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Abstract 

This thesis contributes to the field of complex event-data analysis novel and formally well-founded methods for 

similarity searching, both on the level of single events and on the level of sequences of events. As event-based 

systems may produce highly diverse data sets, the main focus of our considerations is on highest possible 

flexibility. Also, the approaches shall be intelligible to business analysts and, of course, generate meaningful 

and intuitive results. Finally, the approaches shall be conceptually independent from concrete Complex Event 

Processing solutions and instead build upon abstract and generally accepted definitions of events, event types, 

etc. 

Our approach on single-event similarity builds upon geometric ideas of similarity, with event attribute values 

defining the relative positioning of two events in an n-dimensional space. Thereby, the similarity between two 

events is calculated from weighted attribute-level similarities. 

The proposed approach on event-sequence similarity outperforms existing approaches by allowing analysts to 

consider event-level similarities, order, and relative and absolute temporal structures in a highly flexible 

manner. It builds upon an assignment-based understanding of sequence similarity, where each unit of the 

pattern sequence is considered either represented by a certain event of the target sequence or missing therein. 

Our algorithm finds the best-possible assignment of the target sequence using a Branch & Bound strategy. This 

assignment is then used for calculating the similarity between the given sequences.  

We conclude this work with a practical evaluation, where we apply the approach on event-sequence similarity 

in real-world scenarios from three application domains. We figured out that the algorithm performs excellent 

for short and sharp-edged sequences where a majority of events constitute clear and significant characteristics 

of the event sequence. 
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General remarks 

The on-hand thesis results from a long-term research project on event-based similarity searching and serves as 

a basis for further extensions and improvements as presented by Martin Suntinger in his thesis, “Event-Based 

Similarity Search and its Application in Business Analytics”. 

Content as presented in the following section was elaborated in collaboration with him and can be found in a 

more or less equivalent form in his thesis [49]: 

• Section 1: Introduction 

• Section 7: Application and results 

 

  



5 

 

Content 

1 Introduction ............................................................................................................................................ 8 

1.1 Complex Event Processing ........................................................................................................................ 8 

1.2 Similarity searching in historic event data ................................................................................................ 9 

1.3 Objectives ................................................................................................................................................. 9 

1.3.1 A generic approach on event similarity ...................................................................................... 10 

1.3.2 An interest-driven approach ....................................................................................................... 10 

1.3.3 Leaving control up to the expert ................................................................................................. 10 

1.4 Overview ................................................................................................................................................. 11 

2 Related Work ........................................................................................................................................ 12 

2.1 Similarity between single events ............................................................................................................ 12 

2.2 Similarity between sequential data ........................................................................................................ 12 

2.3 Similarity between event sequences ...................................................................................................... 13 

2.3.1 Simple events in a certain order ................................................................................................. 13 

2.3.2 Complex events in a certain order .............................................................................................. 13 

2.3.3 Simple events at certain time stamps ......................................................................................... 14 

2.3.4 Complex events at certain time stamps ..................................................................................... 14 

3 Terms, definitions and notations .......................................................................................................... 16 

3.1 Similarity ................................................................................................................................................. 16 

3.1.1 Similarity measures ..................................................................................................................... 16 

3.1.2 Distance and similarity ................................................................................................................ 17 

3.1.3 Metrics, pseudo-metrics and similarity-measures in the strict sense ........................................ 17 

3.1.4 Certain equality ........................................................................................................................... 19 

3.2 Events ..................................................................................................................................................... 19 

3.2.1 Event types ................................................................................................................................. 20 

3.2.2 Illustration ................................................................................................................................... 21 

3.3 Event sequences ..................................................................................................................................... 21 

3.3.1 Event-sequence signature........................................................................................................... 22 

3.3.2 Illustration ................................................................................................................................... 22 

4 Technological background ..................................................................................................................... 24 

4.1 The SARI event model ............................................................................................................................. 24 

4.1.1 Event types ................................................................................................................................. 24 

4.1.2 Correlations................................................................................................................................. 25 

4.2 Architectural overview............................................................................................................................ 26 

4.3 The EventAnalyzer .................................................................................................................................. 27 

4.4 Event Access (EA) expressions ................................................................................................................ 28 

  



6 

 

5 Finding similar events ........................................................................................................................... 30 

5.1 Basic considerations and evolving requirements ................................................................................... 30 

5.1.1 An attribute-driven approach ..................................................................................................... 30 

5.1.2 Requirements to an event-similarity framework ........................................................................ 30 

5.2 A geometric approach on event similarity .............................................................................................. 31 

5.2.1 Similarity measures and event types .......................................................................................... 32 

5.3 Measuring event similarity ..................................................................................................................... 33 

5.3.1 A basic similarity measure for events ......................................................................................... 33 

5.3.2 Weights ....................................................................................................................................... 33 

5.3.3 Summary ..................................................................................................................................... 34 

5.4 Possible extensions ................................................................................................................................. 35 

5.4.1 Attribute functions ...................................................................................................................... 35 

5.4.2 Required attributes/attribute-functions ..................................................................................... 37 

5.4.3 Summary ..................................................................................................................................... 37 

5.5 Measuring attribute-level similarities ..................................................................................................... 40 

5.5.1 Runtime types ............................................................................................................................. 40 

5.5.2 Collections and Dictionaries ........................................................................................................ 42 

5.5.3 Event types/nested events ......................................................................................................... 42 

5.5.4 Dealing with null, NaN and infinity ............................................................................................. 43 

5.6 Example .................................................................................................................................................. 44 

5.6.1 Defining a similarity measure for single events .......................................................................... 44 

5.6.2 Calculating event similarities ...................................................................................................... 44 

5.7 Discussion ............................................................................................................................................... 46 

5.7.1 Pros and cons .............................................................................................................................. 46 

5.7.2 Properties.................................................................................................................................... 46 

5.7.3 Complexity .................................................................................................................................. 47 

6 Finding similar sequences of events ...................................................................................................... 48 

6.1 Basic considerations and evolving requirements ................................................................................... 48 

6.1.1 The basic dimensions of event-sequence similarity ................................................................... 48 

6.1.2 Full-sequence-, sub-sequence- and *-linked matching .............................................................. 51 

6.1.3 Requirements .............................................................................................................................. 52 

6.2 An assignment-based approach on sequence similarity ........................................................................ 52 

6.3 Measuring event-sequence similarity ..................................................................................................... 53 

6.3.1 Basic terms and concepts ........................................................................................................... 54 

6.3.2 Assigning costs to solutions ........................................................................................................ 57 

6.3.3 Compatibilities and valid solutions ............................................................................................. 59 

6.3.4 Summary ..................................................................................................................................... 61 

6.4 The base algorithm ................................................................................................................................. 61 

6.4.1 Finding all valid solutions ............................................................................................................ 61 

6.4.2 Calculating the overall costs of solutions .................................................................................... 64 

6.4.3 Branch & Bound .......................................................................................................................... 67 

6.4.4 A restriction to sub-sequence matching ..................................................................................... 69 

  



7 

 

6.5 Cost functions ......................................................................................................................................... 69 

6.5.1 Cost-function A: Single-event similarities ................................................................................... 70 

6.5.2 Cost-function B: Order ................................................................................................................ 74 

6.5.3 Cost-function C: Absolute temporal structure ............................................................................ 80 

6.5.4 Cost-function D: Relative temporal structure ............................................................................. 84 

6.5.5 Similarity measures and event-sequence signatures.................................................................. 86 

6.6 From sub-sequence matching to full-sequence matching ...................................................................... 87 

6.6.1 Additional characteristics ........................................................................................................... 87 

6.6.2 Introducing start- and end-events .............................................................................................. 88 

6.6.3 Adapted weighting ...................................................................................................................... 90 

6.6.4 A “mainly” consistent approach on matching modes ................................................................. 90 

6.7 Discussion ............................................................................................................................................... 91 

6.7.1 Pros and Cons ............................................................................................................................. 91 

6.7.2 Properties.................................................................................................................................... 92 

6.7.3 Complexity .................................................................................................................................. 93 

7 Application and results ......................................................................................................................... 95 

7.1 C1 - Online gambling: User activity histories .......................................................................................... 95 

7.1.1 Objectives and evaluation focus ................................................................................................. 96 

7.1.2 C1.a - Order and sub-sequence matching ................................................................................... 96 

7.1.3 C1.c – Order, temporal structures and full-sequence matching ................................................. 98 

7.1.4 C1.d - Order and single-event similarities ................................................................................... 98 

7.1.5 Performance summary ............................................................................................................... 99 

7.2 C2 - Trouble tickets: Change history sequences ................................................................................... 100 

7.2.1 Objectives and evaluation focus ............................................................................................... 101 

7.2.2 C2.a – Searching the complete data set for a known event sequence ..................................... 101 

7.2.3 C2.b – Finding reassignment scenarios ..................................................................................... 103 

7.2.4 C2.c – Considering alert events and the order of assignments ................................................ 105 

7.3 C3 - Credit card transaction: Sequences of purchases.......................................................................... 106 

7.3.1 Objectives and evaluation focus ............................................................................................... 107 

7.3.2 C3.a – Data integration and preprocessing ............................................................................... 107 

7.3.3 C3.b – Getting started with the mining process ....................................................................... 108 

7.3.4 C3.c – Finding sequences of purchases ..................................................................................... 108 

8 Conclusion and future work ................................................................................................................ 111 

Index of figures ............................................................................................................................................ 113 

Index of tables ............................................................................................................................................. 114 

Index of algorithms ...................................................................................................................................... 114 

Bibliography ................................................................................................................................................. 115 

 



8 

 

1 Introduction 

1.1 Complex Event Processing 

Event-based systems and particularly the concept of Complex Event Processing (CEP) [27]  have been developed 

and used to control business processes with loosely coupled systems. CEP enables monitoring, steering and 

optimizing business processes with minimal latency. It facilitates automated, near real-time closed-loop 

decision making at an operational level to discover exceptional situations or business opportunities. Typical 

application areas are financial market analysis, trading, security, fraud detection, customer relationship 

management, logistics like tracking shipments and compliance checks.  

In an event-based system, any notable state change in the business environment is captured in the form of an 

event. Events are data capsules holding data about the context of the state change in so called event-attributes. 

Chains of semantically or temporally correlated events reflect complete business processes, sequences of 

customer interactions or any other sequence of related incidents. 

 

Figure 1: The sense and response model
1
 

Figure 1 illustrates the closed-loop decision processes employed by CEP software. One common conceptual 

(business) model is the so-called sense and respond model. Hereby, each cycle consists of five steps: In the 

“sense” step, adapters capture input data from the IT landscape of an enterprise (which is a reflection of the 

physical business world). Interpretation refers to understanding, transforming, preparing and enriching the 

                                                                 
1
 Figure by courtesy of SENACTIVE Inc. [46] 
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data. This step is followed by an analysis step which tries to illuminate the given situation and context. Finally, a 

decision can be made and carried out by responding to the business environment. Typically a system of 

configurable rules is used for the decision process.  

1.2 Similarity searching in historic event data 

In addition to the real-time processing, during the past years one requirement has clearly emerged: The 

success of event-driven business solutions depends on an ongoing learning process. It is an iterative cycle 

including the analysis and interpretation of past processing results and the conversion of them into the event-

processing logic. Analysis tools are required which are tailored to the characteristics of event data to answer 

questions like: Where did irregularities occur in my business? Did processes change over time? Which patterns 

can be recognized in my business? To answer these questions, the analyst has to be equipped with a whole 

range of supporting tools such as extensive retrieval facilities to extract required data sets. Expressive 

visualizations are necessary to navigate through event data and recognize recurring patterns and irregularities 

that influence the business performance. 

For the analysis of historical event data, but also for the operational system, one question is of particular 

interest: Having an event or a whole sequence of events on hand, which other entities are similar to this? For 

data analysis, answering this question helps for searching the historic data for incidents and event patterns 

similar to a known reference pattern. In the operational system, the discovery of similarities can be integrated 

into the decision processes for automated system decisions to react in near real-time to certain event patterns. 

In addition, it can be used for forecasting of events or process measures based on similar historic incidents.  

1.3 Objectives 

This thesis contributes to the field of Event Data Warehousing [42] (EDWH)/Complex Event Data Analysis 

comprehensive and formally well-founded approaches on similarity searching in historic event data, both on 

the level of 

• single events, and 

• sequences of events. 

For the purpose of this thesis, there is no restriction on a certain technique or a certain understanding of 

similarity that should underlie our solutions. Yet, the approaches shall be intelligible to business analysts, and, 

of course, generate meaningful and somewhat natural results. Also, the approaches shall be conceptually 

independent from a concrete CEP solution, and instead build upon abstract and generally accepted definitions 

of complex events, complex-event sequences, etc. The concrete prototype implementation, however, shall 

build upon SENACTIVE’s InTime [46], one of the most promising CEP frameworks at the time of writing. Finally, 

as always for similarity searching and search algorithms in general, computational complexity and performance 

are critical issues. Yet, as there is little research done on this topic and the character of the on-hand thesis is a 

largely explorative one, we do not claim optimal performance but instead seek to define a solid groundwork for 

further optimizations. 

In the following, let us define three basic, direction-giving requirements for similarity searching in the context 

of CEP. Applied to the on-hand thesis, these requirements are relevant both for single-event- and event-

sequence similarity. Further, topic-specific requirements will be listed in the corresponding sections below. 
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1.3.1 A generic approach on event similarity 

Over the past few years, complex event processing has gained more and more importance in several business 

domains. Two such domains do not necessarily have much in common: Complex event processing was proven 

to be useful in such different business domains as fraud-detection [50][51] and medical care [39]. It is easy to 

see that event-based systems may produce highly diverse data sets. Hence, an approach towards event-

similarity that is intended to extend a generic complex event processing framework must not only fulfill the 

requirements for one specific domain (and likely fail in all others); it must instead be generic and flexible 

enough for any possible set of business events. 

It is essential to understand that in the on-hand thesis, we do not aim for a single, all-purpose event-similarity 

measure. Yet, we aim to develop a consistent and coherent strategy that allows defining event-similarity 

measures among all kinds of complex business events and domain-specific problems. 

1.3.2 An interest-driven approach 

Today’s real-world business processes are complex entities that execute in socio-economic systems of even 

higher complexity. When analyzing such business processes, the analyst always does so with a certain (possibly 

vague and imprecise) question in mind, with a certain focus. Some factors and characteristics are emphasized, 

while others are considered to be less important or even completely ignored. In complex event processing, an 

event represents a state change or action that occurs in a business environment. Consequently, when analyzing 

such events and sequences thereof, it always depends on the analyst certain interest whether two events are 

assessed to be similar and or not. It is easy to see that there is no single similarity measure for all purposes. 

Instead, similarity measures must be designed per interest, per “focus of analysis”.  

What we call an “interest-driven approach” on event-similarity supports the detailed and target-oriented 

analysis of business events. Especially for complex scenarios that comprise several relevant aspects, it may 

come along with quite a large number of similarity measures, though. In order to achieve optimal efficiency, a 

framework is required that allows managing event-similarity measures in a quick and straightforward fashion.  

1.3.3 Leaving control up to the expert 

In the previous section, we have pointed out that a similarity measure for complex events is intrinsically tied to 

a certain interest, to a certain point of view. At this point, one might think of a magic black box that takes the 

analyst’s interest as input, makes some chattering noises and creates a perfect-fitting similarity measure. Life is 

not a walk in the park, though.  

We claim that in order to achieve efficient and powerful event-similarity searching, defining a similarity 

measure must actively involve the domain expert. Hereby, the domain expert must be granted extensive 

control over all relevant aspects of the similarity measure. Such degree of involvement may, of course, be 

costly. Yet, we think that in real-world scenarios, only the domain expert himself has sufficient knowledge 

about the data’s possibly complex semantics and its unique characteristics. Furthermore, we think that only if 

the business analyst knows how a similarity measure works, e.g., by configuring it “by hand”, he or she can 

adequately interpret the measure’s results in their certain context, and adapt the similarity measure if 

necessary.  
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We have stated that leaving control up to the domain expert allows target-oriented similarity searching even in 

complex event data. This may, indeed, be costly. Therefore, a toolkit is required that assists the domain expert 

where possible. First of all, it must allow the quick and simple definition of a similarity measure.   

1.4 Overview 

The on-hand thesis is structured as follows: In section 2, we will discuss related work and give an overview 

about the current state of research. In section 3, we will clarify basic terms and define those concepts that form 

the base for later considerations. The technological background that underlies our ideas will be presented in 

section 4. In section 5, we will present the first key part of this thesis, a distance-based approach on single-

event similarity. The second key part of this thesis, a new, assignment-based approach on event-sequence 

similarity, will be presented in section 6. Eventually, we will evaluate our approaches by applying them in real 

world-scenarios in section 7. The thesis is concluded by section 8, where we will summarize the most relevant 

parts of our work and also present future research topics. 
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2 Related Work 

This section discusses related work and gives an overview about the current state of research. The subsections 

correspond to single aspects of the on-hand thesis and discuss the according contributions in detail.  

2.1 Similarity between single events 

Similarity between single, multivariate data objects has attracted much attention in the database domain. The 

approaches proposed are of certain interest for our work, since records in a database can be considered being 

somehow equivalent to complex events. As a record is of contained in a table of a certain schema and 

composed from a number of primitive fields, a complex event is of a certain type and provides a number of 

attributes.   

Nearest neighbor (NN) searching, or, more generally, top-k searching is a heavily discussed feature. A top-k 

search returns the k objects that are nearest, i.e., in a certain sense most similar, to a given query object. 

Numerous contributions discuss the efficient handling of such queries in relational database management 

systems (RDBMS) [8][13][10]. Since our solution builds upon an existing framework that does not support top-k 

searches, we must compare runtime-objects efficiently. 

Several database maintenance tasks require record linkage [34][43][20], or record matching. Record linkage is 

the task of detecting records that refer to one and the same real-world entity but differ in one or more fields. 

One usually assumes two records to be duplicates in the sense of semantic equality if the measured similarity 

between them is beyond a certain, domain-dependent threshold. Data cleansing [24] targets the elimination of 

such duplicates. The merge/purge problem [18] aims at merging the possibly incomplete and inconsistent 

duplicate records yielding one single representation that is as complete and correct as possible. 

2.2 Similarity between sequential data 

The ability to capture, process and maintain sequential data has been crucial for several business domains for 

decades. Recently, the focus has shifted towards gaining knowledge from accumulated sets of sequential data. 

Applications come, for instance, from stock market analysis, the medical domain, or voice recognition. Most of 

the work that contributes to searching sequential databases deals with exact searches, i.e., searches that 

return sequences that are certainly equal to a given query. Yet, several contributions emphasized the demand 

for vague queries that focus on finding sequences similar to a given query rather than being certainly equal [4] 

[37]. 

Note that the majority of contributions on sequence similarity treat time-series, i.e., sequences of numeric 

values, either single-dimensional [7][52] or multi-dimensional [55]. Our contribution deals with similarity 

search in sequences of complex events. Nevertheless, we adopt certain ideas and parts of the domain-specific 

terminology. 
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2.3  Similarity between event sequences 

Recently, notable attention has been paid on analyzing sequences of events. Though, one must differentiate 

between the various understandings of event sequences that underlie the proposed solutions.  

In the following sections, we discuss the possible models of event sequences, ranging from rather simple to 

complex. The solution proposed in the on-hand thesis is designed to operate on the most complex model. 

Though, we decided to discuss existing methods for event-sequence similarity-searching that are suitable for 

simpler models. These may not be directly adaptable to work on complex event-sequences, but may reveal 

commonalities or alternative - and possibly opposed - viewpoints. 

In addition to traditional similarity measures, we pay some attention on the various kinds of pattern matching. 

Usually, pattern matching is strict: A sequence of entities matches a certain pattern, or it does not – there’s 

nothing in between. Yet, pattern matching can be applied for a certain, admittedly restricted kind of similarity-

search. From a given event sequence, one could evolve a slightly generalized pattern. The resulting set of 

matches is then similar to the original sequence – in a certain, previously defined sense. The basic approach 

proposed in the on-hand thesis does not apply pattern matching or underlying concepts. 

2.3.1 Simple events in a certain order 

In simple models, an event is of a certain event type but does not contain any additional information 

concerning the corresponding action or state change and its context. Further on, event sequences have a 

defined order, while the exact occurrence time of an event and the elapsed time span between two 

consecutive events are omitted. Therefore, a so-defined event sequence corresponds to an ordered collection 

of discrete values. Applications that build upon the described model come, for instance, from sociology [1][36]. 

The described event model is somehow simplistic. Though, the analysis of so-defined event sequences allows 

utilizing well-discussed algorithms and data structures from the sequence-analysis domain. String comparison 

deals with measuring the similarity between sequences of characters [16]. In the bio-informatics domain, 

several tools exist that calculate the similarity between DNA or RNA sequences [2]. Regular expressions can be 

used to detect event sequences that match a certain pattern [18][36]. Weighted regular expressions [6] assign 

costs to each pattern element and may guide the way to flexible and configurable similarity searching in event 

sequences at the described level of abstraction. Real-world applications, however, have not yet been 

described. 

2.3.2 Complex events in a certain order 

Some domains require complex events that adequately describe the underlying action or state change, while 

the exact temporal relationships between events can be omitted. In such cases, an event sequence 

corresponds to an ordered collection of complex data objects. Applications that typically build upon this model 

come from the sales domain [5]. 

Lots of attention has been paid on detecting frequent patterns in so-defined event sequences [5][56]. In the 

data mining discipline, one could be interested in analyzing basket data to detect certain chains of product 

purchases that appeared frequently. The evolving knowledge could then be used to implement automatic 

recommendation systems that do not only provide related products but also take the temporal order of other 

customers’ purchases into account.  
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Note that certain equality between so-defined event sequences can be extremely rare. Nevertheless, an 

adequate similarity model which is applicable in practice has not yet been published. Complex events often 

represent a set of certain entities. Consequently, a relation between event sequences can be defined upon 

subset relations between the constituting events.  

2.3.3 Simple events at certain time stamps 

In some domains, analysts rather focus on the temporal relationships between certain types of events than on 

the detailed characteristics of the underlying actions or state changes. Therefore, it is sufficient to use simple 

events, i.e., events that are of a certain event type but do not contain additional information. In the described 

model, event sequences correspond to time-stamped sequences of discrete values. Applications that build 

upon this model come, for instance, from network traffic analysis [34]. 

Mannila and Ronkainen [31] show an exact approach that calculates the similarity between two so-defined 

event sequences by computing the minimal edit distance. The edit distance is a similarity measure well known 

in string comparison and reflects the work that is required to transfer one sequence into another. The 

proposed measure adapts the move-operations’ cost-function in order to reflect the time span an event was 

shifted by in time. Continuing work [34] addresses the rather tricky topic of assigning costs to the various edit 

operations and applies the proposed similarity model on telecommunication alarms and WWW page requests. 

We adopt some of the basic ideas, but address subsequence searching as well as similarity at the level of single 

events.  

Mannila and Seppänen [33] follow an approximate approach by generating k-dimensional vectors from event 

sequences that serve as “fingerprints”. These fingerprints are calculated from k-dimensional random vectors 

that are associated with the occurring event types. Event sequences with similar fingerprints are likely to have 

a quite low edit distance. The proposed approach does not attain similarity on the level of events and is again 

restricted in comparing event sequences of different length. Hence, it allows the high-performing pre-selection 

of potential similarity matches under certain conditions. 

A rudimental kind of pattern matching for so-defined event sequences was proposed by Mannila et al. [31]. The 

approach is restricted to process temporally short patterns, so called episodes. Asarin et al. [5] introduced 

timed regular expressions that extend the regular expressions’ original expressiveness and allow dealing with 

time spans between consecutive entities. Presently, applications in analyzing real-world event sequences have 

not yet been described. 

2.3.4 Complex events at certain time stamps 

Tightening competition in various business domains has lead to complex event models that allow gaining 

knowledge from both, complex and expressive events and the temporal relations between them. In such 

models, an event sequence corresponds to a time-stamped sequence of complex data objects. 
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Little research has been done on analyzing so-defined event sequences. Mannila and Toivonen [30] extended 

the rudimental pattern matching approach proposed by Mannila et al. [31] to allow restrictions on event 

attributes. Again, patterns are restricted to a small set of events and relatively short time spans. Similarity 

measures, by the way, have not been proposed at all. 

In the on-hand thesis, we introduce a similarity measure for complex event sequences as described above. The 

measure considers both, similarity at the level of single events as well as temporal relationships between them. 

The proposed algorithm is highly configurable and can easily be adapted to various business domains. 

Furthermore, it allows processing event sequences at a lower level of complexity, such as described in 2.3.1, 

2.3.2, and 2.3.3. Specialized algorithms are assumed to perform much better at these levels, though. 
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3 Terms, definitions and notations 

In section 2, we have introduced the concepts of similarity and events and event sequences in a pragmatic and 

fairly informal fashion. The goal of this section is to fully clarify those concepts, to define according notations 

that will be used in the remainder of this thesis, and also to present our idea of illustrating event types, events, 

and sequences thereof.  

3.1 Similarity 

The concept of similarity, describing the perceived degree of resemblance of an entity � to an entity �, is 

somewhat inherent to the human mind and should be familiar to readers: More or less implicitly, one assessed 

the similarity between faces, ideas, pop songs, etc., in everyday’s life. Musing on the meaning of similarity in 

psychology and philosophy, however, is far outside the scope of the on-hand thesis (and, by the way, even 

further outside the “scope” of the author); let us end this odyssey with the words of James’ Principles of 

Psychology [22]: “This sense of Sameness is the very keel and backbone of our thinking”. 

What exactly makes an entity similar to another one solely depends on the certain context, and can, of course, 

not be defined in a general manner. In the following, let us therefore introduce those terms and concepts that 

allow defining and characterizing the (arithmetic and highly context-specific) measurements of similarity in 

mathematics and computer science.  

3.1.1 Similarity measures 

In computer science, much effort has been spent on calculating meaningful and somewhat “natural” 

similarities between however-defined entities. Functions and algorithms that perform such calculation are 

usually referred to as similarity-measures, often regardless of the function’s co-domain, and other properties. 

In the on-hand thesis, we consider a similarity measure “in the broad sense”
2
 a function or algorithm that 

returns values between 0 and 1, with a higher result indicating greater similarity. Formally, it can thus be 

defined as follows: 

 3 

Note that for a similarity measure in the broad sense, we explicitly do not require the property of symmetry: 

Given a set of entities �, two entities �, � ∈ � and a similarity measure ���: � × � → �0,1�, �����, �� (the 

similarity “of � to �”) is not necessarily equal to �����, �� (the similarity “of � to �”). Therefore, to avoid 

ambiguities, we will speak of similarities of target entities to pattern entities in the following.  

                                                                 
2
 We will define the term similarity-measure in a strictly mathematical sense in section 3.1.3.  

3
 Due to its boundedness, we will consider the interval �0,1� the co-domain for so-defined similarity measures, i.e., given a 

set of entities �, we will write ���: � × � → �0,1� instead of ���: � × � → ℝ. We will behave accordingly for all later 

definitions of similarity-measures and distance-functions.  

Definition: Given a set of entities �, we refer to a function ���: � × � → ℝ as a similarity-measure (in 

the broad sense) for � if for all �, � ∈ � 

1. 0 ≤ �����, �� ≤ 1 

2. �����, �� = 1 if � = � 



17 

 

3.1.2 Distance and similarity 

A concept that is strongly related to the idea of similarity (and sometimes used more or less synonymously) is 

that of distance, or, equivalently, of costs.
4
 So-called geometric similarity-models base upon the idea that a 

(possibly conceptual) distance between two entities is inversely related to the perceived similarity between 

them: The larger the distance between two entities, the smaller the similarity, and vice versa. Thus, in 

accordance with similarity-measures “in the broad sense”, let us define distance-functions “in the broad sense” 

as follows: 

 

Working with distances instead of similarities has notable advantages: Often, distance-function arise more or 

less directly from the data’s certain characteristics; consider, for instance, the geometric distance between 

cities, or the absolute difference between two numbers. Also, calculations may be easier to perform on 

distances rather than on similarities. Similarities, on the other hand, are bound to a �0,1�-interval and may thus 

be easier to comprehend. A statement such as “� resembles � to a degree of 64%”, for instance, might be more 

useful than “The distance between � and � is 1492” in many cases. 

