
Hybrid Approaches to Sports
League Scheduling using

Constraint Programming and
Simulated Annealing

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Bernhard Neumann, BSc
Matrikelnummer 01634034

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Mitwirkung: Proj.Ass. Dipl.-Ing. Nikolaus Frohner, BSc

Wien, 26. Jänner 2023
Bernhard Neumann Günther Raidl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Günther Raidl

Hybrid Approaches to Sports
League Scheduling using

Constraint Programming and
Simulated Annealing

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Bernhard Neumann, BSc
Registration Number 01634034

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Assistance: Proj.Ass. Dipl.-Ing. Nikolaus Frohner, BSc

Vienna, 26th January, 2023
Bernhard Neumann Günther Raidl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Günther Raidl

Erklärung zur Verfassung der
Arbeit

Bernhard Neumann, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 26. Jänner 2023
Bernhard Neumann

v

Danksagung

An dieser Stelle möchte ich mich bei allen bedanken, die mich in meinem Studium
unterstützt und insbesondere während der Erstellung dieser Diplomarbeit motiviert
haben. Ich bedanke mich bei meinem Betreuer Günther Raidl, dass er mir die Möglichkeit
gegeben hat, das Thema Sports League Scheduling genauer zu erforschen. Besonders
bedanken möchte ich mich auch bei Nikolaus Frohner, der mir stets mit Rat und Tat zur
Seite gestanden ist. Weiters möchte ich mich bei meinem Cousin Sebastian Neumann
für das Korrekturlesen der Arbeit bedanken. Außerdem möchte ich mich bei meinen
Eltern bedanken, die mich in meiner Ausbildung stets unterstützt haben. Zu guter Letzt
danke ich meiner Freundin Julia für den emotionalen Rückhalt während des Studiums
und insbesondere während der Erstellung dieser Diplomarbeit.

vii

Kurzfassung

Ligenplanungsprobleme befassen sich mit der Erstellung von Spielplänen für Teams in
jeweils einer bestimmten Sportliga mit ihren Regeln und einem geteilten Verständnis
davon, was einem guten Plan entspricht. Sie gelten als schwierige kombinatorische Opti-
mierungsprobleme, bedingt durch ihre hohe Anzahl von Constraints, welche es erschweren,
schon allein gültige Lösungen zu finden, gepaart mit einer Optimierungskomponente, bei
der Abweichungen von gewünschten positiven Eigenschaften minimiert werden sollen.

In dieser Arbeit untersuchen wir hybride Ansätze basierend auf dem Constraint Pro-
gramming (CP) Paradigma und der Metaheuristik Simulated Annealing (SA) angewandt
auf zwei herausfordernde Probleme aus dieser Klasse, nämlich das Traveling Tournament
Problem (TTP) und das International Timetabling Competition Problem 2021 (ITC2021).
Das TTP versucht die grundsätzliche Schwierigkeit in einer möglichst einfachen Pro-
blemstellung zu erfassen, während das ITC2021 auf Echtwelt-Probleminstanzen mit ihrer
Vielzahl an Constraints und Optimierungskriterien abstellt.

Konkret implementieren wir den Traveling Tournament Simulated Annealing (TTSA)
Ansatz für das TTP von Anagnostopoulos et al. in der Programmiersprache Julia und
kombinieren diesen mit einem eigenen CP-Modell zum schnellen Finden von zufälligen
Startlösungen. Wir können damit Experimente mit schneller Abkühlung für Benchmark-
Instanzen aus der Literatur erfolgreich reproduzieren. Wir erweitern TTSA um die
Constraints und Zielfunktion des ITC2021 Problems, nehmen einige algorithmische
Verbesserungen vor und führen anschließend entsprechende Tuning-Experimente durch,
um ein Portfolio von günstigen Parameter-Konfigurationen zu bestimmen.

Zum Finden gültiger Lösungen entwerfen wir zuerst ein Transformationsprogramm,
welches die per XML spezifizierten ITC2021 Instanzen in die Sprache der CP Model-
lierungssoftware MiniZinc übersetzt. Dies gestattet das effiziente Vergleichen von vier
unterschiedlichen Backend-Solvern mit verschiedensten Konfigurationen und Restarting-
Mechanismen. Die hohe Anzahl an Constraints hat eine Verwendung von CP nahegelegt,
jedoch vermochten wir damit nur für etwas mehr als die Hälfte der 45 bereitgestellten
Testinstanzen gültige Lösungen zu finden.

In einer parallelen Hybridisierung verknüpfen wir nun CP mit SA. Dabei werden je
Instanz mehrere Threads gestartet, wobei jeweils zuerst versucht wird, über den Chuffed
CP-Solver mit eigener Randomisierung eine gültige Lösung innerhalb eines kürzeren

ix

Zeitlimits zu finden. Diese wird anschließend dem SA zur Verbesserung übergeben,
wobei eine Konfiguration aus dem Portfolio zufällig selektiert wird. Sollte über CP keine
gültige Lösung gefunden werden, so wird dies dem SA überlassen, welcher auch mit
ungültigen Lösungen umgehen und Constraint-Verletzungen reduzieren kann. Damit
können wir zumindest für zwei Drittel der Instanzen gültige Lösungen finden, was eine
Verbesserung gegenüber reinen CP-Optimierungsläufen darstellt. Außerdem können wir
oft CP-Startlösungen verbessern.

Gesamt betrachtet können unsere Lösungen mit denen der anderen ITC2021 Kompetitoren
nicht mithalten. Insbesondere erscheint eine Verwendung von Integer Programming
effektiver als CP zu sein. Allerdings stellte sich der hybride Lösungsansatz für uns als
vorteilhaft dar, da wir teilweise Lösungen nur in der CP-Phase, teilweise nur in der
SA-Phase fanden. Wir hatten aber auch Instanzen, bei denen SA die durch CP gefundene
Lösung deutlich verbesserte.

Abstract

Sports league scheduling deals with constructing solutions in form of tournaments for a
set of teams following rules of a considered sports league and a corresponding shared
view on what good solutions should look like. They constitute difficult combinatorial
optimization problems due to their large number of constraints, which makes finding
valid solutions alone a challenging task, paired with an optimization aspect, which aims
at minimizing the deviation from desired positive tournament properties.

In this thesis, we investigate hybrid approaches based on the constraint programming
(CP) paradigm and the metaheuristic simulated annealing (SA) applied on two concrete
problems of this class, namely the Traveling Tournament Problem (TTP) and the
International Timetabling Competition 2021 problem (ITC2021). The TTP aims at
capturing the essence of the complexity of sports league scheduling while the ITC2021 is
motivated by real-world instances with their plethora of hard and soft constraints.

More concretely for the TTP, we implement and evaluate the Traveling Tournament
Simulated Annealing (TTSA) approach from Anagnostopoulos et al. in the Julia pro-
gramming language and combine it with a CP model to quickly find random initial
solutions. This allows us to successfully reproduce fast cooling experiments from the
literature on benchmark instances. We adapt the TTSA further for the constraints and
objective function of the ITC2021 problem, implement some algorithmic improvements,
and perform final tuning experiments to obtain a portfolio of promising configurations.

To find initial solutions, we design and implement a tool which transforms the ITC2021
XML instances into the language of the CP modeling software MiniZinc, which allows
us to efficiently compare four different backend solvers with various configurations and
restarting mechanisms. Given the highly constrained nature of the problem, we assumed
CP to work better, however, with this pure CP approach we could only find feasible
solutions for slightly more than half of the 45 instances.

In a parallel hybridization, we finally combine CP with SA. For each instance, multiple
threads are started in each of which we first search for a feasible solution via the Chuffed CP
solver using randomization and a shorter time limit. The solution is subsequently provided
to the SA to improve it, for which we sample a configuration from the aforementioned
portfolio randomly. In case no feasible solution is found by CP, this then becomes the task
of SA, which can handle infeasible solutions and reduce constraint violations. This allows

xi

us to find feasible solutions for two thirds of the instances, which is an improvement
compared to pure CP runs. Moreover, we are able to frequently improve initial CP
solutions while sometimes full CP runs are better.

Still, the overall performance is below other ITC2021 competitors; we cannot reach the
best known solutions by a substantial margin. In particular, it seems preferable to use
integer programming instead of CP. In our setting, it turned out to be beneficial to have
a hybrid approach since we dealt with instances where only CP found a solution and
instances where only SA found a solution. We also had instances where the solution
found by CP was improved substantially by the SA.

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Aim of this Work . 2
1.2 Outline . 2
1.3 Key Results . 3

2 State of the Art 5
2.1 ITC2021 Solution Approaches . 5
2.2 Traveling Tournament Problem . 6

3 Methodology 9
3.1 Constraint Programming . 12
3.2 Heuristic Optimization . 19

4 Problem Description 25
4.1 Double Round Robin Tournament . 25
4.2 ITC2021 Problem Definition . 25
4.3 Constraints . 27
4.4 Objective Function . 28
4.5 NP-Hardness . 29
4.6 Derived Problems . 29

5 Solution Approaches 31
5.1 Constraint Programming . 31
5.2 Simulated Annealing . 42
5.3 Parallel Multi-Start Hybridization . 51

6 Computational Study 53
6.1 Constraint Programming with MiniZinc 53

xiii

6.2 Instances . 56
6.3 First Comparison of MiniZinc Configurations 57
6.4 Comparison between Versions . 61
6.5 Globals vs Non-globals . 62
6.6 Randomized Restart Experiments for Chuffed 66
6.7 Preliminary Experiments with TTSA 67
6.8 First Hybridization with Simulated Annealing 69
6.9 Simulated Annealing Standalone . 71
6.10 Second Hybridization with Simulated Annealing 74
6.11 Final Results . 78

7 Conclusions & Future Work 79

A Additional CP Results 81

List of Figures 87

List of Algorithms 89

Bibliography 91

CHAPTER 1
Introduction

Scheduling sports leagues satisfactorily is a difficult and complex task in which a number
of various important stakeholders are involved. In our context, it is about assigning
games to slots in a previously agreed upon calendar fulfilling certain constraints while
maximizing a defined quality measure. The teams, their supporters, the media, the
public, and the league itself each have their own, often conflicting, interests in how a
schedule should be structured. Teams and supporters each do no want to have too long
away streaks, the media and the public want to have certain high class games not in
conflict with other events of general interest, the league requires the schedule to have a
specific form etc.

While the current approach by sports timetabling practitioners is to focus on a specific
league and compare schedules of different algorithmic approaches with each other and
with manually derived schedules, in the International Timetabling Competition 2021
(ITC2021) the participants’ task is to create and describe a corresponding general solver
able to find and optimize schedules for any league specified. To test their performance
and organize an actual competition, a number of different leagues, concrete problem
instances for the solvers, are provided.

The well-known Traveling Tournament Problem (TTP) introduced by Easton et al. [10] in
2001 is more of an academic sports timetabling problem where the goal is to find a double
round robin (DRR) schedule for a league where the total distance traveled by all teams
shall be minimized. It assumes that teams travel directly from venue to venue, starting
and ending at their home venue. The real-world motivation comes from the Major League
Baseball in the United States, where travel distances between opposing teams are large.
Moreover, two additional hard constraints have to be met: The no-repeat constraint
ensures that two teams do not play against each other in two consecutive rounds. The
at-most constraint guarantees that a team plays at most U games consecutively at home
or away with U usually set to 3, and therefore a balance in the schedule regarding home
and away streaks is achieved. It is an NP-hard problem [45] and has proven to be very

1

1. Introduction

difficult in practice—benchmark TTP leagues with 12 teams have not yet been solved to
optimality—and therefore acts as a benchmark problem for both exact and metaheuristics
approaches, from which solution approaches to the more realistic ITC2021 leagues could
draw inspiration.

1.1 Aim of this Work

The aim of the work is to implement a heuristic solver for ITC2021 sports leagues. For the
TTP, a number of metaheuristic approaches have been applied successfully. Therefore, we
want to explore if those approaches, when suitably adapted, also work well for ITC2021
leagues in which there are other constraints and in a larger number than for the TTP,
moreover, a different objective function where the traveled distance is irrelevant and
instead the unsatisfied soft constraints are taken into account.

First, we want to find a constraint programming (CP) model which should provide us
with initial feasible solutions to be subsequently improved using a metaheuristic search.
Different backend solvers should be compared by testing and tuning corresponding search
parameters for the relevant benchmark instances. As mentioned before, approaches based
on metaheuristics were already successfully applied to the TTP, see [1, 53, 46, 8]. Hence,
we want to design and implement a standalone (meta)heuristic algorithm also capable of
generating an initial solution and compare it with the pure CP approach.

We also want to answer the question whether it is more beneficial to start our improvement
heuristic with a feasible solution and spend a lot of time generating the initial feasible
solution or if it suffices to start from a random, possibly infeasible one, and then spend
a lot of time in the improvement phase which is able to deal with infeasible solutions.
In this spirit, we want to finally study a hybrid approach combining the constraint
programming solver with the metaheuristic in a two-phase approach.

1.2 Outline

In Chapter 2, we discuss state-of-the-art approaches to the ITC2021 and simulated
annealing for the TTP. In Chapter 3, we present the methodology related to our solu-
tion approaches, concretely basic definitions related to combinatorial optimization, the
foundations of constraint programming to solve constrained optimization problems, and
simulated annealing as neighborhood-based improvement metaheuristic. Then we turn
to the problem definition of the ITC2021 in Chapter 4 and also introduce the solution
representation based on splitting a schedule in opponents and home-away patterns [37].
Our solution approaches based on CP and SA are presented in the subsequent Chapter 5
before we move to our thorough computational study in Chapter 6. We conclude and
provide our thoughts on future work in Chapter 7.

2

1.3. Key Results

1.3 Key Results
We summarize our key results and findings in the following list:

• We provide an effective and efficient solver for the TTP based on a CP model with
globals and restarting and a reimplementation of TTSA [1] in Julia, confirming
results from the literature.

