
Ann Oper Res (2012) 194:325–339
DOI 10.1007/s10479-012-1078-5

Solving the post enrolment course timetabling problem
by ant colony optimization

Clemens Nothegger · Alfred Mayer · Andreas Chwatal ·
Günther R. Raidl

Published online: 9 February 2012
© Springer Science+Business Media, LLC 2012

Abstract In this work we present a new approach to tackle the problem of Post Enrol-
ment Course Timetabling as specified for the International Timetabling Competition 2007
(ITC2007), competition track 2. The heuristic procedure is based on Ant Colony Optimiza-
tion (ACO) where artificial ants successively construct solutions based on pheromones (stig-
mergy) and local information. The key feature of our algorithm is the use of two distinct but
simplified pheromone matrices in order to improve convergence but still provide enough
flexibility for effectively guiding the solution construction process. We show that by par-
allelizing the algorithm we can improve the solution quality significantly. We applied our
algorithm to the instances used for the ITC2007. The results document that our approach
is among the leading algorithms for this problem; in all cases the optimal solution could
be found. Furthermore we discuss the characteristics of the instances where the algorithm
performs especially well.

Keywords Timetabling · Ant colony optimization · Ant system · Metaheuristics ·
Combinatorial optimization

C. Nothegger (�)
Institute of Photogrammetry and Remote Sensing, Vienna University of Technology,
Gusshausstr. 27-29, 1040 Vienna, Austria
e-mail: cn@ipf.tuwien.ac.at

A. Mayer · A. Chwatal · G.R. Raidl
Institute of Computer Graphics and Algorithms, Vienna University of Technology, Favoritenstr. 9-11,
Vienna, Austria

A. Mayer
e-mail: alfredmayer@gmx.at

A. Chwatal
e-mail: andy@ads.tuwien.ac.at

G.R. Raidl
e-mail: raidl@ads.tuwien.ac.at

mailto:cn@ipf.tuwien.ac.at
mailto:alfredmayer@gmx.at
mailto:andy@ads.tuwien.ac.at
mailto:raidl@ads.tuwien.ac.at

326 Ann Oper Res (2012) 194:325–339

1 Introduction

Course timetabling problems periodically arise at various universities and other educational
institutions. The general course timetabling problem is known to be NP-hard and is also in
practice a challenging computational task.

Here, we focus in particular on the Post Enrolment Course Timetabling Problem as spec-
ified for the International Timetabling Competition 2007 (ITC 2007), competition track 2. In
this problem the challenge is to assign university courses to timeslots and rooms, where each
assignment has to fulfill various constraints. According to McCollum et al. (2010) a problem
instance for the ITC2007 (track 2) consists of

• a set of n events that are to be scheduled into 45 timeslots (5 days of 9 hours each),
• a set of r rooms, each of which has a specific seating capacity, in which the events take

place,
• a set of f room-features that are satisfied by rooms and which are required by events,
• a set of s students who attend various different combinations of events,
• a set of available timeslots for each of the n events (i.e. not all events will be available in

all timeslots), and
• a set of precedence requirements stating that certain events should occur before others.

The goal is to assign the n events to the time slots and rooms such that the following hard
constraints are fulfilled:

1. No student should be required to attend more than one event at the same time.
2. In each case the room should be large enough for all the attending students and should

satisfy all of the features required by the event.
3. Only one event is put into each room in any timeslot.
4. Events should only be assigned to timeslots that are pre-defined as “available” for those

events.
5. Where specified, events should be scheduled to occur in the correct order.

It is required that all solutions fulfill all of the hard constraints. Eventually, some events
may be left unassigned if they cannot be assigned without hard constraint violations. A so-
lution is defined to be feasible if all events are assigned without hard constraint violation.
Otherwise the quality of the solution is characterized by the Distance to Feasibility (DTF)
which is the number of students of each of the unplaced events. Besides the hard constraints,
solutions should fulfill the following soft constraints:

1. Students should not be scheduled to attend an event in the last timeslot of a day.
2. Students should not have to attend three (or more) events in successive timeslots occur-

ring in the same day.
3. Students should not be required to attend only one event in a particular day.

The Soft Constraint Penalty (SCP) is determined as the sum of the following components:

• Count the number of students having just one class a day.
• Count the number of occurrences of a student having more than two classes consecutively

(3 consecutively scores 1, 4 consecutively scores 2, 5 consecutively scores 3, etc.).
• Count the number of occurrences of a student having a class in the last timeslot of the

day.

Due to the greater importance of the hard constraints, two solutions are first compared
by their DTF, and only in the case of equal DTFs the SCP is considered for comparison.