It is easy to see that for using the advantages of both concepts, transformations between distances and 

similarities are indispensable. Generally, this can be done in a variety of ways. In the on-hand thesis, we will 

follow Shepard [46], who proposed an exponential relation:  

Given a set of entities � and a similarity-measure ���: � × � → �0,1�, a corresponding distance function �: � × � → ℝ�� is defined as follows: 

���, �� = − ln �����, �� 

Equivalently, given a distance-measure �: � × � → ℝ��, a corresponding similarity measure ���: � × � →�0,1� is defined as follows: 

�����, �� = �����,�� 

3.1.3 Metrics, pseudo-metrics and similarity-measures in the strict sense 

The above definitions of similarity-measures and distance-functions are natural and should be generally 

acceptable among all understandings of similarity.
5
 In a strictly mathematical sense, however, more rigorous 

                                                                 
4
 When using the term costs instead of distance, one might understand them the costs of reaching � from �, or, 

alternatively, the costs of transforming � into �. 
5
 Depending on the certain similarity model, very different requirements exist on similarity-measures. A brief introduction 

on the most relevant similarity models is given by Suntinger [49].   

Definition: Given a set of entities �, we refer to a function �: � × � → ℝ as a distance-function (in the 

broad sense) for � if for all �, � ∈ � 

1. ���, �� ≥ 0 

2. ���, �� = 0 if � = � 
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criteria exist on distance-functions, and, following from that, on similarity-measures. These additional criteria 

are valuable when calculating similarities between larger sets of entities.
6
  

The most rigorous conditions exist on metrics (i.e., on distance-functions in the strict sense):
7
 

 

In many cases, condition 2 (i.e., returning a distance of 0 for identical entities only) is too restrictive. We refer 

to a distance-function that fulfils conditions 1, 3, and 4 and a less restrictive version of condition 2, 2’, as 

pseudometric: 

 

Following from the above definitions, let us now define (strong) similarity-measures in the strict sense and 

weak similarity-measures in the strict sense: 

 

 

                                                                 
6
 Consider, for instance, a distance function �: � × � → ℝ�� fulfilling the triangle-inequality. Here, when searching for all 

pairs of entities that are close to each other, calculating a distance between two entities � and !, �, ! ∈ �, can be omitted if 

both ���, ��, � ∈ �, and ���, !� are great.  
7
Metric and pseudometric are fundamental terms in mathematics. In their notation, however, the according definitions 

follow Moen [35]. 

Definition: Given a set of entities �, we refer to a function ���: � × � → ℝ as a weak similarity measure in 

the strict sense for � if for all �, �, ! ∈ � 

 1. 0 ≤ �����, �� ≤ 1 

 2’. �����, �� = 1 if � = � 

 3. �����, �� = �����, �� 

 4. if � and � and � and ! are similar then � and ! are also similar 

 

Definition: Given a set of entities �, we refer to a function ���: � × � → ℝ as a (strong) similarity measure 

in the strict sense for � if for all �, �, ! ∈ � 

 1. 0 ≤ �����, �� ≤ 1 

 2. �����, �� = 1 iff � = � 

 3. �����, �� = �����, �� 

 4. if � and � and � and ! are similar then � and ! are also similar 

 

Definition: Given a set of entities �, we refer to a function �: � × � → ℝ as a pseudometric for � if for all �, �, ! ∈ � 

 1. ���, �� ≥ 0 

 2’. ���, �� = 0 if � = � 

 3. ���, �� = ���, �� 

 4. ���, !� ≤ ���, �� + ���, �� 

Definition: Given a set of entities �, we refer to a function �: � × � → ℝ as a metric for � if for all �, �, ! ∈ � 

1. ���, �� ≥ 0 

2. ���, �� = 0 iff � = � 

3. ���, �� = ���, �� 

4. ���, !� ≤ ���, �� + ���, �� 
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3.1.4 Certain equality  

We have stated that with both similarity-measures in the broad sense and weak similarity-measures in the strict 

sense, pairs of non-equal entities may result in a similarity of 1. Yet, it is essential to differentiate between 

“traditional” equality and non-equality (“� = �”, “� ≠ �”), and absolute similarity (i.e., a similarity of 1) and 

absolute dissimilarity (i.e., a similarity of 0). We therefore opted for a separate terminology, defined following 

Monge and Elkan [36]: 

 

3.2 Events 

The term “event” is heavily used in computer science and has more or less different meanings across the 

various domains and contexts it is appears in. In this section, we seek to give a brief introduction on events in 

the context of Complex Event Processing (CEP); in the literature, such events are often referred to as complex 

events. 

A commonly used definition of events in the context of CEP comes from Luckham’s standard work on CEP, The 

Power of Events [27]: 

An event is an object that is a record of an activity in a system. The event signified the 

activity. An event may be related to other events. [27] 

From that rather general starting point, let us go into more detail on the certain characteristics of complex 

events: Rozsnyai [40], listing a good many definitions from various domains, derives the following definitions: 

Definition 1: Events are defined as observable actions or relevant state changes that 

can be absorbed by IT systems. 

Definition 2: Events can be decomposed to several causally related events. Several 

events can be aggregated to high level events. 

Definition 3: Events mark a specific point in time or in an aggregated form the 

timespan of an activity. [40] 

As aggregated events (composed events, high-level events) are out of the scope of the on-hand thesis, we skip 

Definition 2 (and narrow Definition 3) of Rozsnyai’s congregation, and instead assume atomicity as suggested 

by Zimmer and Unland [57], among others. 

 

Definition: Events… 

• are defined as observable actions or relevant state changes that can be absorbed by IT systems, 

• are atomic, i.e., they cannot be further dismantled and happens completely or not at all, and 

• mark a specific point in time. 

Definition: Given a similarity-measure ���: � × � → �0,1�, we refer to two entities � and �, �, � ∈ �, as 

certainly equal with respect to ��� if �����, �� = 1. We refer to � and � as certainly unequal with respect 

to ��� if �����, �� = 0. 
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Thus, from a computation point of view, we consider an event an immutable entity that describes a state-

change or action, together with the context that state-change or action occurs in, through publicly available, 

named and strongly-typed properties - the so-called event attributes. The certain set of event-attributes that 

are available for a certain event, of course, fully depends on the context, on the certain meaning of that event; 

hence, the only event-attribute that must be available across all events is the time of occurrence.  

It is easy to see that the described understanding of events is in general accordance with the concept of objects 

in modern object-oriented programming languages such as C# or Java: An event can be considered an object 

meeting according constraints. From a computation point of view, we therefore build upon the following 

understanding of events: 

 

As the time of occurrence must be available for each so-defined event, we can define the time span between 

two events regardless of the events’ actual form. 

 

We will use the above notations, i.e., $%: & → ℝ� for addressing the time of occurrence of an event and & for 

addressing the set of all so-defined events, throughout the on-hand thesis. More generally, we will address the 

value of an attribute � of type ' in an event � through a function $�: & → ', i.e., through $����.  

3.2.1 Event types 

Event types define the structure, i.e., the set of event attributes, of a certain class of events, both in its syntax 

and (more or less explicitly) in its semantics. As each event must be an instance of a certain event type, event 

types relate to the concept of classes in OOP as events relate to objects.   

 

Formally, we understand an event type ( a set of tuples ( = )��*, '*�, ��+, '+�, … , ��- , '-�., with �/  being the 

name and '/  being the domain of the �th
 event attribute defined in (. With 0 denoting the set of all so-defined 

event types, we address the event type of an event � through a function 123�45: & → 0, i.e., through 123�45���. 

Event models may also implement the concept of subtyping for event types. As in this respect, event types can 

be considered equivalent to classes, we will not go into further detail here. Yet, if event types ( and 6 are in a 

(however-specified) subtype-relationship, with ( being the subtype of 6 and 6 being the supertype of (, we 

write ( <: 6. 

Definition: An event type defines the structure of a class of events. The structure of an event is 

represented by a collection of event attributes. Each event is an instance of exactly one event type. 

Definition: Let & denote the set of events, and let a function $%: & → ℝ� address the time of occurrence of 

an event. Given two events � and 5, we refer to the result of a function 1: & × & → ℝ,  1��, 5� = $%�5� −$%���, as the (absolute) time span between � and 5. 

Definition: An event is an immutable object, providing its time of occurrence and other, context-

dependent information about the represented state-change/action and the context that occurs in through 

- and only through - publicly available fields. We refer to the fields of an event as event-attributes. 
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3.2.2 Illustration 

Throughout the following chapters, we will depict both events and event types as rectangular nodes, 

horizontally separated into a header and a body area.  

For events, the header shows a (locally unique) label that allows addressing the represented event throughout 

the certain context, as well as its type’s name in squared brackets. The body lists the according event 

attributes’ labels, together with their values. For event types, the header shows the name of the represented 

event type. Here, the body lists the defined event attributes’ labels, together with their data types in squared 

brackets. Figure 2 below shows exemplary illustrations an event � and its event type 8. 

 

Figure 2: Illustrating events and event types 

In both cases, equally colored headers indicate equal event types. Also, event attributes that are irrelevant in 

the given context may be omitted. 

3.3 Event sequences 

We have stated that an event represents a single action or state-change that occurs in a business environment. 

Complex happenings in such business environment, such as business-process instances, etc., thus result in 

amounts of related, successive events. We refer to such collections of events as event sequences: 

 
8
 

 

 

In various contexts, one might be interested in the “extent” of a certain event-sequence. We distinguish 

between the size and the length of a solution: 

                                                                 
8
 We assume unique time stamps for the sake of simplicity, in order to ensure a defined temporal order of events. In real-

world scenarios, however, several events may occur in one and the same time stamp: Here, one can establish a unique 

order by taking another unique attribute, e.g., a unique ID, into account. 

Definition: Given an event sequence 6 = ��*, �+, … , �9�, we refer to a sequence 6: = ��-, �-�*, … , �;� with < ≥ 1, = ≤ > and < < = as a sub-sequence of 6, 6′ ⊆ 6. 

Definition: Given an event sequence 6 and an event � ∈ 6, we refer to the result of a function 3A���, 6� =|)5|5 ∈ 6, $%�5� ≤ $%���.|, i.e., the number of events in 6 with a time of occurrence smaller than or equal 

to �, as the position of � in 6. Hence, we refer to an event � ∈ 6 with 3A���, 6� = � as the �th
 event in 6. 

Definition: An event sequence 6 is a list of events ordered by their times of occurrence, i.e., 6 =��*, �+, … , �9�, where v%��/� < v%��/�*� ∀� = 1, … , > − 1.  
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Finally, let us specify some relations between events of an event-sequence:  

 

 

3.3.1 Event-sequence signature 

Listing the according event types instead of concrete events allows viewing event sequences from a much 

higher level of abstraction. Particularly relevant for event-sequence similarity-measures as proposed in section 

6, we refer to such construct as event-sequence signature:  

 

In the following, we will address the signature of an event-sequence 6 through a function ��E>�1FG�45�6�. As 

usual, we will address the size of a signature H, i.e., the number of event types in H, through |H|. 
As solely build upon event types, an “�� �” relationship between event-sequence signatures can be defined 

from subtype-relationships between comprised event types: 

 

3.3.2 Illustration 

Throughout the following chapters, we will depict an event sequence 6 as follows: Along a horizontal time axis, 

we draw nodes representing the single events in 6. Unless otherwise stated, the vertical position (from the left 

to the right) of a certain node corresponds to the according event’s position in 6, but says nothing about the 

event’s exact occurrence time. 

Definition: Given two event-sequence signatures H and J, with (/  addressing the �th
 event type in H and K/  addressing the �th

 event type in J, H �� � J if |H| = |J| and (L < : KL  ∀ M = 1 … |H|. 

Definition: Given an event-sequence 6, with �/  addressing the �th
 event in 6, we refer to a sequence of 

event types H, H = �(*, (+, … , (N�, (L = 123�45O�LP ∀ j = 1 … |6|, as the signature of 6.  

Definition: Given an event sequence 6 and two events �, 5R6, we refer to the result of a function   1S��, 5, 6� = TU�V��TU�W�;�X�  as the relative time span between � and 5 in 6. 

Definition: Given an event sequence 6 and two events �, 5R6, we refer to the result of a function   ���, 5, 6� = 3A��5, 6� − 3A���, 6� as the distance between � and 5 in 6. In the case that ���, 5, 6� = 1, we 

refer to � and 5 as successive in 6. 

Definition: Given an event sequence 6 with �/  addressing the �th
 event in 6, we refer to the result of a 

function =�6� = $%O�|X|P − $%��*� as the length of 6. 

Definition: Given an event sequence 6, we refer to the number of events in 6 as the size of 6. We address 

the size of an event sequence 6 through |6|. 
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In scenarios where event-attributes are irrelevant, we illustrate single events as circles. If available, the label 

inside a node displays a (locally unique) name that allows addressing the corresponding event throughout the 

certain context.
9
 Figure 3 below shows an exemplary illustration of an event sequence 6 = ��, 5, E, ℎ�: 

 

Figure 3: Illustrating event sequence, hiding event attributes 

Otherwise, in scenarios where event-attributes are relevant, we illustrate single events as presented in section 

3.2.2. Figure 4 below shows an exemplary illustration of 6: 

  

Figure 4: Illustrating event sequence, showing event attributes 

In both cases, equally colored nodes indicate equal event types. 

  

                                                                 
9
 For the sake of comprehensibility, we often use names that refer to the certain event’s type. In such case, we refer to the 

earliest event of a type � as �* (or, alternatively, ��), to the second earliest as �+ (��), etc. 
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4 Technological background 

Before reaching the key parts of our thesis - approaches on single-event- and event-sequence similarity - let us 

take a look at the technological background our considerations build upon: Originally, the proposed algorithms 

were designed to work as a complement of SENACTIVE InTime [46]. The InTime product suite is one of the most 

promising CEP solutions and was awarded “innovative, impactful and intriguing” in Gartner’s Cool Vendor 

Report 2008 [16]. In section 4.1, we will describe the SARI event model that underlies InTime and, following 

from that, our implementations of the proposed algorithms. InTime’s basic architecture will be presented in 

section 4.2. In section 4.3, we will present InTime’s most prominent analytical application and also the 

framework for similarity searching, the SENACTIVE EventAnalyzer. Event Access (EA) expressions, used for 

accessing events throughout SENACTIVE’s product line on event processing, will finally be presented in section 

4.4.    

Always keep in mind, however, that from a conceptual point of view, the proposed approaches on event 

similarity are independent from the concrete CEP application, but instead build upon events, event types and 

event-sequences as defined in section 3 above. 

4.1 The SARI event model 

Various event models have been proposed in the literature, with complexity ranging from trivial to 

sophisticate. SENACTIVE InTime, according applications and also our implementations of the proposed 

approaches on similarity searching build upon the SARI (“sense and response infrastructure”) event model 

which originally proposed by Schiefer and Scheufert [44] and described in more detail by Rozsnyai et al. [40].  

4.1.1 Event types 

Figure 5 shows the essential parts of SARI’s event-type model: An event type can inherit from a more general 

“super event-type”. Each event type contains an arbitrary number of event attributes. Hereby, each event 

attribute corresponds to an event attribute type. Possible attribute types are single-value types, collection 

types, and dictionary types. A single-value type can either be a base runtime type, such as a string, an integer, 

etc., or another event type. Attributes of another event type we refer to as nested events. Runtime types, 

however, are the lowest-level attribute types. 

Figure 6 shows an exemplary implementation of the SARI event model. Here, a base TransportEvent has the 

runtime-type attributes TransportAmount and Destination. From the base TransportEvent, two event types 

inherit: TransportStarted and TransportEnded. TransportStarted extends the base event type by three runtime-

type attributes. TransportEnded adds a runtime-type attribute RecipientID and a nested event StartEvent of 

type TransportStarted.   
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Figure 5: The SARI event type model [41] 

 

Figure 6: An exemplary implementation of the SARI event type model 

4.1.2 Correlations 

In many cases, single events have a certain context and are semantically related to other events: A TaskStarted-

event, for instance, is probably semantically related to a TaskCompleted-event with the same task identifier.  In 

SARI, correlations [45] are sequences of semantically related events. Correlation sets are user-defined template 

definitions for how “relatedness” is identified. The correlation set defines tuples of attributes whose values 

must match in order for events to correlate.  

Figure 7 provides an example of a correlation set. Several events of different event types are correlated to a 

coherent sequence if the value of the attribute Username matches. Such a correlation is not limited to a single 

event attribute, but can be defined based on multiple attributes. The red items are a group of matching tuples, 

each matching each other event type. Also, the order of the events occurring is not decisive. In case of a cash-in 

event occurring first and a cash-out event occurring second, these events will also be correlated. A sequence of 

correlated events may contain an arbitrary number of events of each event type. Thus, an event sequence 

based on the above correlation set may contain, for instance, ten BetPlaced- and two CashOut-events.  



26 

 

 

Figure 7: An exemplary correlation set definition 

As detected in the underlying event-processing logic and stored in the data repository, correlations form a set 

of “pre-defined” event sequences in analytical applications. For our implementation of event-sequence 

similarity, they therefore serve as a starting point for the definition of pattern sequences and also as a basic 

“universe” for event-sequence similarity-searching. Note, however, that generally, our implementation is fully 

independent from the concept of correlations and instead could be applied to any other kind of event-

sequence. 

4.2 Architectural overview 

In an upcoming paper [42], we outline SARI’s overall architecture as shown in Figure 8 and describe it as 

follows:  

“The bottom of the figure shows source systems (i.e., the event producing components) continuously generate 

event notifications. The Sense Layer represents the adapters of SARI that can be docked to the event producing 

systems or the communication infrastructure. The adapters can gather events in either a push or pull process 

and propagate them into the event processing realms.  

The internal communication infrastructure uses an event bus for publishing the received events to the event 

processing models. SARI uses sockets as a generic interface for sending and receiving events to and from event 

processing models. The processing of event streams is performed in event processing maps where the event 

processing flow is modelled with various components according to the business requirements. For the event 

data storage, SARI uses sockets for “forwarding” event data to the database. In other words, users can define 

for any type of socket, whether the received events of the socket should be stored in the database. 

The EventBase extends SARI’s event processing model with an efficient up-to-date operational storage 

together with retrieval mechanisms for business events for analytical as well as operational purposes.  [...] The 

core access component of the EventBase is a query engine supporting SARI-SQL. It is set on top of the 

EventBase data repository and exposes its services through programming interfaces and a graphical user 

interface. “ 
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Figure 8: Architectural overview [42] 

Event-similarity searching as proposed in the on-hand thesis was intended to set up on SARI’s Event Data 

Warehouse implementation, the EventBase, and to retrieve event data via the afore-said programming 

interface. As event-similarity unleashes its full value in combination with tailored query mechanisms, event 

data visualizations etc., we decided to integrate our implementations into the first grown-to-maturity, 

EventBase-based analysis framework, the EventAnalyzer. 

4.3 The EventAnalyzer 

The SENACTIVE EventAnalyzer
TM

 is a business intelligence tool built on top of the EventBase and the most 

successful analytical application in SENACTIVE’s product line. It allows the user to query the event data and 

generate interactive graphical views of events. Its major components are a search and query module, the 

patented event tunnel visualization looking into the historic events like a cylinder, event charts, several 

configuration parameters for the visualizations such as colors mapping, size mapping, shape mapping and 

positioning of data points and utilities such as a snapshot functionality to capture analysis results and create 

ready-to-use view templates or a details view to browse all attribute values of an event. Figure 9 below shows a 

view of the EventAnalyzer with some of the named modules. For further information on the visualizations 

provided by the EventAnalyzer, the interested reader may refer to Suntinger et al. [50]. 
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Figure 9: The SENACTIVE EventAnalyzer 

Together with diverse extensions, we implemented the proposed approaches on event-similarity as extensions 

of the Event Analyzer: From a given (single) event or a given correlation, the business analyst may either start a 

similarity search directly or derive a pattern differing from the original entity. For more details on the 

integration of the proposed algorithms into the EventAnalyzer, the pattern editor and the visual presentation 

of calculated similarities, the reader may refer to Suntinger [49]. 

4.4 Event Access (EA) expressions 

Throughout SENACTIVE’s product line-up on complex event processing, accessing events and sets thereof plays 

a central role in various features and tasks; consider, for instance, the EventAnalyzer’s color-coding feature, 

where historic events are colored based upon certain event-attribute values. Event access (EA) expressions 

have been developed in order to gain such access through an easy to understand syntax. Following a simple 

and intuitive notation, they allow performing arbitrary calculations on single events, possibly comprising one or 

more event attributes, and also complex operations on sets of events.  

Digging deeply into EA expressions’ theoretic background and their exact syntax, however, is far out of the 

scope of the on-hand thesis, and so is much of their functionality and power. We will therefore restrict our 

discussion on EA expression to those (in fact, very basic) aspects that are relevant for calculating similarity 

between single events. For a more detailed description of EA expressions, the interested reader is referred to 

Rozsnyai [40]. 
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The simplest EA expression is of the form EventType.SingleValueAttribute and addresses a single-value event 

attribute.
10

 Applied to an event of type EventType, it returns the event’s certain SingleValueAttribute-value. 

The dot-notation also allows addressing event-type attributes (a.k.a. nested events) recursively: An expression 

EventType.EventTypeAttribute.SingleValueAttribute addresses the SingleValueAttribute of a nested event 

EventTypeAttribute. Furthermore, EA expressions gain access to collection- and dictionary-typed event 

attributes: A certain element of a collection can be accessed through EventType.CollectionAttribute[i], where � 

is the index of the requested element. Similarly, elements of a dictionary can be accessed through 

EventType.DictionaryAttribute[key].  

Finally, note that EA expressions are non-destructive; access to an event through an EA expression is always 

read-only and does not allow altering an event’s attribute values.  Furthermore, EA expressions are strongly 

typed, i.e., an EA expression’s return type is known a-priori. These two characteristics play a central role in 

single-event similarity-searching and will be referred to in section 5.4.1. 

 

  

                                                                 
10

 If explicitly declared for a certain event type, referring to this type can be omitted. For sake of simplicity, we will presume 

such explicit declaration in the following sections. 

Example: Consider an event � of event type TransportEnded as shown below. 

 

Table 1 lists a few exemplary EA expressions defined for event type TransportEnded and their results if 

applied on �. 

EA expression Result for Z 

Location “Brussels” 

Location = “Brussels” true 

Amount / 1000 1.2 

TransportID + Amount  1301621 

StartEvent.Location “Vienna” 

OccurrenceTime – StartEvent.OccurenceTime 99h, 29m, 45s, 880millis 

Table 1: Exemplary EA expressions and results thereof 
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5 Finding similar events 

After successfully clarifying the basic terminology and the technical background that underlies our 

considerations, let us now continue to the first key part of the on-hand thesis: Finding similar (single) events. 

Both functional and valuable on its own, the proposed approach will play a central role in the subsequent, 

second key part of the on-hand thesis, similarity searching for sequences of events. 

In section 5.1, we will present basic considerations on event similarity and summarize evolving requirements. 

In section 5.2, we will demonstrate underlying ideas with a simple example. Concepts derived therein will be 

formalized in section 5.3, where a basic approach on event-similarity will be presented. The basic approach will 

be further extended in section 5.4. In section 5.5, we will discuss the most relevant attribute-level similarities. 

For a more practical understanding, we will present a real-world example in section 5.6. Finally, in section 5.7, 

we will summarize the pros and cons of the proposed algorithm and also take a look on its properties and its 

computational complexity. 

5.1 Basic considerations and evolving requirements 

In section 1.3, we have listed three general demands on similarity searching in event spaces. In this section, let 

us discuss one further aspect specific to single-event similarity-searching, and, finally, summarize evolving 

requirements. 

5.1.1 An attribute-driven approach 

In order to outperform purely subjective (and, in fact, arbitrary) assessments, a comprehensible similarity 

measure must be based upon objectively given, measurable properties and features. This simple and intuitive 

rule holds for any kind of complex entity, be it geometric shapes, apples, pears, Bob Dylan songs - or complex 

events.  

When talking about “objectively given properties” of an event, one will immediately think of event attributes as 

discussed in section 3.2. There are, however, other objectively given characteristics that are usually not 

accessible through event attributes; consider, for instance, an event’s size in memory. Yet, one major aspect of 

the complex event processing paradigm is a shift from a more technical to a more business-oriented 

perspective on business intelligence: For a business analyst, an event represents a certain state change or 

action in a business process, with event attributes describing it in detail. Technical issues are out of his or her 

scope. As a consequence, we decided to restrict the set of possibly relevant characteristics to event attributes.  

Following the motto “Whatever makes up an event should be accessible through its event attributes”, this 

approach abstracts from the concrete implementation and allows focusing on the content of the data. Event 

similarity becomes a toolkit for business analysts. Also, in the rather uncommon case that “purely technical” 

characteristics shall be part of a similarity measure, an additional attribute can be defined and set accordingly 

in the event processing logic. 

5.1.2 Requirements to an event-similarity framework 

From the above discussion and the preliminary notes on similarity searching, we derive the following 

requirements: 
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1. An approach on event similarity should be generic and flexible enough to apply for all possible kinds of 

business events, and all possible business scenarios these events are generated in. 

2. The similarity between two events solely depends on event attributes. 

3. A similarity measure is always defined based upon a certain interest. 

4. A similarity measure is always defined under the active involvement of the domain-expert. 

5. A framework for event-similarity allows both defining and managing similarity-measures in a quick and 

straightforward fashion. 

5.2 A geometric approach on event similarity 

Due to its specific structure, an event can easily be considered a point in an >-dimensional space, with each 

dimension corresponding to a certain event attribute. For such data, geometric understandings of similarity 

where proven useful. Yet, as an event may contain non-numeric attributes, the distance between two such 

points is not “naturally” given.
 11

  

In order to calculate the relative positioning of two events, we therefore consider an additional “layer of 

abstraction” and let an expert (i.e., someone that knows about the events’ semantics) define a distance-

function for each event attribute considered relevant. These functions are then applied on the two events’ 

attribute-values: 

 

By introducing distance functions, the relative positioning of two events in an >-dimensional space is uniquely 

defined. Calculating an overall distance between two such points is trivial; distance metrics such as the city 

block distance or the Euclidean distance are well-known and easy to understand.  

                                                                 
11

 In fact, even for numeric attributes, a variety of distance measures are possible. A few approaches are discussed section 

5.5.1.3.  

Example: Consider two events � and 5 as shown below. 

 

For positioning � and 5 in a 2-dimensional space, let us use the (algebraic) difference and the Levenstein 

distance [26] for � and [, respectively. 
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Yet, we should keep in mind that distance functions as defined in section 3.1.2 may return infinite for certainly 

unequal values; consider, for instance, a distance function for Boolean values. This implies, however, that in 

such case, the distance between two events is infinite regardless of all the other attributes’ distances. Clearly, 

this conflicts with common expectations. Attribute-level distance measures must therefore be bound to a 

certain range, as, for instance, 0 and 1. As discussed in section 3.1.1, such binding is implied when using 

similarity measures instead of distance functions. 

Again, consider two points in an >-dimensional space, each representing an event. The two points’ relative 

positioning is now defined with respect to a set of similarity measures, each returning a value in the �0,1�-

interval. 

 

Here, the overall set of attribute-level similarities corresponds to the “geometric closeness” of two points in an > -dimension space. An overall closeness, i.e., an overall event-similarity, can now be calculated in a 

straightforward fashion; one could, for instance, compute the average attribute similarity.  

5.2.1 Similarity measures and event types 

Event similarity as shown in the above section comprises some or all of the compared events’ attributes. This 

leads to a fairly intuitive conclusion: A similarity measure is always bound to a certain set of event attributes. 

These event attributes must be available in order to successfully apply the similarity measure. Consider, for 

instance, a similarity measure that comprises an event attribute that holds the location where the event was 

originally created:  The similarity measure will hardly yield meaningful results if applied to a pair of events that 

simply do not contain such an attribute.  

In the event model that underlies our solution, such sets of event attributes can be defined through event 

types. Each event implementing a certain event type provides the event attributes declared therein, each 

having the defined name and being of the defined type. Therefore, in order to “take a walk on the (type-)safe 

side”, one could bind each similarity measure to a certain event type. A similarity measure for event type (, for 

instance, is then restricted to the event attributes declared in (, and can only be applied to events of ( or of 

subtypes of (.  

In our approach, we opted for such bindings: Event similarity becomes type-safe.   