• While Chuffed with heavy restarting seems to be the most promising CP solver,
we could not find an effective standalone CP approach using the opponents and
home-away pattern formulation to find feasible solutions for the ITC2021 with high
probability within 24 hours.

• We were able to improve the CP approach in terms of feasibility and sometimes in
terms of solution quality by parallelizing and hybridizing it with SA while tuning
the latter properly over a wider range of instances with different properties remains
a challenging task.

• The comparison of pure CP (with Chuffed and randomization) and a standalone SA
approach shows that CP finds solutions to eight of the Early instances whereas SA
finds solutions to only seven of those. Both approaches used multiple configurations
and runs (CP: three configs with 60 runs each, SA: 96 configs with three runs each)
to solve the instances. Each run had two hours to solve its instance. This means
the question if one should put more effort into finding feasible initial solutions with
CP or into the SA part, cannot be answered definitely as it highly depends on the
instance. Since the performance of CP was rather disappointing, we believe it is
better to put more effort into the improvement phase.

3

CHAPTER 2
State of the Art

In this chapter, we present the state of the art regarding sports timetabling in form
of solution approaches to the challenging ITC2021 and the groundbreaking works on
simulated annealing for the TTP and a recent heuristic approach based on randomized
beam search. The ITC2021 is introduced by Van Bulck et al. [50], the TTP by Easton
et al. [10]. For an overview on sports league scheduling in general, refer, for instance, to
De Werra [7], Kendall et al. [24], and Durán [9].

2.1 ITC2021 Solution Approaches
Berthold et al. [3] used Mixed-Integer Linear Programming (MILP) with several different
solvers to find solutions, also making use of a restarting scheme. In a final step, they used
an adapted traveling tournament simulated annealing (TTSA) algorithm as described by
Anagnostopoulos et al. [1] to improve their best found solutions.

In their work, van Doornmalen et al. [51] made use of the circle method proposed by
Anderson [2] to construct the initial schedule (phase 1), which is very likely to violate
hard constraints. Then they implemented a combination of MILP and a local search
in simulated annealing fashion that explores the neighborhood mentioned by Januario
et al. [22]. In phase 2, they use this combination to generate a feasible schedule out of
the initial schedule adhering to all hard constraints. In phase 3, they try to improve the
found solution using the same approach but only allow for feasible solutions.

Sumin and Rodin [43] used four different MILP models to narrow the search space
and thereby ease the finding of solutions. Their baseline model was a complete MILP
formulation of the problem but could only be used for smaller instances with fewer
constraints; their pattern model used additional variables which define if a team plays at
home in a specific round; their patterns mirrored model generates mirrored schedules,
thereby reducing the search space significantly. In their two-phased model they decompose

5

2. State of the Art

the model into the two halves of the schedule, first solving the first part, then scheduling
the second phase with respect to the solution of the first phase.

Philips et al. [36] first try to solve a MILP model to create an initial solution. If this does
not yield a solution in feasible time, they use the Canonical Factorization of De Werra [7]
which guarantees to satisfy one of the break constraints but will most likely violate other
hard constraints. Afterwards, they iteratively apply an Adaptive Large Neighborhood
Search to improve the initial solution including solutions violating hard constraints as
well.

Fonseca and Toffolo [12] used a fix-and-optimize algorithm, which is a matheuristic that
iteratively employs a mathematical programming solver to optimize a sub problem while
the rest of the problem remains fixed. They apply their procedure twice, once with an
initial schedule obtained by the polygon method to find a feasible solution and once with
the found feasible solution to improve that solution.

In their work, Lamas-Fernandez et al. [26] developed a MILP model to solve the instances.
However, since the instances are too hard to solve as a whole, they used a fix-and-relax
matheuristic approach to solve subproblems.

In their master’s thesis, Subba and Stordal [42] also used a MILP approach to search for
solutions as well as a cluster pattern approach to fix the home-away status of a subset of
teams to reduce the search space.

Rosati et al. [39] implemented a three-stage simulated annealing approach, which makes
use of a new neighborhood (in addition to the five neighborhoods used by Anagnostopoulos
et al. for the TTP, see Section 2.2). The new neighborhood was created specifically for
the phased version of the problem (see Section 4.2 for the definition of phased instances).

2.2 Traveling Tournament Problem

Anagnostopoulos et al. [1] proposed a simulated annealing approach to solve the TTP
called TTSA. They used a random initial schedule and also considered infeasible solutions
to escape local minima and address the rather small feasible neighborhood even with
already quite complicated moves. Moreover, they implemented reheating to enlarge the
considered solution space during one run. Strategic oscillation is used to balance the time
spent in feasible and infeasible regions. Their approach works well for instances up to 14,
beyond that point the investigation of the neighborhoods needs a lot of time. However,
they also studied a fast cooling approach with which they also found good solutions for
larger instances rather quickly.

In a follow-up work, Van Hentenryck and Vergados [53] implemented a population based
variant of their simulated annealing approach, in which they used the TTSA of [1] as
a black box. The algorithm works in waves. First, TTSA is run a number of times to
create the population; after a certain time, the best solutions so far are compared and the
runs within a subset of the n best solutions may continue their execution while the rest

6

2.2. Traveling Tournament Problem

of the population is restarted with the overall best solution found so far. This approach
has found most of the currently best known solutions for the larger instances of the TTP.

Frohner et al. [13] proposed and implemented a beam search approach for the TTP. For
guidance of the beam search, different lower bounds variants were compared based on the
independent lower bound [10, 47, 48]. Moreover, a randomized beam search variant for
which a Gaussian noise is added to the heuristic value was also implemented and used to
diversify multiple runs. This approach achieved improvement for two CIRC instances. In
the parallelized variant of this randomized beam search approach [14], many new best
feasible solutions to the TTP were found.

7

CHAPTER 3
Methodology

In this chapter, the main concepts relevant for our solution approaches are explained. First,
we define combinatorial optimization problems, then we explain the ideas of constraint
programming, an exact approach on finding a solution, followed by a description of
heuristic optimization, a non-exact approach that sacrifices optimality for speed, including
heuristics for constructions as well as for improvement.

For the definition of combinatorial optimization problems (COP) we follow Papadimitriou
and Steiglitz [33] (restricted to finite solution sets). The goal of an optimization problem
is to find a best solution out of a set of candidate solutions. This separates them from
decision problems and satisfaction problems. Decision problems only answer a specific
true-false question. For example, a question asked by a decision problem could be “Is there
a feasible schedule for that tournament?”. Solutions to these problems answer either yes or
no. Moreover, satisfaction problems deal with finding a feasible solution that satisfies all
constraints, e.g., a solution would give a feasible schedule to a tournament. On the other
hand, an optimization problem might be “What is a schedule with the smallest objective
value?”, whose solution would give a concrete example of a best schedule regarding the
objective value. The objective value of a solution is defined by the objective function
of its related problem instance. An optimization problem can either be a minimization
problem where one wants to minimize the objective value or a maximization problem
where one wants to maximize the objective value. However, a maximization problem
can be turned into a minimization problem by multiplying the objective values by -1.
Therefore, in the following we will only elaborate on minimization problems. The set
of solutions to an optimization problem can either contain finitely or infinitely many
solutions. In the first case, we call these problems combinatorial optimization problems.
In the latter case, we talk about either discrete optimization in general with a countable
but possibly infinite number of solutions, or continuous optimization with (partially)
continuous, hence uncountably many, solutions. In this thesis, we will only consider
combinatorial optimization problems, which we define as follows:

9

3. Methodology

Definition 1 A combinatorial optimization problem is a set of problem instances. A
problem instance is a pair (S, f) where S is the finite set of all feasible solutions to
the instance, S is also called the search space of the problem instance, and f is an
objective function f : S → R that shall be minimized (or maximized). The goal is to find
a globally optimal solution x∗ ∈ S such that f(x∗) ≤ f(x) ∀x ∈ S for minimization (or
f(x∗) ≥ f(x) ∀x ∈ S in case of maximization).

In Figure 3.1, we can see a graph of an objective function with only one parameter.
The parameter is represented by the x-axis; the value of the objective function for that
parameter is shown on the y-axis. The graph has a global minimum (B) and three local
minima (A, B, C). The term global minimum has already been defined; it is the optimal
solution to that problem instance. A local minimum is the lowest point on the objective
function graph in an immediate neighborhood (which needs to be defined); going from
that point in any direction leads to an increase of the objective value. Every global
minimum is also a local minimum.

Solving the problems described in this thesis to optimality becomes very time-consuming
when the problem size increases; if the problem size grows linearly, it is widely believed
that the time needed grows exponentially. To tackle such problems, there are generally
two approaches: exact and heuristic methods. Exact methods are guaranteed to find
the global optimum at some point in time. Thanks to various techniques, for example,
branch-and-bound or constraint propagation that allow to reduce the search space, exact
methods do not need to check every possible solution. However, solving a problem to
optimality and proving said optimality might still take a lot of time. Therefore, heuristic
optimization methods are often used to find feasible, high-quality solution in much less
time than an exact approach. These techniques do not guarantee to find a best solution
(even if they do, they generally cannot prove that the found solution is optimal) and
in general there is no bound on the gap to the best solution quality. For example, the
nearest-neighbor heuristic for the Traveling Salesman Problem (TSP), where the goal is

Figure 3.1: Objective function with multiple local minima and one global minimum

10

to find the shortest tour through a set of cities (nodes), starting and ending at the same
city, can be arbitrarily worse than the optimum. However, they are often much faster
since they focus on restricted parts of the search space that look promising and may
work well on instance classes considered relevant. Some heuristic methods can guarantee
that their found solution is not worse than a certain approximation ratio; they are then
called approximation algorithms. For example, the Christofides heuristic [5] for the TSP
guarantees that its found solution does not have an objective value higher than 1.5 times
the optimal value.

Some of the described problems are NP-hard or are conjectured to be NP-hard. NP-
hard problems are problems that are at least as hard as all problems in NP , however, they
do not have to lie in NP. If a problem is NP-hard and lies in NP, it is NP-complete.

Definition 2 A problem lies in NP if and only if the problem is accepted by a non-
deterministic Turing machine which operates in polynomial time. Karp [23, p. 91]

This means that if there are x alternatives for the algorithm to investigate, the algorithm
makes x copies of itself and examines all of the alternatives at once. NP is the abbreviation
of Non-deterministic Polynomial runtime. A solution to a problem in NP can be verified
in polynomial time. For example, a non-deterministic Turing machine can find an optimal
solution to a TSP(L) instance (TSP’s decision variant, where we seek a solution of length
below a given L) in polynomial time when it traverses all possible tours in parallel,
starting from an initial city.

The evaluation of the tours can also be done in polynomial time since it only needs
to sum up the distances between n cities. This is another important aspect of NP
that a witness, in this case a tour of length ≤ L, can be checked in polynomial time.
We can calculate the objective value of a tour for a TSP instance in polynomial time
as well as the objective value of a schedule for a TTP instance, both not in NP but
NP-hard problems. So far, no polynomial algorithm for an NP-hard problem has been
found; known algorithms for this problem class have exponential runtime in the size
of the problem instance; the runtime is upper bounded by 2poly(n), where poly(n) is a
polynomial in n. On the other hand, there are problems that lie in the complexity class
of P, which stands for polynomial runtime. Whether P = NP is still an open question.

Definition 3 A problem lies in P if and only if the problem is accepted by a deterministic
Turing machine which operates in polynomial time. Karp [23, p. 88]

In the following two sections, we present the basics of two approaches to tackle NP-hard
problems: constraint programming and heuristic optimization.

11

3. Methodology

3.1 Constraint Programming
Constraint Programming (CP) is a paradigm for solving combinatorial search problems,
which is applied to many domains such as scheduling, planning, vehicle routing, etc. To
solve these problems, one has to translate them into a Constraint Satisfaction Problem
(CSP), representing the problem in terms of decision variables and constraints (see
Definition 4). For this section, we follow the Handbook of Constraint Programming
by Rossi et al. [40]. We focus on the basic principles of constraint programming: we
define a CSP and a solution to a CSP ([40, 2.2.1]), describe the concepts of constraint
propagation [40, 2.2.3, chapter 3] and backtracking ([40, 2.2.4, chapter 4]) and introduce
ordering heuristics ([40, 4.6.1]. Further techniques such as global constraints ([40, chapter
6]) or symmetry breaking ([40, chapter 10]) are not discussed but can be found in the
Handbook of Constraint Programming. Another topic that is not covered but should
be mentioned here is parallelization of constraint programming; for further reading see
Régin and Malapert [38].

Definition 4 A CSP P is a set of instances P = {I1, I2, . . . , Ik} where each I is a
triple I = 〈X,D,C〉 where X is an n-tuple of variables X = 〈x1, x2, . . . , xn〉, D is a
corresponding n-tuple of domains D = 〈D1, D2, . . . , Dn〉 such that xi ∈ Di and C is a
t-tuple of constraints C = 〈C1, C2, . . . , Ct〉. A constraint Cj is a pair 〈RSj , Sj〉 where
RSj is a relation on the variables in Sj. In other words, RSj is a subset of the Cartesian
product of the domains of the variables in Sj. [40, Chapter 2.2.1]

Definition 5 A solution to a CSP instance I‖ is an n-tuple A = 〈a1, a2, . . . , an〉 where
ai ∈ Di and each Cj is satisfied in that RSj holds on the projection of A onto the scope
Sj. [40, Chapter 2.2.1]

The set of all solutions to a CSP instance I‖ is represented by sol(I‖). If it is empty, the
CSP instance is unsatisfiable, otherwise it is satisfiable, which means there is a solution
to the problem instance.

A Constrained Optimization Problem (or Constraint Optimization Problem) is a special
form of CSP where in addition to fulfilling all constraints the goal is to minimize an
objective function. The parts of the objective function are often called soft constraints
because if a soft constraint is not fulfilled, a penalization term is added to the objective
function value.

While searching for solutions, CP solvers combine constraint propagation and backtracking
to narrow the search space and escape infeasible paths.