Ann Oper Res (2012) 194:325–339 327

2 Related work

A comprehensive review of timetabling problems can be found in Lewis (2008), Schaerf
(1999), Burke and Petrovic (2002), MirHassani and Habibi (2011). Many metaheuristics
have been applied successfully to diverse variants of this problem. For a particular problem,
various Ant Colony Optimization (ACO) algorithms have been developed, e.g. a Max-Min
Ant System is presented in Socha et al. (2002), and an ant colony system in Rossi-Doria and
Paechter (2003). In Rossi-Doria and Paechter (2003) various other metaheuristics including
evolutionary algorithms, ant colony optimization, iterated local search and simulated an-
nealing as well as diverse neighborhood structures are compared. As these algorithms per-
form very differently depending on various properties of the problem instances, the authors
conclude that hybrid algorithms may be a promising way to tackle the problem. The most
successful approaches at the First International Timetabling Competition (TTComp 2002)
are described in detail by Kostuch (2005), Burke et al. (2003), Gaspero and Schaerf (2003),
Chiarandini et al. (2006) and Rossi-Doria and Paechter (2004). The algorithm proposed
by Kostuch (2005) first constructs a feasible solution and then applies simulated annealing
to minimize the soft constraint violations. Local search strategies are successfully applied
by Burke et al. (2003) and Gaspero and Schaerf (2003). A hybrid algorithm, described by
Chiarandini et al. (2006), is reported to find very good results for many of the TTComp2002
instances. A memetic algorithm is presented in Rossi-Doria and Paechter (2004).

A preliminary version of our work was published in Mayer et al. (2008) and here we ex-
tend this work by a parallelization and combination with Simulated Annealing. Furthermore
extended experimental results are presented.

3 The algorithm

Our approach is based on ant colony optimization (ACO) and can be more specifically clas-
sified as Ant System (AS). For a comprehensive introduction to ant colony optimization see
Dorigo and Stützle (2004). In ACO algorithms artificial ants successively construct solu-
tions based on global information (pheromones) and local information (e.g. some greedy
criterion). The pheromones hence act as a probabilistic model for solution construction and
are perpetually amplified by ants that have constructed high quality solutions. Pheromone
evaporation counteracts early convergence by allowing exploration of the search space for a
greater duration. A generic ant colony optimization procedure consists of three steps which
are iterated. The steps are solution construction by the artificial ants, pheromone update and
optionally daemon actions like performing a local search.

More specifically, our AS can be described by Algorithm 1. The main task in designing an
ACO algorithm is to devise the pheromone structures and update rules, and to find effective
local methods able to drive the process towards promising regions of the search space. The
respective parts of our algorithm are described in detail in the following sections.

3.1 Pheromone information

In our algorithm ants assign events to timeslots and rooms based on two kinds of pheromone
denoted by τ s

ij and τ r
ik . τ s

ij is an n × 45 matrix representing the relative probabilities of
assigning an event i to timeslot j . Likewise, τ r

ik is an n × r matrix representing the relative
probabilities of assigning an event i to room k. The decision to store pheromone information
in this way is a key-feature of the algorithm, as it avoids the usage of a much larger data

328 Ann Oper Res (2012) 194:325–339

Algorithm 1: TimeTabling-AS()

while time limit not yet reached do1

for each ant k = 1, . . . ,m do2

create random permutation πe of the events3

for each event in order πe do4

assign event based on pheromones5

end6

end7

locally improve each constructed solution8

for each solution with a better than average score do9

pheromone amplification for assignments appearing in solution10

end11

pheromone evaporation12

end13

structure implied by a more traditional encoding using individual pheromone values for all
slot/room/event combinations (see e.g. Socha et al. 2002). On the other hand it contains
more information than the exclusive use of event–timeslot pheromones (e.g. Rossi-Doria et
al. 2003; Socha et al. 2003).

Obviously, distinct pheromone matrices τ s and τ r are not as expressive as a third or-
der pheromone tensor (τijk) covering all combinations of events i, timeslots j , and rooms
k would be. On the other hand (τijk) can be expected to be sparse, i.e. there are few ele-
ments different from zero. Thus, it is likely that the elements τijk can be sufficiently well
approximated by τijk ≈ τ s

ij × τ r
ik . Furthermore we do not expect particularly strong mutual

dependencies of event–room and event–timeslot relations. Suppose some course E is re-
quired to be held in a subset of the rooms including room R1 and the students attending
this course as well as some precedence constraints require the event to be scheduled early
in the first day, say at one of the slots S1, . . . , Sm. There is no obvious need to express the
demand to assign E to exactly R1 when using S1 for instance, as all rooms satisfying the
requirements of E will typically be equally good in this situation w.r.t. a current partial so-
lution. These considerations directly lead to the conclusion that the assignment to a room
is typically less critical than the assignment to a timeslot, which is also supported by our
experiments. If there are mutual dependencies, they are handled implicitly by the solution
construction procedure.

Table 1 Comparison of different pheromone representations. For the two representations and two time limits
the table lists median DTF, median SCP, standard deviation for DTF and SCP respectively and the probability
of finding a feasible solution. Results were obtained from 50 runs on each of the ITC2007 instances

Time No. of matrices DTF SCP σDTF σSCP P(DTF = 0)

5 min 1 54 516 121 600 82

2 0 215 82 406 92

1 h 1 0 120 5.6 172 99

2 0 38 0 58 100

Ann Oper Res (2012) 194:325–339 329

Algorithm 2: getNextPermItem(j)

if j > pos then1

for j ′ = pos, . . . , j do2

if σ > ε then3

rnd ← σ · random number4

q ← pos5

ξ ← 06

while ξ < rnd and q < 45 do7

ξ ← ξ + ws
q8

q ← q + 19

end10

σ ← σ − ws
q−111

swap(q − 1, j ′)12

else13

// the remaining weights are all zero14

arbitrarily choose one of the remaining15

indices rnd16

swap(rnd, j ′)17

end18

pos ← pos + 119

end20

end21

return π s
j22

To test the hypothesis that the approximation τijk ≈ τ s
ij ×τ r

ik is sufficient, we implemented
both pheromone representations: τijk and τij + τik . If the approximation is sufficient then
the solution quality for the approximated representation should not be worse than the full
representation. Our experiments support this hypothesis, the results are listed in Table 1.
The two matrix representation actually performs better than the full representation because
the algorithm executed between two and five times more iterations per time unit. The reason
for this is that the single matrix is much larger than the two matrices combined and thus the
construction of candidate solutions and the pheromone evaporation are more expensive to
compute. Thus the gain in efficiency outweighs the lack of expressiveness.