Example: Consider two events � and 5 as shown in the previous example. � and 5 shall now be positioned 

according to similarities calculated with a Levenstein-based similarity and the relative absolute difference 

similarity (see section 5.5.1.3): 
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5.3 Measuring event similarity 

Let us now formalize the above-presented, distance-based approach on single-event similarity: 

5.3.1 A basic similarity measure for events 

Consider an event type ( defining > event attributes, and let �/  and '/  address the name and the type of the � th
 event attribute in (. We now let the user define a collection of attribute-level similarity-measures ���*, ���+, … , ���9 with ���/: '/ × '/ → �0,1� ∀ � = 1 … >, i.e., one similarity measure per event attribute 

defined in (. Also, we let the user define an aggregation function 5: �0,1�9 → �0,1� that allows calculating an 

overall similarity from > attribute-level similarities. 

A basic similarity measure ���: ( × ( → �0,1� on events of type ( is then defined as follows: 

�����, 5� = 5 \����] ^$�]���, $�]�5�_ , … , ����` ^$�`���, $�`�5�_a 

The similarity between two events is thus calculated from the attribute-level similarities that exist between 

according attribute-values of the compared events. 

It is easy to see that selecting appropriate attribute-level similarity-measures is the decisive step in defining an 

event-level similarity-measure: By declaring which values are assessed to be similar and which are not, one 

“formalizes” the semantics that underlie an event attribute. We have already stated that defining a similarity-

measure for complex events must involve the domain expert; at this point, this should become apparent: Only 

the domain expert can decide how similar “4” is to “7” with respect to a certain event attribute, defined in a 

certain event type, used in a certain business domain. 

5.3.2 Weights 

Configured adequately, the present definition of a similarity measure yields meaningful results for any kind of 

business events. Note, however, that each event attribute has an equal impact on the overall event-similarity. 

This clearly conflicts with the idea of a flexible and generic approach on event similarity. With different 

questions in mind, business analysts will assess one and the same event attribute to be essential on one day 

and of little importance, or even irrelevant, on another. 

In section 5.2, we have stated that our approach is based upon geometric ideas on similarity. When considering 

pairs of events as points in an >-dimension space in a relative positioning to each other, it becomes obvious 

that each dimension - event attribute, respectively - could be scaled by a distinct scale factor.  

Again, consider an event type ( defining > event attributes, and let �/  and '/  address the name and the type of 

the �th
 event attribute in (. In addition to attribute-level similarity-measures, we now let the user define a 

collection of weights b*, b+, … , b9 with b/ ∈ �0,1� ∀ � = 1 … > and  ∑ b/9Ld* = 1 (i.e., summing to unity), with bL  defining the impact of �L  on the overall similarity between two events.  
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With an extended aggregation function 5: �0,1�9 × �0,1�9 → �0,1� that allows taking weights into account,
12

 a 

weighted similarity-measure ���e: ( × ( → �0,1� on events of type ( is then defined as follows: 

���e��, 5� = 5 ^���* ^$�]���, $�]�5�_ , … , ���9 ^$�`���, $�`�5�_ , b*, … , b9_ 

5.3.3 Summary 

Let us recapitulate our approach on single-event similarity presented thus far:  Given an event type ( defining > event attributes, with �/  and '/  addressing the name and the type of the �th
 event attribute in (, configuring 

a similarity-measure on single-events can be considered defining a 3-tuple  

f6, g, 5h, 
where 

• 6  is a collection of attribute-level similarity-measures ���*, ���+, … , ���9  with ���/ : '/ × '/ →�0,1� ∀ � = 1 … >; each in accordance with the certain semantics of the corresponding event attribute, 

• g is a collection of weights b*, b+, … , b9 with b/ ∈ �0,1�∀ � = 1 … >  and  ∑ bL9Ld* = 1; each defining 

the impact of the corresponding event attribute on the similarity between two events, and 

• 5 is an aggregation function 5: �0,1�9 × �0,1�9 → �0,1�. 

 

In order to overcome some abstractness, allow us to anticipate some attribute similarity measures in the 

following example. The attribute similarity measures which will be discussed in detail in section 5.5. 

 

  

                                                                 
12

 In our implementation, we use the weighted average originally proposed by Gowser [19]. As the name implies, it 

calculates the weighted average of the attribute-level similarities: 

5e�O��*, �+, … , �9�, �b*, b+, … , b9�P = i��/ ∗ b*�9
/d*  

The weighted average is a highly intuitive and should be appropriate in most cases. Dey et al. [12], however, point out that 

the distance between complex entities can be calculated in a variety of ways. In real-world scenarios, one usually chooses a 

metric from the Minkowski family of metrics, from which the weighted average is the simplest case. 

Example: Consider an event type TransportEvent as shown in Figure 6. The business analyst wants to 

define a similarity measure that takes the event attributes TransportID, Location and Amount into account. 

Based upon both the business analyst’s interest and the data’s semantics, the business analyst chooses 

similarity measures and weights as shown in Table 2. 

Event attribute Similarity measure Weight 

TransportID Lookup table similarity for numeric values 0.4 

Location Lookup table similarity for strings 0.3 

Amount Normalized absolute difference 0.3 

Table 2: Exemplary attribute-level similarity-measures and weights 

The two remaining attributes, GUID and OccurrenceTime, are not taken into account and weighted by zero. 
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5.4 Possible extensions 

An approach on single-event similarity as presented thus far should be flexible enough for covering a wide 

range of business scenarios and problems. Yet, we found out that in practice, business analysts may require 

(apparently specific) features and options that exceed the original expressiveness. Unlike the above-presented 

“building blocks” of a similarity-measure, however, according configurations are not required for a similarity-

measure to work; we thus understand them as possible extensions to a functional base approach. In the on-

hand section, we will present two extensions - attribute functions and required attributes – and, finally, 

summarize the resulting “full-featured” approach on single-event similarity.  

Unless otherwise stated, the full-featured approach as summarized in section 5.4.3 is assumed throughout the 

following sections. 

5.4.1 Attribute functions 

By handling each event attribute separately and completely independently from all others, the present 

approach results in surprisingly simple similarity-measures even for complex events. It is, however, not possible 

to comprise “event-internal” relations between attributes, such as, for instance, the difference between two 

numeric attributes A and B. Hence, a business analyst cannot assess two events to be similar if in both events, 

two or more attributes are in a “similar” relation to each other. Consider the following example:  

 

In order to address such issues, we decided to extend the original approach by providing a mechanism that 

allows performing arbitrary calculations on the event attributes of events. Before going into details, however, 

let us define the concept of attribute functions on a given event type (: 

 
13, 14 
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 The stated conditions are implicitly given for functions in a strictly mathematical sense. In practice, however, attribute 

functions may be implemented in languages that allow both the definition of non-typed functions and modifying event 

data. 

Definition: Given an event type ( ⊆ & and a set of supported return types k, we refer to a function 5: ( → ', ' ∈ k,  as attribute function if 

1. 5 is strongly typed, i.e., the type of its output must be known a-priori, and 

2. 5 is non-destructive, i.e., it does not alter the event’s state. 

 

Example: TransportEnded-events contain information about a transport’s start- and end-time, among 

others. To avoid redundancies, the application designer decided not to implement a distinct attribute 

holding a transport’s duration.  

A business analyst may now be interested in transports that are of a similar duration, certainly 

independent from a transport’s certain start time. Intuitively, one would suggest considering both the 

event’s start-time attribute and the event’s end-time attribute, e.g., by weighting them equally. This 

approach fails, however, as it clearly considers the transport’s actual time of execution instead of its 

duration only. 
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With a so-defined attribute-function, a user can access any given relation between the attributes of an event. 

He or she may, for instance, calculate the difference between two numeric attributes, or concatenate two 

strings. Thus, in telling us “something” about the underlying state-change or action, attribute functions can be 

considered somewhat equivalent to “ordinary” event attributes.  

An intuitive consequence is that of treating attribute functions in the same way as event attributes, i.e., to 

allow taking them into account for event-similarity. Let us go one step further: Elementary attribute-functions 

simply return a certain event-attribute’s value. Taking such functions into account for event-level similarity is 

thus equivalent to comprising the according event-attributes themselves. 

Hence, for the sake of consistency, let us reject the original idea of measuring similarities between “plain” 

attribute-values. Instead, let us add a further layer of abstraction and measure attribute-level similarities 

between the results of user-defined attribute-functions:
15

 

Thus, given an event type (, we let the user define a collection of attribute-functions �5*, �5+, … , �5- with �5/: ( → '/ , '/ ∈ k ∀ � = 1 … <. For each attribute function, we now let the user choose an adequate 

attribute-level similarity-measure, i.e., we let the user define a collection of attribute-level similarity-measure ���*, ���+, … , ���-  with ���/ : '/ × '/ → �0,1� ∀ � = 1 … <. Also, we let the user define a collection of weights b*, b+, … , b-  with b/ ∈ �0,1� ∀ � = 1 … <  and  ∑ bL-Ld* = 1, with bL  defining the impact of �5L  on the overall 

similarity between two events. 

With an extended aggregation function 5: �0,1�- × �0,1�- → �0,1�, a similarity measure ����V: ( × ( → �0,1� 

featuring attribute functions is then defined as follows: 

����V��, 5� = 5O���*O�5*���, �5*�5�P, … , ���-O�5-���, �5-�5�P, b*, … , b-P 

 

Note that in the following, we will speak of attributes, attribute-level similarity-measures and attribute-level 

similarities also when, in fact, attribute-functions are used.   

  

                                                                                                                                                                                                        
14

 In our solution, we realize attribute functions with EA expressions. Besides being both strongly typed and non-destructive, 

EA expressions are used among numerous features of the SENACTIVE EventAnalyzer and hence should be familiar to the 

user. Some restrictions must be made, though, to ensure that an EA expression returns a supported type. 
15

 Keep in mind that most event-level similarity-measures are still based upon “plain” attribute-values, i.e., on elementary 

attribute-functions. In the EventAnalyzer, we therefore “hide” that additional layer of abstraction to a large extent: 

Primarily, we let the user choose event attributes and generate the according, elementary attribute-functions implicitly. 

Only when complex calculations are required, attribute functions must be formulated explicitly.  

Example, continued: As part of his or her similarity measure for TransportEnded-events, the business 

analyst defines an attribute function that calculates the difference between the event-attributes EndTime 

and StartTime; with EA expressions, a so-defined attribute function is written  

TransportEnded.StartTime – TransportEnded.EndTime. 

The business analyst chooses the normalized absolute difference similarity (see section 5.5.1.3) and 

weights the attribute function by 1.0. 
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5.4.2 Required attributes/attribute-functions 

In certain cases, business analysts may consider two events certainly unequal if one or more attributes are not 

certainly equal with respect to the selected attribute-level similarity-measures. In other words, when 

calculating the similarity between two events, a similarity-value of 0 is expected in any case where one or more 

required attribute-level similarities, i.e., similarity-values resulting from required attributes, are below 1. 

Otherwise, if all required attribute-level similarities are 1, an event-level similarity – one may call it “base 

similarity” – shall be calculated as usual. Consider the following example: 

 

In order to address such issues, we decided to extend our approach as follows:  

Given an event type (, a set of supported return types k and a (however-defined) base similarity-measure ���: ( × ( → �0,1� on events of type (, we let the user define an additional collection of required attribute-

functions �5′* , �5′+, … , �5′; with �5′/ : ( → '′/ ,  '′/ ∈ k ∀ � = 1 … =. Also, we let the user choose adequate 

attribute-level similarity-measures ���′*, ���′+, … , ���′;  with ���′/ : '′/ × '′/ → �0,1� ∀ � = 1 … =. 

A similarity measure ���S: ( × ( → �0,1� featuring required attributes is then defined as follows: 

���S��, 5� = l�����, 5�, ���′/O�5′/���, �5′/�5�P = 1 ∀ � = 1 … =0, A1ℎ�Gm��� n 

 

5.4.3 Summary 

At this point, let us recapitulate the extended, “full-featured” approach on single-event similarity:  Given an 

event type ( and a set of supported attribute-types k, configuring a similarity-measure on single-events can be 

considered defining a 5-tuple  

fo, 6, g, 5, o′, 6′h, 
  

Example, continued: The business analyst chooses the default similarity measure for Boolean values 

(section 5.5.1.2) for the AlarmTriggered-flag and marks the attribute as required. Based upon the 

remaining attributes, the analyst defines a similarity measure just as usual. When executing the similarity 

search, a similarity value of zero is calculated for all events that have triggered a fraud alarm. 

Example: After exposing a previously undetected fraud case, the betting broker is interested in finding 

similar betting scenarios in its legacy data. The analyst plans to perform a similarity search on a 

characteristic BetPlaced-event, but wants to exclude events that have already triggered a fraud alarm from 

the result set. Intuitively, one would argue to simply include the AlarmTriggered-attribute into the 

similarity measure and weight it adequately. This would, in fact, reduce the similarity score of events that 

have already triggered a fraud alarm. Excluding them, however, would require messing around with a 

threshold, which is imprecise, time-killing and likely to eliminate too large parts of the result set. 
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where 

• o is a collection of attribute-functions �5*, �5+, … , �5-  with �5/: ( → '/ ,  '/ ∈ k ∀ � = 1 … <, 

• 6  is a collection of attribute-level similarity-measures ���*, ���+, … , ���-  with ���/: '/ × '/ →�0,1� ∀ � = 1 … <; each in accordance with the certain semantics of the corresponding attribute 

function, 

• g is a collection of weights b*, b+, … , b-  with b/ ∈ �0,1� ∀ � = 1 … < and  ∑ b/-Ld* = 1; each defining 

the impact of the corresponding attribute function on the similarity between two events, 

• 5 is an aggregation function 5: �0,1�- × �0,1�- → �0,1� that allows calculating an overall event-level 

similarity - not taking required attributes into account - from attribute-level similarities and weights, 

• o′ is a collection of required attribute-functions �5′* , �5′+, … , �5′; with �5′/ : ( → '′/ ,  '′/ ∈ k ∀ � =1 … =, and 

• 6′  is a collection of attribute-level similarity-measures for required attribute functions  ���′*, ���′+, … , ���′;  with ���′/ : '′/ × '′/ → �0,1� ∀ � = 1 … =; each, again, in accordance with the 

certain semantics of the corresponding attribute function. 

 

Due to the increased level of complexity, let us demonstrate the “full-featured” calculation of event-level 

similarities in pseudo code: 
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Name: getSimilarity 

Description: Calculates the similarity between two events.  

Input: e: The first event. 

f: The second event. 

functions: A field of attribute functions. 

simMeasures: A field of similarity measures for functions. 

weights: A field of weights for functions. 

aggr: An aggregation function. 

requFunctions: A field of required attribute functions. 

requSimMeasures: A field of similarity measures for requFunctions. 
 

Output: A similarity between 0 and 1. 

Variables: i: An index. 

eResult: The result of an attribute-function on e. 

fResult: The result of an attribute-function on f. 

similarity: An attribute-level similarity. 

similarities: A field of attribute-level similarities. 
 

01: // Evaluate required similarities 

02: for i = 0 to requFunctions.length step 1 

03:  double eResult = requFunctions[i](e); 

04:   double fResult = requFunctions[i](f); 

05:  double similarity = requSimMeasures[i](eResult, fResult); 

06:  if (similarity < 1) then 

07:   return 0; 

08:  end 

09: end 

10:  

11: // Return “1.0” if no “regular” attribute functions were chosen 

12: if (functions.length == 0) then 

13:  return 1; 

14: end 

15:  

16: // Calculate attribute-level similarities 

17: double[] similarities = new double[functions.length]; 

18: for i = 0 to functions.length step 1 

19:  double eResult = functions[i](e); 

20:  double fResult = functions[i](f); 

21:  double similarity  = simMeasures[i](eResult, fResult); 

22:  // Add to attribute-level similarities 

23:  similarities[i] = similarity; 

24: end 

25:  

26: // Calculate event-level similarity 

27: return aggr(similarities, weights); 
 

Algorithm 1: Calculating event-level similarities 
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5.5 Measuring attribute-level similarities 

In our framework for measuring event similarity, we allow the analyst choosing from a large set of type-specific 

attribute-level similarity-measures. In the following, let us discuss the most prominent attribute-level similarity-

measures for all attribute types defined in the SARI event model. As those types are considered supported for 

our implementation of attribute functions, the discussed similarity-measures can be used consistently among 

both the basic approach as discussed in section 5.3 and the extended approach as discussed in section 5.4.  

5.5.1 Runtime types 

5.5.1.1 Lookup tables 

Before discussing the various, type-specific similarity-measures provided “out of the box”, let us pay some 

attention to a simple but particularly useful extension to regular similarity measures.  

Anderberg [3] suggests lookup tables, where the user “manually” assigns similarity values to arbitrary pairs of 

values. Thus, by letting the user define a function explicitly, lookup tables allow creating similarity measures 

from scratch. This has two notable advantages: Besides working for all runtime types declared in the SARI event 

model, it allows expressing highly purpose-specific, “semantic” relationships. Consider for, instance, the 

following lookup-table similarity-measure from the sports domain:
16

 

Term 1 Term 2 Similarity 

Rugby American Football 1.0
17

 

Free throw Penalty 0.7 

Penalty Direct free kick 0.2 

Table 3: An exemplary lookup-table similarity-measure from the sports domain 

It is easy to see that defining a lookup table requires at least partly knowledge about the set of possible 

attribute values. Such knowledge, however, is available in many cases. A business analyst that analyses a 

betting broker’s legacy data, for instance, knows about possible values for attributes that hold the sport type 

that is assigned to some of the captured events.  

5.5.1.2 Booleans 

Measuring the similarity between two Boolean values is somehow insipid: It should be easy to follow that zero 

is certainly unequal to non-zero, and vice versa. A similarity function for Boolean values ����: )0,1. × )0,1. →)0,1. must therefore be defined as follows. 

������, �� = l1, � = �0, � ≠ �n 
We omit an example for obvious reasons. Keep in mind, however, that comprising Boolean values into an 

event-similarity measure may be highly valuable in combination with a well-considered weighting model. 

                                                                 
16

 A similarity function defined via a lookup table is, of course, symmetric. At this point, one might argue that a transitive 

relation is implied as well; one could, for example, expect a certain similarity relation between the terms “Free throw” and 

“Direct free kick”, as ����"Free throw", "Penalty"� = 0,7  and ����"Penalty","Direct free kick"� = 0,2 . In our 

implementation, such relation is not given per se: If required in the certain domain, the user must define appropriate value-

pairs explicitly. 
17

 Experts in physical ball sports may forgive my ignorance. 
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5.5.1.3  Numeric types 

The SARI event model that underlies our solution defines several numeric attribute types, such as Integer, Float 

or Double. Similarity measures that are based upon arithmetic operations usually apply to all of these; so do 

the measures presented below. 

As one can perform however-defined transformations on the absolute distance between two values, most 

distance measures for numeric types can be calculated in a relatively straightforward fashion. A similarity 

measure that has been excessively used in cluster analysis is the absolute difference between two values, 

normalized on a �0,1�-scale. With � ⊂ ℝ addressing the overall set of values existing in the given context, the 

normalized absolute difference similarity ���9�� : � × � → �0,1� is defined as follows:
18

 

���9����, 2� =  1 − | � − 2 |max�∈� � − min�∈� � 

In certain cases, a relative similarity measure may be more appropriate. We therefore provide the relative 

absolute difference similarity, ���9��: ℝ × ℝ → �0,1�, which is calculated as follows: 

���S����, 2� =  1 − | � − 2 |maxT∈)�,�. $  

The above similarity measures work well for numeric attributes that have continuous or ordinal values, such as 

amounts, prices, grades, etc. In many scenarios, though, one will use numeric attributes for holding categorical 

information: Consider an event that shall contain a reference to a complex (database) entity, as, for instance, a 

certain customer entity in a customer relationship management system (CRMS). With adaptability in mind, the 

application designer will probably define a numeric attribute CustomerID that holds the primary database key 

of the referenced entity. In such a case, the above similarity measures are obviously useless: A business analyst 

will be interested in similar customers rather than in similar customer IDs.  

Thus, when using numeric attributes for holding categorical data, one usually needs a similarity measure that 

takes underlying semantics into account. Besides the ever-present possibility to implement a special-purpose 

similarity-measure by oneself (that could, for instance, query the corresponding database entities and perform 

a domain-specific comparison on the customers’ purchases during the last few months), the business analyst 

may apply a lookup table similarity for numeric values. A detailed description of the generic lookup-table 

similarity-measure was given in section 5.5.1.1. 

5.5.1.4 Time stamps and time spans 

As both kinds of data can be transformed into (de-facto continuous) amounts of sufficiently small units, time 

stamps as well as time spans can be considered numeric types in the proposed approach on event-similarity: 

For time spans, the transformation is trivial. For time stamps, a constant reference time stamp is required;
19

 all 

possible time stamps can then be transformed into temporal differences - i.e., time spans - to the given 

reference point. As based upon the UNIX (or POSIX) time, such a reference point is implicitly given with the 

April 1
st

, 1970 in most modern programming languages.  

                                                                 
18

 Note that normalizing the difference requires a-priori knowledge about the overall range of the attribute’s values. In our 

architecture for attribute similarities, we provide a mechanism that allows read-only access to the current set of events, 

and can be used to analyze the current set of events, and to configure the similarity measure accordingly. 
19

 Note that when applying the relative absolute difference similarity, the reference time stamp may have seemingly 

paradox effects on the similarity between two time stamps. 
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5.5.1.5 Strings 

For decades, string similarity has been a major topic in information technology. Discussing prominent 

approaches, however, is outside the scope of this thesis; interested readers may refer to the rich body of 

according literature (see, for instance, [16] and [58]).
20

 

5.5.2 Collections and Dictionaries 

For collection-types such as sets and lists, we allow choosing a set-based similarity-measure in accordance with 

Sjoberg’s feature-based understanding of similarity [48]: With ' denoting an arbitrary single-value type, a 

similarity measures on collections of 's, �����;: '� × '9 → �0,1�, �, > ∈ ℝ��, is defined as follows: 

�����;��, g� = |� ∩ g||� ∪ g| 
For dictionaries, a similarity measure ����/�%  is defined equivalently. 

The above similarity measures calculate “overall” similarities between collections of either values or key/value 

pairs, i.e., they take all the collections’ elements into account. Also, eventual orders (as, for instance, given in a 

list) are not considered at all. �����; and ����/�%  are thus well suitable if there is no specific, “meaningful” 

structure in the values of a collection-typed attribute, or if such structure is not considered relevant by an 

analyst. 

Consider, however, an event type WebshopVisit with a list-typed attribute VisitedProducts holding product IDs 

in the order of visits. Here, a business analyst may be interested in all customers that started their shopping 

trip with visiting a product somewhat similar to the latest Bob Dylan single. It is easy to see that such scenarios 

are far too specific for providing according similarity-measures out of the box. Yet, depending on the 

expressiveness of the certain implementation, attribute-functions may be used to access multi-value attributes 

in a directed manner. With EA expression, for instance, the above product ID was accessed through 

WebshopVisit.VisitedProducts[0]. 

5.5.3 Event types/nested events 

Event-typed attributes, a.k.a. nested events, may provide extensive information to the business analyst and 

thus require highly purpose-specific attribute similarity-measures. As the on-hand approach on event similarity 

was designed to address such issues, it seems obvious to also use it on the level of event attributes.  

The described, recursive approach allows highest precision, but to the expense of a fairly longsome definition 

process. Alternatively, when addressing only a few of the nested event’s attributes, it may be sufficient to 

address these by defining appropriate attribute functions. Attribute functions are required in any case where 

calculations on both top-level attributes and sub-level attributes shall be performed. Again, a sufficiently 

expressive implementation of attribute function is required. 

  

                                                                 
20

 In our implementation, we integrated Sam Chapman’s excellent SimMetrics library [9] and allow the user 

choosing from the variety of string-similarity measures available therein. 
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5.5.4 Dealing with null, NaN and infinity 

In the CEP solution that underlies our implementation, all types of event attributes are implemented as 

reference types. Consequently, both complexly and primitively typed attributes may hold null-values. Also, 

attributes of numeric types may hold exceptional values, i.e., NaN (not a number), positive infinity and negative 

infinity. In C#, NaN results from dividing zero by zero. Similarly, positive or negative infinity is the result of 

dividing a positive or negative value by zero.  

When calculating the similarity between events, both null-values and exceptional numeric values may lead to 

problems.  

5.5.4.1 Calculating similarities 

It is easy to see that without an exceptional handling of the above values, most of the presented similarity-

measures fail on null-values. In our solution, the implementation of such handling is left to the similarity-

technique. In the similarity-techniques that are provided out of the box, however, we follow a simple approach 

that follows the default comparison implementation in C#: 

Given a however-defined attribute-level similarity-measure ���: ' × ' → �0,1� , we define an extended 

similarity-measure ���′: '′ × '′ → �0,1�  with ': = ' ∪ )>F==, ���, +∞, −∞. , adding the handling of 

exceptional values to ���, as follows: 

 ���� �Z� +∞ −∞ � ∈ '  ���� 1 0 0 0 0 �Z� 0 0 0 0 0 +∞ 0 0 1 0 0 −∞ 0 0 0 1 0 � ∈ ' 0 0 0 0 �����, 2� 

Table 4: Dealing with exceptional values 

Note that in C#, the expression ��AF�=�. ��� ==  �AF�=�. ����  yields 5�=�� , wherefore ���’����, ����  =  0. 
Unfortunately, the presented approach is certainly insufficient in many cases. Alternatively, one can use 

attribute function to transform exceptional values (e.g., to zero or an empty string), or apply a lookup-table 

similarity measure, which allows defining domain-specific similarities for �>F==, >F==� , ����, ���� , �>F==, ����, etc.  

5.5.4.2 Normalizations 

In 5.5.1.3, we have discussed the Normalized absolute difference similarity, which is calculated by normalizing 

the absolute difference between two numeric values. When including (positive and/or negative) infinity into 

the total range of values, such normalization must yield unsatisfying results, as 

�±∞ = 0 ∀ � ∈ ℕ. 
In our implementations of similarity-measures, infinity is already handled exceptionally. We therefore decided 

to ignore infinity when calculating the overall range or values. Other implementations, however, may follow a 

different approach. 
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5.6 Example 

In the above sections, have defined a generic approach on event-level similarity and discussed a variety of 

attribute-level similarity-measures to build upon. Let us now demonstrate the proposed approach with a real-

world example. 

5.6.1 Defining a similarity measure for single events 

Consider two event types from the logistics-domain, TransportEnded and TransportStarted, as shown in Figure 

10. Note that besides a number of runtime-typed attributes, TransportEnded-events contain a nested 

TransportStarted-event: 

 

Figure 10: The structure of TransportEnded- and TransportStarted-events 

Based upon his or her certain interest, the business analyst defines an event-level similarity measure as shown 

in Table 5. Here, attribute functions are depicted as EA expressions: 

Attributes/Attribute functions Return type Similarity measure Weight/Required 

StartEvent.EstimatedDuration - 

(CreationTime - 

StartEvent.CreationTime) 

Timestamp Normalized absolute 

difference 

0.6 

Amount Integer Relative absolute difference 0.2 

Location String Lookup table similarity  0.2 

  Brussels – Amsterdam � 0.9  

  Brussels – Barcelona � 0.3  

RecipientID Integer Normalized absolute 

difference 

Required 

Table 5: Attribute-level similarity measures 

5.6.2 Calculating event similarities 

Let us now apply the above-defined similarity measures to a pair of TransportEnded-events, � and 5, as shown 

in Figure 11: 
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Figure 11: Exemplary TransportEnded-events 

Table 6 below shows the attribute-level similarities calculated for � and 5. As using the normalized absolute 

difference for the delay (i.e., for “StartEvent.EstimatedDuration - (CreationTime - StartEvent.CreationTime)”), 

let us assume that delays between -10h and 70h are calculated for the overall set of TransportEnded-events.  

� Z�� Z����� Z����� ����O�Z�����, Z�����P 

1 StartEvent.EstimatedDuration - 

(CreationTime - 

StartEvent.CreationTime) 

52h 50h 0.975 

2 Amount 1200 1400 0.858 

3 Location “Brussels” “Barcelona” 0.300 

4 RecipientID 459 459 1.000 

Table 6: Attribute-level similarities 

As the only required attribute function, “RecipientID”, results in an attribute-level similarity of 1.0, the “basic” 

similarity is calculated. Table 7 below thus shows the calculation of the overall, event-level similarity between � 

and 5. As an aggregation function, we use the weighted average: 

� ����O�Z�����, Z�����P �� ����O�Z�����, Z�����P ∗ �� 
1 0.975 0.6 0.585 

2 0.858 0.2 0.172 

3 0.300 0.2 0.060 

   i ���/O5�5/���, �5/�5�P ∗ b/
�

�d� = �.  �¡ 

Table 7: Calculating the event-level similarity from attribute-level similarities 

With the above defined similarity-measure, a similarity of 0.817 is calculated between � and 5. 
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5.7 Discussion 

Thus far, we have discussed a simple yet powerful approach on event-sequence similarity and demonstrated it 

in a concrete example. Finally, in the on-hand section, let us summarize the “pros and cons” of the proposed 

algorithm and also take a look on its properties and its complexity. 