3.1.1 Constraint Propagation

Constraint Propagation is used to narrow down the search space and is applied before the
search starts and after each assignment of a value to a decision variable. Some constraints

12

3.1. Constraint Programming

directly restrict variables. For example, the constraint x1 < 5 restricts the domain Di

of x1, every value ≥ 5 can be removed from Di. Moreover, an assignment of a variable
might lead to a restriction of other variables that have not been assigned a value yet.
Therefore, the domains of the now restricted variables are reduced by the values which are
not possible anymore. The restrictions thereby propagate to future variable assignments,
thus reducing the search space. This process is done by consistency algorithms; in the
following node consistency and arc consistency are described. For more details and other
higher order consistencies see Chapter 3 of the Handbook of Constraint Programming.

The constraints of a CSP can be represented in the form of a constraint graph. A node i
represents the decision variable xi with domain Di. Constraints that contain only one
decision variable, called unary constraints, are usually not shown in a constraint graph,
however, one could show them as a loop on the node. Constraints that use two variables,
called binary constraints, are shown as arcs between the two variables. For constraints
with higher order a hypergraph would be needed.

Node consistency checks the consistency of unary constraints. A node in the constraint
graph is consistent if Di ⊆ Ri where Ri is the shorthand notation for R〈xi〉. If it is not
consistent, it can be made by computing Di ← Di ∩Ri. Thus, values that would violate
the constraint are removed from Di. The network becomes node-consistent by a single
pass through the nodes.

The presented arc consistency algorithm works with binary constraints. Suppose there is
a binary constraint, i.e., there is a relation Rij (shorthand for R〈xi,xj〉) between variables
xi and xj , then the arc 〈i, j〉 is consistent if and only if Di ⊂ πi(Rij ./ Dj), which means
it is consistent if every value of Di has a partner in Dj , so the constraint holds. If it is
not consistent, i.e., there is a value in Di that does not allow for a feasible assignment of
a value of Dj to the variable xj , it can be made by computing Di ← Di ∩ πi(Rij ./ Dj),
which means values in Di that do not have a partner in Dj are removed from Di. Arc
consistency is directional, so it has to be checked for both arcs of two nodes (〈i, j〉 and
〈j, i〉). The deletion of a value in the domain of a variable xk can lead to any arc xk is part
of to become arc inconsistent; therefore, arcs need to be revisited if one of their variables
had its domain changed in the previous step, until all of the arcs are arc consistent.

There are different arc consistency algorithms; one of them is AC3, which was proposed
by Mackworth [29] and is outlined in Algorithm 3.1 and 3.2. The revision of an arc
happens in the function Revise3, which takes a variable Xi and a constraint c as input
and deletes every value from the domain Di of Xi which has no partner in Dj (Xj is
the other variable of the constraint c). It returns true if a value was removed from the
domain. AC3 revises the arcs until all arcs are consistent. To save on function calls, it
manages a queue of pairs (xi, c) for which we cannot be sure that D(xi) is arc consistent.
The algorithm takes one of those pairs (xi, c) and uses Revise to make the variable xi

arc consistent regarding c. If the domain was changed and thereby the domain became
empty, we return false as we failed to make the graph arc consistent. If only the domain
changed, it can be that a value of another variable lost its partner regarding another
constraint, therefore, this variable needs to be revised again and hence is put into the

13

3. Methodology

queue. The algorithm stops when the queue becomes empty and then returns true as the
graph is now arc consistent.

Algorithm 3.1: Revise3
input :Variable Xi; constraint: c
output :Boolean

1 CHANGE ← false;
2 foreach vi ∈ Di do
3 if @vj ∈ Dj that allows Xi to be assigned vi wrt c then
4 remove vi from Di;
5 CHANGE ← true;
6 end
7 end
8 return CHANGE;

Algorithm 3.2: AC3
input :Variable set X; constraint c
output :Boolean

1 Q← (xi, c)|c ∈ C, xi ∈ X(c);
2 while Q 6= ∅ do
3 select and remove (xi, c) from Q;
4 if Revise(xi, c) then
5 if Di = ∅ then
6 return false;
7 else
8 Q← Q ∪ (xj , c

′)|c′ ∈ C ∧ c′ 6= c ∧ xi, xj ∈ X(c′) ∧ j 6= i ;
9 end

10 end
11 end
12 return true;

The algorithm runs in O(ed3) where e is the number of constraints and d is the size of
the largest domain. The algorithm is not the most efficient one as Revise does not store
any information about the partners of certain values, therefore, it has to recalculate it
for every call. However, this algorithm shows the underlying concept of arc consistency
very well. There are further enhancements that improve AC3, namely AC4, AC6, and
AC2001, which lower the time complexity of the algorithm.

If some constraints use more than two variables, the constraint can be represented as a
hyperedge and arc consistency can be generalized to hyperarc consistency.

14

3.1. Constraint Programming

3.1.2 Backtracking

If constraint propagation does not already provide a feasible solution, CP solvers may
use depth first search to find one. Values are assigned to variables heuristically one after
another, resulting in partial solutions, for which constraint propagation can be again
applied to reduce the domains. However, the solver might often get stuck at nodes with
at least one variable with an empty domain, therefore without a feasible completion.
In the simplest form of backtracking, the solver will then jump back to the last partial
solution where there is a variable assigned which has an alternative choice (i.e. a variable
with a domain with more than one value). However, there are techniques to remember
which variable assignment caused the failure and then jump back to that assignment.
For more details, see Chapter 4 of the Handbook of Constraint Programming [40].

3.1.3 Example

A well known example for a CSP is the n-queens problem where the goal is to place n
queens on an n× n chessboard in such a way that no queen can attack another one. A
possible way of modeling that problem is to have a variable for each of the n columns.
The value of the variable i defines the row in which the queen is positioned in the ith
column. There are three different constraints that need to be satisfied: Firstly, there
must be exactly one queen per column; this is always satisfied as there is one variable
for each column. Secondly, there needs to be exactly one queen per row, which means
we need to ensure that all values of the variables are different. Lastly, there may only
be one queen per diagonal, therefore, the values of the variables may not differ by the
same amount their respective column’s index differs. The problem of finding a solution
lies in P as shown by Hoffman et al. [21]. However, finding a solution to the related
problem of n-queens completion where the goal is to find a feasible completion of a partial
assignment of an n-queens board is NP-complete as presented by Gent et al. [17].

In Figure 3.2, we can see on the left a queen positioned on a 4× 4 chessboard. On the
right side of that figure, we can see that the restrictions of the positioning of the first
queen propagate to the possible values of the other variables. We use red to mark squares
that cannot be used because of a queen in the same column, blue to mark squares that
are prohibited because of a queen in the same row and green to mark squares that have
a queen on the same diagonal already positioned. In Figure 3.3 on the left side, we can
see that positioning the second queen in the third row leaves no possible values for the
third queen. Therefore, we have to backtrack and position that queen in the fourth row
(on the right side of 3.3). However, this leads to the point where there is no position left
for the fourth queen. Therefore, we have to backtrack all the way back to the first queen
and position it in the second row which can be seen on the left side of Figure 3.4. Now,
the second queen has only one possible position as well as the third and the fourth queen
after each step as seen on the right of 3.4 and on the left of Figure 3.5. In the end, all
queens are positioned in that way, so no queen can attack another one, which can be
seen on the right in Figure 3.5.

15

3. Methodology

♛ ♛ X X X
X X
X X
X X

Figure 3.2: Left: First queen positioned in the first row. Right: Marked squares are no
possible positions for other queens.

♛ X X X
X X X
X ♛ X
X X X X

♛ X X X
X X ♛ X
X X X X
X ♛ X X

Figure 3.3: Left: Second queen positioned in the third row, which leaves no option for
the third queen. Right: Second queen positioned in the fourth row leaves the second row
as only option for the third queen, which then leaves no option for the fourth queen.

This problem could also be formulated as a COP. The objective function would then be
the number of pairs of queens that can attack each other. The best possible value is
therefore 0 when no queen can attack another. The worst possible value is 2(n− 1) and
occurs when all queens can attack each other, as it can be seen in Figure 3.6.

3.1.4 Ordering Heuristics

The ordering of which variables to assign a value first plays an important role in the
search process, moreover, which value is assigned is also significant. In the example
above, we always chose the variable (=column) with the lowest index to assign the next
queen to. Another possible ordering would be to choose the variable with the smallest
number of possible values in its domain, thereby, possible failures should get recognized
earlier. Furthermore, one could choose a random variable, the variable with the smallest
value in its domain, the variable with the highest difference in its lowest two values of the
domain or the variable with the largest domain weighted by the number of constraints
and how often it caused failure. The opposite of these variable orderings would also
be possible. For the decision which value to assign to a variable there are also various
heuristics. One possibility, which we also used in the example above, is to always assign

16

3.1. Constraint Programming

X X
♛ X X X
X X
X X

X X
♛ X X X
X X X
X ♛ X X

Figure 3.4: Left: First queen positioned in the second row leaves only one position open
for second queen. Right: Second queen positioned in the fourth row leaves the first row
as only option for third queen.

X X ♛ X
♛ X X X
X X X
X ♛ X X

X X ♛ X
♛ X X X
X X X ♛
X ♛ X X

Figure 3.5: Left: Third queen positioned in the first row leaves one position open for last
queen. Right: Last queen positioned in the third row, all queens are positioned.

♛ ♛

♛ ♛
Figure 3.6: Worst possible solution for the n-queens problem as a COP for n = 4.

17

3. Methodology

the lowest possible value to the variable. Moreover, one could assign the median value of
the domain, the value that is closest to the average of the domain values or a random
value of the domain. For further information, see Subsection 4.6 of the Handbook of
Constraint Programming [40].

3.1.5 Randomization & Restarting

Often, a whole subtree of the search tree does not lead to a feasible solution. In this
case, backtracking inside this subtree only uses up time in particular when we made a
bad decision at the beginning of the search. Therefore, the technique of restarting from
the initial state is used, in combination with randomization to ensure different resulting
schedules.

Of course, during the search it is unknown whether the whole subtree is infeasible,
therefore, there are various heuristic ways to determine when to restart. For example,
after a number of failures, i.e., when we encounter a node with a variable with an empty
domain, or after a defined amount of time in which no feasible solution was found or
after an amount of time after which a new layer in a subtree has not found a feasible
assignment for its respective decision variable.

Moreover, there are various strategies for restarting. If we consider only restarting after
a certain amount of failures, we can still differentiate between the restarting procedures.
Constant restarting leads to restarting after a certain number of failures. Others like
linear or geometric restarting increase the number of failures that lead to a restart after
every restart; this is so the search allows more and more failures because if the number
of allowed failures before restarting is too low, the search might never find a solution.
There are also strategies where the number of allowed failures increases and decreases
along a predefined sequence.

Restarting also requires a form of randomization, otherwise, we would always go through
the same nodes of the search tree. Either the variable ordering or the value ordering
can be randomized, or both. Variable ordering randomization can be either completely
random or guided by a heuristic, e.g., randomly choosing a variable that is within a
small factor of the best variable (according to the heuristic). Moreover, one could also
only randomize the tie breaking of a variable order heuristic. Important to note is that
the randomization method needs to have enough different decisions near the top of the
search tree. For value ordering heuristics one could make all values equally likely or also
use a heuristic as guidance. For further information, see Section 4.7 of the Handbook of
Constraint Programming [40].

An example of randomization and restarting could be the n-queens problem where we
restart after a number of failures we encounter and use a randomized value ordering. So
after we run out of options to put the third queen on the chessboard as seen in Figure
3.3 on the left, we would restart and choose a random row for the first queen. If we put
it in the bottom left, we would still run into a failure. On the other hand, if the random

18

3.2. Heuristic Optimization

ordering chooses the second or third row, we would come to a solution without further
restarts.

3.2 Heuristic Optimization
Heuristic optimization aims to find high-quality solutions to difficult problems in reason-
able time. It can be used when exact methods like integer programming [54] or constraint
programming [40] fail or are too slow, at the cost of generally not having an optimality
guarantee. To create a solution to a given problem instance from scratch, a construction
heuristic is used whereas to improve an existing solution an improvement heuristic is
applied. As we mostly formulate the construction of solutions in the context of CP, in
this section we focus on improvement (meta)heuristics. Heuristics and metaheuristics are
used to guide the search process. Heuristics are usually tailored to one specific problem,
metaheuristics on the other hand are algorithmic templates and therefore can be applied
to different optimization problems.

3.2.1 Improvement Heuristics

In the field of optimization there are various improvement metaheuristics such as evo-
lutionary algorithms, swarm intelligence based ones like ant colony optimization, or
neighborhood-search based ones like tabu search. In this section, we will describe
two classic metaheuristics, local search and simulated annealing. For a state-of-the-art
overview, see the Handbook of Metaheuristics by Gendreau and Potvin [16].

Local search is a fundamental improvement metaheuristic. Let the search space consist
of all possible solutions S, infeasible or feasible. The local search starts with an initial
solution xs ∈ S and traverses through the search space by iteratively going to an improving
neighbor of the current solution. A neighbor x′ ∈ S of a solution x is another solution
that can be obtained by performing a move m(x) on x. For example, by exchanging two
nodes in a solution to a TSP instance another solution is obtained. All the neighbors
that can be obtained by such a move applied to x make up the neighborhood N(x) of
x. The search terminates when a local optimum regarding this neighborhood is reached,
which means it cannot be further improved by a neighbor. However, there might be some
other local optimum that is better than that local optimum. Avoiding to get stuck in
local optima is the main concern of more advanced metaheuristics.

In such neighborhood-based searches, we may also accept infeasible solutions as the next
current solution and penalize the constraint violations by adding a certain term to the
objective value. This is especially useful for highly constrained problems where finding a
feasible solution and moving from one feasible to another feasible solution is difficult or
takes multiple steps.