3.2 Solution construction

The solution construction considers the events in a uniform random order and assigns each
event to a feasible room and a feasible time slot in a greedy randomized way (if possible)
considering the pheromone information.

Typical ACO algorithms also consider local heuristic information in addition to the
pheromone information. This information is sometimes called the visibility function, es-
pecially in the case of the traveling salesman problem. We do not use any local heuristic
information because this increases the randomness of the algorithm, which we believe is
important for the algorithm’s behavior in the presence of a significant solution backbone
(cf. Sect. 4).

For each event randomized weighted permutations of the available slots and rooms (π s

and π r, respectively) are derived by copying the pheromone matrix rows τ s
i τ r

i into vectors

330 Ann Oper Res (2012) 194:325–339

Fig. 1 Assignment of an event
to a feasible room and timeslot:
The pheromone matrix rows τ s

i
τ r
i

are copied into vectors ws and
wr and sorted according to
weighted random permutations
π s and π r so that entries with
higher values appear more likely
at the beginning. Room/timeslot
combinations are then checked in
the indicated order, and the first
feasible assignment is accepted

ws and wr and computing the weighted random permutations π s and π r so that entries
with higher values appear more likely at the beginning. This way slots (rooms) with higher
pheromone values for the current event are more likely to appear earlier than slots (rooms)
with low pheromone values. This can be compared to the fitness proportional selection in
genetic algorithms as for each position an item is selected (from the remaining ones) with a
probability proportional to the respective pheromones.

The ant then tries to assign the current event to a slot/room combination based on their
order in π s and π r, respectively. The first possible assignment not violating any hard con-
straints w.r.t. the current partial solution is accepted. To ensure that both kinds of pheromone
are accounted for in a balanced way, the slot/room combinations are considered in the
following order: (π s

1,π
r
1), (π

s
1,π

r
2), (π

s
2,π

r
1), (π

s
1,π

r
3), (π

s
2,π

r
2), (π

s
3,π

r
1), . . . , (π

s
45,π

r
r). See

also Fig. 1.
To speed up this process the weighted random permutations are not entirely created in

advance, but rather the requested elements are calculated on demand. Algorithm 2 performs
this task for the slots; the room-pheromones are treated analogously. The algorithm returns
the requested j -th element from the weighted random permutation π s. The global array ws

is assumed to be filled with the respective rows of the pheromone matrices τ s for the event
i under consideration. Before the method is executed the first time, let σ ← ∑45

l=1 ws
l .

The integer variable pos stores the index to which the weighted permutation has already
been created. If j is less than pos no further computation is required. Otherwise the remain-
ing elements are calculated (lines 3–20). The function swap(i, j) exchanges the elements
π s

i , π
s
j and ws

i ,w
s
j respectively. In the special case of all remaining weights being zero, or

close to zero by some small tolerance ε, some arbitrary element is chosen (line 13–17).
Note that to prepare for the next ant only pos needs to be reset. ws and π s do not need

to be reinitialized for each ant. Moreover, for all but the first ants the method has a much
better performance, as ws and π s are already roughly sorted in advance. The effect of this

Ann Oper Res (2012) 194:325–339 331

presorting is that the inner-most loop will, on average, run fewer times since ξ accumulates
faster. This effect is especially pronounced once the pheromone distribution has settled after
a few dozens of iterations since then there are typically only a few large weights in ws

q with
the majority of weights being close to zero.

3.3 Pheromone update

After each iteration only the set of ants whose solutions are tied for the lowest DTF-score
is considered for the pheromone update. For this set the average SCP-score is computed
and all ants which are both members of the set and whose SCP-score is below the average
score add an amount of pheromone proportional to the solution quality for the performed
event/slot and event/room assignments.

In the early stage these are very few ants, typically only one, since the DTF-score will be
different for most ants. In the later stages, as more and more ants produce feasible solutions,
i.e. a DTF-score of zero, the number of ants depositing pheromone increases and can reach
up to half the total number of ants.

The pheromone update is performed according to this formula:

τ s
ij ← max(0, τ s

ij + �τij − �τ̃ij). (1)

τ s
ij is the pheromone which is stored in the pheromone matrix. �τij is the amount of

pheromone added by the solution and �τ̃ij is a penalty term for solution components vi-
olating soft constraints. The maximum calculation avoids negative pheromone values which
might otherwise appear due to the penalization w.r.t. SCP.

For the event/slot assignments, this is done in detail as follows:

�τij =
{
f · g if event i and slot j is part of the solution
0 otherwise

(2)

f =
{ 100

#unplaced if there are unplaced events
200 otherwise

(3)

g =
{

1000
SCP SCP �= 0
2000 otherwise

(4)

The numeric constants have been determined by preliminary experiments. The numerators
are chosen such that for most solutions f and g are greater than one, i.e. on the tested
problem instances there are fewer than 100 unplaced events and SCP is typically below
1000. The constants used when the denominator becomes zero are chosen to be twice the
denominator, which is designed to boost good assignments somewhat. Please note that the
absolute values of the constants in the above formulae are not important, only their relative
magnitude is important.