5.7.1 Pros and cons 

As building upon the somewhat “straightforward” geometric understanding of similarity, the presented 

approach on event-sequence similarity is highly intuitive and should be easy to understand for business 

analysts. Yet, by extending the very basic distance-based approach on similarity between vectors by two user-

configurable „layers of abstraction“, attribute-functions and corresponding attribute-level similarity-measures, 

it gains a broad expressiveness and should be applicable in most scenarios. Also, note that the proposed 

approach handles times of occurrence just like any other event-attribute. Therefore, it is generally conceivable 

to use the on-hand approach for “time-independent” complex entities, such as, for instance, entity beans. 

Keep in mind, however, that the great flexibility of the proposed approach requires lots of configuration and 

the intensive involvement of domain-experts. All the more clearly, a sophisticated management of existing 

filter management is required; one might, for instance, think of a “library” of valuable event-similarity 

measures. The SENACTIVE EventAnalyzer serving as a framework for our implementation allows the user 

choosing from all stored similarity-measures that are generally compatible with a given pattern event. Also, the 

user can add various meta-information to a similarity measure, such as, for instance, an informal description of 

its certain semantics. 

5.7.2 Properties 

In section 3.1.3, we have described similarity measures in the strict sense as generally favourable when 

calculating similarities between large amounts of entities. So, which “kind” of similarity measure is the 

proposed one? Obviously, as the similarity between two events is derived from attribute-level similarities, the 

nature of a similarity measure depends on the attribute-level similarity-measures comprised therein: 

A similarity-measure as proposed in the on-hand thesis is a strong similarity measure in the strict sense iff 

a. it does not comprise required attributes/attribute-functions, 

b. the aggregation function is a linear combination of attribute-level similarities and weights, 

and 

c. all comprised attribute-level similarity measures are (strong) similarity measures in the strict 

sense. 

Consequently, a similarity measure is a weak similarity measure in the strict sense iff 

a. it does not comprise required attributes/attribute-functions, 

b. the aggregation function is a linear combination of attribute-level similarities and weights, 

and 

c. all comprised attribute-level similarity measures are strong or weak similarity measure in the 

strict sense. 

In all other cases, a similarity measure is a similarity measure in the common sense. 



47 

 

5.7.3 Complexity 

Finally, given a similarity-measure ��� comprising > attribute-functions/attribute-level similarity-measures, let 

us examine the algorithm’s runtime both without and with required attributes: 

5.7.3.1 Without required attributes 

Let us come back to Algorithm 1 as shown in section 5.4.3, assuming that ��� does not comprise required 

attributes: Here, as each single attribute-level similarity affects the overall similarity between two events, all 

attribute-functions and according attribute-level similarities must be calculated independently from eventual 

intermediate results. Therefore, the runtime of the proposed algorithm solely depends on the runtimes of the 

comprised attribute-functions and attribute-level similarity-measures. Assuming attribute-functions evaluating 

in constant time and letting ��W¢%, ��T£  and �e�S¢%  address the best-case, average-case and worst-case runtime 

throughout all available event-level similarity measures, a so-defined similarity measure without required 

attributes has the following, asymptotic runtimes: 

(�W¢%�>� = > ∗ ��W¢%  

(�T£�>� = > ∗ ��T£  

(e�S¢%�>� = > ∗ �e�S¢%  
5.7.3.2 With required attributes 

Per definition, the similarity between two events is 0.0 when one or more required attributes have a similarity 

smaller than 1.0. As we evaluate required similarities at the beginning of Algorithm 1, the “best case” is that 

where the first required similarity is smaller than 1.0; here, the calculation can be cancelled right after 

evaluating one attribute-level similarity measure: 

(�W¢%�>� = 1 ∗ ��W¢% = ��W¢%  

The average-case runtime depends on the probability 3 that the results of an attribute-function are certainly 

equal across pairs of events: The higher 3, the more calculations can be cancelled “early” within required 

attributes. Given a probability 3, a function 3: ℤ� → �0,1�  calculating the probability that the proposed 

algorithm can be cancelled with the �th
 required attribute in ��� is defined as follows: 

3��� = ¥ 3, � = 1O1 − 3�� − 1�P ∗ 3, � > 1n 
The average-case run-time of the proposed algorithm with required attributes is then calculated as follows: 

(�T£�>� = i�3��� ∗ ���
/d* + §1 − i 3����

/d* ¨ ∗ > 

The worst-case runtime remains unchanged. 
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6 Finding similar sequences of events 

Similarity searching for single events as proposed in the previous section may serve a useful tool for business 

analysts. In certain scenarios, however, the analyst may focus on whole sequences of events, possibly 

representing complex, composite actions and processes in the business environment. In the on-hand section, 

let us therefore present the second key part of the on-hand thesis, an approach on similarity-searching for 

sequences of events. 

In section 6.1, we will present basic considerations on event-sequence similarity and summarize evolving 

requirements. In section 6.2, we will demonstrate underlying ideas with concrete example. Following from 

that, we will derive the basic concepts of an approach on event-sequence similarity in 6.3. In section 6.4, we 

will present a concrete implementation of the presented approach. Concrete cost-function, being an essential 

part of the presented approach, will be listed in section 6.5. In section 6.6, we will discuss a possible extension 

of the proposed approach, allowing us to calculate similarity based upon different matching modes. Finally, in 

section 6.7, we will summarize pros and cons and also discuss the properties and the computational complexity 

of so-defined similarity measures. 

6.1 Basic considerations and evolving requirements 

In section 1.3, we have listed three general demands on similarity searching in event spaces. Again, before 

getting serious about a possible approach, let us discuss some further aspects specific to event-sequence 

similarity-searching. In section 6.1.1 , we will discuss the concept of dimensions of event-sequence similarity. In 

section 6.1.2, we will differentiate between four so-called matching modes. Finally, in section 6.1.3, we will 

summarize evolving requirements. 

6.1.1 The basic dimensions of event-sequence similarity 

Events as defined in section 3 are complex entities, and even more so are sequences thereof. Yet, when 

comparing two sequences of events, one will hardly take all given characteristics and properties into account. 

Depending on the actual context and interest, one might instead focus on certain “aspects”, such as, for 

instance, the order or events or event-level similarities. 

With the requirement of generality in mind, we claim that an approach on event-sequence similarity should 

allow handling possible “aspects” of event-sequences in a largely independent and decoupled manner. Thus, 

when defining a concrete similarity measure, an analyst may comprise only those aspects that he or she 

considers relevant. Also, we claim that an approach on event-sequence similarity should allow weighting 

selected aspects, i.e., defining their impact on the overall similarity. In the following, we will refer to those 

aspects that are covered by a certain approach as dimensions of the so-defined event-sequence similarity.   

Let us now define four essential dimensions of event-sequence similarity that we consider required for any 

feasible approach on event-sequence similarity. For practical use cases, the reader may refer to Suntinger [49]. 

6.1.1.1 Single-event similarities 

Single events are the building blocks of event-sequences, and event-attributes make event-sequences a 

certainly more powerful data-structure than sequences of “simple”, discrete values. Consider an event-
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sequence from the logistics domain, representing a complete transport processes: Here, the nature and the 

quantity of the goods to be carried, the vehicle’s ID, or, most important, waypoints and corresponding time 

stamps, are available through (and only through) event-attributes. It is easy to see that an expressive and 

flexible approach on event-sequence similarity should allow for taking event-level similarities into account. 

Thus, we consider single-event similarities the first dimension of event-sequence similarity, and consider two 

event-sequences © and ª similar if © and ª contain similar events. 

 

6.1.1.2 Order 

A dimension that is inherent to many approaches on string similarity is that of the order, i.e., entities are 

considered similar when their elements are in a similar order. Particularly useful whenever the exact temporal 

structure of events is of little or no relevance for the analyst, we decided to adopt the concept of order and 

consider it the second dimension of event-sequence similarity: We consider two event sequences © and ª 

similar if their events are in a similar order. 

 

6.1.1.3 (Absolute) temporal structure 

The order of events defines the general structure of an event-sequence. Yet, it is independent from the exact 

times of occurrence. In many cases, however, a business analyst may be interested in the temporal structure of 

an event sequence:  

Example: Consider three event sequences 6*, 6+ and 6N as shown below. With respect to the order, one 

would intuitively agree that there is a higher similarity between 6* and 6+ than between 6* and 6N: 

 

Example: Consider three event sequences 6*, 6+ and 6N as shown below. With respect to single-event 

similarities, one would intuitively agree that there is a higher similarity between 6* and 6+ than between 6* 

and 6N: 
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We consider absolute temporal structures the third dimension of event-sequence similarity, and consider two 

event-sequences © and ª similar if their events are in a similar absolute temporal structure. 

 

6.1.1.4 Relative temporal structure 

Above, we have identified the absolute temporal structure as one possible dimension of event-sequence 

similarity. Scenarios may arise, though, where an analyst focuses on relative temporal structures rather than on 

absolute ones: 

 

We consider relative temporal structures the fourth and last dimension of event-sequence similarity, and 

consider two event-sequences © and ª similar if their events are in a similar relative temporal structure. 

 

Example: Consider three event sequences 6*, 6+ and 6N as shown below, with labeled arrows indicating the 

relative time spans between successive events. With respect to the relative temporal structure, one would 

intuitively agree that there is a higher similarity between 6* and 6+ than between 6* and 6N: 

 

Definition: We understand the relative temporal structure of an event-sequence 6 the exact time spans 

between the events in 6  relative to the overall length of 6 , i.e., a collection 1S*,+, … , 1S|X|�*,|X|  with 

1SL,- = 1S ^O�L , �-P, 6_ = %^OW«,W¬P,X_;�X�  and �/  addressing the �th
 event in 6. 

Example: Consider three event sequences 6*, 6+ and 6N as shown below, with labeled arrows indicating the 

absolute time spans between successive events. With respect to the absolute temporal structure, one 

would intuitively agree that there is a higher similarity between 6* and 6+ than between 6* and 6N: 

 

Definition: We understand the (absolute) temporal structure of an event-sequence 6 the exact time spans 

between the events in 6 , i.e., a collection of time spans 1*,+, … , 1|X|�*,|X|  with 1L,- = 1O�L , �-P  and �/  
addressing the �th

 event in 6. 
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6.1.2 Full-sequence-, sub-sequence- and *-linked matching 

When talking about the similarity between two sequences 6 and (, one naturally assumes that similarity is 

calculated between 6 and ( both “as a whole” so that each single element in 6 and each single element in ( 

has a however-defined impact on the overall similarity. Without a doubt, this can be considered the “regular” 

and very basic understanding of similarity between two sequences; throughout the following sections, we will 

refer to it as full-sequence matching. 

In the context of event-sequence analysis, however, analysts may often be interested in all sequences 

containing a sub-sequence similar to a given pattern-sequence 6 ; eventual preliminary and eventual 

subsequent events are considered irrelevant and are not taken into account. With this in mind, we define an 

alternative understanding of sequence similarity, sub-sequence matching, as follows: Given two sequences 6 

and ( and a regular (i.e., full sequence) similarity-measure ���: )6. × )(. → �0,1�, the sub-sequence similarity ���’ of ( to 6 can be considered the full-sequence similarity between 6 and the best-matching sub-sequence (′�W¢%  of (, i.e., ���:�6, (� = max:∈J ����6, (′� with J denoting the set of all sub-sequences of (. Obviously, 

a similarity measure performing sub-sequence matching is always asymmetric. 

 

Full-sequence mapping and sub-sequence matching are by far the most relevant understandings of sequence-

similarity. In special cases, something “in between” full-sequence matching and sub-sequence matching may be 

required, though: A business analyst may be interested in sequences with a beginning similar to a certain 

pattern sequence, while preliminary events have no impact on the overall similarity. Similarly, a business 

analyst may be interested in sequences with an ending similar to the pattern. We refer to these matching-

modes as start-linked matching and end-linked matching respectively. For the sake of brevity, we omit both 

formal definitions and examples. Again, both matching modes can be considered asymmetric in general. 

It is easy to see that in general, any similarity measure that allows full-sequence matching can be used for all 

other matching modes as well: In accordance with the above, formal definition of sub-sequence matching, on 

could calculate full-sequence similarities between the pattern sequence 6 and any valid sub-sequence of a 

sequence ( in a fully independent manner. In the on-hand thesis, however, we seek for an approach on event-

sequence similarity that allows utilizing possible cross-sub-sequence redundancies and, thus, calculating 

alternative matching modes efficiently. 

  

Example: Consider two event-sequences 6* and 6+ as shown below. Assuming that for a given similarity 

measure 6+’ is the best-matching sub-sequence of 6+  with respect to 6* , the sub-sequence similarity 

between 6* and 6+ conforms to the full-sequence similarity between 6* and 6+.  
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6.1.3  Requirements 

From the above discussion and the preliminary notes on similarity searching, we derive the following 

requirements for an approach on event-sequence similarity: 

1. An approach on event-sequence similarity should be generic and flexible enough to apply for all 

possible kinds of event-sequences and all possible business scenarios these sequences are generated 

in. 

2. An approach on event-sequence similarity allows handling different “aspects” of event-sequences 

separately and generally independently from each other. Featuring single-event similarities, order, 

absolute and relative temporal structures, it allows the analyst choosing from the four basic 

dimensions of event-sequence similarity. 

3. An approach on event-sequence similarity allows the efficient calculation of full-sequence-, sub-

sequence-, start- and end-linked similarities. 

4. A similarity measure is always defined based upon a certain interest. 

5. A similarity measure is always defined under the active involvement of the domain-expert. 

6. A framework for event-sequence similarity allows both defining and managing similarity-measures in a 

quick and straightforward fashion. 

6.2 An assignment-based approach on sequence similarity 

In section 6.1.1.2, we have shown two event sequences 6* and 6+ that are apparently similar with respect to 

the aspect of order: 

 

So, what exactly makes 6* appear similar to 6+?  

We suppose that more less unconsciously, viewers establish a set of “cognitive connections” between the 

elements of the compared sequences. With that assignment, each element of the pattern sequence is mapped 

to (at most) one distinct element of the target sequence. The target-sequence element can then be considered 

a representation of the according pattern-sequence element in the target sequence. Figure 12 below shows an 

exemplary assignment of 6+ to 6*: 

 

Figure 12: A possible assignment between two sequences of events 



53 

 

Still focusing on the aspect of order, the above assignment seems somewhat “natural”.
 21

 Keep in mind, 

however, that several other assignments are possible as well. Consider, for instance, an alternative assignment 

of 6+ to 6* as shown in Figure 13: 

 

Figure 13: An alternative assignment between two sequences of events 

The latter assignment is certainly less natural regarding the aspect of order; it might, however, link events with 

higher element-level similarities. Consider the following event attributes for �*.*, �*.+, �+.* and �+.+: 

 

The reader will agree that depending on the certain interest and focus, different assignments can be 

considered “most obvious”.  

As a basis for our approach on event-sequence similarity, we suppose that the overall similarity between two 

event sequences is derived from however-defined deviations and commonalities between the “originals and 

representations” in a cognitively established assignment from the target sequence to the pattern sequence. 

We furthermore suppose that thereby, the viewer intuitively chooses an assignment that is optimal with 

respect to the viewer’s certain interest and focus. 

6.3 Measuring event-sequence similarity 

For our approach on event-sequence similarity, we build upon the above-presented, assignment-based idea of 

sequence similarity: Given a pattern sequence 6® and a target sequence 6%, we calculate the overall similarity 

of 6% to 6® from the quality, i.e., from the however-defined overall costs, of the best-possible assignment of 6% 

to 6®. The quality/costs of an assignment are thereby calculated from (and only from) the mappings defined in 

the certain assignment.  

With the basic ideas clarified, it’s time to go into some more detail: First, to avoid possible ambiguities, let us 

reject the (somewhat common) term “assignment” and use the term “solution” instead. Given a pattern 

sequence 6® and a target sequence 6%, we understand a solution a function �: 6® → 6% ∪ )¯. that - plainly 

                                                                 
21

 Note that linked events do not necessarily have to be of one and the same event type. Yet, when understanding linked 

events as representations of one another, such restriction is apparently natural. We will address the question of whether an 

event � is generally “considerable” to represent another event 5 in section 6.3.3. Implicitly used above, we will also define 

the event-type compatibility building upon the subtype-relationship between event-types.  
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spoken - maps each event of 6® either to “nowhere” (“¯”) or to one distinct event of 6%. A more formal 

definition of solutions will be given in section 6.3.1 below.  

So, how do we find the “best-possible solution” of 6% for 6®? Conceptually, we calculate > so-called cost-factors 

for any valid solution �: 6® → 6% ∪ )¯. of 6% for 6®. These cost-factors express the solution’s overall distance 

from an ideal solution �� in an >-dimensional space.
22

 The exact amount and “nature” of the certain cost-

factors depends on the focus of the similarity-search, and thus may vary from case to case; yet, in accordance 

with the general requirements presented in section 6.1, we allow the analyst choosing from four so-called cost-

functions, deriving cost-factors from the four key dimensions of event-sequence similarity, i.e., from single-

event similarities, order, and from absolute and relative temporal structures. In any case, the “best-possible” 

solution ����1: 63 → 61 ∪ )¯. is that with lowest overall costs, i.e., with the smallest distance to ��.  

Finding the best-possible solution of a certain target sequence can indeed be considered the key part of our 

approach. Therefore, throughout the following sections, we will examine that part of our approach in great 

detail. Calculating the sequence-level similarity of 6% for 6® from the overall costs of the best-possible solution, 

however, is almost trivial: Here, we apply a natural transformation from distance/costs to similarities as 

presented in section 3.1.2. Thus, on the level of solutions, the on-hand approach can be considered distance-

based, i.e., geometric.  

In section 6.3.1, we will give formal definitions of the term “solution” and concepts related therewith. In 

section 6.3.2, we will go into more details on the assignment of costs to solutions. What makes one solution 

valid and another one invalid will be discussed in section 6.3.3. Finally, in section 6.3.4, we will summarize the 

building blocks of our approach.  

6.3.1  Basic terms and concepts 

Above, we have introduced solutions as a building block of the on-hand approach on event-sequence similarity. 

To a large extent, a solution can be considered an injective mapping from the events of a pattern-sequence to 

events of a target-sequence. Yet, to allow one or more events of the pattern sequence not being mapped to 

events of the target sequence, we decided to introduce an auxiliary unit ¯, indicating that there is no 

“counterpart” for the certain event of the pattern sequence.
23

 Formally, a solution is thus defined as follows:  

 

A so-defined solution �: 6® → 6% ∪ )¯. can be considered injective on 6% and non-injective on )¯.. Hence, for 

two event-sequences 6® and 6%, 

> = i ° ±6®±!O±6®± − <P!³ ∗ °|6%|< ³´µ¶O±X·±,|XU|P
-d�  

                                                                 
22

 An “ideal” solution we understand a mapping between sequences that are equal in all relevant respects. 
23

 Mappings to ¯ and their meaning for the on-hand approach will be discussed in more detail in section 6.3.1.2 below. 

Definition: Given two event-sequences 6®  and 6% , we refer to a function �: 6® → 6% ∪ )¯. with ���� ≠��5� ∀ �, 5 ∈ ¸E±E ∈ 6®, ��E� ≠ ¯¹ as a solution of 6% for 6®. We refer to 6® and 6% as pattern-sequence and 

target-sequence, respectively. Despite being an auxiliary construct rather than an event in the strict sense, ¯ ∉ &, we refer to ¯ as the null-event. 
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different solutions of 6% exist for 6®.
24

 In the following, given a pattern sequence 6® and a target sequence 6%, 

let »O6% , 6®P = ¼�½�: 6® → 6% ∪ )¯., ���� ≠ ��5� ∀ �, 5 ∈ ¸E±E ∈ 6® , ��E� ≠ ¯¹¾ denote the set of all possible 

solutions of 6% for 6®. 

In many cases, we will be interested in the result of a solution when “applied” to one particular event of the 

pattern-sequence. We therefore define the notion of mappings: 

 

As mappings can be considered “associated” with the events of the pattern-sequence, one can easily adopt the 

order of pattern-sequence events (in their certain pattern-sequence) for mappings:   

 

It is easy to see that a solution �: 6® → 6% ∪ )¯. can be defined by listing all mappings defined in �; one could, 

for instance, write � = ¸O�, ����P±� ∈ 6®¹. Alternatively, if 6® is clear from the context, one can list the results 

of � for all pattern-sequence events, ordered in accordance with the pattern-sequence event’s positions in 6®. 

We will use this notion in the following example, and also throughout later sections. 

 

6.3.1.1 Illustration 

In many cases, graphic illustration solutions may be much easier to understand than formal descriptions as 

shown above. Throughout the following sections, we will illustrate a solution �: 6® → 6% ∪ )¯.  by literally 

“linking” those events in  6® and 6% that are mapped to each other in �. In case of null-mappings, no connection 

is shown for the according pattern-sequence event. Figure 14 below illustrates an exemplary solution �: 6® → 6® ∪ )¯. with � = ��, <, ¯, M�. 

 

Figure 14: Illustration of an exemplary solution 
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 Not claiming mathematical rigor, this is an “� out of >”-thing without replacement of ¯, with ordering. 

Example: Consider two event sequences 6®  and 6% , 6® = ��, 5, E� , 6% = �ℎ, �, M� . Among others, the 

following solutions of 6% exist for 6®:  �* = �ℎ, �, M�, �+ = ��, ℎ, M�, �N = �ℎ, �, ¯�, �¿ = �¯, M, ¯�, �À = �¯, ¯, �� ,  �Á = �¯, ¯, ¯�. 

Definition: Given a solution �: 6® → 6% ∪ )¯. and a mapping O�, ����P, � R 6®, with 3A�O�, 6®P = �, we refer 

to O�, ����P as the �th
 mapping in �. Consequently, two mappings O5, ��5�P and OE, ��E�P, 5, E R 6®, we 

refer to as successive if �O5, E, 6®P = 1. 

Definition: Given a solution �: 6® → 6% ∪ )¯., we refer to a pair of events O�, ����P, � R 6®, ���� R 6% ∪ )¯., 

as mapping. Consequently, given an event � R 6®, we refer to ���� R 6% ∪ )¯. as the mapping for � in �. If ���� = ¯, we refer to a mapping as null-mapping. Otherwise, if ���� ≠ ¯, we refer to it as a normal 

mapping. 
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Alternatively, if the pattern-sequence is clear from the context and the focus is on the order of target-sequence 

events in a solution, we will depict solutions by connecting those events of the target-sequence that are 

mapped to successive pattern-sequence events, i.e., to pattern-sequence events �  and 5 , �, 5 ∈ 6, with �O��, 5�6P = 1. Figure 15 below shows a so-defined illustration of s:   

 

Figure 15: Reduced illustration of an exemplary solution 

It is easy to see that null-mappings cannot be depicted in the described way. In such cases, we add an “¯”-

symbol to the path as shown above.  

6.3.1.2 Null-mappings 

Null-mappings as defined above are may not be immediately intuitive for readers. Yet, for two reasons, they 

are an essential part of the on-hand approach on event-sequence similarity. On the one hand, null-mappings 

are required in all solutions �: 6® → 6% ∪ )¯. where ±6®± > |6%|, i.e., when there are more events in the pattern 

sequence than in the target sequence. Here, as a solution is injective on the target-sequence, there are no 

distinct counterparts in 6% for < = ±6®± − |6%| events of the pattern sequence. Thus, in a solution of 6% for 6®, at 

least < events of the pattern sequence must be mapped to ¯. Note that with compatibilities as defined in 

section 6.3.3, the number of required null-mappings can further increase. 

On the other hand, null-mappings may play an important role in finding the best-possible solution of a certain 

target-sequence: Given a pattern-sequence event �, scenarios may arise were all possible “normal” mappings 

for � are extremely costly with respect to the analyst’s certain interest; there may, for instance, be very low 

event-level similarities. Here - again depending on the analyst’s interest - it may be more natural not to map � 

at all, but instead consider it missing in the target sequence. Thus, when assigning costs to solutions as 

described in section 6.3.2, the fact that an event is missing in the target sequence may be considered less costly 

than available but “poor” representations. 

 

  

Example: Consider two event sequences 6% and 6®as shown below. Obviously, as there is a very low event-

level similarity between ��  and �*, one might consider a solution �: 6® → 6% ∪ )¯. with ����� = ¯, i.e., not 

defining a representation of ��  in 6% as “best-possible” with respect to the dimension of single-event 

similarities. 
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6.3.2 Assigning costs to solutions 

We have stated that the on-hand approach on event-sequence similarity builds upon finding the best-possible 

solution of the certain target sequence. So, where do the costs of a solution “come from”? What makes one 

solution costly and another one cheap?  

6.3.2.1 Assigning costs to single mappings 

Naturally, costs may arise from (however-defined) relations between “corresponding” events, i.e., events that 

are mapped to each other. As part of a similarity-measure for sequences of events, let us therefore introduce 

cost-functions that apply on single mappings: 

 

A possible cost-function on single mappings builds upon the single-event (dis-)similarity between mapped 

events. We will discuss this issue in section 6.4.4. 

6.3.2.2 Assigning costs to pairs of mappings 

The second possible source for cost might seem a little more subtle; yet, it will become clear with concrete 

cost-functions as described in section 6.5.2, 6.5.3 and 6.5.4: Costs may arise from (however-defined) relations 

between successive mappings, i.e., between mappings for pattern-sequence events that succeed each other in 

the pattern-sequence. Therefore, as a further part of an event-sequence similarity-measure, let us introduce 

cost-functions that apply on pairs of mappings. 

 

6.3.2.3 Calculating the overall costs of a solution 

With cost-functions, we have presented mechanisms for calculating cost-factors from single mappings and pairs 

of mappings. Now, how do we calculate the overall costs of a solution? 

Consider a solution �: 6® → 6% ∪ )¯.  together with a collection of cost-functions on single mappings !¢*, !¢+, … , !¢� and a collection of cost-functions on pairs of mappings  !®*, !®+, … , !®9. When each cost-

function on single mappings is applied to each single mapping O�, ����P in �, � ∈ 6®, and each cost-function on 

pairs of mappings is applied to each pair of successive mappings ^O5, ��5�P, OE, ��E�P_  in � , 5, E ∈ 6® , �O5, E, 6®P = 1, < = ^� ∗ ±6®± + > ∗ O±6®± − 1P_ cost-factors !*, !+, … , !-  are calculated. As these cost-factors 

define the relative positioning of � and an ideal solution �� in a <-dimensional space, overall costs can be 

calculated in a straightforward manner; one might, for instance, calculated the Euclidean distance between � 

and ��. 

Keep in mind, however, that we consider generality a major requirement on any valuable approach on event-

sequence similarity. In addition to the various cost-functions on single mappings and pairs of mappings, we 

Definition: Given a pattern sequence 6®, we refer to a function !: ^6® × �& ∪ )ε.�_ × ^6® × �& ∪ )ε.�_ →ℝ�� as a cost function on pairs of mappings. Given a solution �: 6® → 6% ∪ )¯., we refer to the result of a 

cost function for a pair of mappings ^O�, ����P, O�, ����P_, �, 5 ∈ 6®, as the cost-factor of ! for � and 5 in �. 

Definition: Given a pattern sequence 6®, we refer to a function !: 6® × �& ∪ )ε.� → ℝ�� as a cost function 

on single mappings. Given a solution �: 6® → 6% ∪ )¯., we refer to the result of a cost function for a 

mapping O�, ����P, � ∈ 6®, as the cost-factor of ! for � in �. 



