. In: Proceedings of the 4
th

 international

Workshop on Temporal Representation and Reasoning. 136 – 139, 1997.

[33] Mannila H., Seppänen J. K.: Finding similar situations in sequences of events via random projections.

1
st

 SIAM International Conference on Data Mining. 2001.

[34] Meng X., Jiang G., Zhang H., Chen H., Yoshihira, K.: Automatic Profiling of Network Event Sequences:

Algorithm and Applications. In: Proceedings of the 27
th

 Conference on Computer Communications. 266

– 270, 2008.

[35] Moen P.: Attribute, Event Sequence, and Event Similarity Notions for Data Mining. PhD Thesis.

Department of Computer Science, University of Helsinki, 2000.

[36] Monge A. E., Elkan C.P.: The field matching problem: Algorithms and applications. In: Proceedings of

the 2
nd

 International Conference on Knowledge Discovery and Data Mining 1996. 267 – 270, 1996.

[37] Motro A.: VAGUE: A User Interface to Relational Databases that Permits Vague Queries. In: ACM

Transactions on Information Systems, 6(3). 187 – 214, 1988.

[38] Philips L.: The double metaphone search algorithm. In: C/C++ Users Journal, 18(6). 38 – 43, 2000.

[39] Rozsnyai S.: Efficient indexing and searching in correlated business event streams. Diploma Thesis.

Vienna University of Technology, 2006.

[40] Rozsnyai S.: Managing Event Streams for Querying Complex Events. Dissertation. Vienna University of

Technology, 2008.

[41] Rozsnyai S., Schiefer J., Schatten A.: Concepts and Models for Typing Events for Event-Based Systems.

In: Proceedings of the 2007 inaugural international Conference on Distributed Event-Based Systems. 62

– 70, 2007.

[42] Roth H., Schiefer J., Obweger H., Rozsnyai S.: Event Data Warehousing for Complex Event Processing.

Upcoming research paper, 2009.

[43] Sanfilippo L., Voorhis J.V.: Categorizing event sequences using regular expressions. In: IASSIST

Quarterly. 21(2). 36 – 41, 1997.

41

 http://complexevents.com/?p=195, 2009/01/07.

117

[44] Schiefer J., Seufert A.: Management and Controlling of Time-Sensitive Business Processes with Sense &

Respond. In: Proceedings of the international Conference on Computational intelligence For Modelling,

Control and Automation and international Conference on intelligent Agents, Web Technologies and

internet Commerce 2005. 77 – 82, 2005.

[45] Schiefer J., Seufert A., Suntinger M., Obweger H.: Modelling Relationships between Business Events.

Upcoming research paper, 2009.

[46] SENACTIVE Inc.: SENACTIVE InTime
TM

. www.senactive.com.

[47] Shepard R. N.: Toward a Universal Law of Generalization for Psychological Science. In: Science, 237.

1317 – 1323, 1987.

[48] Sjoberg L.: A Cognitive Theory of Similarity. In: Goteborg Psychological Reviews, 2(10). 1972.

[49] Suntinger M., Event-Based Similarity Search and its Application in Business Analytics. Diploma Thesis.

Vienna University of Technology, 2008.

[50] Suntinger M., Obweger H., Schiefer J., Gröller M.E.: The Event Tunnel: Interactive Visualization of

Complex Event Streams for Business Process Pattern Analysis. In: Proceedings of the IEEE Pacific

Visualization Symposium 2008. 111 – 118, 2008.

[51] Suntinger M., Schiefer J., Roth H., Obweger H., Data Warehousing versus Event-Driven BI: Data

Management and Knowledge Discovery in Fraud Analysis. In: Proceedings of the 2
nd

 International

Conference on Software, Knowledge, Information Management and Applications. 129 – 134, 2008.

[52] Toshniwal D. and Joshi R. C.: Finding Similarity in Time Series Data by Method of Time Weighted

Moments. In: Proceedings of the 16
th

 Australasian Database Conference. 155 – 164, 2005.

[53] Vecera R.: Efficient Indexing, Search and Analysis of Event Streams. Diploma Thesis. Vienna University

of Technology, 2007.

[54] Winkler W. E.: The State of Record Linkage and Current Research Problems. Technical report.

Statistical Research Division, U.S. Bureau of the Census, 1999.

[55] Yang, K., Shahabi, C.: A PCA-based Similarity Measure for Multivariate Time Series. In: Proceedings of

the 2
nd

 ACM international Workshop on Multimedia Databases. 65 – 74, 2004.

[56] Zaki M. J.: SPADE: An Efficient Algorithm for Mining Frequent Sequences. In: Machine Learning,

42(1/2). 31 – 60, 2001.

[57] Zimmer D., Unland R.: On the semantics of complex events in active database management systems.

In: Proceedings of the 15
th

 International Conference on Data Engineering. 392 – 399, 1999.

[58] Zobel J., Dart P.: Phonetic string matching: lessons from information retrieval. In: Proceedings of the

19
th

 Annual international ACM SIGIR Conference on Research and Development in information

Retrieval. 166 – 172, 1996.

