
Detecting Backdoor Sets with Respect to

Horn and Binary Clauses

Naomi Nishimura1,?, Prabhakar Ragde1,??, and Stefan Szeider2,? ? ?

1 School of Computer Science, University of Waterloo,
Waterloo, Ontario, N2L 3G1, Canada

nishi,plragde@uwaterloo.ca
2 Department of Computer Science, University of Toronto,

Toronto, Ontario, M5S 3G4, Canada
szeider@cs.toronto.edu

Abstract. We study the parameterized complexity of detecting back-
door sets for instances of the propositional satisfiability problem (SAT)
with respect to the polynomially solvable classes horn and 2-cnf. A
backdoor set is a subset of variables; for a strong backdoor set, the
simplified formulas resulting from any setting of these variables is in
a polynomially solvable class, and for a weak backdoor set, there exists
one setting which puts the satisfiable simplified formula in the class. We
show that with respect to both horn and 2-cnf classes, the detection of
a strong backdoor set is fixed-parameter tractable (the existence of a set
of size k for a formula of length N can be decided in time f(k)NO(1)),
but that the detection of a weak backdoor set is W[2]-hard, implying
that this problem is not fixed-parameter tractable.

1 Introduction

The propositional satisfiability problem (SAT) asks whether a given proposi-
tional formula in conjunctive normal form (CNF) has a satisfying assignment.
Even though SAT is NP-complete in general [4], applications often impose on
formulas a hidden structure that can be used for an efficient solution.

One example of such hidden structure is a backdoor set of variables, a concept
recently introduced by Williams, Gomes, and Selman [10, 11]. A weak backdoor

set of a formula F is a subset B of the variables of F such that if one assigns to
the variables in B certain truth values, then the simplified instance is satisfiable
and belongs to a class C of instances that can be solved in polynomial time. The
class C does not necessarily have a simple syntactic characterization and may be
implicitly described by an (incomplete) polynomial-time algorithm.

In order to make the concept of backdoor sets applicable to unsatisfiable
instances, we consider strong backdoor sets : a set B of variables is a strong

? Supported by the Natural Science and Engineering Research Council of Canada.
?? Supported by the Natural Science and Engineering Research Council of Canada.

? ? ? Supported by the Austrian Science Funds (FWF) Project J2295.

backdoor set of F if for each possible truth assignment to the variables in B, the
respective simplified formula belongs to the class C.

In this paper we address the computational complexity of deciding whether
a given formula has a weak/strong backdoor set of size at most k for some
integer k. We study this problem with respect to the two most fundamental
classes of polynomial-time decidable formulas: the class of Horn formulas (each
clause contains at most one positive literal) and the class of 2-CNF formulas

(each clause contains at most two literals). Satisfiability of Horn formulas can
be decided in linear time by Dowling and Gallier’s algorithm [5]; satisfiability of
2-CNF formulas can be decided in linear time by Aspvall, Plass, and Tarjan’s
algorithm [2].

As the backdoor-set approach for SAT only makes sense for instances that
allow small backdoor sets, it is reasonable to consider k as a fixed small integer,
say k ≤ 20, whereas the size N of the instance can be arbitrarily large. By
exhaustive search, we can find a weak/strong backdoor set (if one exists) by
considering all subsets B of variables of the given instance with |B| ≤ k, and
checking whether one (all) of the 2|B| assignments to the variables in B yields a
formula that belongs to the class C under consideration.

However, such a trivial approach becomes impractical for large N even if the
parameter k, the maximum size of a backdoor set, is chosen to be small. In this
paper, we tackle the question of whether a backdoor set can be found in a more
efficient manner.

Parameterized complexity [6] provides an excellent framework for studying
this question. A parameterized problem is a set L ⊆ Σ∗ × Σ∗ for some fixed
alphabet Σ. For a problem instance (x, k) ∈ L, we refer to x as the main part,
and to k as the parameter. Typically (and for all problems considered in the
sequel), the parameter is a non-negative integer (presented in unary). XP de-
notes the class of parameterized problems that can be solved in polynomial time
whenever the parameter is considered as a fixed constant. The above discussion
of exhaustive search shows that the detection of a backdoor set is certainly in
XP, but we wish to do better than this.

If a parameterized problem L can be solved in time O(f(k)nc) where f is any
function of the parameter and c is a constant (independent of k), then L is called
fixed-parameter tractable; FPT denotes the class of all fixed-parameter tractable
problems. The class XP contains a hierarchy of parameterized complexity classes

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] ⊆ XP.