58 

 

therefore let the user define a collection of weights b*, b+, … , b-  with bL ∈ �0,1� ∀ M = 1 … < and ∑ bL-Ld* =1, i.e., that sum to unity. Thereby, b/  defines the impact of the �th
 cost-factor !/  on the overall costs of �. Given 

an however defined aggregation function 5: ℝ��- × �0,1�- → ℝ�� , a function !A�1: 6® × O6® → & ∪ )¯.P 

calculating the overall costs of a solution �: 6® → 6% ∪ )¯. is defined as follows: 

!A�1O6®, �P = 5�!*, … , !- , b*, … , b-� =
= 5 ÃÄ °!¢/O�*, ���*�P, … , !¢/ \�±X·±, � ^�±X·±_a³9

/d* ∪ Ä °!®/O�*, ���*�, �+, ���+�P, … , !®/ \�±X·±�*, � ^�±X·±�*_ , �±X·±, � ^�±X·±_a³�
/d* ,

�b*, … , b-� Å 

A function !A�1e�: 6® × O6® → & ∪ )¯.P calculating the overall costs based upon the weighted average of cost 

factors is thus defined as follows:
25

 

!A�1e�O6®, �P = i i ^!¢/ ^�L , �O�LP_ ∗ b�/�*�∗±X·±�L_±X·±
Ld*

�
/d*
+ i i ^!®- ^O�;, ���;�P, O�;�*, ���;�*�P_ ∗ b�∗±X·±��9�*�∗O±X·±�*P�;_±X·±�*

;d*
9

-d*  
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 At this point of the on-hand thesis, !A�1e� serves as valuable example. Note, however, that it will play a central role in 

the concrete implementation of our approach as presented in section 6.4. 

Example: Consider a solution �: 6® → 6% ∪ )¯. as shown below. 

 

Given two however-defined cost-functions on single mappings !¢* and !¢+ and a however-defined cost-

function on pairs of mappings !®, 11 cost factors are calculated from �. Table 8 below lists exemplary cost-

factors together with corresponding, user-defined weights. From these, overall costs are calculated based 

upon the weighted average. 

 �ZZ, Z�� �ÆZ, Æ�� �ÇZ, ÇÈ� �ÉZ, É�� �ZZ, Z��,    �ÆZ, Æ�� 

�ÆZ, Æ��, �ÇZ, ÇÈ� 

�ÇZ, ÇÈ�,    �ÉZ, É�� Ç�� 33 / 0.1 85 / 0.05 10 / 0.05 22 / 0.1 - - - Ç�È 60 / 0.2 10 / 0.02 4 / 0.02 1 / 0.06 - - - ÇÊ - - - - 106  / 0 121 / 0 3 / 0.4 ÇË�Ì�O©Ê, �P = ÈÍ, �� 

Table 8: Exemplary cost-factors and weights 
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6.3.3 Compatibilities and valid solutions 

In section 6.3.1, we have stated that given a pattern sequence 6®  and a target sequence 6% , ∑ \ O±X·±P!O±X·±�-P!a ∗ O|XU|- P´µ¶O±X·±,|XU|P-d�  different solutions of  6%  exist for 6®. Unfortunately, that’s quite a lot: For a 

pattern sequence with |6®| = 10 and a target sequence with |6%| = 12, for instance, 2581284541 solutions 

exist.  

It is easy to see that in order to find an optimal solution efficiently, one should try to restrict the set of 

“considerable” solutions as much as possible. So, which kind of solution is “considerable”, and which is not? 

Keep in mind that the optimal solution should comprise those parts of the target sequence that, as a whole, fit 

the pattern sequence best: Thus, one might argue that some events of the target sequence can not and in no 

way correspond to a certain event of the pattern sequence: One might, for instance, argue that an event must 

be substitutable by its representation in an object-oriented sense, i.e., that an event of type ( must be mapped 

to events either of ( or of a subtype K of (, (: > K. The definition of which events are generally “compatible” 

to each other is, however, up to the user and certainly depends on the given context.
26

  

 

 

  

As costs can be assigned to both single mappings and pairs of mappings, it might seem natural to simply assign 

infinite costs to mappings between incompatible events; an invalid solution should then have infinite costs as 

well. This approach, however, fails for certain weighting configurations (zero-weights, to be exact) as discussed 

in section 6.3.2.3. Hence, we do not take such mappings between incompatible events into account at all: 

Solutions that comprise such mappings are not evaluated but instead are omitted from the start. Considering 

incompatible pairs of events may therefore result in a considerable reduction of “considerable” – i.e., valid – 

solutions: 
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 In most cases, the described, type-based understanding of compatibility should meet the analyst’s requirements. 

Consider a pattern-sequence 6® and a function !Î: 6® → )0,1. defining whether an event of the pattern sequence is 

compatible to ¯, i.e., whether null-mappings are valid for a pattern-sequence event �, we refer to a compatibility  !: 6® × �& ∪ )ε.� → )0,1. with !��, 5� = !Î��� if 5 = ¯  and !��, 5� = l1, 123�A5���: > 123�A5�5�0, A1ℎ�Gm��� n otherwise,  as event-

type compatibility. Unless otherwise stated, we will presume event-type compatibility to apply throughout the following 

sections and examples. 

Definition: Given a solution  �: 6® → 6% ∪ )¯. and a compatibility !, we refer to � as valid with respect to ! 

if all mappings in � are valid, i.e., if !O�, ����P = 1 ∀ �R6®. Otherwise, if  !O�, ����P = 0 ∃ �R6®, we refer to � as invalid with respect to !. 

Definition: Given a solution  �: 6® → 6% ∪ )¯. and a compatibility !, we refer to a mapping O�, ����P,  � ∈6®, as valid with respect to ! if !O�, ����P = 1. Otherwise, if !O�, ����P = 0, we refer to the mapping as 

invalid with respect to !.  

Definition: Given a pattern sequence 6®, we refer to a function !: 6® × �& ∪ )ε.� → )0,1. as compatibility. 

Two entities � and 5, � ∈ 6®, 5 ∈ & ∪ )ε. with !��, 5� = 1 we refer to as compatible with respect to !. 

Otherwise, if !��, 5� = 0, we refer to � and 5 as incompatible with respect to !. 
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In real-world scenarios, it is usually more efficient to list those mappings that are valid rather than those that 

are not. We therefore introduce the notion of matches: 

 

 

  

Example: Consider the following sequences 6® and 6%: 

 

On the understanding, however, that a.) null-mappings are considered valid for ��  and invalid for all other 

events of the pattern sequence and b.) two events are compatible iff they are of the same event type, the 

following matches exist for the given pattern-sequence events: 

 

Definition:  Given a pattern sequence 6®, a target sequence 6% , two entities � and 5 with � ∈ 6®  and 5 ∈ 6% ∪ )ε. and a compatibility !, we refer to 5 as a match for � with respect to ! if � is compatible to 5, 

i.e., if !��, 5� = 1 . The set Ð  of target-sequence events that are compatible to � , Ð = )E|E ∈ 6% ∪ )ε., !��, E� = 1., we refer to as matches for � in 6% with respect to !.  

Example: Consider two event sequences 6® and 6% as shown below.  

 

Without any restrictions on event compatibility, 501 solutions of 6% for 6® exist (for obvious reasons, we 

omit depicting them in detail). On the understanding, however, that a.) all null-mappings are considered 

invalid and b.) two events are compatible iff they are of the same event type, only two solutions of 6% for 6®, �* and �+, are considered valid: 
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6.3.4 Summary 

Before presenting a concrete implementation, let us recapitulate the presented approach on event-sequence 

similarity:  Given a pattern-sequence 6®, configuring a similarity-measure on sequences of events can be 

considered defining a 6-tuple  

fÑ¢, Ñ®, g, 5, !, �h, 
where 

• Ñ¢  is a collection of cost-functions on single mappings !¢*, !¢+, … , !¢9  with !¢/: 6® × �& ∪ )ε.� →ℝ�� ∀ � = 1 … >, 

• Ñ® is a collection of cost-functions on pairs of mappings !®*, !®+, … , !®� with !®/: ^6® × �& ∪ )ε.�_ ×^6® × �& ∪ )ε.�_ → ℝ�� ∀ � = 1 … �, 

• g  is a collection of weights b*, b+, … , b�∗±X·±�9∗O±X·±�*P  with b/ ∈ �0,1� ∀ � = 1 … � ∗ ±6®± + > ∗
O±6®± − 1P  and  ∑ b/�∗±X·±�9∗O±X·±�*PLd* = 1; each defining the impact of the corresponding cost-factor 

on the overall costs of solutions for 6®, 

• 5  is an aggregation function 5: ℝ���∗±X·±�9∗O±X·±�*P × �0,1��∗±X·±�9∗O±X·±�*P → ℝ��  that allows 

calculating the overall costs of a solution from cost-factors and weights, and 

• ! is a compatibility !: 6® × �& ∪ )ε.� → )0,1. defining the set of valid solutions of the certain target 

sequence. 

• � is a matching mode; full-sequence matching, sub-sequence matching, start-linked matching, or end-

linked matching. 

 

The similarity between 6® and a target sequence 6% is then calculated from the overall costs of the best-

possible valid solution  �: 6® → 6% ∪ )¯.. 

6.4 The base algorithm 

Thus far, we have presented a solution-based approach on event-sequence similarity in a general and 

algorithm-independent manner. In the on-hand section, we will propose a possible implementation of the 

presented approach, building upon Dynamic Programming. As the basic ideas of our approach are strictly 

decoupled from concrete cost-functions, the presented approach can be considered a “structural framework” 

that may be extended by actual cost-function implementations. We will describe these parts of the algorithm in 

section 6.4.4. 

In section 6.4.1, we will present an intuitive, tree-based approach on finding all valid solutions with respect to a 

given compatibility. From this, we will derive the actual algorithm in section 6.4.2. In section 6.4.3, we will 

address the issue of performance by introducing a Branch & Bound strategy.  

6.4.1 Finding all valid solutions 

In the above sections, we have introduced the concept of compatibility, allowing us a notable reduction of 

relevant solutions: A certain solution is considered only if all comprised mappings are valid, i.e., if the mapped 

unit matches the certain pattern-sequence event. Yet, we have not addressed the set of solutions that 
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“remain” with respect to a certain set of matches. With the upcoming steps of our approach on event-

sequence similarity in mind, we calculate the set valid solutions with a tree-based algorithm: 

To a root node, we add nodes representing all matches for the first pattern-sequence event. To each of these 

nodes, we add nodes representing all matches for the second event of the pattern sequence, and so on. The 

levels of the tree therefore “correspond” to the events of the pattern sequence. Yet, to ensure injectivity on 

the target sequence, a node representing a target-sequence event that is already part of a certain path (from 

the root node to a certain leaf) is not added to this path again.
27

 Thus, at the end of the algorithm, the set of 

paths from the root node to the leafs of the tree represents the overall set of solutions that are valid with 

respect to the given compatibilities. 

In pseudo code, the algorithm can be described as follows: 

Name: createSolutionsTree 

Description: Creates a tree representing the set of valid solutions. If no such solution exists, the tree 

remains incomplete. With root being a tree node, the execution of the recursive algorithm is 

initiated by calling createSolutionsTree(root, 1).     

Input: node: The parent node. 

index: The current level of the tree. 
 

Output: - 

Variables: i: An index. 

match: A match at the current level of the tree. 

child: A tree node representing the current match. 
 

State: matches: A field containing set of matches in the order of the corresponding 

pattern-sequence events 
 

01: // Iterate through the matches for the corresponding pattern-sequence events 

02: for i = 1 to matches[index].length step 1 

03:  Event match = matches[index][i]; 

04:  

05:  // Check whether event is already part of the so-far path 

06:  if ((match ≠ ¯) and (parent.isInPathToRoot(match)))  then 

07:   continue; 

08:  end 

09:  

10:  // Create child node and add to parent 

11:  TreeNode child = new TreeNode(match); 

12:  parent.add(child); 

13:  

14:  // Do recursive method call 

15:  if (index < matches.length) then 

16:   createSolutionsTree(child, index + 1, matches) 

17:  end 

18: end 
 

Algorithm 2: Calculating valid solutions from sets of matches 
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Note that such validation is not necessary for nodes representing null-matches.  
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The below example depicts the algorithm’s result for certain event-sequences and compatibilities. Here and in 

all further examples and figures, we will depict tree nodes in the same way as the represented target-sequence 

events. Null-matches will be depicted as white circles with a gray border. Also, the “levels” or the tree will be 

separated by dashed lines, with labels referring to the corresponding pattern-sequence events. 

 

Example: Consider two event sequences 6% and 6® as shown below: 

 

On the understanding that a.) events of the same event type are compatible to each other, and b.) null-

mappings are invalid, the following tree is generated with the above algorithm. Note that the created 

solutions (i.e., paths from the root node to the leaf nodes) do not contain “duplicate” nodes, i.e., mappings 

that comprise one and the same target-sequence event: 

 

Figure 16: Exemplary results of Algorithm 2 

Based upon the above definitions, six distinct solutions of 6% for 6® exist. When null-mappings are assessed 

to be valid for all pattern-sequence events, however, 52 solutions exist. Figure 17 shows parts of the 

corresponding tree: 

 

Figure 17: Exemplary result of Algorithm 2, including null-mappings 
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6.4.2 Calculating the overall costs of solutions 

In section 6.3, we have introduced the overall costs of a solution as a combination of weights and 

corresponding cost factors, calculated from both single mappings and pairs of mappings. Given a pair of 

sequences, cost functions and weights, one could, of course, calculate the overall costs of all valid solutions in a 

separate and fully independent manner. Before doing so, let us come back to the tree-based algorithm above: 

When using a linear combination of cost-factors and weights as an aggregation function, calculating costs along 

the branches of such tree gives us a notable reduction of redundant calculations: 

Consider, for instance, the weighted average, a natural and highly valuable aggregation function. Given a 

pattern sequence 6®, cost functions on single mappings !¢*, !¢+, … , !¢�, cost functions on pairs of mappings !®*, !®+, … , !®9 and weights  b*, b+, … , b�∗±X·±�9∗O±X·±�*P, a function !A�1e� : 6® × O6® → & ∪ )¯.P calculating 

the overall costs of a solution �: 6® → 6% ∪ )¯. from weighted average of cost factors is defined as follows: 

!A�1e�O6®�P = i i ^!¢/ ^�L, �O�LP_ ∗ m�/�*�∗±X·±�L_±X·±
Ld*

�
/d*

+ i i ^!®- ^O�; , ���;�P, O�;�*, ���;�*�P_ ∗ m�∗±X·±��9�*�∗O±X·±�*P�;_±X·±�*
;d*

9
-d*  

Hereby, note that 

i i ^!¢/ ^�L , �O�LP_ ∗ m�/�*�∗±X·±�L_�
Ld*

�
/d*  

and 

i i ^!®/ ^�L , �O�LP, �L�*, �O�L�*P_ ∗ m�∗±X·±��9�*�∗O±X·±�*P�L_��*
Ld*

9
/d*  

solely depend on the first A mappings comprised in a certain solution �: 6® → 6% ∪ )¯.; these values are equal 

for all solutions that have the first < mappings in common. Therefore, when calculating a tree as shown in 

Algorithm 2, the overall costs of solutions can be calculated stepwise along paths from the root node to the 

various leafs. 

We thus extend the above algorithm, letting each tree node hold the sum of costs that are associated to the 

(single and pairs of) mappings represented by itself and its predecessors in a property sum. It is easy to see that 

for each node, sum can be calculated by summarizing  

a. the weighted cost factors calculated from the represented, �th
 mapping,  

b. for � > 1, the weighted cost factors calculated from the pair of mappings that is constituted by the �th
 

and the �� − 1�th
 mapping, and  

c. for � > 1,  sum of the node’s direct predecessor. 

In pseudo-code, the resulting algorithm can be described as follows: 
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Name: createSolutionsTree2 

Description: Creates a tree representing the set of valid solutions; if no such solution exists, the tree 

remains incomplete. Each node has a property sum holding the so-far costs of the 

represented solution(s). With root being a tree node, the execution of the recursive 

algorithm is initiated by calling createSolutionsTree2(root, 1). 

Input: node: The parent node. 

index: The current level of the tree. 
 

Output: - 

State: pattern: A field of events representing the pattern sequence. 

matches: A field containing set of matches in the order of the corresponding 

pattern-sequence events. 

cfSingle: A field of cost functions on single mappings. 

cfPairs: A field of cost functions of pairs of mappings. 

weights: A field of weights. 
 

Variables: i: An index. 

match: A match at the current level of the tree. 

child: A tree node representing the current match. 

cs: Weighted cost factors for single mappings. 

cp: Weighted cost factors for pairs of mappings. 
 

01: Event lastPEvent = pattern[index - 1]; Event pEvent = pattern[index]; 

02:  

03: // Iterate through the matches for the corresponding pattern-sequence events 

04: for i = 1 to matches[index].length step 1 

05:  Event match = matches[index][i]; 

06:  

07:  // Check whether event is already part of the so-far path; see Algorithm 2 

08:  ... 

09:  

10:  // Calculate weighted cost factors for single mappings and pairs of mappings 

11:  double cs = 1;  double cp = 0; 

12:  for j = 1 to cfSingle.length step 1 

13:   cs += cfSingle[i](patternEvent, match) * getCorrespondingWeight(i, j); 

14:  end 

15:  if (index > 1) then 

16:   for j = 1 to cfPairs.length step 1 

17:    cs += cfPairs[i](pEvent, match, lastPEvent, parent.Match) *  

18:     getCorrespondingWeight(i, j); 

19:   end 

20:  end 

21:  

22:  // Create child node and add to parent 

23:  TreeNode child = new TreeNode(match); 

24:  parent.add(child); 

25:  // Set “so far” costs to child node 

26:  child.Sum = parent.Sum + cs + cp; 

27:  

28:  // Do recursive method call 

29:  if (index < matches.length) then 

30:   createSolutionsTree2(child, index + 1); 

31:  end 

32: end 
 

Algorithm 3: Calculating the overall costs of valid solutions 
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In the following, we will depict the algorithm’s intermediate results by listing the variables !�, !3 and �F� right 

below the corresponding tree-node, or, for !3, right below the connection between a pair of tree-nodes. 

 

  

Example, continued: Let us come back to the example presented in section 6.4.1, and apply the extended 

version of the original algorithm. Therefore, consider two cost functions, !¢ (on single mappings) and !® (on 

pairs of mappings). The resulting, weighted cost-factors are listed below: 

 �ZZ, Z�� �ZZ, ZÈ� �ZZ, Z�� �ZÆ, Z�� �ZÆ, ZÈ� �ZÆ, Z�� �ZZ, Æ�� �ÇZ, Ç�� Ç� 4 100 3 8 12 6 6 5 

Table 9: Weighted cost factors as resulting from Ç� 

 �ZZ, Z��,    �ÆZ, Æ�� 

�ZZ, ZÈ�,    �ÆZ, Æ�� 

�ZZ, Z��,    �ZZ, Z�� 

�ÆZ, Æ��,    �ÇZ, Ç�� 

�ÇZ, Ç��,    �ZÆ, Z�� 

�ÇZ, Ç��,    �ZÆ, ZÈ� 

�ÇZ, Ç��,    �ZÆ, Z�� ÇÊ 4 7 6 8 2 6 6 

Table 10: Weighted cost factors as resulting from ÇÊ 

Figure 18 below shows the algorithm’s results. It is easy to see that for the given configuration, �N =�aN, b*, c*, a*� is the best-possible solution of SÔ for SÕ. 

 

Figure 18: Calculating overall costs of solutions with Algorithm 3 
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6.4.3 Branch & Bound 

The above algorithm calculates the overall costs for all valid solutions. Keep in mind, however, that with 

respect to our approach on event-sequence similarity, we are not interested in all possible solutions, but only 

in the best one, i.e., in the “cheapest” one. 

Consider the following intermediate step in calculating the tree from section 6.4.2: 

 

Figure 19: Intermediate results of Algorithm 3 

Here, as the marked node is associated with very high costs, it is already clear that not even in the best case, 

i.e., with matches for ��  and !�  with costs of 0, overall costs lower than the best solution so far will be achieved 

proceeding from �+. From this, it follows that no solution (i.e., no leaf) proceeding from �+ will affect the 

overall similarity between 6® and 6%: The execution of paths proceeding from �+ can hence be omitted without 

affecting the optimal solution. 

It is easy to see that at this point, a Branch-&-Bound strategy is valuable.
28

 We thus extend the current 

approach by a dynamic threshold 1, being initialized with a (user-defined) value 1/9/%/�; . A node is added to the 

tree only if the best-case similarity proceeding from it is higher than the actual threshold. Hence, if an end node 

is reached, the resulting overall costs ! of the certain solution � is certainly lower than 1; we then update 1 and 

set 1 =  !. If 1 =  1/9/%/�;  at the end of the algorithm, no solution with costs lower than the initial threshold 

was found; we assume an event-sequence similarity of 0. Otherwise, 1 holds the costs of the optimal solution. 

It is easy to see that in order to chose an adequate value for 1/9/%/�; , one must balance performance and 

accuracy: The lower 1/9/%/�; , the more solutions can be excluded early in the calculation. Yet, for all solutions 

with overall costs higher than 1/9/%/�; , information about the exact costs (i.e., the exact similarity value) is lost. 

In pseudo-code, the resulting algorithm can be described as follows: 

  

                                                                 
28

 At this point, experienced readers might suggest an alternative and certainly faster approach building upon Dynamic-

Programming. We will discuss this issue in section 6.7.3.1 below. 
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Name: createSolutionsTree3 

Description: Calculates the overall costs of the best-possible solution for a given set of matches. If no 

valid solution exists with overall costs below the initial threshold, the threshold remains its 

initial value; otherwise, threshold holds the best-possible costs. With root being a tree node, 

the execution of the recursive algorithm is initiated by calling createSolutionsTree3(root, 1).     

Input: node: The parent node. 

index: The current level of the tree. 
 

Output: - 

Variables: lastPEvent: The previous pattern-sequence event. 

pEvent: The current pattern-sequence event. 

i: An index. 

match: A match at the current level of the tree. 

child: A tree node representing the current match. 

cs: Weighted cost factors for single mappings. 

cp: Weighted cost factors for pairs of mappings. 
 

State: pattern: A field of events representing the pattern sequence. 

matches: A field containing sets of matches in the order of the corresponding 

pattern-sequence events. 

cfSingle: A field of cost functions on single mappings. 

cfPairs: A field of cost functions of pairs of mappings. 

weights: A field of weights. 

threshold: The current threshold; initialized with a used-defined value 1/9/%/�;  
 

01: Event lastPEvent = pattern[index - 1]; Event pEvent = pattern[index]; 

02:  

03: // Iterate through the matches for the corresponding pattern-sequence events 

04: for i = 1 to matches[index].length step 1 

05:  Event match = matches[index][i]; 

06:  

07:  // Check whether event is already part of the so-far path; see Algorithm 2 

08:  ... 

09:  

10:  // Calculate weighted cost factors for single mappings and pairs of mappings; 

11:  // see  Algorithm 3 

12:  ... 

13:  

14:  // Check whether so-far costs are below the current threshold 

15:  if (parent.Sum + cs + cp < threshold) then 

16:   // Create child node and add to parent 

17:   TreeNode child = new TreeNode(match); 

18:   parent.add(child); 

19:   // Set “so far” costs to child node 

20:   child.Sum = parent.Sum + cs + cp; 

21:  

22:   // Do recursive method call or set threshold if a leaf is reached 

23:   if (index < matches.length) then 

24:    createSolutionsTree3(child, index + 1); 

25:   else 

26:    threshold = child.Sum; 

27:   end 

28:  end 

29: end 

Algorithm 4: Finding the best-possible solution with a user-defined threshold 
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6.4.4 A restriction to sub-sequence matching 

Note that given a pattern sequence 6® and a target sequence 6%, the set »O6® , 6%P of all possible solutions of 6% 

for 6® comprises all possible solutions of all sub-sequences Ö�6%� of 6%, i.e.,  »O6®, 6%P ⊇ »O6® , 6%′P ∀ 6%′ ∈ Ö�6%�. Also, note that the above, tree-based algorithm finds the best-possible solution from all (valid) solutions 

of a given target sequence 6% . As a consequence, the so-calculated, best-possible solution of 6%  can be 

considered best-possible not only across 6% but also across all sub-sequences Ö�6%� of 6%. Not immediately 

intuitive, a similarity-measure building upon overall costs as resulting from the above algorithm therefore 

implements sub-sequence matching as defined in section 6.1.2. 

From all matching-modes, one may usually consider sub-sequence matching the most complex one and most 

difficult to calculate. “Deriving” other matching modes from the present algorithm is not trivial, though. We will 

present a possible extension, allowing to perform both full-sequence matching and *-linked matching, in 

section 6.6. Yet, as building upon the concrete cost-function implementations from section 6.5, the given 

approach cannot be considered “fully general” with respect to the basic ideas presented thus far. 

6.5 Cost functions 

Thus far, we have clarified both the underlying concepts and the basic implementation of our approach on 

event-sequence similarity. It’s now the time, however, to put some “flesh on the bones”: In the on-hand 

section, we will discuss four concrete cost-functions in accordance with the four essential dimensions of event-

sequence similarity as presented in section 6.1.1, i.e., for single-event similarities (6.5.1), order (6.5.2), and 

absolute (6.5.3) and relative temporal structures (6.5.4). Finally, in section 6.5.5, we will show that with the 

proposed cost-functions, a so-defined similarity measure on sequences of events could be defined “per event-

sequence signature”. 

Example, continued: Let us repeat the above example, but use a threshold in order to improve the 

calculation’s performance. Based upon our certain interest, we choose an initial threshold of 40. For sub-

nodes of a common predecessor, the vertical order depicts the order of creation. Nodes that exceed the 

threshold are marked red.  

 

Figure 20: Exemplary results of  
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6.5.1 Cost-function A: Single-event similarities 

In a first step, let us define a cost-function !¢/�  in accordance with the dimension of single-event similarities, so 

that low cost-factors are calculated for sequences that contain similar events and high cost-factors otherwise. 

As likely based upon single-event similarities as discussed in section c, calculating costs for “normal” pairs of 

events is almost trivial. Null-mappings, however, require exceptional handling. The according strategy 

described in section 6.5.1.2 is simple yet serves as a basis for further, certainly more complex cost-functions. 

6.5.1.1 From event-level similarities to costs 

When single-event similarities shall serve as the criterion of whether two event sequences are similar to each 

other, the costs of a single mapping should inversely relate to the event-level similarity between pairs of 

mapped events. In other words, a mapping comprising events that have a high similarity value should have low 

costs, and vice versa. 

Consider an exemplary pattern sequence 6® as shown below: 

 

It is easy to see that for mappings comprising the pattern sequence’s A-event, the assessment of event-

similarity will be based upon different criteria than for mappings comprising, for instance, the B-event – if only 

because of typing issues. For highest expressiveness, we therefore let the user define a collection of event-level 

similarity-measures ���*, ���+, … , ���±X·±  with ���/ : & × & → �0,1� ∀ � = 1 … ±6®± , where ���/  reflects the 

specific semantics of the �th
 event of the pattern sequence. Given a solution �: 6® → 6% ∪ )¯., the event-

similarity for a mapping O�, ����P, with � being the Mth
 event of 6® is then calculated as ���L��, 5�. 

The proposed approach on event-sequence similarity, however, requires a single cost-function on single 

mappings instead of similarity measures. Luckily enough, we have discussed a natural transformation between 

distance/costs and similarities in section 3.1.2: Given a set of entities � and a similarity-measure ���: � × � →�0,1�, a corresponding distance function �: � × � → ℝ�� is defined as follows: 

���, �� = − ln �����, �� 

Thus, given a pattern sequence 6® and a set of similarity measures ���*, … , ���±X·± as defined above, a 

function !¢/�′: 6® → & introducing the costs of single-event dissimilarities is defined as follows: 

!¢/�′��, 5� = − ln \���®�¢OW,X·P��, 5�a 

It is easy to see that the results of the above function strongly depend on the set of event-level similarity-

measures. Together with weights, these similarity-measures therefore serve as a major configuration option for 

all those event-sequence similarity-measures that take event-level similarities into account. Note, however, 

that the described cost function does not necessarily depend on single-event similarity-measures as proposed 

in section 5, but can instead build upon any similarity-measure that meets the specified requirements.  
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6.5.1.2 Null-mappings 

The above function returns valid costs for “normal” mappings, i.e., for mappings that link a certain event of the 

target sequence to a certain event of the pattern sequence. Anyway, depending on whether null-mappings are 

considered valid or not, events of the pattern sequence may also be linked to ¯. Obviously, an implementation 

of the above formula will fail on such input. 