Simulated Annealing was first introduced by Kirkpatrick et al. [25]. It is a metaheuristic
used to explore the neighborhood by means of a guided random walk, also accepting
worse solutions with certain probability as opposed to local search. It finds its inspiration

19

3. Methodology

in the process of a liquid (e.g., a metal) solidifying over time while its temperature
decreases. By slowly decreasing the temperature of the substance, the atoms have more
time to arrange themselves in the right place and build stable crystals corresponding
to a configuration with minimal energy. The varying temperature in the optimization
process of simulated annealing is directly related to the probability that a solution might
temporarily get worse in order to surpass local optima.

In Algorithm 3.3, we can see the pseudo code for simulated annealing. The algorithm
receives an initial solution x as an input parameter. First, we initialize a counter t that is
needed for the cooling process and the initial temperature T is set. We also set the best
known solution to xb, which is x at that stage. The outer loop goes on until a predefined
stopping criterion is met; this could be a certain temperature reached, no improvements
in the last τ iterations or after a certain number of iterations. The inner loop goes on
until a predefined equilibrium condition is met, which is typically based on a counter of
the iterations of the inner loop. After the loop the temperature gets lowered according to
a cooling schedule g(T, t), which can be, for example, a geometric cooling, where every
time the current temperature T is multiplied by a cooling factor β < 1 or it can be based
on the iteration counter t.

Inside the inner loop we generate a new solution x′ by randomly selecting one of the
neighbors x′ ∈ N(x) of the current solution x. If x′ is better, then it is accepted as the
new current solution x. “To be better” can mean that the objective value of x′ might be
better (smaller for minimization problems, larger for maximization problems) or that x′
has fewer violations than x making it “more” feasible. If x is also better than the best
known solution xb, then xb is set to x. If x′ is not better, then it might still be accepted
as the new current solution to enable the algorithm to leave local optima and more freely
wander around in the solution space. This is achieved by generating a random number
P between 0 and 1. If P satisfies the so-called Metropolis criterion P < e−|f(x′)−f(x)|/T

where f is the objective function evaluating the quality of a solution, then the proposed
solution x′ is accepted. It depends on the quality difference between the new and the
current solution and the current temperature. The lower the temperature and the worse
the quality of the solution, the less likely it is that the new solution x′ is accepted as the
new current solution.

Reheating

The use of a non-monotonic cooling schedule was suggested by various authors, for
example, by Osman [32], respectively already in one of his previous works together with
Christofides [31]. After some time into the process of simulated annealing, it becomes
more and more unlikely for worse feasible solutions or for infeasible solutions to be
accepted as the new current solution as the probability of accepting non-improving
solutions decreases with the temperature. Thereby, the optimization can get caught
in a probabilistic local optimum with an acceptance rate of neighbors of virtually zero.
Therefore, a natural idea is to reheat the system at some point in order to surpass such
kinds of local optima.

20

3.2. Heuristic Optimization

Algorithm 3.3: Classical simulated annealing
input : initial solution x
output : best solution xb

1 t← 0;
2 T ← Tinit;
3 x← initial solution;
4 xb ← x;
5 while stopping criteria not satisfied do
6 while equilibrium condition not satisfied do
7 choose a x′ randomly from N(x);
8 if x′ is better than x then
9 x← x′;

10 if x < xb then
11 xb ← x;
12 end
13 else
14 P ← random number ∈ [0, 1);
15 if P < e−|f(x′)−f(x)|/T then
16 x← x′;
17 end
18 end
19 t← t+ 1;
20 end
21 T ← g(T, t);
22 end
23 return xb;

There are different possibilities on how and when to reheat the system. Since we may not
want the high randomness of the initial temperature, often the temperature Tb where
the best solution was found, is stored and the temperature is reset in relation to Tb; for
example, the temperature might be set to 2 · Tb or Tb/2. Furthermore, the time when to
reheat can be determined dynamically based on a number of non-improving iterations,
or statically, after a certain number of iterations, regardless of improving or not.

Strategic Oscillation

Strategic oscillation was suggested by Glover and Laguna [19] working with tabu search
and also in previous works, for example, when Glover [18] was working with integer
programming. It was initially used to oscillate between feasible and infeasible solutions.
The way it is used by Anagnostopoulos et al. [1] is that the emphasis on feasibility
increases and decreases over time, thereby, the time spent exploring the feasible regions
and the time spent exploring infeasible regions of the search space should even out. This

21

3. Methodology

Figure 3.7: Left: A weighted graph G. Right: Graph G with a Hamiltonian cycle of
length 33 (ABCDEF).

can be done, for example, by increasing and decreasing a weight which is used in the
objective function to factor in violations regarding the feasibility. The weight could be
decreased when accepting a feasible solution as the new current solution to decrease
the emphasis on the violations and make it more likely to accept infeasible solutions in
upcoming iterations. On the other hand, it would then be increased when accepting an
infeasible solution to push the searched region back to feasibility.

Example

We introduce the Shortest Hamiltonian Cycle Problem (SHCP) in order to use it for
the following SA example. It is a minimization problem where the goal is to find a
Hamiltonian cycle in a weighted undirected graph with the smallest possible length
where the length is the sum of the weights of all used edges. A Hamiltonian cycle C is a
sequence of adjacent vertices, with also an edge between the last and the first, visiting
every vertex of the graph exactly once. The objective function is calculated as follows:

obj(C) =
∑

(i,j)∈C

wij . (3.1)

In the above equation (3.1) the weights of the edges wij of an Hamiltonian cycle C are
summed up.

We represent a feasible solution to this problem as a permutation of the vertices of the
graph where between each pair of consecutive vertices and from the last to the first in
the permutation there needs to be an edge in the graph. This problem is very similar
to the TSP, however, the standard TSP is defined on complete graphs, therefore, all
permutations of the vertices are feasible solutions to a TSP.

In Figure 3.7 (left), we can see a graph with edge weights. A feasible solution for this
SHCP instance can be seen in 3.7 (right), which equals the permutation (ABCDEF) and
has a length of 33. The best possible solution is shown in Figure 3.8 (left), which equals
the permutation (ABDCFE). For example, an infeasible solution would be (ACBDFE).

22

3.2. Heuristic Optimization

Figure 3.8: Left: Graph G with a Hamiltonian Cycle of length 21 (ABDCFE). Right:
Neighbor of (ABCDEF) with a non-existing edge used and a Hamiltonian Cycle with
cost 67.

A possible neighborhood structure for the SHCP could be to swap two consecutive vertices
in the solution. For example, to go from (ABCDEF) to (ABDCEF). This might result
in infeasible solutions as it is not guaranteed that there is an edge between B and D as
well as between C and E (see Figure 3.8 (right)). However, for SA this is not a problem
because SA was designed to be capable of handling infeasible regions. In a complete
graph, this move will always result in a feasible solution.

We establish the cost function that combines the constraint violations in the form of the
number of non-existing edges used with the actual objective function:

C(S) = M · violations(S) + obj(S). (3.2)

The M -value is designed so that every solution that uses a non-existing edge will be
worse than any solution that only uses existing ones. A conservative choice for M , which
we use in the following, is the sum over all edge weights in the whole graph. A tighter
bound M -value would be to order the edges and take the sum over the n largest ones.

The M -value is multiplied by the number of violations of the solution, which is the
number of used non-existing edges. The cost function will decide if a new solution is
better or worse than the current one.

We also define the cooling schedule to be geometric by setting g(T, t) to:

g(T, t) = 0.9 · T. (3.3)

We start the example run with the solution (ABCDEF) as shown in 3.7 as the initial
solution x and currently best found xb. We set the initial temperature to 100 and t to 0.
For the stopping criteria we choose T < 1. Since this is not fulfilled, we enter the outer
loop. For the equilibrium condition we define that t+ 1 needs to be divisible by 10, which
means we will have ten iterations of the inner loop until we decrease the temperature. We
then choose a random neighbor x′ of x. For example, let x′ be (ABDCEF), which uses
a non-existing edge and therefore has a cost value of 67. This value is obviously worse
than the 33 cost value of the current (and initial) solution x. However, there is still a

23

3. Methodology

chance that x′ gets accepted as the new current solution x if a random number between 0
and 1 is less than e−|f(x′)−f(x)|/T , which means the random number needs to be less than
0.712. We assume that is the case and accept x′ as the new current solution x′. Then t
gets increased, however, the equilibrium criterion is not reached yet, therefore, we enter
the inner loop again. We choose a random neighbor x′ of x, for example, (ABDCFE).
In this case, the new solution x′ has a cost value of 21 which is better than the 67 of
the current solution, therefore, x′ is accepted as the new solution. Moreover, x is now
better than the best known solution xb; xb is therefore reset. Thereby, we found the best
possible solution. The outer loop will now carry on until the stopping criterion is met.
The best solution xb is then returned in the end.

24

CHAPTER 4
Problem Description

In this chapter, we describe double round robin schedules and define the problem posed by
the Fifth International Timetabling Competition (ITC2021). In particular, we describe
its different constraints, its objective function, its computational complexity, and derived
problem variants.

4.1 Double Round Robin Tournament

A Double Round Robin (DRR) schedule T ∈ T where T is the set of all DRRs with
n teams defines which games are played in each round for a tournament of n teams
{1, . . . , n} where n is an even number. In each round, also called slot, each team plays
against another team, either at home or away. Obviously, if team t1 plays at home against
t2 in round r, then t2 plays against t1 away in round r. Each team plays against each
other team twice, once at home and once away. In Table 4.1, we can see a DRR schedule
for six teams.

The schedule can be split into two parts as described by Rasmussen and Trick [37]: the
timetable and the home-away pattern. A timetable is an assignment where each team
has an opponent assigned to play against in each slot but with no home-away pattern
defined. The home-away pattern is the assignment of a game between two teams to a
venue of one of these two teams. The timetable of the DRR schedule shown in Table 4.1
can be seen in Table 4.2; its home-away pattern in Table 4.3.

4.2 ITC2021 Problem Definition

The goal of the problem defined by the Fifth International Timetabling Competition
(ITC2021) [50] is to find a DRR schedule for a tournament defined by an instance file
meeting all of the defined hard constraints while minimizing the penalization caused by

25

4. Problem Description

Table 4.1: DRR schedule for six teams. A minus sign in front of a team number indicates
an away game.

team/round 1 2 3 4 5 6 7 8 9 10
1 -2 -5 6 3 -4 5 -3 2 4 -6
2 1 4 -3 -5 6 -5 5 -1 3 -4
3 -4 6 2 -1 -5 4 1 -6 -2 4
4 3 -2 5 -6 1 -3 6 -5 -1 2
5 -6 1 -4 2 3 -1 -2 4 6 -3
6 5 -3 -1 4 -2 2 -4 3 -5 1

Table 4.2: Timetable defined by the schedule of 4.1.

team/round 1 2 3 4 5 6 7 8 9 10
1 2 5 6 3 4 5 3 2 4 6
2 1 4 3 5 6 5 5 1 3 4
3 4 6 2 1 5 4 1 6 2 4
4 3 2 5 6 1 3 6 5 1 2
5 6 1 4 2 3 1 2 4 6 3
6 5 3 1 4 2 2 4 3 5 1

Table 4.3: Home-away pattern of the schedule of 4.1.

team/round 1 2 3 4 5 6 7 8 9 10
1 A A H H A H A H H A
2 H H A A H A H A H A
3 A H H A A H H A A H
4 H A H A H A H A A H
5 A H A H H A A H H A
6 H A A H A H A H A H

the violation of soft constraints—it is therefore a constraint optimization problem. An
instance is defined by an XML file in the RobinX data format although only a subset of
the constraints proposed by Van Bulck et al. [49] is used. In the XML file, the number of
teams and the constraints are described. Moreover, an instance may also be defined to
be phased, which means that the DRR schedule splits up into two Single Round Robin
(SRR) schedules in which each pair of teams plays against each other once in the first
SRR schedule and once in the second. The home-away status of games in the first phase
changes accordingly in the second phase. The example shown in Table 4.1 is a phased
schedule. There are infinitely many instances since one can define new instances via
an XML file. However, the competition came with 54 instances that were to be solved
during the competition; they are further described in Section 6.2.

26

4.3. Constraints

4.3 Constraints
All of the constraints can either appear as a hard or a soft constraint. Hard constraints
need to be fulfilled for a schedule to be feasible. The sum of soft constraint violations
constitutes the objective function. A violated soft constraint contributes its penalty
factor multiplied by the deviation of the allowed range to the objective value.

Capacity constraints impose restrictions on where teams are allowed to play in certain
time slots. There are four different capacity constraints. The first one CA1 defines the
maximum number of home or away games (depending on the mode of the constraint) by
a certain team in given slots; CA2 defines the maximum number of home/away/games
in general against all given opponents in the given slots. Thereby, CA2 generalizes
CA1. The third capacity constraint CA3 defines the maximum number of consecutive
home/away/games in general against all given opponents for a given team. The last
of the capacity constraints CA4 defines the maximum number of home/away/games in
general of all teams defined by the constraints against a second group of teams either in
each defined slot or over all of the slots (depending on the mode of the constraint).

The game constraint GA1 enforces or forbids certain games in certain time slots by
defining the maximum and minimum number of games from a defined game pool that
have to be played in the given time slots. A maximum number of 0 forbids games; a
minimum other than 0 enforces games.

The break constraints manage the amount and the timing of breaks in the schedule. A
break occurs when a team plays a game with the same home-away status as its previous
game. Therefore, a home (away) break is when a team plays two home (away) games
consecutively. For example, in AHHAAA there are three breaks: one home break
and two away breaks. The first break constraint BR1 defines the maximum number
of home/away/breaks in general of a team during the defined time slots. The other
break constraint BR2 defines a maximum number of breaks that all teams defined by the
constraint combined have in the schedule.

The fairness constraint FA2 defines the maximum value by which the number of home
games played by each given team differs from the home games played by all other given
teams in the given time slots. The other possible modes of FA2 (away games or all games)
are not considered by ITC2021.

The separation constraint SE1 defines the minimum number of games between mutual
games of all pairs of the given teams. A mutual game of two teams is when they play
against each other.