If an assignment is found to cause a violation of soft constraints, the involved assignments
are punished accordingly

�τ̃ij ← (1 − (1 − γ)SCP(i)) · f · g, (5)

where SCP(i) denotes the soft constraint penalty induced by event i and γ denotes the
penalty factor. We used penalty factors between 0.05 (low penalty) and 0.5 (high penalty)
with 0.3 being a good compromise. Note that while �τij , i.e. the pheromone deposition,

332 Ann Oper Res (2012) 194:325–339

is constant for the entire solution, the penalty �τ̃ij is assignment specific. Thus different
solution components can receive different pheromone updates.

Finally, pheromone evaporation follows the standard AS method, which is

τ s
ij ← (1 − ρ)τ s

ij (6)

with ρ being the pheromone evaporation coefficient. We used values from 0.1 to 0.3 for ρ.
The pheromone update for the event–room pheromones τ r

ik is performed analogously. In
the case of stagnation, i.e. no new so-far-best solution has been found during the last 500
iterations, the pheromone values are normalized. The normalization procedure performs a
linear scaling, such that the average value of the original pheromones remains the same and
the deviation from this average is relatively small, e.g. approximately ten percent. Assuming
that the minimum pheromone value is zero this scaling is achieved by setting

τ n
ij = (τij − τ̄) · τ̄ω

max(τij)
+ τ̄ (7)

where τ n
ij denotes the normalized pheromone value, τ̄ denotes the average pheromone value

and ω being the desired spread around the average. Because of the linearity of the expec-
tation operator, the mean of the scaled pheromone values is the same as the mean of the
original values.

3.4 Improvement method

Often, ACO approaches benefit significantly by including a local search procedure for im-
proving candidate solutions derived by the ants. In our algorithm we employ a best first
ejection chain improvement heuristic (Glover 1992). A chain is started by moving an event
which causes soft constraint violations to a different timeslot if this can be achieved without
violating hard constraints and while removing at most one other event from the solution. If
an event needed to be removed the chain is continued by trying to place this event using
the rules described above. If there is more than one way to continue the chain, alternatives
which reduce the soft constraint penalty most are tried first. If an event can be placed without
ejecting another one, the chain is ended and accepted if it reduces the total soft constraint
penalty. If no acceptable chains can be found within the maximum chain length, the search is
aborted. We apply this procedure once an ant found a new best solution and used a maximum
chain length of 16 moves.

3.5 Parallelization

ACO algorithms are easily parallelizable, since each ant constructs its solution indepen-
dently. Only the solution evaluation and pheromone update after all ants have finished con-
structing their solution needs to be synchronous. We tested a parallel implementation of the
algorithm where batches of ants are run in multiple threads. For this implementation we
did not use the improvement heuristic described in Sect. 3.4, however. Instead we used a
simulated annealing (SA) algorithm as described by Lewis (2010). The ejection chain based
improvement heuristic is designed to deliver a best-effort “quick fix”, and as such it quickly
exhausts its rather restricted search space. It is also not capable of escaping local minima,
and therefore not suitable for being run in parallel with the ACO algorithm. Thus the switch
to SA.

Ann Oper Res (2012) 194:325–339 333

The neighborhood operator randomly selects two combinations of timeslots and rooms,
each determining a slot in the timetable. The timeslots are chosen such that the two selected
timeslots are not identical. The content associated with these slots is then swapped. There
are three cases, the first is that both slots are empty, this case is disregarded. The second case
is that one of the slots is empty the other has an associated event. This results in the event
being moved. And lastly the third case is that both slots have associated events, which results
in these events being swapped. Moves which result in hard constraint violations are automat-
ically rejected, moves which either improve the SCP or leave it unchanged are automatically
accepted. Moves which decrease the SCP are accepted with a probability e−|�SCP |/Ti , where
Ti is the current temperature. It is initially set to a fixed value T0 and reduced every third
iteration of the ACO according to the geometric cooling schedule Ti+1 = δTi .

The SA is run in a separate thread in parallel to the ACO. This thread is stopped after each
iteration of the ACO, where the solutions from both algorithms are compared. If an improved
solution is found by SA it is included in the pheromone update once, if an improved solution
is found by ACO the SA is restarted with this improved solution.

4 Results and discussion

The algorithm is parameterized by α (importance of the pheromones), β (importance of local
information), ρ (pheromone evaporation) and η (number of ants). Robust parameter values
have been determined by preliminary experiments. It turned out that α ∈ [1.0,1.1] yields
good results, and the choices of γ and η are less critical. Lower values of γ and η reduce the
time to obtain a feasible solution, but decrease the average solution quality as well. We used
ρ = 0.25, γ = 0.3 and η = 20. As no local information is used in our algorithm, β = 0. The
pheromone matrices τ s and τ r are initialized with the value 0.5.