In addition to event-level similarity measures, we therefore let the user define a collection of “explicit” cost-

factors for null-mappings !Î*!Î+, … , !Î±X·± with !Î/ ∈ ℝ�� ∀ 0 < � ≤ ±6®±. 29
 Thereby, !ÎL  defines the costs of 

mappings from the Mth
 event of the pattern sequence to ¯. In case of null-mappings, the cost function returns 

the certain explicit cost-factor instead of fruitlessly applying the original formula. An extended and thus “full-

featured” version of !¢/�’, !¢/�: 6® → & ∪ )¯., is therefore defined as follows: 

!¢/���, 5� = ¥���®�¢OW,X·P��, 5�, 5 = ¯!Î®�¢OW,X·P, 5 ≠ ¯n 
So, which costs are suitable in case of null-mappings? Once again, let us repeat the meaning of solutions with 

respect to the on-hand approach on event-similarity: A solution �: 6® → 6% ∪ )¯. defines a certain 

“representation” of a pattern-sequence 6® in a target-sequence 6%. Hence, the “cheapest” solution defines 

those events of 6% that constitute the best-possible representation of 6®. In case of null-mappings, a solution � 

does not define “counterparts” for certain events of the pattern sequence; in other words, these pattern-

sequence events are missing in �. At a certain degree of dissimilarity between pattern-sequence events and 

matched target-sequence events, however, � may be considered better than a solution �′ not comprising null-

mappings. Therefore, in order to find adequate costs in case of null-mappings, one can ask the following 

question: 

At which degree of dissimilarity between a pattern-sequence event � and a target sequence event 5 is 

it more natural to prefer a null-mapping over a mapping to 5? 

From that threshold, a cost-factor can be calculated with the above transformation from similarities to costs. 

  

                                                                 
29

 In practice, cost factors are only required for those null-mappings that are considered value based upon the given 

compatibility. 
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6.5.1.3 Pseudo code 

In pseudo code, an implementation of the proposed cost-function can be described as follows: 

Name: getCostsA 

Description: Calculates a cost-factor based upon single-event similarities. 

Input: pEvent: An event of the pattern sequence. 

tEvent: The corresponding event of the target sequence, or ¯. 

simMeasures: A map linking the events of the pattern sequence to their user-defined 

similarity measures.  

nullMappingCosts: A map linking the events of the pattern sequence to the corresponding 

cost-factors for null-mappings. 
 

Output: A cost-factor from ℝ��. 

Variables: similarity: The similarity between two events. 

distance: The distance calculated from similarity. 
 

01: // Check if “normal mapping” or “null mapping” 

02: if (tEvent ≠ ¯) then 

03:  // Calculate similarity and distance 

04:  double similarity = simMeasures[pEvent](pEvent, tEvent); 

05:  double distance = -ln(similarity); 

06:  return distance; 

07: else 

08:  // Return corresponding cost-factor for null-mappings 

09:  return nullMappingCosts[pEvent]; 

10: end 
 

Algorithm 5: A cost-function for the aspect of single-event similarities 

6.5.1.4 Example 

Consider two event sequences 6® and 6% as shown below: 

 

Using 6® as a pattern-sequence, the business analyst defines single-event similarity-measures for the events in 6® as shown in Table 11. Also, as null-mappings will be considered valid for �� ∈ 6®, he or she defines a cost-

factor for null-mappings of ��, !Î* = 0.8. 
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� ∈ ©Ê Event-level sim. measure Attribute Attribute-level sim. measure Weight ZZ ���� Fish Edit Distance Required 

  Amount Normalized absolute difference 

(min: 0, max:120) 

1,0 

ÆZ ���È Location Lookup table similarity  1,0 

   Berlin – Hamburg � 0.7  

   Berlin – Köln � 0.6  ÇZ ���� Location Lookup table similarity 1,0 

   Wien – Baden � 0.9  

Table 11: Exemplary single-event similarity-measures 

Thus, with !¢/�  as defined above, the following cost-factors are calculated: 

� ∈ ©Ê � ∈ ©Ê ∪ )Ù. ���ÊË�O�,©ÊP��, �� Ç�����, �� ZZ Z� 0.75 0.287 ZZ Ù - 0.8 ÆZ Æ� 0.6 0.510 ÆZ ÆÈ 0.7 0.357 ÇZ Ç� 0.9 0.105 

Table 12: Exemplary cost-factors as calculated with Ç��� 

Assuming a cost-function !¢/�  as defined above, an event-type compatibility that allows null-mappings for ��  

and uniformly distributed weights, we calculate the overall costs of a best-possible solution ��W¢%: 6® → 6% ∪ )¯. 

as follows:
30

 

 

Therefore, with respect to the given configuration, the best-possible solution of �+: 6® → 6% ∪ )¯. has overall 

costs of 0.250. 

  

                                                                 
30

 Certainly outside the scope of the on-hand example, we will not use a threshold as described in section 6.4.3. This will 

apply to all further cost-function examples as well. 
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6.5.2 Cost-function B: Order 

As a second cost-function, let us define !�S�WS  in accordance with the dimension of order, so that low cost-

factors are calculated for sequences whose events are in a similar order, and high cost-factors otherwise. Now, 

what makes a solution costly with respect to the order? How can costs be derived from the orders of two 

sequences? In the following sub-sections, will introduce the degree of order (“orderdness”) of solutions, and 

show how the overall orderdness of a solution can be derived from what we call “local” degrees or order. 

Finally, we will show that to integrate the aspect of order into our approach on event-sequence similarity, cost-

functions on pairs of mappings come into play.  

Note that the approach on null-mappings as discussed in section 6.5.2.4 is generally equivalent for the 

proposed cost-functions on the aspects of order, absolute temporal structure and relative temporal structures. 

The approach will be presented in full detail here; sections 6.5.3.4 and 0, however, will skip most of the 

common parts. 

6.5.2.1 The orderdness of solutions 

In short, a solution �: 6® → 6% ∪ )¯. defines mappings between the events of a certain pattern sequence 6® to 

events of a certain target sequence 6%. Thereby, both the pattern-sequence events and those events of the 

target sequence that are comprised in �, ¸5±5 ∈ 6% , ���� = 5 ∃ � ∈ 6®¹, can be considered in a certain order as 

defined by their certain event-sequence, i.e., in an certain order in 6® and 6%, respectively. By “linking” events 

of both sequences, � establishes a relation between these two orders: The order of target-sequence events can 

more or less comply with the order of their “corresponding” events in 6%. We understand the described relation 

as the degree or order, or orderdness, of a solution. 

Let us demonstrate the above considerations in a concrete example. Consider two event sequences 6® and 6% 

as shown below: 

 

Assuming event-type compatibility as described in section 6.3.3, the following solutions, �* and �+, exist: 

 

It is easy to see that for �*, the pattern-sequence events are in the same order in 6® as their representations in 6%, i.e., 3A���*���, 6%� < 3A���*�5�, 6%� holds for each pair of events ��, 5� with  �, 5 ∈ 6® and 3A�O�, 6®P <3A�O5, 6®P . For �+ , however, this is not the case. Here, 3A���+����, 6%� > 3A���+�!��, 6%�  holds while 3A�O�� , 6®P < 3A�O!� , 6®P; in other words, ��  and !�  are in different order in 6® than their representations, �* 

and !*, in 6%. Figure 21 depicts this deviation by connecting target-sequence events that are mapped to 

successive pattern-sequence events, with arrows indicating the order of the corresponding pattern-sequence 

events. 
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Figure 21: Comparing the order of solutions 

6.5.2.2 Assessing orderdness locally 

In the above example, we have assessed the degree of order of a solution �: 6® → 6% ∪ )¯. by comparing the 

positioning of the pattern-sequence events with the positioning of the corresponding target sequence events. 

We’ve done so in a fairly informal matter, though. In a first step, let us now do that comparison “locally”, i.e., 

for two pairs of mappings O�, ����P and O5, ��5�P, �, 5 ∈ 6®, in �: By comparing the relative positioning of � and 5 in 6® with the relative positioning of ���� and ��5� in 6%, we can assess the orderdness of � locally with 

respect to the given pairs of events. 

For a clear terminology throughout the following sections, let us introduce the concept of distance between 

pattern-sequence events in a certain solution. 

 

In the following, we will examine the various scenarios that may arise in solutions. With later considerations in 

mind, we will restrict our discussion to pairs of successive mappings. Figure 22a depicts a case where the 

distance between two successive pattern-sequence events � and 5 in a certain solution � is 1, i.e., where the 

match for the succeeding pattern-sequence element directly succeeds the match for the preceding pattern-

sequence element. It is easy to see that with respect to a.) the order, and b.) the certain pair of mappings, SÕ 

and its solution � of SÔ fit perfectly. The distance in � may, of course, also be greater than 1 (Figure 22b), or 

even negative (Figure 22c, Figure 22d).  

 

Figure 22: Comparing the distances between succeeding mappings 

In cases where the distance in � is greater than 1, � and 5 are in a “correct” order in �, i.e., 3A������, 6%� <3A����5�, 6%�. Yet, as > = ���, 5, �� − 1 other events (one might call them “additional” in the given context) 

are positioned between ���� and ��5� in 6%, 5 does not succeed � directly in �. In cases where the distance in � 

Definition: Given a solution �: 6® → 6% ∪ )¯. and two pattern-sequence events �, 5R6®, we refer to the 

result of a function   �O��, 5�, �P = 3A����5�, 6%� − 3A������, 6%� as the distance of � and 5 in �.  
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is negative, �  and 5  are in a “wrong” order in � , i.e., 3A������, 6%� > 3A����5�, 6%�  while 3A�O�, 6®P <3A�O5, 6®P. Furthermore, if ���, 5, �� < −1, > = 1 − ���, 5, �� additional events are positioned between ���� 

and ��5� in 6%. In all of the above scenarios, deviations of more or less “extent” exist between 6® and its 

solution � of 6%, again, of course, with respect to the order and the certain locality.  

6.5.2.3 From local deviations to costs 

In the above section, we have assessed the orderdness of solutions purely locally, i.e., with respect to certain 

pairs of mappings. So, let us consider a case where for a certain solution �, the local “degrees of order” for all 

pairs of succeeding mappings in � are given. It is easy to that - at least in some respect - the overall order of � is 

characterized by the sum of local orders: A solution that comprises several “large” distances between 

succeeding pattern-sequence events, for instance, will be considered more or less improper with respect to the 

order. Instead, a solution where each such distance is 1 clearly fits the pattern-sequence perfectly.  

Deriving the overall orderdness of a solution from local (and generally independent) orders allows us to 

integrate a so-defined order into the proposed, dynamic algorithm. Consider a solution �: 6® → 6% ∪ )¯. and 

two pattern-sequence events � and 5, �, 5 ∈ 6®. Obviously, the absolute difference between �O�, 5, 6®P and ���, 5, ��, i.e., absolute difference between the distances from � to 5 in 6® and �, may serve as starting point 

for such cost function. As in 6®, the distance between two succeeding pattern-sequence events is always 1, a 

cost-function !�S�WS ′: 6® × & × 6® × & → ℝ�� on pairs of mappings may be a however-defined transformation 1: ℝ�� → ℝ�� of |���, 5, �� − 1|: 
!�S�WS′O�, ����, 5, ��5�P = 1�|���, 5, �� − 1|� = 1�|������, ��5�, 6% � − 1|� 

Note that 1 has two functions: First, it can be used to adapt the range of !�S�WS′ to other cost-functions. More 

interesting, it may be used to further specify the business analyst’s certain priorities: For a business analyst, for 

instance, scenarios where the distance between two succeeding pattern-sequence events � and 5 in a solution � is negative, i.e., where � and 5 are in the “wrong order” in �, may have much stronger impact on the 

perceived, overall similarity than scenarios where there are “just” additional events between ���� and ��5�.  

6.5.2.4 Null-mappings 

As yet, we have assumed that only normal mappings are valid, i.e., that all valid mappings comprise certain 

events of the target sequence. The above formula will, of course, fail if the input comprises one or two null-

mappings. 

In section 6.5.1.2, we have used explicitly-defined costs in order to extend the original cost-function for event-

level similarities. Generally, this strategy applies in the present case as well: Given a pattern sequence 6®, we 

let the define a collection of explicit cost-factors in case of null-mappings !Î*, !Î+, … , !Î±X·±�*. With � being a 

however-defined solution �: 6® → 6% ∪ )¯. and �/  addressing the �th
 event of 6®, !ÎL  defines the costs of pairs 

of mappings \^�L, �O�LP_ , ^�L�*, �O�L�*P_a, ���� = ¯ ∃ � ∈ ¸�L , �L�*¹, i.e., comprising one or two null-mappings. 

In order to find adequate costs in case of null-mappings, one can now ask the following question: 

At which degree of local disorderdness shall it be more efficient to prefer a null-mapping over a given, 

normal mapping? 
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The above approach has shortcomings, though: Consider a pattern-sequence 6® and a target-sequence 6% as 

shown below: 

 

Assuming event-type compatibility, two solutions, �* and �+, of 6% exists for 6®:  

 

With the above approach on null-mappings, equal overall costs are calculated for �* and �+. As there are 

additional events between �+���� and �+�!��, this clearly conflicts with common expectations, though. We 

therefore adapt the original approach as follows:  

Consider a solution �: 6® → 6% ∪ )¯.. For a pair of succeeding mappings in �, ^O�, ����P, O5, ��5�P_, with ���, 5, 6%� = 1 and ��5� = ¯, i.e., where the succeeding mapping is a null-mapping, we return the certain, 

explicitly defined cost-factor as shown above. For the further steps of the algorithm, however, we “virtually” 

assign 5 the position in � of its predecessor �, i.e., we “virtually” set 3A��5, �� = 3A���, ��. Consequently, in 

case of further null-mappings, the described virtual position in � is carried forward, i.e., for a pattern-sequence 

event E with ��5, E, 6%� = 1 and ��E� = ¯, we set 3A��E, �� = 3A��5, �� = 3A���, ��. 

Henceforth, when a normal mapping succeeds a (virtually positioned) null-mapping, we do not return an 

explicitly defined cost-factor, but instead calculate costs based upon the null-mappings virtual position in �. If a 

solution begins with one or more null-mappings, no virtual position is available, though. Here, when a normal 

mapping succeeds such null-mapping, the certain, explicitly-defined cost-factor is returned anyway. 
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Example: Consider two event sequences 6% and 6® as shown below: 

 

Given a cost-function !�S�WS: 6® × �& ∪ )ε.� × 6® × �& ∪ )ε.� → ℝ��  based upon !�S�WS ′O�, ����, 5, ��5�P = 2 ∗ O1 − ���, 5, ��P, uniformly distributed weights an and explicit cost-factor in 

case of null-mappings, !Î* = 8, the following, overall costs are calculated: 
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6.5.2.5 Pseudo code 

In pseudo code, the proposed cost-function can be described as follows: 

Name: getCostsB 

Description: Calculates a cost-factor from the local orderdness of two successive mappings. Requires that 

the tree is created depth-first. 

Input: prevPEvent: An event of the pattern sequence. 

prevTEvent: The corresponding event of prevPEvent in the target sequence, or ¯. 

pEvent: The event succeeding prevPEvent in the pattern sequence  

tEvent: The corresponding event of pEvent in the target sequence, or ¯. 

index: The current level of the tree. 

nullMappingCosts: A map linking the first event of a pair of successive pattern-sequence 

events to the corresponding cost-factors for null-mappings. 

t: A user defined transformation function. 
 

Output: A cost-factor from ℝ��. 

Variables: posTEvent: The position of tEvent in the target sequence. 

lastPosition: The position of the last target-sequence event in the given solution. 
 

State: lastPositions: A field holding the position of the last target-sequence event in a 

solution for each level of the tree. Used for the “virtual positioning” of 

null-mappings. Initialized with lastPositions[1] = null; 
 

01: // Set lastPosition, update lastPositions 

02: Integer lastPosition; 

03: if (prevTEvent = ¯) then 

04:  lastPosition = lastPositions[index – 1]; 

05: else 

06:  // For a normal mapping, set “last position” to the position of the pair’s first target-  

07:  // sequence event. 

08:  lastPosition = getPositionInTargetSequence(prevTEvent);  

09: end 

10: lastPositions[index] = lastPosition; 

11:  

12: // Check whether both position are available 

13: if (tEvent = ¯) or (lastPosition = null) then 

14:  // Return user-defined cost factor for null-mappings 

15:  return nullMappingCosts[prevPEvent]; 

16: else 

17:  // Calculate cost factor “as usual” 

18:  int posTEvent = getPositionInTargetSequence(tEvent); 

19:  return t(|1 – (posTEvent – lastPosition)|); 

20: end 
 

Algorithm 6: A cost-function for the aspect of order 

6.5.2.6 Example 

Consider two event sequences 6® and 6% as shown below: 
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As the business analyst knows about the data’s certain characteristics, he or she considers null-mappings valid 

only for !�  and defines an explicit cost-factor !Î+ = 20 . With a cost-function !�S�WS  based upon !�S�WS ′O�, ����, 5, ��5�P = 10 ∗ O1 − ���, 5, ��P and  uniformly distributed weights, the best-possible solution ��W¢%: 6® → 6% ∪ )¯. is then calculated as follows: 

 

Thus, with overall costs of 16,3, the best-possible solution �+: 6® → 6% ∪ )¯. comprises the following target-

sequence events: 

 

6.5.3 Cost-function C: Absolute temporal structure 

As a third cost-function, let us define !�%/�W in accordance with the dimension of absolute temporal structures, 

so that low cost-factors are calculated for sequences whose events are in a similar absolute temporal structure, 

and high cost-factors otherwise. In many respects, the approach presented here follows the same principles as 

the approach on order as discussed in section 6.5.2: From a conceptual point of view, the (overall or local) 

temporal quality of a solution corresponds to the (overall or local) orderdness of a solution. With this relation in 

mind, we won’t step into too much detail here and instead keep things brief and simple. 

6.5.3.1 The temporal quality of solutions 

In a first step, let us walk through the general idea of a temporal quality of solutions: Given a solution �: 6® → 6% ∪ )¯., both the pattern-sequence events, ¸�±� ∈ 6®¹, and those events of the target sequence that 

are comprised in �, ¸5±5 ∈ 6% ∩ ���� = 5 ∃ � ∈ 6®¹, can be considered in a certain temporal structure. By 

“linking” events of both sequences, �  establishes a relation between the two structures: The temporal 

structure of target-sequence events can more or less comply with the temporal structure of their 

“corresponding” events in 6%, i.e., of the events they are mapped to in �. We understand the described relation 

as the temporal quality of a solution. 

  



81 

 

6.5.3.2 Assessing the temporal quality locally 

In section 6.5.2.2, we have derived the overall order of a solution from what we called “local orders”. Thereby, 

local orders are calculated by comparing the relative positioning of two succeeding pattern-sequence events in 

the pattern-sequence and in the certain solution. Regarding the temporal quality of a solution, a very similar 

strategy can be applied. First, however, let us introduce the time span between two pattern-sequence events in 

a solution: 

 

 

Consider a solution �: 6® → 6% ∪ )¯.  and two succeeding pattern-sequence events �  and 5 ;  �, 5 ∈ 6® , �O�, 5, 6®P = 1. One can now assess the quality of � - locally with respect the given mappings - by comparing 1O�, 5, 6®P and 1��, 5, ��, i.e., by comparing the time span between � and 5 in 6® and in �.  

6.5.3.3 From local deviations to costs  

Given the above context, it is easy to see that the absolute difference between 1��, 5� and 1��, 5, ��, |1��, 5� −  1��, 5, ��|, can serve as a metric for the local temporal quality of a solution �.  A cost-function !�%/�W ′: 6® × & × 6® × & → ℝ��  on pairs of mappings may hence be a however-defined transformation F: ℝ�� → ℝ�� of |1��, 5� −  1��, 5, ��|: 
!�%/�W ′O�, ����, 5, ��5�P = F�|1��, 5� −  1��, 5, ��|� = FO±1��, 5� −  1O����, ��5�P±P 

Again, F may be used to adapt the range of !�%/�W ′ to other cost-functions, and also to further specify the 

business analyst’s certain priorities. 

6.5.3.4 Null-mappings 

As the above formula’s domain is restricted to pairs of normal mappings, input comprising one or two null-

mappings requires special handling. The proposed strategy, however, clearly resembles the approach 

presented in section 6.5.2.4:  

For a pair of succeeding mappings in �, ^O�, ����P, O5, ��5�P_, with ���, 5, 6%� = 1 and ��5� = ¯, i.e., where the 

succeeding mapping is a null-mapping, we return a certain, explicitly-defined cost-factor. For the further steps 

of the algorithm, we “virtually” assign 5 the time of occurrence in � of its predecessor �, i.e., we set $%�5, s� =$%��, s�. 31  Henceforth, when a normal mapping succeeds a (virtually timed) null-mapping, we do not return an 

explicitly defined cost-factor, but instead calculate costs based upon the null-mappings “virtual” time of 

occurrence in �. If a solution begins with one or more null-mappings, no virtual occurrence time is available, 

                                                                 
31

 This is, in fact, equivalent to what we have done in section 6.5.2.4, where we have set a “virtual” position in �. 

Definition: Given an event sequence 6, we refer to the result of a function 1: 6 × 6 × �6 → &� with  1��, 5, �� = 1O����, s�5�P = $%O��5�P − $%O����P as the time span between �  and 5  in � . Again, for a 

function �′: 6 → & ∪ )¯. with �:��� = ¯ and/or �:�5� = ¯, 1��, 5, �′� is not defined. 

Definition: Given an event sequence 6, we refer to the result of a function $%: 6 × �6 → &� with  $%��, �� =$%O����P as the time of occurrence of � in �. Note that for a function �′: 6 → & ∪ )¯. with �:��� = ¯, $%��, �′� is not defined. 
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though. Here, when a normal mapping succeeds such a null-mapping, the certain, explicitly-defined cost-factor 

is returned anyway. 

6.5.3.5 Pseudo code 

In pseudo code, the proposed cost-function can be described as follows: 

Name: getCostsC 

Description: Calculates a cost-factor from the absolute temporal deviations in two successive mappings. 

Requires that the tree is created depth-first. 

Input: prevPEvent: An event of the pattern sequence. 

prevTEvent: The corresponding event of prevPEvent in the target sequence, or ¯. 

pEvent: The event succeeding prevPEvent in the pattern sequence  

tEvent: The corresponding event of pEvent in the target sequence, or ¯. 

index: The current level of the tree. 

nullMappingCosts: A map linking the first event of a pair of successive pattern-sequence 

events to the corresponding cost-factors for null-mappings. 

t: A user defined transformation function. 
 

Output: A cost-factor from ℝ��. 

Variables: pATimeSpan: The absolute time span between between prevPEvent and pEvent. 

tATimeSpan: The absolute time span between between lastTimeStamp and tEvent. 

lastTimeStamp: The time stamp of the last target-sequence event in the given solution. 
 

State: lastTimeStamps: A field holding the time stamp of the last target-sequence event in a 

solution for each level of the tree. Used for the “virtual positioning” of 

null-mappings. Initialized with lastTimeStamps[1] = null; 
 

01: // Set lastTimeStamp, update lastTimeStamps 

02: TimeStamp lastTimeStamp; 

03: if (prevTEvent = ¯) then 

04:  lastTimeStamp = lastTimeStamps[index – 1]; 

05: else 

06:  // For a normal mapping, set “last time stamp” to the time stamp of the pair’s first  

07:  // target-sequence event. 

08:  lastTimeStamp = $%(prevTEvent); 

09: end 

10: lastTimeStamps[index] = lastTimeStamp; 

11:  

12: // Check whether both position are available 

13: if (tEvent = ¯) or (lastTimeStamp = null) then 

14:  // Return user-defined cost factor for null-mappings 

15:  return nullMappingCosts[prevPEvent]; 

16. else 

17:  // Calculate cost factor “as usual” 

18:  double pATimeSpan = $%(pEvent) - $%(prevPEvent); 

19:  double tATimeSpan = $%(pEvent) - lastTimeStamp; 

20:  return t(|pATimeSpan – tATimespan|); 

21: end 
 

Algorithm 7: A cost-function for the aspect of absolute temporal structures 
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6.5.3.6 Example 

Consider two event sequences 6® and 6% as shown below: 

 

The business considers null-mappings invalid for all events of the pattern sequence. With a cost-function !�%/�W  

based upon !�%/�W ′O�, ����, 5, ��5�P = ±%�W,V�� %O¢�W�,¢�V�P±*��  and  uniformly distributed weights, the best-possible 

solution ��W¢%: 6® → 6% ∪ )¯. is then calculated as follows: 

Thus, with overall costs of 7, the best-possible solution �*: 6® → 6% ∪ )¯. comprises the following target-

sequence events: 

 

  



84 

 

6.5.4 Cost-function D: Relative temporal structure 

As a fourth and final cost-function, let us now define !S%/�W  in accordance with the dimension of relative 

temporal structures, so that low cost-factors are calculated for sequences whose events are in a similar relative 

temporal structure, and high cost-factors otherwise. Note that from the four cost-functions presented in the 

on-hand section, !S%/W plays a somewhat “special role”: Unlike !¢/�, !�S�WS  and !�%/�W , it is applicable in case of 

full-sequence matching only. We will discuss this issue in detail section 6.5.4.1. Our approach on full-sequence 

matching and *-linked matching will be presented in section 6.6. 

Generally, it seems highly natural that comparing the absolute and comparing the relative temporal structure 

of two event sequences should follow mainly equivalent principles. In accordance with the absolute time span 

between two events, let us therefore introduce the relative time span between two pattern-sequence events in 

a solution: 

 

 

We have now defined relative time spans between events, both in event-sequences (section 3.3) and in 

solutions. Given a solution �: 6® → 6% ∪ )¯. and two succeeding pattern-sequence events � and 5, �, 5 ∈ 6®, �O�, 5, 6®P = 1, we therefore calculate the local quality of � by comparing 1SO�, 5, 6®P and 1S��, 5, ��, i.e., by 

comparing the relative time span between � and 5 in 6® and in �. A cost-function !S%/�W′: 6® × & × 6® × & →ℝ��  on pairs of mappings that introduces the relative temporal structure is then defined in equivalence to !�%/�W ′ as described in section 6.5.3, but builds upon relative time spans instead of absolute ones. Given the 

above context and a however-defined transformation F: ℝ�� → ℝ��,  !S%/�W ′ is thus defined as follows: 

!S%/�W′O��, 5�, �P = F ^½1S ^��, 5�, 6®_ −  1SO��, 5�, �P½_. 
Null-mappings, finally, are handled as described in section 6.5.3.4. 

6.5.4.1 Restriction to full-sequence matching 

It is easy to see that in order to calculate the relative time span between two pattern-sequence events in a 

solution �: 6® → 6% ∪ )¯., the overall length =��� must be available. In the proposed, dynamic algorithm, 

however, each cost-factor is potentially calculated for several, distinct solutions. The only case were the overall 

length of all solutions that follow from a certain tree-node is a.) equal and b.) known a-priori is full-sequence 

mapping. Here, for all solutions of a target sequence S, =��� = =�6� holds. Therefore, with the on-hand 

approach, the relative temporal structure can be taken into account in case of full-sequence matching only. 

Definition: Given a solution �: 6® → 6% ∪ )¯. and two pattern-sequence events � and 5, �, 5R6®, we refer to 

the result of a function 1S: 6® × 6® × O6® → &P with 1S��, 5, �� = TUO¢�V�P�TUO¢�W�P;�¢�  as the relative time span 

between �  and 5  in � . For a function �′: 6 → & ∪ )¯.  with �:��� = ¯  and/or �:�5� = ¯ , 1��, 5, �′�  is not 

defined. 

=��� = maxLd*…±X·± ∧  ¢OW«PÞÎ ^3A�O�O�LP, 6%P_ − minLd*…±X·± ∧  ¢�W¬�ÞÎO3A�����-�, 6%�P  
Definition: Given a solution �: 6® → 6% ∪ )¯., with �/  addressing the �th

 event in 6®, we refer to the result 

of a function =: O6® → & ∪ )¯.P → ℝ�� with 

as the overall length of �. 
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6.5.4.2 Pseudo code 

In pseudo code, the proposed cost-function can be described as follows: 

Name: getCostsD 

Description: Calculates a cost-factor from the relative temporal deviations in two successive mappings. 

Requires that the tree is created depth-first. 

Input: prevPEvent: An event of the pattern sequence. 

prevTEvent: The corresponding event of prevPEvent in the target sequence, or ¯. 

pEvent: The event succeeding prevPEvent in the pattern sequence  

tEvent: The corresponding event of pEvent in the target sequence, or ¯. 

index: The current level of the tree. 

nullMappingCosts: A map linking the first event of a pair of successive pattern-sequence 

events to the corresponding cost-factors for null-mappings. 

t: A user defined transformation function. 
 

Output: A cost-factor from ℝ��. 

Variables: pRTimeSpan: The relative time span between between prevPEvent and pEvent. 

tRTimeSpan The relative time span between between lastTimeStamp and tEvent. 

lastTimeStamp: The time stamp of the last target-sequence event in the given solution. 
 