In Listing 4.1 all types of constraints are shown, the examples are taken from the test
instances of the ITC2021. The CA1 constraint states that team 0 plays at most one
home game in slot 9, 6 and 7. The CA2 constraint says that team 4 plays at most two
games against a team from {0, 3, 2} in slots {2, 6, 1, 0}. The third constraint defines that
team 2 plays at most two away games in each span of four slots against teams from
{0, 3, 5, 4, 1}. The CA4 constraint states that the teams {4, 3, 1, 2} play at most four

27

4. Problem Description

home games against each other in the slots {2, 3, 1, 0}. The game constraint GA1 defines
that at most three games of the given games (called meetings in the constraint) take
place in slots {2, 3, 8}. The BR1 constraint says that team 3 has at most two breaks in
slots {3, 4, 5, 6, 8, 9}. The BR2 constraint defines that the sum of all breaks of the teams
{2, 0, 1, 4, 3, 5} in the given slots is no more than 18. The fairness constraint FA2 states
that the difference of games played at games between two teams from {2, 0, 1, 4, 3, 5} is
no more than 2 in the given slots. Last, the separation constraint SE1 says that there has
to be at least ten games between mutual games of each pair of the teams {2, 0, 1, 4, 3, 5}.

Listing 4.1: Constraint types of ITC2021
<CA1 max=" 1 " min=" 0 " mode="H" pena l ty=" 5 " s l o t s=" 9 ; 6 ; 7 " teams=" 0 "

type="HARD" />
<CA2 max=" 2 " min=" 0 " mode1="HA" mode2="GLOBAL" pena l ty=" 1 "

s l o t s=" 2 ; 6 ; 1 ; 0 " teams1=" 4 " teams2=" 0 ; 3 ; 2 " type="HARD" />
<CA3 intp=" 4 " max=" 2 " min=" 0 " mode1="A" mode2="SLOTS" pena l ty=" 5 "

teams1=" 2 " teams2=" 0 ; 3 ; 5 ; 4 ; 1 " type="SOFT" />
<CA4 max=" 4 " min=" 0 " mode1="H" mode2="GLOBAL" pena l ty=" 1 "

s l o t s=" 2 ; 3 ; 1 ; 0 " teams1=" 4 ; 3 ; 1 ; 2 " teams2=" 4 ; 3 ; 1 ; 2 " type="HARD" />

<GA1 max=" 3 " meetings=" 0 , 3 ; 2 , 3 ; 4 , 3 ; " min=" 1 " pena l ty=" 1 "
s l o t s=" 2 ; 3 ; 8 " type="HARD" />

<BR1 intp=" 2 " mode1="LEQ" mode2="HA" pena l ty=" 5 " s l o t s=" 3 ; 4 ; 5 ; 6 ; 8 ; 9 "
teams=" 3 " type="SOFT" />

<BR2 intp=" 18 " homeMode="HA" mode2="LEQ" pena l ty=" 1 "
s l o t s=" 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 0 " teams=" 2 ; 0 ; 1 ; 4 ; 3 ; 5 " type="HARD" />

<FA2 intp=" 2 " mode="H" pena l ty=" 10 " s l o t s=" 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 0 "
teams=" 2 ; 0 ; 1 ; 4 ; 3 ; 5 " type="SOFT" />

<SE1 mode1="SLOTS" min=" 10 " pena l ty=" 10 " teams=" 2 ; 0 ; 1 ; 4 ; 3 ; 5 "
type="SOFT" />

4.4 Objective Function

Given a schedule T that fulfills all the hard constraints c′ ∈ Chard, each element c of the
set of soft constraints Csoft triggers a penalty pc(T), where pc is the penalty function
pc : T → R+

0 for the constraint c and its value is defined by multiplying the penalization
factor λc with the deviation to the allowed range dc(T), thereby pc(T) = λc · dc(T). For
example, regarding the first constraint in Listing 4.1, if team 0 plays a home game in
each of the 3 slots ({9, 6, 7}), the constraint triggers a penalty of 5 · 2 = 10 because there
are played two games more than allowed; if there is no violation, dc will be 0, therefore,
the penalty equals 0. The objective function then sums up all these penalties triggered

28

4.5. NP-Hardness

by the soft constraint violations of a schedule T

f(T) =
∑

c∈Csoft

pc(T). (4.1)

4.5 NP-Hardness

Conjecture 1 The ITC2021 problem is NP-hard.

The break minimization problem takes a given timetable for n teams as its input, where
n is an even number. The goal is to find a home-away pattern with a minimum number
of breaks. A break is when a team plays back-to-back home or away games. Elf et al. [11]
conjectured that the break minimization problem is NP-hard. They showed that the
break minimization problem can be reduced to the max-cut problem, which is known to
be NP-complete, however, they did not show a reduction from an NP-hard problem to
break minimization. Since every break minimization problem instance can be reduced to
an ITC2021 problem instance in polynomial time, the NP-hardness of break minimization
would imply NP-hardness of the ITC2021 problem. The reduction could be as follows:

• The given schedule needs to be modeled with hard GA1 constraints, to define for
each team against which other team it has to play according to the given schedule
by setting for each slot exactly one game with min/max=1. The ITC2021 deals
only with double round robin tournaments, however, we can just ignore the second
part of the schedule, it will be filled up by a feasible schedule without any further
constraints considered.

• For the break minimization part, we need a soft BR2 constraint over all slots of
the first half of the schedule and all teams that allows for 0 breaks, thereby, the
used breaks are summed up by the objective function.
Since the objective function of the break-minimization-ITC2021 sums up all breaks
that occur in the solution (without applying any further constraints), the objective
value is equal to the objective value of the break minimization problem. The second
part of the schedule can be ignored since the completion of the schedule to a DRR
does not add to the objective value because only the first part of the schedule is
considered for the BR2 constraint.

4.6 Derived Problems
We define the following derived problem variants where certain constraints are left out to
focus on some aspects of the problem. We call the problem without any soft constraints
ITC2021-NSC, the problem without break constraints ITC2021-NBC and if both are left
out ITC2021-NSC-NBC.

29

CHAPTER 5
Solution Approaches

In this chapter, we present our solution approaches to the ITC2021. In Section 5.1,
we describe the modeling language MiniZinc and the translation of ITC2021 instances
into MiniZinc models. In Section 5.2, we describe our metaheuristic approach, an SA
algorithm based on the TTSA by [1], and the neighborhoods used for it. In Section 5.3,
we describe our approach to combine the exact method CP with the metaheuristic SA,
in the form of a parallel multi-start hybrid.

5.1 Constraint Programming
For the exact part of our approach, we implement a compiler that translates the instance
XML files into MiniZinc models.

MiniZinc was introduced by Nethercote et al. [30], who tried to tackle the problem
that there are many different CP solvers where most of them have their own modeling
language. This circumstance prevented practitioners from quickly testing their models
with different solvers, therefore, they came up with MiniZinc as a possible standard
modeling language and FlatZinc as the link between MiniZinc and a CP solver. FlatZinc
is a low-level solver input language for which CP solvers need to provide an interface. It
is also the target language for MiniZinc.

The following example shows what the example CSP from 3.1.3 looks like when modeled
with MiniZinc (taken from the MiniZinc Handbook of Stuckey et al. [41, 2.5]). The first
line defines a parameter which is similar to constant variables in most programming
languages. They can only be assigned once, however, it is also possible to declare the
value of a parameter in a separate data file.

Decision variables are another type of variable that can be defined inside a MiniZinc
model. Decision variables are not like variables in programming languages but rather
like variables in mathematics. They are not assigned a value by the modeler; instead,

31

5. Solution Approaches

the value of the variable is unknown until the model is executed and a solver determines
if the decision variable can be assigned a feasible value.

Constraints specify boolean expressions that must hold by solution candidates to be valid.
A solution candidate consists of assignments to all decision variables. The solve statement
defines what kind of solution should be searched. The solve mode satisfy simply searches
for a solution that satisfies all of the given constraints, minimize and maximize search
for an optimum solution regarding the expression they are followed. One can also specify
annotations to define a variable ordering and a value ordering inside the domain of
a variable, for example, int_search(q, input_order, indomain_min) where q
needs to be an array of integers. Moreover, one could also specify a restart annotation
to define what type of restarting should be used. All of these annotations can also be
assigned to a parameter which then can be used in the solve statement.

The include statement makes the contents of another file (here alldifferent.mzn)
available in the current file. Comments start with a percent sign (%) and the output
statement allows to print out the values of variables and strings.

Listing 5.1: n-queens in MiniZinc taken from the MiniZinc Handbook [41]
i n t : n = 4 ;
array [1 . . n] o f var 1 . . n : q ; % queen in column i i s in row q [i]

i n c lude " a l l d i f f e r e n t .mzn " ;

c on s t r a i n t a l l d i f f e r e n t (q) ; % d i s t i n c t rows
c on s t r a i n t a l l d i f f e r e n t ([q [i] + i | i in 1 . . n]) ; % d i s t i n c t d i agona l s
c on s t r a i n t a l l d i f f e r e n t ([q [i] − i | i in 1 . . n]) ; % upwards+downwards

% search
s o l v e s a t i s f y ;
output [i f f i x (q [j]) == i then "Q" e l s e " . " e nd i f ++

i f j == n then "\n " e l s e " " end i f | i , j in 1 . . n]

In Listing 5.1, n defines the number of rows, columns and queens to be placed on the
chessboard. The decision variable q is an array where each of the indices represents a
column and the values at these indices represent the rows; the queen of column i is placed
in row q[i]. The alldifferent statement defines that every value of the provided
array must be different. The first alldifferent ensures that there is only one queen
per row, the second one ensures that there is only one queen per ascending diagonal
(going left to right), and the third one ensures that there is only one queen on each of
the descending diagonals. The solve statement defines that there is no objective function
to optimize and the output statement prints feasible queen placements.

In Figure 5.1, we can see the two solutions that exist for n = 4, however, obviously,
the second solution is only the first one rotated by 90 degrees because there is only one
distinct solution for that problem instance (e.g. for n = 8 there are 12 distinct solutions).

32

5.1. Constraint Programming

♛
♛

♛
♛

♛
♛

♛
♛

Figure 5.1: Two solutions for n = 4

5.1.1 Translation to MiniZinc

In this subsection, we present how the instance files of the ITC problem are processed
and translated into MiniZinc models.

We first look at the core structure of our generated models, which is the same for all
instances and can be seen in Listing 5.2. The number of teams is processed by the
translator and defines the parameter N. The number of slots is also processed and defines
the parameter R where R2 is half the value of R. Afterwards, we declared annotations
that are used in the solve statement at the end of the model. They are assigned values by
data files (or via the command line operator -D). Then four sets are initialized: TEAMS
represents all teams playing in the tournament of the given instance, SLOTS represents
all rounds in which games are played, SLOTS1 are the first R2 rounds and SLOTS2 the
second R2 rounds.

Then the decision variables are defined: opponents_per_team_and_round is a two
dimensional array that represents which team plays against which in each round,
venue_perteam_and_round defines at which venue each team plays in each round
(1 for home games, −1 for away games).

Below the decision variables, the double round robin constraints are introduced: the first
one defines that a team may not play against itself; the second one defines that playing
against each other is symmetric, so if a team t1 plays against a team t2 in round r, then
team t2 also plays against team t1 in round r. The third constraint defines that the
venues need to be the opposite for each pair of teams playing against each other. The
fourth constraint states that each pair of teams needs to play once in the first half and
once in the second half of the schedule against each other—this constraint is active if the
instance to solve is a phased instance; if it is not, the constraint would go over all SLOTS
and require the sum to be 2. The last one defines that each pair of teams has to play
against each other once at home and once away (the sum of the venues is thereby 0).

The DRR constraints are followed by the ITC specific hard and soft constraints, which

33

5. Solution Approaches

will be discussed one by one below this example as well as the objective function which
consists of the penalization terms of the soft constraints. With the solve statement, we
define how the search process should be run and that objective obj is to be minimized;
as parameters for the search annotation int search the previously defined annotations
varchoice and constraintchoice are used. We enable the restarting functionality of the
search by the previously defined annotation restart. In the end, the description of how
the schedule should be printed can be found.

Listing 5.2: Core structure of a model to solve an ITC2021 problem instance
i n t : N = 4 ;
i n t : R = 6 ;
i n t : R2 = 3 ;
ann : va rcho i c e ;
ann : c o n s t r a i n t c h o i c e ;
ann : r e s t a r t ;
s e t o f i n t : TEAMS = 1 . .N;
s e t o f i n t : SLOTS = 1 . .R;
s e t o f i n t : SLOTS1 = 1 . . R2 ;
s e t o f i n t : SLOTS2 = (R2 + 1) . .R;

array [TEAMS,SLOTS] o f var TEAMS: opponents_per_team_and_round ;
array [TEAMS,SLOTS] o f var {−1, 1} : venue_per_team_and_round ;

% team does not play aga in s t i t s e l f
c o n s t r a i n t

f o r a l l (i in TEAMS, r in SLOTS) (
opponents_per_team_and_round [i , r] != i

) ;

% a l l games (opponent+venue) per team must be unique
c o n s t r a i n t

f o r a l l (i in TEAMS, j in TEAMS where i != j) (
sum(r in SLOTS where opponents_per_team_and_round [i , r] == j)

(venue_per_team_and_round [i , r]) == 0
) ;

% opponent connect ion c o n s t r a i n t
c o n s t r a i n t

f o r a l l (i in TEAMS, r in SLOTS) (
opponents_per_team_and_round [opponents_per_team_and_round [i , r] , r] == i

) ;
% venue connect ion c o n s t r a i n t
c o n s t r a i n t

f o r a l l (i in TEAMS, r in SLOTS) (
venue_per_team_and_round [opponents_per_team_and_round [i , r] , r] ==

−venue_per_team_and_round [i , r]
) ;

% each team must play exac t l y once aga in s t each other team in
% each phase (SRR) o f the schedu le
c o n s t r a i n t

34

5.1. Constraint Programming

f o r a l l (i in TEAMS, j in TEAMS where i != j) (
sum(r in SLOTS1 where opponents_per_team_and_round [i , r] == j) (1) == 1
/\
sum(r in SLOTS2 where opponents_per_team_and_round [i , r] == j) (1) == 1

) ;
. . .