All inclusions are assumed to be proper (FPT 6= XP is known). The higher a
problem is located in this hierarchy, the more unlikely it is to be fixed-parameter
tractable (analogous to an NP-complete problem being unlikely to be in P). If a
problem in W[2] turns out to be fixed-parameter tractable, then the satisfiability
of CNF formulas with n variables could be solved in time 2o(n) [1]. Parameterized
versions of Cook’s Theorem provide further evidence to assume that FPT 6= W[2]
as discussed by Cesati [3] and Downey and Fellows [6].

The classes above FPT are defined in terms of complete problems with respect
to parameterized reductions [6]. A parameterized reduction is a straightforward

2

extension of a polynomial-time many-one reduction that ensures a parameter
for one problem maps into a parameter for another. More specifically, language
L reduces to L′ if there are functions k 7→ k′, k 7→ k′′, and 〈x, k〉 7→ x′ such
that 〈x, k〉 7→ x′ is computable in time k′′|x|O(1) and 〈x, k〉 ∈ L if and only if
〈x′, k′〉 ∈ L′.

We show that for the classes horn and 2-cnf, detection of strong backdoor
sets is fixed-parameter tractable. We develop algorithms with time complexity
O(2kN) and O(3kN), respectively.

On the other hand, we show that detecting weak backdoor sets for the classes
horn and 2-cnf is unlikely to be fixed-parameter tractable, by showing that
these problems are W[2]-hard. In both cases we demonstrate parameterized re-
ductions from a modified version of the problem hitting set, which is known
to be W[2]-complete [6].

The remainder of the paper is organized as follows. Related work and defini-
tions are given in Section 2. In Section 3, we present the W[2]-hardness results
for weak backdoor sets. Next, we present algorithms for strong backdoor sets in
Section 4, followed by NP-hardness results for the non-parameterized versions
of both problems in Section 5. Finally, in Section 6 we summarize the work and
with end a few concluding remarks.

2 Background

Related Work

Szeider [9] studies the parameterized problem of detecting weak backdoor sets
with respect to classes that can be decided by subsolvers of the classic Davis-
Logemann-Loveland (DLL) Procedure. That is, classes of formulas that can be
decided by Unit Propagation (UP), by Pure-Literal Elimination (PL), and by
the combination of Unit Propagation and Pure-Literal Elimination (UP+PL).
Backdoor sets with respect to algorithmically defined classes which do not admit
a purely syntactic characterization are explicitly included in the definitions in
[10, 11].

It turns out that for all three classes, detection of weak backdoor sets is
W[P]-complete, and (by small modification of the arguments given in the paper)
that the detection of strong backdoor sets is W[P]-hard.

We observe that horn is a proper subset of the class of formulas decidable
by Unit Propagation.

Notation

We assume an infinite supply of propositional variables. A literal is a variable x
with an assigned parity ε ∈ {0, 1}, denoted by xε; if ε = 1 then xε is a positive

literal, otherwise it is a negative literal. We also write x = x1 and x = x0. A set
S is tautological if it contains both x and x for some variable x. A clause is a
finite non-tautological set of literals. A finite set of clauses is a CNF formula (or
formula, for short).

3

The width of a clause is its cardinality. The length N of a formula F is the
sum of the widths of its clauses, i.e., N =

∑

C∈F |C|.
A clause is called Horn if it contains at most one positive literal, and it is

called binary if it contains at most two literals. A formula is called Horn (resp.,
binary) if all its clauses are Horn (binary); the class of Horn (binary) formulas
is denoted by horn (2-cnf).

For a formula F we denote by var(F) the set of variables x such that x0 or
x1 is contained in some clause of F . A literal xε is a pure literal of a formula F if
x ∈ var(F) and no clause of F contains x1−ε. A clause is monotone if it contains
only positive literals; a formula is monotone if all its clauses are monotone. For
a formula F and a variable x we put

F − x := {C \ {x0, x1} : C ∈ F }.

A truth assignment is a map τ : X → {0, 1} defined on some set X of variables.
For x ∈ X we define τ(x1) = τ(x) and τ(x0) = 1− τ(x). For a truth assignment
τ and a formula F , F [τ] denotes the result of removing all clauses from F which
contain a literal x with τ(x) = 1 and removing literals y with τ(y) = 0 from the
remaining clauses.

A truth assignment τ satisfies a formula F if F [τ] = ∅. A formula is satisfiable

if it is satisfied by some truth assignment; otherwise it is unsatisfiable.