State: lastTimeStamps: A field holding the time stamp of the last target-sequence event in a 

solution for each level of the tree. Used for the “virtual positioning” of 

null-mappings. Initialized with lastTimeStamps[1] = null; 
 

01: // Set lastTimeStamp, update lastTimeStamps 

02: TimeStamp lastTimeStamp; 

03: if (prevTEvent = ¯) then 

04:  lastTimeStamp = lastTimeStamps[index – 1]; 

05: else 

06:  // For a normal mapping, set “last time stamp” to the time stamp of the pair’s first  

07:  // target-sequence event. 

08:  lastTimeStamp = $%(prevTEvent); 

09: end 

10: lastTimeStamps[index] = lastTimeStamp; 

11:  

12: // Check whether both position are available 

13: if (tEvent = ¯) or (lastTimeStamp = null) then 

14:  // Return user-defined cost factor for null-mappings 

15:  return nullMappingCosts[prevPEvent]; 

16. else 

17:  // Calculate cost factor “as usual” 

18:  double pRTimeSpan = getRelativeToPatternSequence($%(pEvent) - $%(prevPEvent)); 

19:  double tRTimeSpan = getRelativeToTargetSequence($%(pEvent) - lastTimeStamp); 

20:  return t(|pRTimeSpan – tRTimespan|); 

21: end 
 

Algorithm 8: A cost-function for the aspect of relative temporal structures 
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6.5.4.3 Example 

Consider two event sequences 6®, =O6®P = 28s, and 6%, =�6%� = 49s, as shown below: 

 

The business considers null-mappings invalid for all events of the pattern sequence. With a cost-function !S%/�W  

based upon !S%/�W′ = 100 ∗ O±1SO�, 5, 6®P − 1S��, 5, ��±P and uniformly distributed weights, the best-possible 

solution ��W¢%: 6á → 6% ∪ )¯. is calculated as follows: 

 

Thus, with overall costs of 6,2, the best-possible solution �+: 6á → 6% ∪ )¯. comprises the following mappings: 

 

6.5.5 Similarity measures and event-sequence signatures 

In section 6.3, we have stated that similarity measures on sequences of events as described in the on-hand 

thesis are defined “per pattern sequence”. Keep in mind, however, that a certain collection of weights could be 
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used for all pattern-sequences of a certain size. Also, !�S�WS , !�%/�W and !S%/�W  as defined above are generally 

independent from the concrete pattern-sequence and the events therein.  

Therefore, with single-event similarity-measures that are defined per event type (such as, for instance, 

described in section 6.5.1), a similarity-measure building upon the above cost-functions could be defined “per 

event-sequence signature”. It is easy to see that this makes similarity-measures reusable across all pattern 

sequences having a certain signature and thus a certainly more powerful toolkit for business analysts. Yet, 

when other, event-specific cost-functions come into play, this may not be possible anymore. In neither case 

there is any kind of restriction on target sequences. 

6.6 From sub-sequence matching to full-sequence matching 

Throughout the last few sections, we have used the proposed algorithm solely for what we call sub-sequence 

matching, i.e., for finding the similarity of best-matching sub-sequence of a certain target-sequence. In the on 

hand section, we will show how the algorithm can be used for full-sequence matching, and also for start-linked 

matching and end-linked matching. It is essential to note, however, that the on-hand approach was designed in 

accordance with the above-defined, concrete cost-functions in mind; thus, it cannot be considered “fully 

general” with respect to the base algorithm as described in section 6.3. For possible other cost-functions, the 

present approach may be inappropriate; here, a wide adaption of the algorithm may be required. 

6.6.1 Additional characteristics 

Obviously, in case of full-sequence matching, certain characteristics of the target-sequence must be taken into 

account that are ignored in case of sub-sequence mapping. Consider a solution �: 6® → 6% ∪ )¯. as shown 

below: 

 

Figure 23: Exemplary sub-sequence matching 

It is easy to see that in case of sub-sequence matching, certain events of the target-sequence - �*, �+, �*, �N, 

and �+ - are not taken into account at all.
32

 Thus, from a calculation point of view, it doesn’t make a difference 

whether � is of 6% or of a sub-sequence 6% ′ of 6%  as marked in the above figure.
33

  

Now, let us reconsider the above example, assuming that full-sequence matching is requested by the business 

analyst. What else characteristics of 6%  must be taken into account?  Let us observe the problem with respect 

                                                                 
32

 Note that !* is taken into account, even though it is not comprised in mappings as defined in �. Yet, it affects the 

distances between �� and ��, and �� and !�, in �, and therefore has an impact on the overall costs of �. 
33

 More generally, given a solution �: 6® → 6% ∪ )¯., with �/ addressing the �th
 event of 6% , calculating the overall costs is 

equal for all sub-sequences 6% ′ of 6% , 6% : = O�L , … , �-P, with M ≤ minV∈X·O3A����5�, 6%�P, < ≥ maxV∈X·O3A����5�, 6%�P. 
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to the various aspects of event-sequence similarity. In the following, �®/  and �%/  address the �th
 event of 6®  and 6% , respectively. 

Regarding single-event similarities, there is no difference between sub-sequence matching and full sequence 

mapping. In both cases, the events of the pattern-sequence are compared to their certain counterparts in the 

target-sequence. 

Regarding order, the fact that there are  

a. > events before � ^�®*_ in 6% ,  and 

b. � events after � \�®±X·±a in 6% ,  
must be taken into account. In the above example, > = 3 (�*, �+, and �*), and � = 2 (�N and �+). 

Regarding the temporal structure, the time spans between 

a. � ^�®*_ and �%*, i.e., 1 ^� ^�®*_ , �%*_, and  

b. � \�®±X·±a and �%|XU|, i.e., 1 \� \�®±X·±a , �%|XU|a, 

must be taken into account. Figure 24 below depicts these time spans in the given example: 

 

Figure 24: Temporal structures in case of full-sequence matching 

6.6.2 Introducing start- and end-events 

In order to provide full-sequence matching as been described in section 6.1.2, the above characteristics must 

affect the overall costs of a solution. In the on-hand section, we will introduce a simple “trick”, allowing us 

considering the described characteristics while leaving both the base algorithm and the proposed cost-

functions unchanged. 

Consider a solution �: 6® → 6% ∪ )¯.. In case of full-sequence mapping, let us “conceptually” extend both the 

pattern-sequence and the target-sequence by two virtual events �¢ (the start-event) and �W (the end-event). 

Thereby, with �/  addressing the �th
 event of an event-sequence 6, �¢ and �W have the following characteristics: 

3A���¢, 6� = 0 

$%��¢� = $%��*� 

3A���W , 6� = |6| + 1 
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$%��W� = $%O�|X|P 

Thus, according to their positions in the certain event-sequence, one may refer to start- and end-events as the 

0
th

 and the �|6| + 1�th
 event in 6, respectively.  

Furthermore, we assume that the start-event of the target-sequence is the only match for the start-event of 

the pattern-sequence, and that the end-event of the target-sequence is the only match for the end-event of 

the pattern-sequence. Hence, each solution �: 6® → 6% ∪ )¯. comprises two “additional” mappings, linking a.) 

the two start-events, and b.) the two end-events to one another. Further on, we will refer to the additional 

mappings as start- and end-mappings, respectively. 

 

Let �/  address the �th
 event of 6®. As part of the proposed algorithm, we now apply each given cost-function on 

pairs of mappings on both ^O��, �����P, O�*, ���*�P_ and °\�±X·±, � ^�±X·±_a , \�±X·±�*, � ^�±X·±�*_a³. With the 

thereby generated, additional cost-factors, all relevant characteristics as discussed in section 6.6.1 gain impact 

on the overall costs of �. Note that since start-events and end-evens are auxiliary constructs that have no 

attributes, !¢/�  is not applied to according mappings. 

 

  

Example, continued: Consider a cost-function !�S�WS  based upon !�S�WS′O�, ����, 5, ��5�P = |1 −���, 5, �� − 1|. With full-sequence matching and uniformly distributed weights, the algorithm results in the 

following tree-path: 

 

Example: Consider a solution �: 6® → 6% ∪ )¯. as shown in Figure 23. In case of full-sequence matching, 

both event sequences 6® and 6% are extended by virtual start- and end-events. These events are then 

linked in start- and end-mappings as illustrated below: 

 

Figure 25: Full-sequence matching by assuming virtual start- and end-events 
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6.6.3 Adapted weighting 

In the above section, we have calculated additional cost-factors by comprising mappings between start- and 

end-events. These additional cost-factors must, of course, be weighted. We therefore adapt the weighting 

model as proposed in section 6.3.2.3 as follows: 

Consider a solution �: 6® → 6% ∪ )¯.  together with a collection of cost-functions on single mappings !¢*, !¢+, … , !¢� and a collection of cost-functions on pairs of mappings  !®*, !®+, … , !®9. In case of full-sequence 

matching, we allow the user defining  < = ^� ∗ ±6®± + > ∗ O±6®± + 1P_  weights b*, b+, … , b-  with bL ∈�0,1� ∀ M = 1 … < and ∑ bL-Ld* = 1, i.e., that sum to unity. With a however-defined aggregation function 5: ℝ��- × �0,1�- → ℝ��  and !/  addressing the � th
 cost-factor calculated from � , a function !A�1: 6® ×O6® → & ∪ )¯.P calculating the overall costs of a solution �: 6® → 6% ∪ )¯. is then still defined as follows: 

!A�1O6® , �P = 5�!*, … !- , b*, … b-� 

6.6.4 A “mainly” consistent approach on matching modes 

It is easy to see that both start-linked matching and end-linked matching can be implemented in full 

accordance with the above-presented approach on full-sequence mapping. Consider a solution �: 6® → 6% ∪)¯., and let �/  address the �th
 event of 6®. In case of start-linked mapping, we simply weight those cost factors 

that are calculated from ���, �*� by zero. Consequently, in case of end-linked mapping, we weight those cost-

factors that are calculated from ^�±X·±, �±X·±�*_ by zero. Weighting all additional cost-factors by zero, however, 

allows us performing sub-sequence matching as well.  

Obviously, as according weights can be become arbitrarily small, the borders between the various matching 

modes are somewhat floating. Thus, by introducing virtual start- and end-events as defined above, a fully-

consistent approach on matching modes is provided for !¢/�, !�S�WS  and !�%/�W as presented in section 6.4.4. 

For  !S%/�W , however, this is not the case: Here, even if cost-factors arising from ���, �*� and ^�±X·±, �±X·±�*_ are 

weighted by zero, the according mappings affect the length of the resulting solution and, therefore, the relative 

time span between the solution’s target-sequence events. As this clearly conflicts with common expectations, 

sub-sequence matching including zero-weighted start- and end-mappings is conceptually wrong when relative 

temporal structures shall be taken into account. 

Figure 26 below illustrates the described problem: Even when the mappings between start- and end-events are 

weighted by zero, =�6%� is used for calculating the relative time spans in �. Yet, in case of sub-sequence 

matching, one would expect =�6%’� instead.     
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Figure 26: Conceptual problems in case of full-sequence matching 

From an algorithm point of view, as the length of the various solutions is not available throughout the 

algorithm, !S%/�W  is applicable in case of however-weighted but “real and aware” full-sequence matching only. 

We have discussed this issue in section 6.5.4.1 above. 

6.7 Discussion 

Again, let us end this section with discussing the various “pros and cons” of the proposed approach, its 

properties and its complexity. 

6.7.1 Pros and Cons 

The presented approach on event-sequence similarity builds upon an intuitive, assignment-based 

understanding of sequence similarity. Thus, despite of an undeniable degree of complexity, it should appear 

somewhat natural to business analysts. Also, by letting the analyst choosing cost-functions, weights and 

compatibilities freely, it allows great flexibility and should be applicable in most scenarios: With the basic cost-

functions as proposed in section 6.5, the essential dimensions of event-sequence similarity are covered. When 

other, previously undiscovered aspects gain relevance in the given context, an arbitrary number of additional 

cost-function may be defined. Furthermore, the conceptually clear separation of concerns into possible 

assignments (compatibilities), sources of costs (cost-functions) and impact of costs (weights) is a solid basis for 

further extensions of the algorithm - especially when the set of valid solution shall further be reduced. 

Suntinger [49] presents the particularly interesting concept of “blocks” in his master thesis.  

Finally, note that for the proposed algorithm, sub-sequence matching can be considered the “default matching 

mode” and the starting point for all other matching modes. Applicable (at least) for the proposed, basic cost-

functions, the presented approach on full-sequence matching allows a widely consistent and somewhat 

“fluent” handling of matching modes. Consequently, the proposed algorithm executes in (de facto) equal 

runtime for all four matching modes. 

Let us now continue to the disadvantages of the on-hand approach: In section 6.6.4, we have stated that the 

dimension of relative temporal structures can only be calculated in case of full-sequence matching. There is, 

however, no such restriction “in general”, and other approaches could allow considering that aspect in case of 

sub-sequence matching and *-linked matching as well. Also, as before for single-event similarity-measures, the 

presented approach requires lots of configuration and an even stronger involvement of the domain expert. All 

in all, the user has to define and configure 
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• adequate cost-functions, 

• an adequate weighting configuration, and 

• an adequate compatibility. 

Again, a framework for event-sequence similarity-searching should comprise a library-like, persistent 

management facility allowing the reuse of proven similarity measures.
34

 Eventually, the Branch-&-Bound-based 

algorithm requires considerable computational effort. We will discuss this issue in section 6.7.3 below. 

6.7.1.1 Weighting pairs of mappings 

Clearly making the presented approach more flexible and applicable in a variety of use cases, we have listed 

the weighting model a notable pro above. Unfortunately, weighting pairs of mappings is fairly unnatural and 

also leads to some conceptual weaknesses. Let us demonstrate the most problematic case with a simple 

example: 

 

As yet, we have not found a solution for the presented scenario. 

6.7.2 Properties 

We have stated that per definition, similarity measures performing sub-sequence matching and *-linked 

matching are asymmetric. Thus, let us focus on cases where the proposed algorithm is used for full-sequence 

                                                                 
34

 In the SENACTIVE EventAnalyzer, we allow the user choosing from all stored similarity-measures compatible with a given 

pattern sequence. Also, we allow the user adding various meta-information, such as, for instance, the informal description 

of a measure’s semantics. For configuring !¢/�  (on single-event similarities) the repository is tightly coupled to the 

corresponding repository for single-event similarities. 

Example: Consider a pattern sequence 6®  as shown below together a similarity measure ����S�WS  

comprising !�S�WS  as its only cost-function, i.e., calculating similarity solely from the aspect of order.  

 

A business analyst may now consider ÇZ’s position in a target sequence ©Ì as irrelevant for the overall 

similarity of ©Ì. So, how can this be accomplished? Actually, the business analyst has to weight all cost-

factors calculated from �ÆZ, ÇZ� and �ÇZ, ZZ�, i.e., the cost-factors “around” ÇZ , by zero. Below, the 

according pairs of mappings are marked red. 

 

With those weightings, however, not only the position of ÇZ hasn’t any impact on the overall similarity, but 

also the relative positioning of ÆZ  and ZZ  in the target sequence. Therefore, the following solution �: 6® → 6% ∪ )¯. has overall costs of zero, which results in the certain equality of 6% and clearly conflicts 

with common expectations: 
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matching. Here, in cases where the pattern sequence 6® and the target sequence 6% are of the same size, ±6®± = |6%|, a similarity-measure as proposed in the on-hand section can be considered a strong similarity 

measure in the strict sense iff 

a. the used compatibility is symmetric, 

b. the aggregation function is a linear combination of cost-factors and weights, and 

c. all comprised cost-functions can be considered metrics. 

For a weak similarity measure in the strict sense, conditions can be defined accordingly. Yet, in the more 

general case that pattern- and target sequence are of different sizes, ±6®± ≠ |6%|, “missing events” and, 

correspondingly, “additional events” do not necessarily affect the overall similarity between two sequences of 

events in one and the same extent. Consequently, similarity-measures as proposed in the on-hand section can 

be considered asymmetric, and, following from that, similarity measures in the common sense. 

6.7.3 Complexity 

It is easy to see that in general, the runtime of the proposed algorithm depends on the number of times the 

loop from Algorithm 4, line 13, is executed. More plastically, this number can be considered the number of 

tree-nodes in the resulting tree. The loop’s body, i.e., for the calculation of cost-factors, however, we assume 

requiring a constant time !. 

For the proposed algorithm, the best case is that where there are no valid mappings for the first event of the 

pattern sequence. Here, a similarity of zero can be returned immediately. Though not explicitly described in 

Algorithm 4, we assume that given a sets of matches for all events of the pattern-sequence, this can be found 

out in a constant time !�W¢% . With > and � addressing the number of events in the pattern- and the target 

sequence, the best-case runtime of the proposed algorithm is thus defined as follows: 

(�W¢%�>, �� = !�W¢% 

The worst case, by contrast, occurs where  

a. each event of the target sequence and  

b. the null-event  

match each event of the pattern sequence and the threshold does not apply throughout the whole calculation. 

So, how many tree-nodes are evaluated in a so-defined scenario? In section 6.3.1, we have stated that without 

additional restrictions through a however-defined compatibility,  ∑ \ ±X·±!O±X·±�-P!a ∗ O|XU|- P´µ¶O±X·±,|XU|P-d�  solutions of a target sequence 6% exist for a pattern sequence 6®. Consequently, 

as each leaf represents a distinct solution, the “worst-case” (e�S¢%  of 6®  and 6%  has  ∑ \ ±X·±!O±X·±�-P!a ∗ O|XU|- P´µ¶O±X·±,|XU|P-d�  leaf nodes. Also, note that given a tree (  as calculated from 6® , 6%  and a 

compatibility ! in Algorithm 3, the sub-tree (/  constituted from the nodes of level 1 to level � in ( is equivalent 

to a tree (’ as calculated from 6%, ! and a subsequence 6®/ ⊆  6® constituted from the first � events in 6®.  

Following from that, the M th
 level of the worst-case tree (e�S¢%  of 6®  and 6%  contains  ∑ ^ L!�L�-�!_ ∗ O|XU|- P´µ¶�L,|XU|�-d�  tree nodes. In sum, (e�S¢%  contains ∑ ^∑ ^ /!�/�-�!_ ∗ O|XU|- P´µ¶�/,|XU|�-d� _±X·±/d*  nodes. The 

worst-case runtime of the proposed algorithm is therefore defined as follows: 
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(e�S¢%�>, �� = i â i \ �!�� − <�!a ∗ ^�< _´µ¶�/,��
-d� ã9

/d* ∗ ! 

In practice, worst-case runtime is avoided through 

• compatibilities, restricting the set of valid solutions, and the 

• threshold, allowing us to skip costly solutions early in the calculation. 

As solely depending on the given pair of sequences, stating a universally valid, average runtime is non-trivial 

and outside the scope of this thesis. In general, however, the typical proportion of the above-said worst-case 

runtime to “practical runtimes” can be considered equivalent to other Branch-&-Bound algorithms. 

6.7.3.1 Branch & Bound vs. Dynamic Programming 

As we have already touched upon, the given optimization problem - to find the best-possible solution of the 

target sequence for the pattern sequence - could also be solved using Dynamic Programming. Dynamic 

Programming clearly outperforms Branch & Bound strategies and allows to solve according problems in 

(pseudo) polynomial runtimes instead of exponential ones.  

We opted for the presented Branch-&-Bound-based algorithm in view of possible extensions of the base 

algorithm, as, for instance, presented by Suntinger [49]. Consider Suntinger’s “arbitrary order” block, 

weakening the order of certain pattern-sequence events: Here, resulting from dependencies across > events of 

the pattern sequence, a Dynamic-Programming-based approach might require notable workarounds most 

likely conflicts with the idea of a clear separation of concerns between the base algorithm and plug-in-like 

extensions. 

An adaption of the presented algorithm towards Dynamic Programming or a however-defined hybrid solution 

is nevertheless crucial when similarity searching shall be applied to long event-sequences starting from several 

hundreds of events, e.g., complete customer interactions over several years: In the evaluation part of this 

thesis presented in section 7, we will see the presented approach is impracticable here, with execution 

performance being one of the most obvious reasons. It is easy to see that the above-said adaption of the 

presented, basic ideas of event-sequence similarity should be considered a subject of future research projects. 

6.7.3.2 Enhanced branch-selection strategies 

The presented Branch-&-Bound-based algorithm uses a very simple branch-selection strategy by choosing 

target-sequence events in their order of occurrence. Yet, as the algorithm strongly depends on the quick 

detection of “rather good” solutions (and thus reducing the threshold), a more sophisticated branch-selection 

strategy might result in notable performance improvements. Again, the investigation and evaluation of tailored 

selection strategies should be a subject for future work. 
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7 Application and results 

In the course of this work, a comprehensive evaluation has been carried out in order to judge both algorithmic 

performance and accuracy of search results. We claim to provide a generic model for event sequence similarity. 

Hence, in order to prove the generic character of our approach, we decided to evaluate results based on 

strongly varying input data from different application domains. In addition, we defined different objectives for 

each evaluation scenario. These are reasoned by the idea to cover different interests of our software’s end 

users. For each scenario, the evaluation is spilt up into two parts, the results of performance measures and the 

judgment of search results including a discussion on the degree to which we see initial aims being fulfilled by 

the gathered results. Especially the second part is done in awareness of the fact that full objectiveness is 

virtually impossible when it comes to assessment of similarity search results. We therefore focus on our 

concrete, application specific objectives for judging the value of the results.  

The presented approaches were implemented in C#, a programming language from Microsoft’s .Net-

framework. As the implementation serves as a prototype and is part of the EventAnalyzer current production 

version, we decided to abandon a sophisticated threading concept.   

7.1 C1 - Online gambling: User activity histories 

The first evaluation scenario aims at investigating on the algorithmic performance and correctness of search 

results in a controlled and exactly defined environment. We achieve this environment by utilizing simulated 

data with controlled variations in the generated event sequences. The simulation model generates events 

representing the activity log of single customers of an online betting platform. Such sequences include the 

following activities: opening the account (i.e., registering at the platform), cashing-in and cashing-out money, 

placing bets, winning and losing bets and notifications on failed bet placements. The occurring event types and 

their attributes are depicted in Figure 27. 

 

Figure 27: Event types and correlations in evaluation scenario C1 – Online gambling 



 

The simulation model generates several arbitrary sequences of events, whereby the simulation engine takes 

care of correctness and validity of the sequence. For instance, the simulation keeps track on the virtual cash 

balance of a customer during the simulation, so that b

addition to the arbitrary sequences, several 

structure. These template structures have been defined based on a requirements study car

European online betting and gambling provider. In the course of this study, known, suspicious behavior pattern 

have been identified and described. Yet, the descriptions are fuzzy, and the concrete sequences simulated vary 

both in the number of events occurring 

One possible pattern is the sleeper pattern. Sleepers are users which, after registration and maybe a few initial 

bets, do not bet for a long period of time. It is then remarkable

of money, place a very high bet, and cash

insider information on a bet or places the bet for a user who is not allowed to place it, for instance ga

officials such as referees or players and other participants. 

7.1.1 Objectives and evaluation focus

For the evaluation of our similarity search algorithm in the given context, we define the following objectives: 

• Among the simulated account histories, 10 are

these 10 sequences, the other 9 sequences must be discovered with the similarity search. 

• None of the other account history should be retrieved, except in case the arbitrary simulation 

generates a pattern similar to our template. 

In addition to these measureable objectives, the focus of this evaluation case is on:

• Determining the sensitivity of the model towards the similarity configuration

• Measuring the performance with different configuration paramet

In the following, different combinations of search patterns and similarity configuration options are defined 

which have been executed for the case study. 

7.1.2 C1.a - Order and sub

In the first scenario, we define a single

order. The following reference sequence is used as the search pattern, whereby the table lists the event type 

colors. Thus, the short pattern sequence starts with an “open account” event, followed by 

notification that the bet was lost. At the end of the sequence, this user won a bet and cashed out directly after. 

Figure 28: Search pattern for evaluation case C1.a

model generates several arbitrary sequences of events, whereby the simulation engine takes 

care of correctness and validity of the sequence. For instance, the simulation keeps track on the virtual cash 

balance of a customer during the simulation, so that bet placements are simulated only if

addition to the arbitrary sequences, several account histories are generated which follow a defined template 

structure. These template structures have been defined based on a requirements study car

European online betting and gambling provider. In the course of this study, known, suspicious behavior pattern 

have been identified and described. Yet, the descriptions are fuzzy, and the concrete sequences simulated vary 

mber of events occurring and in certain event attribute’s values.  

is the sleeper pattern. Sleepers are users which, after registration and maybe a few initial 

of time. It is then remarkable if such sleepers suddenly cash

of money, place a very high bet, and cash-out again immediately. This is often an indication that the user had 

insider information on a bet or places the bet for a user who is not allowed to place it, for instance ga

officials such as referees or players and other participants.  

Objectives and evaluation focus 

For the evaluation of our similarity search algorithm in the given context, we define the following objectives: 

simulated account histories, 10 are simulated based on a selected template. Using one of 

these 10 sequences, the other 9 sequences must be discovered with the similarity search. 

None of the other account history should be retrieved, except in case the arbitrary simulation 

rn similar to our template.  

e objectives, the focus of this evaluation case is on: 
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Measuring the performance with different configuration parameters. 

In the following, different combinations of search patterns and similarity configuration options are defined 

which have been executed for the case study.  
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the first scenario, we define a single-event similarity measures that exclusively incorporates the aspect of 
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colors. Thus, the short pattern sequence starts with an “open account” event, followed by 

notification that the bet was lost. At the end of the sequence, this user won a bet and cashed out directly after. 
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model generates several arbitrary sequences of events, whereby the simulation engine takes 

care of correctness and validity of the sequence. For instance, the simulation keeps track on the virtual cash 

if money is available. In 

which follow a defined template 

structure. These template structures have been defined based on a requirements study carried out at a large 

European online betting and gambling provider. In the course of this study, known, suspicious behavior pattern 

have been identified and described. Yet, the descriptions are fuzzy, and the concrete sequences simulated vary 

is the sleeper pattern. Sleepers are users which, after registration and maybe a few initial 

leepers suddenly cash-in a large amount 

out again immediately. This is often an indication that the user had 

insider information on a bet or places the bet for a user who is not allowed to place it, for instance game 

For the evaluation of our similarity search algorithm in the given context, we define the following objectives:  

simulated based on a selected template. Using one of 

these 10 sequences, the other 9 sequences must be discovered with the similarity search.  

None of the other account history should be retrieved, except in case the arbitrary simulation 

In the following, different combinations of search patterns and similarity configuration options are defined 

ty measures that exclusively incorporates the aspect of 

The following reference sequence is used as the search pattern, whereby the table lists the event type 

colors. Thus, the short pattern sequence starts with an “open account” event, followed by a placed bet and a 

notification that the bet was lost. At the end of the sequence, this user won a bet and cashed out directly after.  
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Figure 29 shows the best matches in the given scenario among the searched 438 event sequences. According to 

the plot, these results intuitively appear inappropriate: Most matches are longer than the pattern sequence 

and show a completely distinct shape compared to it. Yet, this results simply from the fact that we configured 

subsequence searching. Thus, for most of these discovered event sequences only the first few events match 

while the rest is ignored.  

 

Figure 29: Best search results for scenario C1.a visualized in the Event Tunnel 

7.1.2.1  C1.b - Order and full-sequence matching 

Scenario C1.a showed that subsequence searching may lead to intuitively incorrect results for the given 

dataset. This scenario is defined equally to scenario C1.a, but performs full-sequence matching instead of sub-

sequence matching. Requiring a match to start with the first event and end with the last event (everything else 

decreases the similarity) retrieves sequences which intuitively appear by far more similar. The best matches are 

depicted again in Figure 30.  

This scenario already fulfils our initial requirement to retrieve a set of simulated event sequences, which all 

have a very similar structure concerning the occurrence of different event types.  
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Figure 30: Best search results for scenario C1.b visualized in the Event Tunnel 

7.1.3 C1.c – Order, temporal structures and full-sequence matching 

For scenario C1.c we use the same search pattern as before, but incorporate the aspect of temporal structures.  

The given evaluation scenario showed that the cost-function for absolute temporal structures is virtually 

inapplicable in this context. The time spans between the events in the scenario are relatively large (e.g. several 

hours to a couple of months). Thus, some of these deviations have huge absolute values and require a very 

small scaling factor in order to scale them to a range comparable to other aspects such as type deviations. In 

return, this scaling factor causes “minor” deviations to be almost ignored. Yet, these “minor” deviations might 

also be a couple of days and decisive for the search semantic.  