The parameters we used for the SA were T0 = 15 and a cooling rate δ = 0.995. T0 was
estimated following the procedure outlined in Abramson et al. (1999). Since the cooling
is essentially determined by the time the ACO takes for an iteration, which is dependent
on instance size and the number of threads, the cooling schedule was chosen such that the
number of moves per generation and the time to reach the final temperature is acceptable for
all instances. Finally, in case of stagnation the SA was reheated to T0. To detect stagnation
we used the same criteria as for the ACO algorithm, i.e. no new best-so-far solution for 500
iterations.

We performed our computational experiments with the instances used for the Second In-
ternational Timetabling Competition (ITC2007). The experiments with the single-threaded
algorithm were performed on a Intel Xeon 5160 (3.0 GHz) using Sun Java SE 1.6.0_04 64-
bit Server VM. With the benchmark-tools for the competition, we determined tmax = 299
seconds maximum running time.

The multi-threaded algorithm was tested on three different machines, a dual Xeon 5160
(3.0 GHz, 4 cores), a dual Xeon X5355 (2.66 GHz, 8 cores) and a Core 2 Duo (2.4 GHz,
2 cores). We used the competition benchmark-tool to compensate for the different CPU
speeds. For this reason the algorithm running times given in Table 4 cannot be directly
compared.

Table 2 lists the results achieved for the ITC2007 instances using the single-threaded al-
gorithm submitted to the competition. The algorithm was run 100 times for each instance to
make the statistical summary data more accurate. The first two rows show that an optimum
solution could be found within the given time limit in many cases. Furthermore the proba-
bility of finding a feasible solution is very high, and also the average SCP values are very
promising. Within the given time limit, on average 5000 iterations have been performed.

334 Ann Oper Res (2012) 194:325–339

Table 2 Results for 100 runs of the ITC2007 instances. The first two rows indicate the best results achieved
within the given time limit. The distance to feasibility is denoted by DTF, soft constraint penalty by SCP.
The subsequent rows list average solution values of 100 runs followed by the respective standard deviations
and the probability to find a feasible solution. The last three rows show the influence of the local search
improvement heuristic: percentage of solutions found by LS and average improvement by ACO and LS
respectively

Instance 1 2 3 4 5 6 7 8

DTFbest 0 0 0 0 0 0 0 0

SCPbest 0 0 110 53 13 0 0 0

DTFavg 237 274 0 0 0 2 0 0

SCPavg 613 556 680 580 92 212 4 61

σDTF 290 369 0 0 0 9 0 0

σSCP 612 671 255 268 55 165 24 47

P(DTF = 0) 0.54 0.59 1.0 1.0 1.0 0.95 1.0 1.0

LS(%) 33 29 50 49 49 50 38 39

�ACO 39 49 63 55 19 27 22 17

�LS 17 23 107 78 22 28 28 26

Instance 9 10 11 12 13 14 15 16

DTFbest 0 0 0 0 0 0 0 0

SCPbest 0 0 143 0 5 0 0 0

DTFavg 109 0 0 20 2 0 0 0

SCPavg 202 4 774 538 360 41 29 101

σDTF 294 0 6 56 9 0 0 0

σSCP 492 18 247 605 167 56 104 72

P(DTF = 0) 0.85 1.0 0.99 0.86 0.94 1.0 1.0 1.0

LS(%) 30 33 50 43 50 47 40 42

�ACO 42 35 67 54 36 16 21 18

�LS 21 14 104 87 33 18 31 28

Table 2 also shows the influence of the local improvement method, i.e. the ejection chain
algorithm. The table shows the average percentage of solution improvements found by lo-
cal search and the average amount by which the solution was improved by ACO and LS
respectively. Since local search is only run after an improved solution has been found by
ACO, 50% is the maximum for this parameter. It can be seen that local search contributes
significantly to solution quality, improving solutions most of the time, even in the difficult
cases (1, 2, 9, 10). Also in most cases the amount by which solutions are improved is higher
for local search, except in the difficult cases. It should be noted, however, that even without
local search high quality solutions are found by ACO alone, though on average the solution
quality is significantly lower.

In Table 3 the results of our algorithm are compared with results obtained with other
algorithms (cf. Lewis 2010; Chiarandini et al. 2008; Cambazard et al. 2010). The numbers
are taken from the results of ITC2007. The algorithms were tested under the same condi-
tions, i.e. run on the same hardware and the same time limit, thus the results can be directly

Ann Oper Res (2012) 194:325–339 335

Table 3 Comparison of the results obtained with our serial ACO algorithm with results obtained with other
algorithms submitted to ITC2007. Listed are best and median solutions (DTF/SCP) for 10 runs. Algorithms
other than serial ACO are local search based metaheuristic algorithms (cf. Lewis 2010; Chiarandini et al.
2008; Cambazard et al. 2010)