% CONSTRAINTS
. . .

% s o l v i n g
s o l v e
: : int_search (opponents_per_team_and_round , varcho ice , c o n s t r a i n t c h o i c e)
: : r e s t a r t
minimize obj ;

output [format (3 , 2 , opponents_per_team_and_round [i , j] − 1) ++
i f j == R then "\n" e l s e " " e n d i f |
i in TEAMS, j in SLOTS

] ;
output [" \ n "] ;
output [format (3 , 2 , venue_per_team_and_round [i , j]) ++

i f j == R then "\n" e l s e " " e n d i f |
i in TEAMS, j in SLOTS

] ;
output [" o b j e c t i v e = \(obj) ; "] ;

Subsequently, each translation of the possible constraints of ITC instances as discussed
in Section 4.3 is described in detail. Since MiniZinc uses one-based array indices, the
team numbers are all increased by 1 as compared to the constraint. For the output, we
subtract 1 from each team index as seen in the basic structure above. In each listing, we
first show the constraint in XML and afterwards present the constraint modeled as hard
and as soft constraint in MiniZinc.

The given CA1 constraint in Listing 5.3 states that team 0 plays at most one home game
in the given slots (6,7,9). The hard constraint models that by ensuring the number of
games played at home is less than or equal to 1. We use sum(x where cond)(1) to count
occurrences of the condition cond. If the mode was A, the condition inside the sum would
be where venue_per_team_and_round[1,slot] == −1 to count the number of away games. The
soft constraint uses the same technique to calculate how many more games are played
and then calculate the penalization term that is summed up in the objective function.
The maximum function is used because otherwise we could get negative penalization
terms. If, for example, two games are allowed and there is only one played, the sum
would be 1 and we would subtract 2, resulting in a negative value which would reduce
the objective value.

Listing 5.3: Example of a CA1 constraint
<CA1 max="1" min="0" mode="H" pena l ty ="5" s l o t s ="9 ; 6 ; 7 " teams="0">

% hard c o n s t r a i n t %
c o n s t r a i n t sum(s l o t in {10 ,7 ,8}

35

5. Solution Approaches

where venue_per_team_and_round [1 , s l o t] == 1) (1) <= 1 ;
var i n t : penalty_ca1_1_6_7_9_H =

5 ∗ (max(sum(s l o t in {10 ,7 ,8}
where venue_per_team_and_round [1 , s l o t] == 1) (1) − 1 , 0)) ;

The given CA2 constraint in Listing 5.4 states that team 4 plays at most two games
against one of the given teams (0,2,3) in the given slots (0,1,2,6). To translate this
constraint into Minizinc, we need to look at the opponents per team and round since
it matters against whom the restricted team plays (in contrast to CA1). We count the
occurrences of the given other teams in the given slots and ensure the sum to be less
than or equal to 2. If the mode was not HA, the condition of the sum would be expanded
by /\ venue_per_team_and_round[5,slot] == −1 for A and with a 1 for H since then it would
also matter where those games are played. The soft constraint works similar to the CA1
soft constraint; it uses the same sum as the hard constraint and subtracts the target value
to calculate the number of excess games and use that value to calculate the penalization
term.

Listing 5.4: Example of a CA2 constraint
<CA2 max="2" min="0" mode1="HA" mode2="GLOBAL" pena l ty ="1"

s l o t s = " 2 ; 6 ; 1 ; 0 " teams1 ="4" teams2 ="0;3;2"/ >

% hard c o n s t r a i n t %
c o n s t r a i n t sum (s l o t in {3 ,7 ,2 ,1} , opponent in {1 ,4 ,3}

where opponents_per_team_and_round [5 , s l o t] == opponent) (1) <= 2 ;

% s o f t c o n s t r a i n t %
var i n t : penalty_ca2_1_0_2_3 =

1 ∗ (max(sum (s l o t in {3 ,7 ,2 ,1} , opponent in {1 ,4 ,3}
where opponents_per_team_and_round [5 , s l o t] == opponent) (1) − 2 , 0)) ;

The given CA3 constraint in Listing 5.5 defines that team 2 plays at most two away
games in each span of four slots against the given teams (0,1,3,4,5). The hard constraint
ensures this by going through the possible start slots of a span (the last possible start slot
is SLOTS− intp, where intp is the length of the span), counting the occurrences of the
games in question, and checking that the number of occurrences is less than or equal to
2. The soft constraint sums up all additional away games that are played and multiplies
that value by the penalization factor.

Listing 5.5: Example of a CA3 constraint
<CA3 intp ="4" max="2" min="0" mode1="A" mode2="SLOTS" pena l ty ="5"

teams1 ="2" teams2 ="0 ;3 ;5 ;4 ;1 "/ >

% hard c o n s t r a i n t %
c o n s t r a i n t

f o r a l l (team1 in {3})(
f o r a l l (j in 1 . . 7) (

sum (s l o t in j . . (j +3) , team2 in {1 ,4 ,6 ,5 ,2}
where opponents_per_team_and_round [team1 , s l o t] == team2

36

5.1. Constraint Programming

/\ venue_per_team_and_round [team1 , s l o t] == −1) (1) <= 2
)

) ;

% s o f t c o n s t r a i n t %
var i n t : penalty_ca3_1_2 = 5 ∗

sum(team1 in {3} , j in 1 . . 7) (max(
sum (

s l o t in j . . (j +3) , team2 in {1 ,4 ,6 ,5 ,2} where
opponents_per_team_and_round [team1 , s l o t] == team2
/\ venue_per_team_and_round [team1 , s l o t] == −1

) (1) − 2 , 0
)) ;

The given CA4 in Listing 5.6 states that the given teams teams1 (1,2,3,4) play at most
four home games against the other teams teams2 (1,2,3,4) in the given slots. In this case
the two team variables are the same, but they can be different. If the mode is GLOBAL,
then the sum of played games is calculated over all given slots; if it is EV ERY , the sum
is calculated for each slot.

For the hard constraint, we sum up the games in question and ensure that the number of
games is less than or equal to 4. The soft constraint also counts the number of respective
games and calculates the penalization term to use in the objective function. If the mode
was EV ERY instead of GLOBAL, the two constraints on the bottom of the listing
would be the result. The hard constraint ensures that for each slot the sum of the games
played is below or equal to 4. The soft constraint calculates how many more games are
played and multiplies the result by the penalization factor.

Listing 5.6: Example of a CA4 constraint
<CA4 max="4" min="0" mode1="H" mode2="GLOBAL/EVERY" penal ty ="1"

s l o t s = " 2 ; 3 ; 1 ; 0 " teams1 = " 4 ; 3 ; 1 ; 2 " teams2 ="4;3 ;1 ;2"/ >

% GLOBAL
% hard c o n s t r a i n t %
c o n s t r a i n t

sum(team1 in {5 ,4 ,2 ,3} , team2 in {5 ,4 ,2 ,3} , s l o t in {3 ,4 ,2 ,1}
where opponents_per_team_and_round [team1 , s l o t] == team2
/\ venue_per_team_and_round [team1 , s l o t] == 1) (1) <= 4 ;

% s o f t c o n s t r a i n t %
var i n t : penalty_ca4_global_1_0_1_2_3 =

1 ∗ max(sum(team1 in {5 ,4 ,2 ,3} , team2 in {5 ,4 ,2 ,3} , s l o t in {3 ,4 ,2 ,1}
where opponents_per_team_and_round [team1 , s l o t] == team2
/\ venue_per_team_and_round [team1 , s l o t] == 1) (1) −4, 0) ;

% EVERY
% hard c o n s t r a i n t %
c o n s t r a i n t

f o r a l l (s l o t in {3 ,4 , 2 , 1}) (
sum(team1 in {5 ,4 ,2 ,3} , team2 in {5 ,4 ,2 ,3}
where opponents_per_team_and_round [team1 , s l o t] == team2

37

5. Solution Approaches

/\ venue_per_team_and_round [team1 , s l o t] == 1) (1) <= 4
) ;

% s o f t c o n s t r a i n t %
var i n t : penalty_ca4_every_1_0_1_2_3 =

1 ∗ sum(s l o t in {3 ,4 ,2 ,1})
(max(sum(team1 in {5 ,4 ,2 ,3} , team2 in {5 ,4 ,2 ,3}
where opponents_per_team_and_round [team1 , s l o t] == team2
/\ venue_per_team_and_round [team1 , s l o t] == 1) (1) − 4 , 0)) ;

The given GA1 in Listing 5.7 defines that at least one and at most three games from the
given games (0@3, 2@3, 4@3) are played in the given slots (2, 3, 8). We first define a
variable that sums up all the games played of the games in question and the constraint
then defines the allowed range. The sum variable is also used in case of a soft constraint.
Here we have two penalization terms: one for the case that more than the allowed games
are played and one for the case that fewer are played.

Listing 5.7: Example of a GA1 constraint
<GA1 max="3" meetings = " 0 , 3 ; 2 , 3 ; 4 , 3 ; " min="1" pena l ty ="1"

s l o t s ="2;3;8"/ >

var i n t : sum_ga1_1 =
sum(s l o t in {3 ,4 ,9} where (opponents_per_team_and_round [1 , s l o t] == 4

/\ venue_per_team_and_round [1 , s l o t] == 1)) (1) +
sum(s l o t in {3 ,4 ,9} where (opponents_per_team_and_round [3 , s l o t] == 4

/\ venue_per_team_and_round [3 , s l o t] == 1)) (1) +
sum(s l o t in {3 ,4 ,9} where (opponents_per_team_and_round [5 , s l o t] == 4

/\ venue_per_team_and_round [5 , s l o t] == 1)) (1) ;

% hard c o n s t r a i n t %
c o n s t r a i n t sum_ga1_1 >= 1 /\ sum_ga1_1 <= 3 ;

% s o f t c o n s t r a i n t %
var i n t : penalty_ga1_max_2_2_3_8 = 1 ∗ max(sum_ga1_1 − 3 , 0) ;
var i n t : penalty_ga1_min_2_2_3_8 = 1 ∗ max(1 − sum_ga1_1 , 0) ;

The given BR1 constraint in Listing 5.8 states that team 3 has at most two breaks in
the given slots (3, 4, 5, 6, 8, 9). First, the number of breaks is calculated by adding up
those times when the team played the same home-away-status back-to-back. Then the
hard constraint defines that the sum has to be less than or equal to 2; the soft constraint
calculates the amount of breaks that are above the allowed value and multiplies that
value with the penalization factor. If the mode was not HA, the condition of the sum
would have another part /\ venue_per_team_and_round[4,slot] == 1 for home breaks and
the same with −1 at the end for away breaks.

Listing 5.8: Example of a BR1 constraint
<BR1 intp ="2" mode1="LEQ" mode2="HA" pena l ty ="5" s l o t s = " 3 ; 4 ; 5 ; 6 ; 8 ; 9 "

teams="3"/>

38

5.1. Constraint Programming

var i n t : sum_br1_1 =
sum (s l o t in {4 ,5 ,6 ,7 ,9 ,10} where s l o t != 1 /\
venue_per_team_and_round [4 , s l o t −1] == venue_per_team_and_round [4 , s l o t]) (1) ;

% hard c o n s t r a i n t %
c o n s t r a i n t sum_br1_1 <= 2 ;

% s o f t c o n s t r a i n t %
var i n t : penalty_br1_2_3_4_5_6_8_9 = 5 ∗ max(sum_br1_1 − 2 , 0) ;

The given BR2 constraint in Listing 5.9 defines that the sum of all breaks of the given
teams (0,1,2,3,4,5) in the given slots (0,1,2,3,4,5,6,7,8,9) is not more than 18. The sum
of all breaks (of the given teams and slots) is summed up in the variable and then the
variable gets restricted by the hard constraint to be less than or equal to 18. The soft
constraint uses that variable to calculate the penalization term, by summing up how
many more breaks were in the schedule and multiplying that value with the penalization
factor.

Listing 5.9: Example of a BR2 constraint
<BR2 intp ="18" homeMode="HA" mode2="LEQ" pena l ty ="1"

s l o t s = " 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 0 " teams ="2 ;0 ; 1 ; 4 ; 3 ; 5 "/ >

var i n t : sum_br2_1 =
sum(s l o t in {2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 1} , team in {3 ,1 ,2 ,5 ,4 ,6}
where s l o t != 1 /\
venue_per_team_and_round [team , s l o t −1] ==

venue_per_team_and_round [team , s l o t]) (1) ;

% hard c o n s t r a i n t %
c o n s t r a i n t sum_br2_1 <= 18 ;

% s o f t c o n s t r a i n t %
var i n t : penalty_br2_2_0_1_2_3_4_5_6_7_8_9 = 1 ∗ max(sum_br2_1 − 18 , 0) ;

The given FA2 constraint in Listing 5.10 (the slots in the example from 4.3 were reduced
to make the constraints smaller) states that the difference of games played at home
between each pair of teams of the given teams (0, 1, 2, 3, 4, 5) may not be more than
two in the given slots (0, 1, 2, 3, 4). The hard constraint sums up the number of home
games each team has played up to each of the given slots for each pair of teams and
defines that the difference of those two values has to be less than or equal to 2. For the
soft constraint there are a lot of variables: each team pair has its own variable (we only
show the variable for the teams 2 and 0), in which the maximum difference in all of the
given slots is calculated and used to calculate the penalization term.