Considering relative temporal structures works out significantly better for the described scenario. Still, the best 

matches in the previous scenario already had a very similar temporal structure (see Figure 30) so that again 

these sequences have been discovered as the best matches.  

7.1.4 C1.d - Order and single-event similarities 

In this scenario, the following event-attributes are considered via  !¢/� ; as an attribute-level similarity 

technique, we decided to use the normalized absolute difference as described in section 5.5.1.3: 

• BetPlaced.Amount 

• BetPlaceFailed.Amount 

• Cash-In.Amount 

• Cash-Out.Amount 

• BetPlaced.Odds 

• BetPlaceFailed.Odds 
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Again, the discovered sequences for this evaluation case again differ only slightly from the retrieval results in 

scenario C1.b. In the simulated data set, variations in terms of the selected event attributes are not significant, 

and thus considering these attributes in addition has minimal impact on the overall similarity score. Obviously, 

considering the event attributes costs some performance.  

As a variation from the originally defined scenario C1.d we also tried to maximize the weight of the selected 

event attributes. Using this configuration, some other event sequences consorted with the prior discovered 

sequences, but all in all, we found that it is hard to adjust the weights so that absolute difference similarity 

deviations in combination with order deviations allowing null-mappings return reasonable result. The problem 

is similar as with temporal deviations: In order for such a combination to return meaningful results, the costs of 

the absolute difference deviations must be well-adjusted with other similarity costs. In other words, if the 

absolute value differences (which the user will not know up-front) are very small, deviations will show almost 

no effects in combination with costs for other mappings such as null-mappings.  

7.1.5 Performance summary 

All of the scenarios have been executed with the following data set:  

• Total number of events:     12455 

• Total number of event sequences:    438 

• Average number of events per event sequence: 27,043 

First, the scenarios have been executed without an initial threshold. Thus, the threshold value of costs is 

dynamically updated with every possible solution, but initially a set of potentially bad solutions have also been 

build up completely, until the dynamic threshold bit by bit decreases and more and more solutions can be 

omitted early.  

Scenario Events in 

pattern 

Total time Algorithm 

time
35

 

Events/sec 

total 

Sequences/sec 

total 

Events/sec 

algorithm 

Seq./sec 

algorithm 

C1.a 6 00:00:14.25 00:00:03.32 889,64 31,08 3663,24 128,53 

C1.b 6 00:00:19.58 00:00:08.28 638,71 22,46 1500,60 52,65 

C1.c 6 00:00:15.03 00:00:03.05 830,33 29,13 4151,23 146,66 

C1.d 6 00:00:25.58 00:00:11.68 488,43 17,13 1073,71 37,35 

Table 13: Performance results for evaluation scenario C1 without initial threshold 

In addition, we executed the scenarios with an initial threshold for a target similarity of 0.5 with the objective 

to speed up the searching process. The best matches shown above have still been discovered. Performance 

results are listed below. 

Scenario Events in 

pattern 

Total time Algorithm 

time 

Events/sec 

total 

Sequences/sec 

total 

Events/sec 

algorithm 

Seq./sec 

algorithm 

C1.a 6 00:00:14.99 00:00:00.97 830,88 29,21 12580,81 442,42 

C1.b 6 00:00:15.91 00:00:01.01 803,84 27,52 12331,68 433,66 

C1.c 6 00:00:16.55 00:00:01.17 752,56 26,46 10645,30 347,36 

C1.d 6 00:00:17.96 00:00:02.05 693,48 24,38 6075,61 213,56 

Table 14: Performance results for evaluation scenario C1 with initial threshold 

                                                                 
35

 Measure the pure algorithm execution time, i.e. the total time minus the overhead for data retrieval from database and 

conversion of the raw data into the processable events.  
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Remarkable is the high ratio of “overhead” time, i.e. the time for data loading and preparation in relation to 

the pure algorithm time (see performance summary below). Caused by the fact that the matching is very fast in 

case of the short pattern event sequence, data loading and preparation make up more than 75% of the total 

search time in this scenario. 

7.2 C2 - Trouble tickets: Change history sequences 

Trouble tickets in general can be understood as issues and problems reported either by customers or company-

internal. Typically, a trouble ticket holds a problem or task description. It may be assigned to a certain person 

or support group and has a defined priority. Common trouble-ticket systems keep track of each ticket’s status, 

whereby typical states are open, assigned, resolved, incomplete etc.  

The second evaluation scenario aims at analyzing sequences of trouble-ticket traces. In contrast to the first 

evaluation scenario, for this case study real data from a trouble ticket system have been used instead of 

simulated data. The data have been provided by an international company offering, among others, IT services 

such as maintaining and monitoring other companies’ servers and IT landscapes. With thousands of customers 

who all might submit issues to the trouble ticketing system, the analysis thereof becomes a demanding task.  

Figure 31 depicts the relevant event types for this application example. In the concrete case, server alerts are 

captured. In addition, changes on trouble-tickets are traced and reflect as “ticket created”, “ticket resolved”, 

“ticket changed” and “ticket reopened” events. The figure also shows how these events are correlated to 

change history sequences: All ticket events correlate via the unique ticket ID; server alerts are unique via their 

event handle, server handle and date fields. In the dataset, tickets might be opened due to a server alert, but 

not necessarily. Many ticket histories also contain solely the various ticket events, in case they have been 

created manually without a prior alert. In addition, many alerts exist without any ticket events.  

 

Figure 31: Event types and correlations in evaluation scenario C2 – Trouble tickets 
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In the given case, the following questions have been of particular interest:  

• Which tickets have suspicious or extraordinary histories? 

• Which tickets have not been resolved within the foreseen time period? Is it a repeating pattern that 

always certain ticket classes are not resolved in time? 

• Which tickets have many reassignments, and is there a general pattern such as “All tickets of type A 

are first assigned to support group X which then assigns them to support group Y before they are again 

forwarded to support group Z who’s members finally resolve these issues”? 

Obviously, for certain queries such as retrieving tickets with many reassignments no similarity search is 

required. Yet, in order to assess if a certain type of assignment sequence seems to be a general pattern, we 

propose to apply the presented event sequence similarity model. In many cases, people also have a certain 

suspicion and want to prove whether this suspicion holds on the historic data.  

7.2.1 Objectives and evaluation focus 

For the evaluation of our similarity search algorithm in the given context, we define the following objectives:  

• For a given, interesting sequence of ticket assignments, the similarity search is able to discover further 

ticket histories, if available, having a similar assignment history.  

• It must be possible to assess whether the given assignment sequence can be understood as a general 

pattern reoccurring several times, or whether it is not reoccurring.  

In addition to these measureable objectives, the focus of this evaluation case is on: 

• Measuring the performance in case of sequences with strongly varying lengths 

• Measuring the performance in case of a large amount of event attributes 

• Proving the applicability of the model in a real-world use case 

7.2.2 C2.a – Searching the complete data set for a known event sequence 

For the first evaluation scenario, we utilized a known ticket history as the search pattern. This ticket was 

identified (more or less by chance) by one of the operators in the incident management department. The plot 

in Figure 32 shows that this ticket has a significantly long history with several ticket changes and also 

reassignments (blue, and green events).  



102 

 

 

Figure 32: Activity history for a known incident ticket plotted in the event tunnel 

For the given use case, the sequence of reassignment is of particular interest. Figure 33 visualizes how the 

ticket was assigned between different support groups, whereby each sector on the Y-axis represents one 

support group. Time is on the X-axis.   

 

Figure 33: Sequence of ticket reassignment events over time (x-axis) by assigned support groups (y-axis)
36

 

                                                                 
36

 In the chart, two areas are marked with an asterisk. At these points in time, the data set showed a longer time period 

between the events which has been cut out in order to fit the figure to the page size.   
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For the first scenario, we searched for this complete event sequence in the reference data set of about 165,000 

events with the objective to discover similar occurrences.  

Search Parameters:  

• Match must start with first event:  False 

• Match must end with last event:  False 

• Time matching mode:   Relative 

• Attribute similarities:   Levenstein string similarity on TicketReassigned.Assignee 

7.2.2.1 Search results and discussion 

The search for the known, very long ticket event sequence returned no matches. This means, with the given 

configuration, no solution could be found with sufficiently low costs to be at least 50% similar. Our 

investigations on this result showed that there is no other event sequences of such an extreme character, i.e., 

that many reassignments and ticket changes is contained in the data set. This results in a need of multiple null-

mappings in each solution, which drastically decreases the similarity score.  

Yet, our objective to figure out whether such a behavior is a reoccurring pattern is fulfilled as we figured out 

that at least in our reference data set, no significantly similar event sequence is contained.  

7.2.2.2 Performance summary 

• Total number of events:        165841 

• Total number of event sequences:       87241 

• Average number of events per event sequence:    1,9  

• Average number of events per event sequence with at least 1 ticket event:  8,47 

• Initial threshold set for a target similarity of:     0,5 

Scenario Events in 

pattern 

Total time Algorithm 

time 

Events/sec 

total 

Sequences/sec 

total 

Events/sec 

algorithm 

Seq./sec 

algorithm 

C2.a 91 00:18:43.10 00:08:11.34 147,67 77,68 337,67 177,68 

Table 15: Performance results for evaluation scenario C2.a  

7.2.3 C2.b – Finding reassignment scenarios 

Scenario C2.a showed that a too specific or extreme pattern is hard to discover in the data. One of the reasons 

why the previous scenario did not return any results was that the search was not particularly focused on what 

we have actually been interested in most: the reassignments. The pattern sequence contained a whole range 

of ticket changed events, which of course have also been considered during the search and influence the 

matching process significantly.  

Scenario C2.b attempts to concentrate the similarity search to the reassignment. Therefore, we excluded the 

ticket changed events totally from the search pattern. In addition, the order remains unconsidered and also the 

temporal structure is omitted with the objective to simply discover if several support groups always assign the 

tickets to each other, no matter in which order.  

For the scenario, we furthermore chose a shorter reassignment sequence, with reassignments among 3 

support departments “AT”, “DSS” and “H”. Within each of these departments support groups exist, such as 
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“AT.SUPPORT.SAP”. We tried to figure out if there are regular reassignments among these departments, which 

normally should not occur as each has separate concerns.  

In scenario C2.a we searched the complete data set. In fact, this is not required: event sequences containing 

only an alert event but no ticket events because for this alert no ticket had been opened, as well as sequences 

with less than 2 reassignment events can be pre-filtered.  

7.2.3.1 Search results and discussion 

Using the above described settings to narrow the search scope, the whole searching process executes more 

than 10 times faster than in scenario C2.a. The results have been rather surprising: We discovered that more 

than 8% of all tickets had a match of 75% similarity and higher. Figure 34 depicts the best matches regarding to 

the reassignments. As can be seen from the figure, each sequence contains reassignments among named 

departments. Only the order is switched, as we consciously omitted this dimension.  

 

(a) – Ticket reassignments in search pattern 

 

(b) – Match with sim=0.91 

 

(c) – Match with sim=0.89 

 

(d) – Match with sim=0.87 

Figure 34: Best matches for evaluation scenario C2.b – Reassignments by support department over time 
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In addition, searching the limited data set (which can be hold in memory) drastically reduces the data retrieval 

time to about 1/5
th

 of the time required when reloading sequence by sequence from the database.  

The scenario shows that a targeted search, focusing on the current analysis question returns valuable results in 

short execution times. Yet, this requires a knowledgeable and skilled user, and also some data preprocessing, 

for instance to be able to load only sequences with more than 3 reassignments or the like. The only problem 

we encountered with this scenario was how to get accurate results with string similarities. In the given case, 

the naming convention for a ticket assignee was DEPARTMENT.SUPPORTGROUP.NAME. In the dataset we 

found entries such as “DSS.SUPPORT.ALL” or “CSS.SUPPORT.ALL”. Looking at the string, these values are very 

similar whereas from there semantics, they are almost not similar as the groups are in different departments. 

We resolved this issue by splitting up the department substring into a separate event attribute which we 

considered in the search with a significantly higher weight.  

7.2.3.2 Performance summary 

• Total number of events:     10095 

• Total number of event sequences:    372   

• Average number of events per event sequence: 27,14 

• Initial threshold:      ∞ 

Scenario Events in 

pattern 

Total time Algorithm 

time 

Events/sec 

total 

Sequences/sec 

total 

Events/sec 

algorithm 

Seq./sec 

algorithm 

C2.b 28 00:00:05.83 00:00:04.71 1725,38 63,81 2143,31 79,98 

Table 16: Performance results for evaluation scenario C2.b 

7.2.4 C2.c – Considering alert events and the order of assignments 

In scenario C2.b we focused on reassignments but ignored the order of these reassignments. In the next 

scenario, we considered not only the order in which the assignments happened, but also if the ticket was 

created for a certain server alert. Thus, the practical question we tried to answer was: For a certain server alert, 

is the opened ticket (re-)assigned in multiple cases in the same way, between the same departments.  

7.2.4.1 Search results and discussion 

In the pattern sequence we chose, a server alert with the message “Disk space warning: only 4,97% free on disk 

[…]” triggered a ticket to be created. This ticket was then first assigned to department “CSS”, from “CSS” to “H” 

and to “AT” where it was reassignment several times within the department, then back to “CSS” and finally 

resolved.  This sequence of reassignments is visualized over time in Figure 35 (sequence highlighted in violet).  

The search among 10,000 events finished in less than 10 seconds, and revealed some interesting results: For 

instance, the best match of the search, depicted also in Figure 35 (grey sequence) showed a very similar 

sequence of reassignments, from “CSS” to “H”, to “AT”, only with some more reassignments within the 

individual departments. Interestingly enough, the ticket was also opened due to an initial alert, and this alert 

was again a disk space warning. The knowledge about such incidents is a good starting point for investigating in 

detail the support process in case of disk space warnings.  



 

Figure 35: Search pattern and best match for evaluation scenario

7.2.4.2 Performance summary

• Total number of events:   

• Total number of event sequences: 

• Average number of events per event sequence:

• Initial threshold:    

Scenario Events in 

pattern 

Total time 

C2.b 28 00:00:09.37

Table 17: Performance results for evaluation scenario C2.c

7.3 C3 - Credit card transaction

In scenario C3 we used a data set containing sequences of purchases from a credit card provider. As these data 

are highly confidential, all of the following results and considerations are expressed in terms of anonymous 

names for products, customers and purchase information. 

The data set contains sequences of activities for a selected group of 4000 customers. These activities are, 

besides creating or closing the account, first of all “sales” events. These events reflect that a customer paid for 

something by credit card. In that case, we have the information on which shop that was (or ATM), the country 

and the paid amount available for the analysis. 

attributes.   
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 In the chart, two areas are marked with an asterisk

between the events which has been cut out in order to fit the figure to the page size.  

: Search pattern and best match for evaluation scenario C2.c37 

Performance summary 

   10095 

er of event sequences:    372 

ts per event sequence: 27,14 

   ∞ 

 Algorithm 

time 

Events/sec 

total 

Sequences/sec 

total 

Events/sec 

algorithm

09.37 00:00:07.63 1077,37 39,70 

: Performance results for evaluation scenario C2.c 

Credit card transaction: Sequences of purchases

In scenario C3 we used a data set containing sequences of purchases from a credit card provider. As these data 

are highly confidential, all of the following results and considerations are expressed in terms of anonymous 

ers and purchase information.  

The data set contains sequences of activities for a selected group of 4000 customers. These activities are, 

besides creating or closing the account, first of all “sales” events. These events reflect that a customer paid for 

omething by credit card. In that case, we have the information on which shop that was (or ATM), the country 

and the paid amount available for the analysis. Figure 36 shows the occurring types of events and their 

                         

are marked with an asterisk. At these points in time, the data set showed

between the events which has been cut out in order to fit the figure to the page size.   
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Events/sec 

algorithm 

Seq./sec 

algorithm 

1323,07 48,75 

purchases 

In scenario C3 we used a data set containing sequences of purchases from a credit card provider. As these data 

are highly confidential, all of the following results and considerations are expressed in terms of anonymous 

The data set contains sequences of activities for a selected group of 4000 customers. These activities are, 

besides creating or closing the account, first of all “sales” events. These events reflect that a customer paid for 

omething by credit card. In that case, we have the information on which shop that was (or ATM), the country 

hows the occurring types of events and their 

. At these points in time, the data set showed a longer time period 
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Figure 36: Event types and correlations in evaluation scenario C3 – credit card transactions 

In the previous two evaluation scenarios, we focused on the retrieval quality and execution time in case of 

known pattern sequences for evaluating if other, similar sequences exist and if so, in which extend these are 

similar in order to assess whether the given case is a reoccurring pattern.  

In this scenario we focus on applying the similarity search in comparison to established and well-known data 

mining techniques. In the given case, we did an analysis of the raw dataset with RapidMiner.
38

 The objective 

was to figure out if there are certain patterns in the customer behavior for customers whose accounts had to 

be closed due to illiquidity and thus unpaid invoices.  

7.3.1 Objectives and evaluation focus 

For the evaluation of our similarity search algorithm in the given context, we define the following objectives:  

• Figure out if the similarity search is applicable for the given purpose 

• Find possible improvements for supporting the analyst’s workflow given a similar task 

7.3.2 C3.a – Data integration and preprocessing 

Up to this point, we haven’t considered this aspect and started with data already being loaded to the event 

repository and ready to be searched. Yet, when talking about data mining, it is unavoidable to first talk about 

data integration and preprocessing.  

7.3.2.1 Preprocessing for classical data mining 

The most important preprocessing step in order to successfully apply existing data mining algorithms was the 

generation of additional attributes, in order to have an utmost complete attribute space. For instance, the 

occurrence date attribute had been split up into additional “month of the year”, “day of week” and “week of 

month” attributes in order to make it accessible. The currency of the purchases showed too many distinct 

values with only a few occurrences each, which caused inappropriate or statistically insignificant results and 

had to be summarized to “EUR” and “not EUR”. Sales amounts had to be categorized into equidistant classes as 

working with the discrete values was impossible.  

                                                                 
38

 RapidMinder by Rapid-I is an open-source data mining software, providing access to a whole range of data mining 

algorithms such as decision trees or lazy learners, association mining techniques and also data pre-processing and feature 

selection operators.  
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7.3.2.2 Preprocessing for similarity search  

Basically, the similarity search requires less preprocessing, as all attributes, i.e. also discrete values can be used 

and compared directly, without categorization. In addition, it is not necessary to extract attributes such as “day 

of week” into separate attributes, as attributes functions as described in 5.4.1 can be used to extract such 

values on the fly. 

7.3.2.3 Summary and discussion 

With the use of attribute function, the effort for preprocessing is minimal in our approach. Discrete values 

don’t need to be categorized and attribute functions add “virtual” event attributes on-the-fly during the 

comparison, which can then be weighted accordingly. Yet, in order to optimize performance of the searching 

process, we still recommend extracting derived values into separate event attributes during the data 

integration to save computation time. 

7.3.3 C3.b – Getting started with the mining process 

The next question after preprocessing is how to start the data mining. Below, we discuss the situation we 

faced.  

7.3.3.1 Getting started with the “classical” data mining 

Among the existing data mining approaches, we decided to apply a classification and regression tree (CART) in 

order to derive simple rules such as “if customers buy more than 4 times in branch X and pay in currency Y, the 

probability for illiquidity is 91%”. In fact, in order to get started with the mining process, profound knowledge 

on the existing techniques is required in order to choose the right algorithm for the given purpose, but despite 

of that, only some configuration parameters have to be set.  

7.3.3.2 Getting started with the similarity search 

The goal with similarity search was to find a sequence of certain purchases which is reoccurring in multiple 

cases of known customer illiquidity. Obviously, the similarity search engine cannot be directly compared to 

data mining algorithms such as decision trees or other learners in general. The greatest problem we had in the 

given case was that we did not have any assumptions or reference cases to be checked for occurrence and 

validity. Thus, the only thing possible was to pick a sequence more or less by chance and try to search for 

similar occurrences. We tried picking several sequences, starting with the one customer where most money 

was lost. Yet, this cannot be called a structured and systematic approach.  

7.3.3.3 Summary and discussion 

The use case shows the necessity to embed the similarity search in a greater context, for instance in the form 

of a clustering algorithm, which forms groups of similar sequences based on multiple similarity comparisons. As 

is, only a punctual search is possible. Without initial knowledge on the dataset, it is hard to model a suitable 

reference pattern.  

7.3.4 C3.c – Finding sequences of purchases 

Finally, taken said limitation that we can only pick certain pattern sequences by chance and not automatically 

investigate the whole data set into account, we tried to discover sequences of similar purchases for one 

selected reference pattern.  
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For the search, we limited the whole dataset of 182.023 events to 14.034 events of those customers, whose 

accounts have been closed. In total, these are 348 of 98.355 customers. For the search, the Levenstein string 

similarity (which actually performed quite well in scenario C2) was used for the attributes “Sales.Partner” (i.e. 

the shop where a purchase took place), “Sales.Currency” and “Sales.Country”. For “Sales.Amount”, normalized 

absolute difference similarity was uses, as well as Boolean similarity for the attribute “Sales.InternetSale”.  

Figure 37 shows how the sales events in the selected pattern sequence are distributed with respect to the 

product branch (Figure 37a) and the country (Figure 37b).  

 

(a) (b)  

Figure 37: Search pattern events for evaluation scenario C3.c 

7.3.4.1 Search results and discussion 

Given the selected pattern sequence and configuration, the algorithm failed to return valuable results. We 

tried to adjust the weights of the considered attributes, but the pattern remained too long and too specific to 

be rediscovered in the data.  

The apparent problems are in particular:  

• The pattern sequence contains 65 sales events. Sequences with a lower number of events have to be 

mapped using several null-mappings. Depending on the null-mapping costs, this decreases the 

similarity score drastically and these sequences soon fall below the threshold. On the other hand, if 

the null-mapping costs are low, solutions using a log of null-mappings might be preferred over 

solutions taking the available events into account. 

• The length of the event sequences in the data set varies from 10 up to 530 events. For such length of 

an event sequence, a huge amount of solutions exist, and the approach of considering the single 

events is probably not appropriate any longer. Rather, aggregation would be required.  

• When looking at the rules derived from the CART, these patterns could not be discovered with the 

similarity search, because they are “overruled” in the matching process by the whole range of 

additional events which are not statistically cumulating in the pattern. In other words, even if we know 

that 4 purchases in branch 123 in Germany have always been followed by illiquidity in the past, it 

might be that we still do not discover such an event sequence as it contains, aside of these 4 events, 

maybe another 100 purchases, all decreasing the similarity to the reference pattern.  
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• For very long event sequences, the weight of a single event is minimal. Thus, the matching process 

continuously has to build up huge solution trees before reaching the similarity threshold. This problem 

is yet inherent to the chosen approach and could only be omitted by either techniques to detect huge 

deviations earlier in the matching process or weighting events at earlier stages of the mapping 

processes stronger compared to the rest in order to reach the threshold faster, if a solution is bad. At 

the same time, this distorts the correctness of results.  

In summary, the evaluation scenario pointed out a set of shortcomings or missing features in the current 

approach, some of which will be discussed again in the future work section. 
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8 Conclusion and future work 

In the on-hand thesis, we presented flexible yet natural approaches for similarity searching in event data, both 

within single events and sequences thereof. Serving as a basis for our considerations, we presented a rich set of 

definitions and described events, event-sequences and related concept on a very high level of abstraction. Also, 

we gave a brief introduction on SARI, the CEP-infrastructure underlying our concrete implementation. 

Eventually, we evaluated our implementation in three real-world scenarios. 

Our approach on single-event similarity builds upon geometric ideas of similarity, with, at least basically, event 

attribute values defining the relative positioning of two events, i.e., the distance between them. Without a 

doubt, a so-defined understanding of single-event similarity is highly intuitive and somewhat obvious, and 

similar approaches have been presented, for instance, in the database domain. Yet, by extending the very 

basic, distance-based approach on vector-similarity by two user-configurable levels of abstraction, attribute-

functions and corresponding attribute-level similarity-measures, the presented approach gains a broad 

expressiveness and generality far beyond related concepts, and thus should be applicable in the variety of 

scenarios and use-cases that complex business events may occur in. Also, we found out that at the time of 

writing, there is no comprehensive and formally well-founded study on single-event similarity in the CEP 

domain. We thus understand this thesis as a first groundwork for further improvements, extensions and 

adaptations.   

The proposed approach on event-sequence similarity can clearly be considered the key part of the on-hand 

thesis. Created from scratch instead of setting up on an existing, less powerful approach on event-sequence 

similarity, it builds upon an assignment-based understanding of sequence similarity were certain units from the 

target sequence are considered to represent the units in the pattern sequence. Despite of an undeniable 

degree of complexity, it should appear somewhat natural to business analysts. As before for single-event 

similarities, the proposed approach on event-sequence similarity focuses on highest generality and flexibility. 

The conceptually clear “separation of concerns” - into possible assignments (compatibilities), sources of costs 

(cost-functions) and impact of costs (weights) - reflects this, and should be a solid basis for further extensions 

and improvements of the algorithm. Unfortunately, the remarkably high generality of the proposed algorithm 

requires lots of configuration and difficult “fine-tuning”, and thus the extensive involvement of the domain 

expert. Also, the relative simplicity of the proposed Branch-&-Bound strategy comes to the expense of 

performance. 

Generally, the above characteristics were confirmed in the evaluation part of this thesis where we applied the 

algorithm in three real-world scenarios. We figured out that the algorithm performs well (regarding both the 

performance and the accuracy of results) for short and sharp-edged sequences where a majority of events 

constitute clear and significant characteristics of the event-sequence, e.g., instances of clearly defined business 

processes. Here, both the selection of cost-functions and the weighting process can be performed in a 

straightforward manner, evaluated and improved if necessary. The proposed algorithm fails, however, for long 

and noisy event sequences with no or very fuzzy structures. In such cases, it might be extremely difficult if not 

impossible for a business analyst to clearly accentuate those aspects he or she considers important over the 

sheer mass of events completely irrelevant for his or her certain interest. Also, as the current algorithm 

considers mappings regardless of whether they are weighted zero and thus have no impact on the overall costs 

of a solution, the algorithm executes impracticable slow even if there are only a few events that are actually 

relevant for the similarity computation.  
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It is easy to see that there is still plenty of room for further improvements of the proposed approach on event-

sequence similarity. In his thesis [49], Suntinger presents constraint blocks, a particularly interesting extension 

of the proposed algorithm allowing analysts to further specify those aspects of a pattern-sequence that are 

relevant for event-sequence similarity. An analyst might, for instance, define that a number of pattern-

sequence events must occur in the correct order in the target sequence. Also, Suntinger presents the seamless 

integration of a time-series similarity algorithm, addressing scenarios where a certain event attribute’s values 

form a time series across sets of succeeding events. 

Further research effort should, however, be spent in improvements of the base algorithm. One of the most 

promising ideas is that of adapting the algorithm towards Dynamic Programming. Yet, even for the existing 

Branch & Bound strategy, several performance improvements should be possible: One might, for instance, 

consider the preferred evaluation of those aspects that are considered most relevant by the business analyst, 

i.e., weighted heavily, so that weak solutions can be omitted earlier in the calculation process.  As yet, a 

notable fall in performance occurs when those mappings that are considered most relevant occur at the very 

end of a pattern-sequence. Also, a variety of pre-processing steps might be valuable in order to detect those 

target-sequences that are guaranteed to be dissimilar before starting the actual algorithm. It might be 

valueable, for instance, to derive a certain maximum size from the given pattern-sequence that no “similar” 

target-sequence may exceed. Heuristic methods and their combination with the proposed base algorithm 

would make another interesting starting point for future work. 

Besides performance issues, a second notable shortcoming is that of the enormous configuration effort 

required from the business analyst. In future, one therefore might consider the automatic derivation of some 

kind of default configuration, e.g., a suitable initial threshold and meaningful weights, from the given pattern-

sequence. Without a doubt, such “self-calibration” of the proposed algorithm requires deep knowledge in 

statistical data mining techniques and would be a research project on its own. 

Finally, let us say that on-hand thesis lacks a detailed, both quantitative and qualitative comparison of the 

proposed algorithm with existing yet less flexible approaches as, most prominently, presented by Moen [35] 

and Mannila and Seppänen [33]. For future publications on the proposed algorithm, such comparative kind of 

evaluation will of course be essential. Moreover, it might be highly interesting to find out whether an edit-

distance-based approach as presented by Moan [35] can be extended by additional edit-operations in order to 

gain the expressiveness of the on-hand approach. 
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