Inst. Cambazard et al. Chiarandini et al. Lewis Serial ACO

Best Med Best Med Best Med Best Med

1 0/571 0/877 0/1482 0/1696 0/1294 17/1492 0/15 578/1376

2 0/993 0/1523 0/1635 0/1896 0/1599 46/1826 0/0 23 /708

3 0/164 0/236 0/288 0/374 0/278 0/457 0/391 0/709

4 0/310 0/372 0/385 0/463 0/388 0/589 0/239 0/724

5 0/5 0/7 0/559 0/681 0/22 0/193 0/34 0/114

6 0/0 0/0 0/851 0/985 0/369 0/696 0/87 0/288

7 0/6 0/8 0/10 0/403 0/74 0/421 0/0 0/0

8 0/0 0/0 0/0 0/1 0/0 0/206 0/4 0/77

9 0/1560 0/1823 0/1947 0/2081 0/1582 80/2312 0/0 779/1457

10 0/1650 0/1737 0/1741 0/2288 0/2380 126/2262 0/0 0/0

11 0/178 0/286 0/240 0/365 0/344 0/541 0/547 0/891

12 0/146 0/349 0/475 0/593 0/486 0/741 0/32 44/1455

13 0/0 0/160 0/675 0/926 0/365 0/631 0/166 0/404

14 0/1 0/2 0/864 0/958 0/222 0/660 0/0 0/52

15 0/0 0/0 0/0 0/320 0/266 0/344 0/0 0/1

16 0/2 0/11 0/1 0/6 0/99 0/194 0/41 0/129

compared. They cannot be directly compared to our results, which are on average signifi-
cantly better. The most likely cause for this are platform differences (i.e. different operating
system, Java VM, and CPU) which are not completely equalized by the applied benchmark
tool. It can be seen that our algorithm often produces the best solution, especially in the
cases of the instances 1, 2, 9 and 10. The average solution quality or our serial algorithm,
however, is slightly worse than that of competing algorithms, except the algorithm by Lewis
(2010) which was not part of the competition, and it fails to find a feasible solution in the
given time slightly more often than the competing algorithms.

Table 4 lists the results achieved using the parallelized algorithm. It can be seen that
the results with four or eight threads are significantly better than the results with just two
threads, while the results with 8 threads are only slightly better than those with 4 threads,
however, the solutions are often found in less time. For instance 10, for example, all found
solutions were optimal and computed in only 18 seconds, on average.

The number of iterations shows that the algorithm scales fairly well. For the instances
where it does not terminate prematurely the 8 threads achieve nearly twice as many iterations
as the 4 threads. It should be noted, however, that once a feasible solution is found, one
thread is reserved for the SA.

The last column of Table 4 shows how much the SA contributed to the final solution. This
contribution is either very high or very low, with not much in between. To find out possible
reasons for this result, we looked at the solution backbone, i.e. the elements of the solution
which are constant for every optimal solution, of all optimal solutions we found. Table 5
shows how many of the optimal solutions were distinct and the percentage of elements
which are constant over all solutions. This, of course, is only an upper bound of the size
of the true backbone, since we do not know all optimal solutions. However, these results

336 Ann Oper Res (2012) 194:325–339

Table 4 Results for 100 runs of the ITC2007 instances for the parallel algorithm. The first two columns
list instance and number of threads, the following five columns list range and quartiles of the solution scores
(DTF/SCP), then follows the median time taken (in seconds), then the median number of iterations and the
last column shows the fraction of solutions found by local search, in percent

Inst. Thr. best Q1 Q2 (med) Q3 worst time iter LS (%)

1 2 0/0 0/15 285/1102 631/1288 832/1468 377 3605 0

4 0/0 0/0 0/0 0/5 646/1412 233 7266 0

8 0/0 0/0 0/0 0/0 0/399 136 6542 0

2 2 0/0 0/0 0/12 690/1368 1214/1446 377 3453 7.14

4 0/0 0/0 0/0 0/0 728/1343 107 3042 0

8 0/0 0/0 0/0 0/0 0/0 73 3325 0

3 2 0/257 0/336 0/389 0/453 97/444 377 5769 98.61

4 0/0 0/87 0/236 0/357 0/503 299 14287 98.36

8 0/0 0/37 0/79 0/178 0/523 336 26025 97.2

4 2 0/12 0/203 0/454 0/516 0/821 377 5724 98.28

4 0/0 0/27 0/51 0/138 0/583 299 14221 95.04

8 0/2 0/15 0/37 0/65 0/564 336 25822 93.86

5 2 0/6 0/47 0/67 0/90 0/277 377 4795 0

4 0/2 0/26 0/42 0/62 0/155 299 12187 0

8 0/0 0/17 0/30 0/58 0/175 336 20297 0

6 2 0/1 0/88 0/157 0/246 169/851 377 4675 52

4 0/0 0/25 0/85 0/153 0/462 299 11668 0

8 0/0 0/13 0/54 0/138 0/299 336 19752 0

7 2 0/0 0/0 0/0 0/0 0/0 59 1472 10

4 0/0 0/0 0/0 0/0 0/0 26 2102 7.14

8 0/0 0/0 0/0 0/0 0/20 22 2806 6.67

8 2 0/0 0/0 0/0 0/41 0/161 270 6874 38.71

4 0/0 0/0 0/0 0/1 0/130 101 8207 23.81

8 0/0 0/0 0/0 0/0 0/133 70 8659 28.57

9 2 0/0 0/0 0/0 0/1 1239/1646 294 2974 0

4 0/0 0/0 0/0 0/0 0/0 85 2635 0

8 0/0 0/0 0/0 0/0 0/0 57 2729 0

10 2 0/0 0/0 0/0 0/0 0/130 87 795 0

4 0/0 0/0 0/0 0/0 0/0 32 928 0

8 0/0 0/0 0/0 0/0 0/0 18 872 0

11 2 0/80 0/374 0/424 0/486 75/430 377 5883 98.33

4 0/0 0/208 0/331 0/415 0/553 299 14539 98.57

8 0/0 0/166 0/248 0/389 88/355 336 26122 98

Ann Oper Res (2012) 194:325–339 337

Table 4 (Continued)