Backdoor Sets

Backdoor sets are defined with respect to some class C of formulas (we think of C
as a class which can be recognized in polynomial time, and for which satisfiability
can be decided in polynomial time as well).

Consider a formula F and a set B of variables of F . B ⊆ var(F) is a weak

backdoor set of F with respect to C (or weak C-backdoor set, for short) if there
is a truth assignment τ : B → {0, 1} such that F [τ] is satisfiable and belongs to
C. B is a strong backdoor set of F with respect to C (or strong C-backdoor set,
for short) if B ⊆ var(F) and for every truth assignment τ : B → {0, 1} we have
F [τ] ∈ C.

Taking the size of the backdoor set as a parameter, a class C gives rise to the
following two parameterized decision problems.

weak C-backdoor.
Input: A formula F .
Parameter: A non-negative integer k.

Question: Does F have a weak C-backdoor set B of size at most k?

strong C-backdoor.

Input: A formula F .
Parameter: A nonnegative integer k.
Question: Does F have a strong C-backdoor set B of size at most k?

4

3 Detecting Weak Backdoor Sets is Hard

We will show below that the following problem can be reduced to weak C-back-
door.

q-hitting set
Instance: A family S of finite sets S1, . . . , Sm, each containing at least q
elements.
Parameter: An integer k ≥ 0.
Question: Is there a subset R ⊆

⋃m

i=1 Si of size at most k such that
R ∩ Si 6= ∅ for all i = 1, . . . , m? (R is a hitting set of S)

Lemma 1 q-hitting set is W[2]-complete for any q ≥ 0.

Proof. 0-hitting set is known to be W[2]-complete [6]. That this is also the
case for q-hitting set, for any q > 0, can be seen by the following construction.

Let S = {S1, . . . , Sm} be an instance of 0-hitting set. We put S∗
i :=

{ (x, j) : x ∈ Si, j = 1, . . . , q } and consider the instance S∗ = S∗
1 , . . . , S∗

m of
q-hitting set. If R is a hitting set of S, then R∗ = { (x, 1) : x ∈ R } is
evidently a hitting set of S∗, and |R∗| = |R|. On the other hand, if S∗ has a
hitting set R∗, then R = {x : (x, j) ∈ R∗ for some j } is a hitting set of S, and
|R| ≤ |R∗|. Thus we have demonstrated a parameterized reduction of 0-hitting
set to q-hitting set, and so the latter problem is W[2]-hard. Since q-hitting
set is just a special case of 0-hitting set, it is therefore W[2]-complete. ut

Theorem 1 For any C ∈ {horn, 2-cnf}, the problem weak C-backdoor is
W[2]-hard.

Proof. The following proof holds for either choice of C. Let S = {S1, . . . , Sm} be
an instance of 3-hitting set. We consider S as a monotone formula, assuming
that the sets Si are composed of variables.

We claim that a set B ⊆ var(S) is a hitting set of S if and only if B is a
weak C-backdoor set of S. Clearly, if B is a hitting set, then the assignment
τ : B → {1} satisfies S, and S[τ] = ∅ ∈ C by trivial reasons. Conversely, assume
that B is a backdoor set for S with respect to C; i.e., there is an assignment
τ : B → {0, 1} such that S[τ] ∈ C. Since all clauses of S are monotone and
contain at least three literals each, no clause is binary or Horn. Hence, in order
to have S[τ] ∈ C, τ must affect every clause Si of S; i.e., Si ∩ B 6= ∅. Thus B is
a hitting set as claimed, and the theorem follows from Lemma 1. ut

4 Parameterized Algorithms for Strong Backdoor Sets

Our first algorithm searches for a strong horn-backdoor set B for a formula F .
If all clauses of F are Horn clauses, then we take B = ∅ and we are done. Thus
we can assume that F contains at least one non-Horn clause. If k = 0 then we
know that a strong horn-backdoor set of size k does not exist, and we are also
done. Thus we can also assume k ≥ 1.

5

Consider a non-Horn clause C of F . By definition, C contains at least two
positive literals, say p1 and p2. We claim that either p1 or p2 must belong to any
strong backdoor set B. Assume to the contrary that p1, p2 /∈ B and consider the
assignment τ : B → {0, 1} defined by

τ(x) =

{

1 − ε if xε ∈ C;

0 otherwise.
(1)

Observe that C is not satisfied by τ since τ is only defined for literals over
variables in B, and by definition, τ(yε) = 0 whenever yε ∈ C and y ∈ B. We
conclude that C ′ := C \ {x0, x1 : x ∈ B } belongs to F [τ].