Listing 5.10: Example of a FA2 constraint
<FA2 intp ="2" mode="H" pena l ty ="10" s l o t s = " 1 ; 2 ; 3 ; 4 ; 0 " teams ="2 ;0 ; 1 ; 4 ; 3 ; 5 "/ >

% hard c o n s t r a i n t %
c o n s t r a i n t

39

5. Solution Approaches

f o r a l l (team1 in {3 ,1 , 2 , 5 , 4 , 6} , team2 in {3 ,1 ,2 ,5 ,4 ,6}
where team1 != team2) (

f o r a l l (s lotTo in {2 , 3 , 4 , 5 , 1}) (
abs (sum(s l o t in 1 . . s lotTo

where venue_per_team_and_round [team1 , s l o t] == 1)(1) −
sum(s l o t in 1 . . s lotTo

where venue_per_team_and_round [team2 , s l o t] == 1) (1)) <= 2
)

) ;

% s o f t c o n s t r a i n t %
var i n t : penalty_fa2_1_2_0 = 10 ∗ max(max ([
abs (sum(s l o t in 1 . . 2 where venue_per_team_and_round [3 , s l o t] == 1) (1) −

sum(s l o t in 1 . . 2 where venue_per_team_and_round [1 , s l o t] == 1) (1)) ,
abs (sum(s l o t in 1 . . 3 where venue_per_team_and_round [3 , s l o t] == 1) (1) −

sum(s l o t in 1 . . 3 where venue_per_team_and_round [1 , s l o t] == 1) (1)) ,
abs (sum(s l o t in 1 . . 4 where venue_per_team_and_round [3 , s l o t] == 1) (1) −

sum(s l o t in 1 . . 4 where venue_per_team_and_round [1 , s l o t] == 1) (1)) ,
abs (sum(s l o t in 1 . . 5 where venue_per_team_and_round [3 , s l o t] == 1) (1) −

sum(s l o t in 1 . . 5 where venue_per_team_and_round [1 , s l o t] == 1) (1)) ,
abs (sum(s l o t in 1 . . 1 where venue_per_team_and_round [3 , s l o t] == 1) (1) −

sum(s l o t in 1 . . 1 where venue_per_team_and_round [1 , s l o t] == 1)(1))]) − 2 ,
0) ;

The given SE1 constraint in Listing 5.11 states that there need to be at least ten games
between mutual games of each pair of the given teams (0, 1, 2, 3, 4, 5). There are min
number of hard constraints (we only show the first one). In each of the constraints the
value that is added to r increases, starting with 1 as it can be seen in the listing below.
This constraint checks that in consecutive slots there is not the same game played. The
next constraint checks for slots that are two apart, the next for three apart, etc. For the
soft constraint only the first penalization term is shown; there is again a variable for each
pair of teams. The penalization term is generated by checking for each game span value
i (1 up to min) if the two teams of that variable play against each other in two rounds
that are i apart. If that is the case, the sum will return the value of how many games
shy the separation was to min, the max function call will then return that sum because
only one of these sum calls can return a value other than 0 as there are only two games
in the schedule, e.g., they cannot be 3 and 7 apart.

Listing 5.11: Example of a SE1 constraint
<SE1 mode1="SLOTS" min="10" pena l ty ="10" teams ="2 ;0 ; 1 ; 4 ; 3 ; 5 "/ >

% hard c o n s t r a i n t %
c o n s t r a i n t

f o r a l l (team1 in {3 ,1 , 2 , 5 , 4 , 6} , team2 in {3 ,1 , 2 , 5 , 4 , 6} ,
r in 1 . . R−1 where team1 < team2)

(opponents_per_team_and_round [team1 , r] != team2 \/
opponents_per_team_and_round [team1 , r + 1] != team2) ;

% s o f t c o n s t r a i n t %
var i n t : penalty_se1_1_3_5 = 10 ∗ max ([

40

5.1. Constraint Programming

sum(r in 1 . . R−1 where opponents_per_team_and_round [3 , r] == 5 /\
opponents_per_team_and_round [3 , r + 1] == 5)(10 − (1 − 1)) ,

sum(r in 1 . . R−2 where opponents_per_team_and_round [3 , r] == 5 /\
opponents_per_team_and_round [3 , r + 2] == 5)(10 − (2 − 1)) ,

sum(r in 1 . . R−3 where opponents_per_team_and_round [3 , r] == 5 /\
opponents_per_team_and_round [3 , r + 3] == 5)(10 − (3 − 1)) ,

sum(r in 1 . . R−4 where opponents_per_team_and_round [3 , r] == 5 /\
opponents_per_team_and_round [3 , r + 4] == 5)(10 − (4 − 1)) ,

sum(r in 1 . . R−5 where opponents_per_team_and_round [3 , r] == 5 /\
opponents_per_team_and_round [3 , r + 5] == 5)(10 − (5 − 1)) ,

sum(r in 1 . . R−6 where opponents_per_team_and_round [3 , r] == 5 /\
opponents_per_team_and_round [3 , r + 6] == 5)(10 − (6 − 1)) ,

sum(r in 1 . . R−7 where opponents_per_team_and_round [3 , r] == 5 /\
opponents_per_team_and_round [3 , r + 7] == 5)(10 − (7 − 1)) ,

sum(r in 1 . . R−8 where opponents_per_team_and_round [3 , r] == 5 /\
opponents_per_team_and_round [3 , r + 8] == 5)(10 − (8 − 1)) ,

sum(r in 1 . . R−9 where opponents_per_team_and_round [3 , r] == 5 /\
opponents_per_team_and_round [3 , r + 9] == 5)(10 − (9 − 1)) ,

sum(r in 1 . . R−10 where opponents_per_team_and_round [3 , r] == 5 /\
opponents_per_team_and_round [3 , r + 10] == 5)(10 − (10 − 1))]) ;

5.1.2 Strengthening Constraint Improvement

MiniZinc allows to profile the search for a solution and show the result of that profiling
in a search tree [41, 3.4] (e.g. those in Figure 5.2 and 5.3). This can be used to improve
constraints or add constraints that allow to prune a branch earlier. For example, in
Figure 5.2 a search tree is displayed where the corresponding search did not have the
first constraint seen in the basic structure above in Listing 5.2 that a team cannot play
against itself. This constraint is implied by another constraint which says that each pair
of the n distinct teams has to play against each other twice within 2(n− 1) rounds, with
only one game per team and round possible. Branch nodes are shown as blue circles,
nodes where the remaining subproblem is unsatisfiable are shown as red squares and
green diamonds represent solutions nodes. Whenever a subtree contains only failures, it
is shown as a red triangle.

In Figure 5.2, we can see the search with Gecode as the solver, input_order as the
variable choice heuristics and indomain_min as the value choice heuristics. The search
had a lot of failures because the first try in assigning the first team to play against a
team was always the first team itself. However, what happens if we add a constraint
that teams may not play against themselves can be seen on the right of Figure 5.3. The
search tree is smaller because the wrong branches in which a team plays against itself
can be omitted and the domain to choose values from becomes smaller.

The labels of the search trees show the assigned values of the flattened opponents per
team and round and venue per team and round, however, internally the two variables
are replaced with variables for each position of the array. Unfortunately, the mapping of
venue per team and round did not work in the case of those figures.

41

5. Solution Approaches

Figure 5.2: Search tree for TestInstanceDemo (4 teams) before adding a constraint that
forbids teams to play against themselves.

Figure 5.3: Search tree for TestInstanceDemo after adding that constraint.

5.2 Simulated Annealing
For the heuristic part of the approach, we implement a simulated annealing based on the
work of Anagnostopoulos et al. [1]. They demonstrate a successful simulated annealing
approach for the TTP, which they call TTSA. In addition to the classical simulated
annealing, they also make use of reheating and strategic oscillation.

The sligthly adapted algorithm is shown in Algorithm 5.1. We add the option to minimize
violations, which enables the algorithm to always accept a solution that has fewer
violations than any other previously found solution even if its objective value is worse
than the current one.

42

5.2. Simulated Annealing

Algorithm 5.1: Slightly altered TTSA from Anagnostopoulos et al. [1]
input : initial schedule S
output : objective value of best schedule

1 bestFeasible←∞;nbf ←∞;
2 bestInfeasible←∞;nbi←∞;
3 reheat← 0;
4 iteration_counter ← 0;
5 acceptance_counter ← 0;
6 acceptance_queue← [];
7 while reheat ≤ maxR do
8 phase← 0;
9 while phase ≤ maxP do

10 counter ← 0;
11 while counter ≤ maxC do
12 monitor acceptance rate;
13 select a random move m from neighborhood(S);
14 let S′ be the schedule obtained from S with m;
15 if C(S′) < C(S) OR nbv(S′) == 0 and C(S′) < bestFeasible OR

nbv(S′) > 0 and C(S′) < bestInfeasible OR lowestV iol > 0 and
nbv(S′) < lowestV iol then

16 accept← true;
17 else
18 accept← true with probability exp(−∆C/T) false otherwise;
19 end
20 acceptance handling;
21 counter ← counter + 1
22 end
23 phase← phase+ 1;
24 T ← T · β;
25 end
26 reheat← reheat+ 1;
27 T ← γ · bestTemperature
28 end
29 return bestFeasible

The algorithm takes an initial schedule as the input and returns the objective value of the
best found feasible schedule. The outermost loop is the reheat loop and continues until
the maximum number of reheats is reached (maxR). The next inner loop is the phase
loop and goes on until the phase counter reaches the maximum number of phases (maxP).
The innermost loop controls the number of iterations for each phase (maxC). After the
counter reaches that number, the temperature is decreased and the current phase ends.
After the middle loop finishes, a reheat is performed, which sets the temperature to γ

43

5. Solution Approaches

Algorithm 5.2: Acceptance handling part of altered TTSA from [1]
1 if accept then
2 S ← S′;
3 if nbv(S) == 0 then
4 nbf ← min(C(S), bestFeasible);
5 else
6 nbi← min(C(S), bestInfeasible);
7 end
8 if nbf < bestFeasible or nbi < bestInfeasible or nbv(S) < lowestViol

then
9 reheat← 0; counter ← 0; phase← 0;

10 bestTemperature← T ;
11 if nbf < bestFeasible then
12 bestFeasible← nbf ;
13 else if nbi < bestInfeasible then
14 bestInfeasbile← nbi;
15 end
16 if nbv(S) < lowestV iol then
17 lowestV iol← nbv(S);
18 end
19 if nbv(S) == 0 then
20 w ← w/θ;
21 else
22 w ← w · δ ;
23 end
24 end

times the bestTemperature, which stores the temperature when the last improvement
of the schedule was found. In each iteration of the innermost loop a random move is
applied to the current schedule S to get to a new schedule S′. If the costs of the new
schedule are lower than the costs of the current schedule or the new schedule has no
violations and the costs are lower than the bestFeasible costs or there are violations and
the costs are lower than the bestInfeasible costs, then a boolean accept is set to true,
which marks that the new solution S′ will be accepted as the new current solution S.

The costs are calculated with the function C which takes the objective value of a schedule
as well as a weighted violation factor into account, see Algorithm 5.4. The function
nbv(S) calculates the number of violations of hard constraints of the schedule, the
amount of the deviation of the constraint violation is considered as well; moreover, each
game that violates the phased property of an instance is considered a hard constraint
violation as well. The function f is a sublinear function such that f(1) = 1, they used
f(v) = 1 + (

√
v ln v)/2; it is used in order to reduce the amount additional violations

44

5.2. Simulated Annealing

Algorithm 5.3: Acceptance rate monitoring for TTSA
1 iteration_counter + + if iteration_counter%ITER == 0 then
2 acceptance_rate← acceptance_counter/ITER;
3 if length(acceptance_rates) == QLN then
4 remove one entry from queue acceptance_rates;
5 end
6 put acceptance_rate into queue acceptance_rates;
7 if sum of queue acceptance_rates == 0 then
8 reset T to inital value;
9 w ← w/DIV ;

10 end
11 acceptance_counter ← 0;
12 end

contribute to the costs because the first violation should count the most, additional
ones are not that important as the schedule is already infeasible. However, one could
argue that in order to drive the solutions towards feasibility, each violation should count
the same to reduce the infeasibilities like Rosati et al. [39] who also use a fixed weight
for their cost function. Therefore, we add an alternative way of taking hard constraint
violations into account where each violation counts the same. The weight factor w is
used to alter the importance of the violations.

If the schedule is not accepted regarding the costs, it might still be accepted with a
probability depending on the quality of the schedule (difference of the new costs to the
current costs) and the temperature; the higher the temperature, the more likely the
schedule is accepted.

What happens if the schedule is accepted can be seen in Algorithm 5.2 where the current
schedule becomes the new one. If a new best feasible or a new best infeasible schedule was
found, all loop counters are reset in order to restart the process. The bestTemperature
is set to the current temperature (which is later used for the reheats). If the new schedule
does not have any violations, the weight factor w is decreased by dividing by θ (which is
a value larger than 1). Otherwise, w gets increased by multiplying with δ (which is also
a value larger than 1).

One of our adaptions to the original TTSA is that the original does not automatically
accept a solution that has the fewest violations of hard constraints so-far, because it may
have a far worse objective value regarding the soft constraints. Therefore, we added code
so that the smallest value of hard constraint violations is also stored in a variable and
if a schedule has fewer violations than the least violations of an already seen schedule,
we accept it as the new current solution. We call this concept minimize violations or
MV for short. This should drive the schedules more towards feasibility than the original
TTSA where this is not necessary because an infeasible schedule for TTP usually has

45

5. Solution Approaches

Algorithm 5.4: Adapted function C [1, 39] to calculate the costs of a schedule
input : schedule S, boolean alternative
output : costs of schedule S

1 if S is feasible then
2 return obj(S);
3 else
4 if alternative then
5 return obj(S) + w · nbv(S)
6 else
7 return

√
obj(S)2 + (w · f(nbv(S)))2

8 end
9 end

fewer violations than an infeasible schedule for ITC2021 has since most instances have
more constraints than TTP has.

Another adaption we make is that we track the acceptance rates and reset T to its initial
value and divide the current weight w by the DIV , which is a number greater than 1
if the acceptance rate of the last QLN · ITER iterations is equal to 0. This is done in
order to increase the acceptance rate when the algorithm is stuck in a phase where the
temperature is too low to accept worse solutions and better solutions are not found over
a longer period. The weight, however, is not reset to its initial value but divided by the
DIV . This is done to drive the search towards feasibility because if we reset the weight,
it makes it more likely for infeasible solutions to be accepted. Our implementation for
this can be seen in Algorithm 5.3 where we put the acceptance rate of the last ITER
iterations period into a queue. We store QLN of these acceptance rates value and sum
them up; if they equal 0, the resets are performed.