Inst. Thr. best Q1 Q2 (med) Q3 worst time iter LS (%)

12 2 0/0 0/0 0/27 0/569 488/2337 377 5693 89.58

4 0/0 0/0 0/0 0/4 47/638 195 9377 82.61

8 0/0 0/0 0/0 0/0 0/15 145 10670 83.13

13 2 0/8 0/220 0/255 0/301 59/848 377 4551 68.18

4 0/0 0/143 0/204 0/255 19/471 299 11106 52.08

8 0/0 0/95 0/175 0/223 0/310 336 18832 0

14 2 0/0 0/3 0/7 0/50 0/159 377 4804 0

4 0/0 0/0 0/1 0/40 0/191 299 11806 0

8 0/0 0/0 0/0 0/39 0/156 175 10381 0

15 2 0/0 0/0 0/0 0/0 0/378 59 1462 30.77

4 0/0 0/0 0/0 0/0 0/388 26 2103 20

8 0/0 0/0 0/0 0/0 0/7 36 4424 14.29

16 2 0/0 0/0 0/12 0/84 0/214 377 9653 67.5

4 0/0 0/0 0/0 0/36 0/123 278 22949 60.87

8 0/0 0/0 0/0 0/43 0/136 312 38765 53.85

Table 5 Solution backbone estimation. The table shows for each of the ITC2007 early and late instances the
total number of optimal solutions found, how many of those are distinct and the fraction of elements of the
solution which are identical in all solutions, expressed in percent

Instance 1 2 3 4 5 6 7 8

Solutions 249 386 16 40 29 65 556 307

Distinct 82 14 16 40 29 65 556 306

Backbone est. 94.5 97.0 61.5 74.5 54.25 69.25 79.0 82.5

Instance 9 10 11 12 13 14 15 16

Solutions 451 495 20 227 32 232 500 178

Distinct 15 10 19 227 32 232 500 178

Backbone est. 96.75 98.25 73.5 79.5 79.5 70.25 80.5 76.0

correlate well with experiences from running the algorithm. It can be seen, for example,
that for instance 10, which our algorithm solves best, only 10 out of 495 optimal solutions
are distinct and these have almost all (393 of 400 or 98.25%) of events in common. On the
other hand, instances which our algorithm does not solve so well (i.e. those where it ran
for the full time for most runs) have a smaller backbone, and these are also the ones where
SA contributed most to the solution. That is not to say that a large solution backbone is a
necessary condition for our algorithm to perform well, only that if there is a large backbone
the algorithm will likely perform well.

It should be noted that algorithms may be biased towards one kind of solution, making
it appear as if there were a backbone. In our ACO algorithm, however, we do not use any a
priori heuristic information. The algorithm starts with a number of completely random so-

338 Ann Oper Res (2012) 194:325–339

lutions. In each of the iterations each ant constructs a completely new solution from scratch
guided only by the pheromone information, which is very faint in the early stages of the al-
gorithm, resulting in a lot of randomness in the solution construction. It is thus very unlikely
that the algorithm is biased towards a certain kind of solution.

Lewis (2010) also analyzed which instances are well suited for SA. His results also cor-
relate well with ours. The instances which we identified to most likely have a large backbone
(i.e. instances 1, 2, 9 and 10) are very full, i.e. most available slots must be filled. He found
that for instance 10 his algorithm had the least chance of making a successful move while
these moves also resulted in the lowest reduction in the SCP. The other instances with we
found to have a large backbone are close by.

5 Conclusions

From our point of view the key feature of the presented algorithm is the use of two distinct
but relatively compact pheromone matrices in combination with an effective procedure to
exploit their information in the heuristic solution construction. The algorithm is able to
produce high quality solutions even without the local improvement method, but better results
could be achieved when including it.

The algorithm ranked 4th among all submitted algorithms, which demonstrates that the
presented algorithm falls within the leading algorithms for this task. For 11 out of 24 in-
stances our algorithm found the best solution of all 5 finalists, including ties. On the other
hand, our algorithm also showed the largest variation in solution quality, for several instances
it produced both the best and the worst solution.

Nevertheless, the large majority of the competition instances can with high probabil-
ity be solved to optimality within a couple of minutes (i.e. the time limit for the ITC2007
competition). Parallelizing the algorithm further improves its performance, the parallel im-
plementation solves these instances to optimality most of the time.

A very interesting aspect is that the algorithm performs especially well on instances
where the algorithms based on local search (cf. Lewis 2010; Chiarandini et al. 2008;
Cambazard et al. 2010) have the most difficulty with, see also Table 3. Our analysis suggests
that the optimal solutions for these instances have a large backbone, i.e. these problems are
highly constrained and for most events there is only one place where they can be placed
without violating constraints. One reason why our algorithm performs so well in these situ-
ations may be that the penalty term introduced in the pheromone update step prevents most
pheromone deposition, and thus convergence, unless the event is placed right. If it is placed
right, however, this placement is greatly encouraged. This can also explain why it takes
longer for the algorithm to achieve a feasible solution for these instances.

On the other hand, the instances which our algorithm solves the least well are the ones
where local search is most successful. Thus a combination of both methods, as has been
demonstrated in the parallel version of the algorithm, seems to be beneficial.