However, since p1, p2 ∈ C ′, it follows that F [τ] /∈ horn, contradicting the
assumption that B is a strong horn-backdoor set. Thus any strong backdoor
set contains either p1 or p2. Consequently, we can systematically search for a
strong backdoor set by considering the two cases p1 ∈ B and p2 ∈ B separately.
That is, we search for a strong backdoor set Bi of size k − 1 for the formula
Fi := F −pi, i = 1, 2. If we find such a backdoor set Bi, then B := Bi ∪{pi} is a
strong backdoor set for F . If, however, neither F1 nor F2 has a strong backdoor
set of size k− 1, then F has no strong backdoor set of size k. Thus, the problem
of finding a strong backdoor set of size k for F reduces to two problems of finding
strong backdoor sets of size k − 1 for F1 or F2, respectively.

Applying this reasoning recursively yields the algorithm sb-horn displayed
in Figure 1. The outlined algorithm explores a binary search tree of height at

Procedure sb-horn(F, k)
input: a CNF formula F and a non-negative integer k;
output: either a strong horn-backdoor set B of F of size at most k, or
“no” if such B does not exist.

1. If F ∈ horn, then return ∅.
2. If k = 0, then return “no”.
3. Pick a non-Horn clause C ∈ F and two positive literals p1, p2 ∈ C.
4. Call sb-horn(F − p1, k − 1).
5. If a set B1 is returned, then return B1 ∪ {p1}.
6. Call sb-horn(F − p2, k − 1).
7. If a set B2 is returned, then return B2 ∪ {p2}.
8. Return “no”.

Fig. 1. Algorithm for detecting strong horn-backdoor sets

most k. Since a non-Horn clause can be located in time linear in the length of the
formula, and since the search tree has at most 2k nodes, we have the following
result.

6

Theorem 2 In time O(2kN), we can either find a strong horn-backdoor set of

size k for a formula of length N , or conclude that no such set exists. Therefore,

strong horn-backdoor is in FPT.

For the detection of strong 2-cnf-backdoor sets of size k we can proceed in
a similar fashion. We handle the trivial cases F ∈ 2-cnf and k = 0 as above.

Now assume that k ≥ 1, that we can pick a clause C ∈ F that contains
more than two literals, and let q1, q2, q3 be three literals in C. We claim that
any strong 2-cnf-backdoor set B of F must contain at least one of the literals
qi, 1 ≤ i ≤ 3. As above, we suppose the contrary and define a truth assignment
τ : B → {0, 1} as in (1). We conclude that C ′ := C \ {x0, x1 : x ∈ B } belongs
to F [τ], and since qi ∈ C ′, i ∈ {1, 2, 3}, |C ′| ≥ 3 follows. Hence F [τ] /∈ 2-cnf,
contradicting our assumption that B is strong 2-cnf-backdoor set.

Consequently, it suffices to consider three cases, searching for strong 2-cnf-
backdoor sets Bi of size k− 1 of Fi := F − qi, i ∈ {1, 2, 3}. If such a Bi is found,
then B = Bi ∪ {qi} is a strong 2-cnf-backdoor set of F .

Applying this reasoning recursively yields the algorithm sb-2cnf displayed
in Figure 2. The algorithm implicitly explores a ternary search tree of height at
most k.

Procedure sb-2cnf (F, k)
input: a CNF formula F and a non-negative integer k;
output: either a strong 2-cnf-backdoor set B of F of size at most k, or
“no” if such B does not exist.

1. If F ∈ 2-cnf, then return ∅.
2. If k = 0, then return “no”.
3. Pick a clause C ∈ F with |C| ≥ 3 and three literals q1, q2, q3 ∈ C.
4. Call sb-2cnf (F − p1, k − 1).
5. If a set B1 is returned, then return B1 ∪ {p1}.
6. Call sb-2cnf (F − p2, k − 1).
7. If a set B2 is returned, then return B2 ∪ {p2}.
8. Call sb-2cnf (F − p3, k − 1).
9. If a set B3 is returned, then return B3 ∪ {p3}.

10. Return “no”.

Fig. 2. Algorithm for detecting strong horn-backdoor sets

Theorem 3 In time O(3kN), we can either find a strong 2-cnf backdoor set of

size k for a formula of length N , or conclude that no such set exists. Therefore,

strong 2-cnf backdoor is in FPT.

4.1 Deciding Satisfiability

The algorithms outlined above only search for strong backdoor sets but do not
decide satisfiability. However, if a strong C-backdoor set B of a formula F is

7

found, then we only need to check satisfiability of F [τ] for all 2|B| ≤ 2k possible
assignments of B. By definition of a strong backdoor set, it is always the case
that B[τ] ∈ C. For C ∈ {horn, 2-cnf}, satisfiability of F [τ] can be decided in
time linear in the length of F [τ] using classical linear-time algorithms [5, 2].

Theorem 4 Satisfiability of formulas with bounded size of strong C-backdoor set

is fixed-parameter tractable for C ∈ {horn, 2-cnf}.

Szeider [8] surveys other parameterizations of the SAT problem that allow
fixed-parameter tractable SAT-decision.

5 NP-completeness of the non-parameterized versions of

the considered problems

The problems weak/strong C-backdoor can be considered as traditional
“non-parameterized” problems, by taking the parameter as part of the input.
In this section we show that the non-parameterized problems are NP-complete,
justifying our parameterized approach.

The reductions of the proofs of Lemma 1 and Theorem 1 can be consid-
ered as polynomial-time many-one reductions of hitting set ([7]) to weak
horn-backdoor and weak 2-cnf-backdoor, giving the following result.

Theorem 5 For any C ∈ {horn, 2-cnf}, the non-parameterized problem weak
C-backdoor is NP-complete.

We will show that the analogous problems for strong backdoor sets are
NP-complete. Membership in NP follows from the next lemma.

Lemma 2 Let C ∈ {horn, 2-cnf}. A set B of variables of a formula F is a

strong C-backdoor set for F if and only if F − B ∈ C.

Proof. Assume that B is a strong C-backdoor set for F and choose a clause
C ′ ∈ F − B arbitrarily. Consequently, C ′ = C \ {x0, x1 : x ∈ B } for a clause
C ∈ F . We define an assignment τ : B → {0, 1} by setting

τ(x) =

{

0 if x ∈ C;

1 otherwise.

We observe that C ′ ∈ F [τ]. By assumption, F [τ] ∈ C, and since C ′ ∈ F −B was
chosen arbitrarily, F − B ∈ C follows.

Conversely, assume that F −B ∈ C and let τ : B → {0, 1} be any assignment.
We are going to show that F [τ] ∈ C. Choose C ′ ∈ F [τ] arbitrarily. By definition,
there is some clause C ∈ F such that C ′ = C \ {x1−τ(x) : x ∈ B } where τ does
not assign 1 to any literal of C. Consequently, C ′ is nothing but C \{x0, x1 : x ∈
B }. Thus C ′ ∈ F − B ∈ C, and since C ′ was chosen arbitrarily, F [τ] ∈ C. We
can thus conclude that B is a strong C-backdoor set. ut

8

Theorem 6 The non-parameterized problem strong horn-backdoor is NP-
complete.

Proof. By means of Lemma 2 we can verify in polynomial time whether a guessed
set B ⊆ var(F) is a strong horn-backdoor set, thus the problem belongs to NP.

To show NP-hardness, we reduce vertex cover [7] to strong horn-back-
door. Let (G, k) be an instance of vertex cover; that is, G = (V, E) is a graph
and k is a non-negative integer. The question is whether there is a set S of at
most k vertices of G such that every edge of G is incident with some vertex in S
(such a set S is a vertex cover of G). Considering the vertices of G as variables,
every edge uv of G gives rise to a binary clause {u, v}; hence G can be considered
as a monotone formula. We claim that any set S ⊆ V is a vertex cover if and
only if it is a strong horn-backdoor set.

Assume that S is a vertex cover and choose an assignment τ : S → {0, 1}
arbitrarily. We suppose to the contrary that F [τ] is not Horn. Consequently,
there is some clause C = {u, v} ∈ F [τ], i.e., C ∈ F and so uv ∈ E. Since S is
a vertex cover, at least one of u and v belongs to S; we assume, without loss of
generality, that u ∈ B. For any ε ∈ {0, 1}, τ(u) = ε implies that C /∈ F [τ], a
contradiction. Hence F [τ] ∈ horn and so S is indeed a strong horn-backdoor
set.