References

Abramson, D., Krishnamoorthy, M., & Dang, H. (1999). Simulated annealing cooling schedules for the school
timetabling problem. Asia-Pacific Journal of Operational Research, 16, 1–22.

Burke, E. K., Bykov, Y., Newall, J., & Petrovic, S. (2003). A time-predefined approach to course timetabling.
Yugoslav Journal of Operational Research, 13(2), 139–151.

Burke, E. K., & Petrovic, S. (2002). Recent research directions in automated timetabling. European Journal
of Operational Research, 140(2), 266–280.

Ann Oper Res (2012) 194:325–339 339

Cambazard, H., Hebrard, E., O’Sullivan, B., & Papadopoulos, A. (2010). Local search and constraint pro-
gramming for the post enrolment-based course timetabling problem. Annals of Operations Research,
1–25.

Chiarandini, M., Birattari, M., Socha, K., & Rossi-Doria, O. (2006). An effective hybrid algorithm for uni-
versity course timetabling. Journal of Scheduling, 9(5), 403–432.

Chiarandini, M., Fawcett, C., & Hoos, H. H. (2008). A modular multiphase heuristic solver for post enrolment
course timetabling. In Proceedings of the 7th international conference on the practice and theory of
automated timetabling (PATAT 2008).

Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge: MIT Press.
Gaspero, L. D., & Schaerf, A. (2003). Multi-neighbourhood local search with application to course

timetabling. In Lecture notes in computer science: Vol. 2740. Proc. of the 4th int. conf. on the prac-
tice and theory of automated timetabling (PATAT-2002) (pp. 262–275). Berlin: Springer.

Glover, F. (1992). New ejection chain and alternating path methods for traveling salesman problems. In
Computer science and operations research: new developments in their interfaces (pp. 449–509).

ITC2007 (2007). http://www.cs.qub.ac.uk/itc2007/ Second international timetabling competition.
Kostuch, P. (2005). The university course timetabling problem with a three-phase approach. In E. Burke,

& M. Trick (Eds.), Lecture notes in computer science: Vol. 3616. Practice and theory of automated
timetabling V (pp. 109–125). Berlin: Springer.

Lewis, R. (2008). A survey of metaheuristic-based techniques for university timetabling problems. OR-
Spektrum, 30, 167–190.

Lewis, R. (2010). A time-dependent metaheuristic algorithm for post enrolment-based course timetabling.
Annals of Operations Research, 1–17.

Mayer, A., Nothegger, C., Chwatal, A., & Raidl, G. (2008). Solving the post enrolment course timetabling
problem by ant colony optimization. In Proceedings of the 7th international conference on the practice
and theory of automated timetabling (PATAT 2008).

McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A. J., Gaspero, L. D., Qu, R.,
& Burke, E. K. (2010). Setting the research agenda in automated timetabling: the second international
timetabling competition. INFORMS Journal on Computing, 22, 120–130.

MirHassani, S., & Habibi, F. (2011). Solution approaches to the course timetabling problem. Artificial Intel-
ligence Review, 1–17.

Rossi-Doria, O., & Paechter, B. (2003). An hyperheuristic approach to course timetabling problem using an
evolutionary algorithm. Technical Report CC-00970503, Napier University, Edinburgh, Scotland.

Rossi-Doria, O., & Paechter, B. (2004). A memetic algorithm for university course timetabling. In Combina-
torial optimisation 2004, Book of abstracts (p. 56).

Rossi-Doria, O., Sampels, M., Birattari, M., Chiarandini, M., Dorigo, M., Gambardella, L., Knowles, J.,
Manfrin, M., Mastrolilli, M., Paechter, B., Paquete, L., & Stützle, T. (2003). A comparison of the per-
formance of different metaheuristics on the timetabling problem. In E. Burke, & P. De Causmaecker
(Eds.), Lecture notes in computer science: Vol. 2740. Practice and theory of automated timetabling IV
(pp. 329–351). Berlin: Springer.

Schaerf, A. (1999). A survey of automated timetabling. Artificial Intelligence Review, 13(2), 87–127.
Socha, K., Knowles, J., & Sampels, M. (2002). A Max-Min ant system for the university timetabling problem.

In M. Dorigo, G. Di Caro, & M. Sampels (Eds.), Lecture notes in computer science: Vol. 2463. Proceed-
ings of the 3rd international workshop on ant algorithms, ANTS 2002 (pp. 1–13). Berlin: Springer.

Socha, K., Sampels, M., & Manfrin, M. (2003). Ant algorithms for the university course timetabling problem
with regard to the state-of-the-art. In J. Gottlieb, & G. Raidl (Eds.), Lecture notes in computer science:
Vol. 2611. Proceedings of EvoCOP 2003—3rd European workshop on evolutionary computation in
combinatorial optimization. Berlin: Springer.

TTComp2002 (2002). http://www.idsia.ch/Files/ttcomp2002/ First international timetabling competition
(2002).

http://www.cs.qub.ac.uk/itc2007/
http://www.idsia.ch/Files/ttcomp2002/

	Solving the post enrolment course timetabling problem by ant colony optimization
	Abstract
	Introduction
	Related work
	The algorithm
	Pheromone information
	Solution construction
	Pheromone update
	Improvement method
	Parallelization

	Results and discussion
	Conclusions
	References