Conversely, assume that S is a strong horn-backdoor set. Let τ : S → {0}
be the constant-0 assignment. Since F [τ] is Horn, C ∩ S 6= ∅ for every C ∈ F .
This, however, means that every edge of G is incident with some vertex in S,
i.e., S is a vertex cover. ut

Theorem 7 The non-parameterized problem strong 2-cnf-backdoor is NP-
complete.

Proof. We proceed as in the proof of the previous theorem. Membership in NP
follows again by Lemma 2. For showing NP-hardness we reduce an instance
(G, k), G = (V, E), of vertex cover. From G we obtain a monotone formula
F , taking for every edge e = uv ∈ E a clause {u, v, we} where we is a new
variable.

As above, it follows that a vertex cover S ⊆ V of G is also a strong 2-cnf-back-
door set of F . Conversely, assume that S ⊆ var(F) is a strong 2-cnf-backdoor
set of F . If we ∈ S for some edge e = uv ∈ E, then we can replace we by u and
still have a strong 2-cnf-backdoor set of F . Thus we can assume that S ⊆ V .
In this case, however, S is a vertex cover of G. ut

6 Concluding Remarks

We have shown that with respect to Horn and binary clauses, the detection
of strong backdoor sets is fixed-parameter tractable, but the detection of weak
backdoor sets is W[2]-hard, hence very unlikely to be fixed-parameter tractable
(FPT = W[2] implies the existence of a 2o(n) SAT algorithm).

What makes the detection of weak backdoor sets hard and the detection of
strong backdoor sets easy? The ultimate reason for this discrepancy seems to

9

be that for strong backdoor sets we do not have to decide satisfiability, as we
only have to insure that the chosen set of variables gives rise to a formula that
meets the syntactic properties of the considered class C. On the other hand, for
weak backdoor sets, we not only have to achieve syntactic properties but also
satisfiability of the simplified formula, a property that cannot be described by
syntactic terms. Similarly, if we consider backdoor sets with respect to the class
of formulas which can be decided by unit resolution (thus, an an algorithmi-
cally defined class which contains horn as a proper subset), then backdoor set
detection becomes fixed-parameter intractable as well [9].

Our positive results for horn and 2-cnf give rise to several research ques-
tions. The FPT algorithms presented above certainly leave room for improve-
ments; we think that by means of appropriate simplification rules a speed-up
can be achieved. Empirical studies of how such algorithms perform in practice
would be welcome. Finally, it would be interesting to identify other polynomial
classes which allow fixed-parameter tractable backdoor detection, and to extend
the approach to constraint satisfaction.

References

1. K. A. Abrahamson, R. G. Downey, and M. R. Fellows. Fixed-parameter tractability
and completeness. IV. On completeness for W[P] and PSPACE analogues. Annals

of Pure and Applied Logic, 73(3):235–276, 1995.
2. B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for testing

the truth of certain quantified Boolean formulas. Information Processing Letters,
8(3):121–123, 1979.

3. M. Cesati. The Turing way to parameterized complexity. J. of Computer and

System Sciences, 67:654–685, 2003.
4. S. A. Cook. The complexity of theorem-proving procedures. In Proc. 3rd Annual

Symp. on Theory of Computing, pages 151–158, Shaker Heights, Ohio, 1971.
5. W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing the satisfiability

of propositional Horn formulae. J. Logic Programming, 1(3):267–284, 1984.
6. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer Verlag,

1999.
7. M. R. Garey and D. R. Johnson. Computers and Intractability. W. H. Freeman

and Company, New York, 1979.
8. S. Szeider. On fixed-parameter tractable parameterizations of SAT. In

E. Giunchiglia and A. Tacchella, editors, Theory and Applications of Satisfiabil-

ity, 6th International Conference, SAT 2003, Selected and Revised Papers, volume
2919 of Lecture Notes in Computer Science, pages 188–202. Springer Verlag, 2004.

9. S. Szeider. The parameterized complexity of SAT backdoors. In M. Atkinson,
editor, Computing: The Australasian Theory Symposium, CATS 2004, Informal
Proceedings, pages 252–261. University of Ontago, 2004.

10. R. Williams, C. Gomes, and B. Selman. Backdoors to typical case complexity. In
Proceedings of the Eighteenth International Joint Conference on Artificial Intelli-

gence, IJCAI 2003, 2003. To appear.
11. R. Williams, C. Gomes, and B. Selman. On the connections between backdoors,

restarts, and heavy-tailedness in combinatorial search. In Sixth International Con-

ference on Theory and Applications of Satisfiability Testing, SAT 2003, Informal
Proceedings, pages 222–230, 2003.

10