The last adaption we make is that we move the increment of the counter outside of the
accept block; initially, as proposed by Anagnostopoulos et al. [1] it was only incremented
if a neighbor was accepted but did not improve the best solutions (feasible or infeasible).
However, this might lead to an infinite loop if the acceptance rates drop to 0 as then the
algorithm never finishes its current phase, therefore, it does not reach a reheat, which
would increase the acceptance rate again.

For the calculation of the hard constraint violations and the objective value resulting
from soft constraint violations, we implemented a function that traverses the schedule
round-wise and team-wise. We store the constraints in dictionaries to make them more
easily accessible while calculating the violations.

5.2.1 Neighborhood Structures

We use the five neighborhood structures from Anagnostopoulos et al. [1] defined by
different moves. All tables of example moves in this subsection are recreated from their
work considering an instance with n = 6 teams. All of the neighborhoods maintain

46

5.2. Simulated Annealing

the DRR structure of the schedule, however, neighbors of feasible schedules are not
guaranteed to also be feasible.

SwapHomes

SwapHomes(ti, tk): The home venues of the mutual games of the given teams are swapped.
In Table 5.1, we can see the operation SwapHomes(t2, t4).

Table 5.1: Swap the home venues of the games between team t2 and t4.

T/R 1 2 3 4 5 6 7 8 9 10
1 6 -2 4 3 -5 -4 -3 5 2 -6
2 5 1 -3 -6 4 3 6 -4 -1 -5
3 -4 5 2 -1 6 -2 1 -6 -5 4
4 3 6 -1 -5 -2 1 5 2 -6 -3
5 -2 -3 6 4 1 -6 -4 -1 3 2
6 -1 -4 -5 2 -3 5 -2 3 4 1

T/R 1 2 3 4 5 6 7 8 9 10
1 6 -2 4 3 -5 -4 -3 5 2 -6
2 5 1 -3 -6 -4 3 6 4 -1 -5
3 -4 5 2 -1 6 -2 1 -6 -5 4
4 3 6 -1 -5 2 1 5 -2 -6 -3
5 -2 -3 6 4 1 -6 -4 -1 3 2
6 -1 -4 -5 2 -3 5 -2 3 4 1

SwapRounds

SwapRounds(ri, rk): Two whole rounds are swapped. In Table 5.2, we can see the
operation SwapRounds(r3, r5).

Table 5.2: Swap the rounds r3 and r5.

T/R 1 2 3 4 5 6 7 8 9 10
1 6 -2 4 3 -5 -4 -3 5 2 -6
2 5 1 -3 -6 4 3 6 -4 -1 -5
3 -4 5 2 -1 6 -2 1 -6 -5 4
4 3 6 -1 -5 -2 1 5 2 -6 -3
5 -2 -3 6 4 1 -6 -4 -1 3 2
6 -1 -4 -5 2 -3 5 -2 3 4 1

T/R 1 2 3 4 5 6 7 8 9 10
1 6 -2 -5 3 4 -4 -3 5 2 -6
2 5 1 4 -6 -3 3 6 -4 -1 -5
3 -4 5 6 -1 2 -2 1 -6 -5 4
4 3 6 -2 -5 -1 1 5 2 -6 -3
5 -2 -3 1 4 6 -6 -4 -1 3 2
6 -1 -4 -3 2 -5 5 -2 3 4 1

SwapTeams

SwapTeams(ti, tk): The opponents of the given teams are swapped. In Table 5.3, we
can see the operation SwapTeams(t2, t5). Of course, the mutual games are not swapped,
otherwise, the teams would play against themselves.

PartialSwapRounds

PartialSwapRounds(ti, rk, rl): The games of team ti are swapped in the given rounds.
Afterwards, the schedule is updated deterministically to make up a feasible schedule
again.

In order to achieve that, an ejection chain of the teams that need to swap their games in
rounds rk and rl is generated. The chain starts with ti. The next team tnext added to

47

5. Solution Approaches

Table 5.3: Swap games of teams t2 and t5.

T/R 1 2 3 4 5 6 7 8 9 10
1 6 -2 4 3 -5 -4 -3 5 2 -6
2 5 1 -3 -6 4 3 6 -4 -1 -5
3 -4 5 2 -1 6 -2 1 -6 -5 4
4 3 6 -1 -5 -2 1 5 2 -6 -3
5 -2 -3 6 4 1 -6 -4 -1 3 2
6 -1 -4 -5 2 -3 5 -2 3 4 1

T/R 1 2 3 4 5 6 7 8 9 10
1 6 -5 4 3 -2 -4 -3 2 5 -6
2 5 -3 6 4 1 -6 -4 -1 3 -5
3 -4 2 5 -1 6 -5 1 -6 -2 4
4 3 6 -1 -2 -5 1 2 5 -6 -3
5 -2 1 -3 -6 4 3 6 -4 -1 2
6 -1 -4 -2 5 -3 2 -5 3 4 1

the chain is always the opponent of the previously added team in the currently concerned
round; the concerned round alternates between rk and rl. The chain is finished when the
next team to add would be ti. In the end, the teams contained in the chain swap their
games in round rk and rl.

For example, in Table 5.4, the operation PartialSwapRounds(t2, r2, r9) can be seen. The
ejection chain starts with t2, then the team that t2 plays in round r2, which is t1, is added
to the chain. Afterwards, we have to add the team that t1 plays in round r9, which is t4.
In the same way, team t6 is added. Then, the next team to add would be t2, which means
the chain is finished. In the end, the teams in the chain swap their games in r2 and r9.

Table 5.4: Partially swap rounds r2 and r9 starting with team t2.

T/R 1 2 3 4 5 6 7 8 9 10
1 6 -2 2 3 -5 -4 -3 5 4 -6
2 5 1 -1 -5 4 3 6 -4 -6 -3
3 -4 5 4 -1 6 -2 1 -6 -5 2
4 3 6 -3 -6 -2 1 5 2 -1 -5
5 -2 -3 6 2 1 -6 -4 -1 3 4
6 -1 -4 -5 4 -3 5 -2 3 2 1

T/R 1 2 3 4 5 6 7 8 9 10
1 6 4 2 3 -5 -4 -3 5 -2 -6
2 5 -6 -1 -5 4 3 6 -4 1 -3
3 -4 5 4 -1 6 -2 1 -6 -5 2
4 3 -1 -3 -6 -2 1 5 2 6 -5
5 -2 -3 6 2 1 -6 -4 -1 3 4
6 -1 2 -5 4 -3 5 -2 3 -4 1

PartialSwapTeams

PartialSwapRounds(ri, tk, tl): The games of the given teams are swapped in round ri.
Afterwards, the schedule is updated deterministically to make up a feasible schedule
again.

Let the opponents of tk in round ri be opk and the opponent of tl in round ri be opl.
First, we change the schedule so that the opponent of team tk in round ri is now opl and
vice versa and the opponent of team tl is now opk and vice versa. Thereby, tk plays that
game against opl twice (once in round ri and once in the original round ro). Therefore,
the opponents of tk and tl are also swapped in round ro. This is done repeatedly until
the new opponent of tk in a round is the original opponent of round ri, namely opk.

In Table 5.5, we can see the operation PartialSwapRounds(r9, t2, t4). First, the opponents
are swapped for teams t2 and t4 in round r9 (and the opponents of their opponents—being
t2 and t4—are swapped for them as well). Now t2 has two away games against t6 in its

48

5.2. Simulated Annealing

schedule, one in r9 and one in r4. Therefore, we also swap the opponents of t2 and t4 in
r4. However, now t2 has two away games against t5, one in t4 and one in t10. Hence, we
also swap the opponents of t2 and t4 in round r10. Then, t2 has two away games against
t3, one in r10 and one in r3. Therefore, we swap the opponents of t2 and t4 in round r3.
Now t2 has no doubled games because the opponent it received in the last swap was the
original opponent in round r9.

Table 5.5: Partially swap teams t2 and t4 starting in r9.

T/R 1 2 3 4 5 6 7 8 9 10
1 6 -2 4 3 -5 -4 -3 5 2 -6
2 5 1 -3 -6 4 3 6 -4 -1 -5
3 -4 5 2 -1 6 -2 1 -6 -5 4
4 3 6 -1 -5 -2 1 5 2 -6 -3
5 -2 -3 6 4 1 -6 -4 -1 3 2
6 -1 -4 -5 2 -3 5 -2 3 4 1

T/R 1 2 3 4 5 6 7 8 9 10
1 6 -2 2 3 -5 -4 -3 5 4 -6
2 5 1 -1 -5 4 3 6 -4 -6 -3
3 -4 5 4 -1 6 -2 1 -6 -5 2
4 3 6 -3 -6 -2 1 5 2 -1 -5
5 -2 -3 6 2 1 -6 -4 -1 3 4
6 -1 -4 -5 4 -3 5 -2 3 2 1

Algorithm 5.5: RandomSchedule function for generating an initial schedule
[1]
input : teams T , slots R
output :DRR schedule S

1 Q← {(t, s)|t ∈ T, s ∈ R};
2 S ← empty schedule matrix with size |T | × |R|;
3 GenerateSchedule(Q,S, 0);
4 return S;

5.2.2 Initial Solution Generation

Since SA needs an initial solution, we propose an altered backtracking algorithm based
on the work of Anagnostopoulos et al. [1]. In Algorithm 5.5 and 5.6, we can see our
approach to construct an initial solution. The algorithm fills a schedule by generating all
possible games for the team with the lowest index t that has no opponent assigned in
one of its rounds r. Of these possible games, one is scheduled in round r and the next
position of the schedule is filled with a recursive call. If the algorithm does not yield a
feasible schedule, we backtrack and try other choices for that schedule position. If the
number of backtracks surpasses a certain threshold, we start over because then it is likely
that the algorithm is stuck in a branch that does not yield a feasible schedule at all.

The function randomSchedule takes the number of teams and the number of slots as an
input. First, it initializes a queue Q of tuples in the form (t, s) consisting of a team t and
a slot s, moreover, an empty schedule matrix S with the number of teams as the row
count and the number of slots as the column count. The tuples (t, s) ∈ Q represent that
t has no scheduled game in slot s in the schedule S yet. After the preliminaries are done,

49

5. Solution Approaches

Algorithm 5.6: Altered backtracking algorithm GenerateSchedule to create
an initial DRR tournament [1]

input : queue Q, schedule S, teams T , backtrack counter cnt
output : returns true, if a game could be scheduled or the schedule is finished, false otherwise

1 if size(Q) = 0 then
2 return true;
3 end
4 t, s← min(Q);
5 choices← [];
6 prevGames← S[t];
7 foreach x ∈ T do
8 if x 6= t then
9 if x /∈ prevGames then

10 add x to choices;
11 end
12 if −x /∈ prevGames then
13 add −x to choices;
14 end
15 end
16 end
17 foreach o ∈ choices randomly ordered do
18 if (abs(o), s) ∈ Q then
19 S[t][s]← o;
20 if o > 0 then
21 S[o][s]← −t;
22 else
23 S[−o][s]← t;
24 end
25 if GenerateSchedule(Q− {(t, s), (abs(o), s)}, S, T, cnt) then
26 return true;
27 end
28 end
29 end
30 cnt← cnt+ 1;
31 if cnt = nlim

bt , where nlim
bt is the maximum number of backtracks allowed then

32 restart RandomSchedule
33 end
34 return false;

the GenerateSchedule function is called, which directly alters the schedule S, which is
returned afterwards.

The GenerateSchedule function is a recursive function that fixes one game played in
each recursive step. Therefore, the recursive stopping condition is that no games need to
be scheduled anymore, which means the queue Q is empty. The function returns true if
a game was scheduled or if there are no games left to be scheduled.

Otherwise, we take the smallest tuple (t, s) from the queue, which is the smallest remaining
team, with its smallest remaining slot to be filled in the schedule. Then the possible
choices for that team and that slot are calculated, which is done by traversing the teams
as x and checking if x has already played against t. Of course, there are two separate
checks for home and away games. If t did not play against x, at home x is added to the
possible choices; if t did not play against x on the road, −x is added to the choices.

Then we traverse those choices in a random order, where o is the current choice. If team
o is still in the queue for slot s, then the game between t and o is scheduled according to
the sign of o. Afterwards, the function is called recursively but with (t, s) and (abs(o), s)
removed from the queue. If that call makes it down to the recursion stopping condition,

50

5.3. Parallel Multi-Start Hybridization

Algorithm 5.7: Thread Function Parallel Multi-Start Hybridization CP/SA
input : instance file I
output : file with info about run

1 perm← random shuffle of list [1, . . . , n];
2 perm_lookup← generate lookup from perm;
3 initialSchedule← start MiniZinc with perm and a model for I with a defined

timeout;
4 if not initialSchedule then
5 initialSchedule← start MiniZinc with perm and a model for I which ignores

all break constraints and has a defined timeout
6 end
7 if not initialSchedule then
8 initialSchedule← start MiniZinc with perm and a model for I which ignores

all constraints and has a defined timeout
9 end

10 start SA with initialSchedule

we return true here as well.

If all choices of the current state are traversed and none of them managed to complete a
schedule, we return false to signal the upper level that it needs to try another possible
choice. We also monitor the number backtracking steps performed and limit it by nlim

bt .
Thereby, we can completely restart from scratch if we are caught in a branch where it is
difficult or unlikely to find a feasible DRR schedule.

5.3 Parallel Multi-Start Hybridization
In this section, we describe our approach to combine constraint programming with
simulated annealing in a parallel multi-start approach.

The main idea is to start a predefined number of threads that search for a solution
in parallel, a straightforward multi-start approach. In Algorithm 5.7, we can see the
thread function in pseudocode. First, we try to find a solution for the instance with all
hard constraints enabled but without soft constraints, thereby, the instances become
ITC2021-NSC instances. If this does not yield a solution after a predefined time, we kill
the process and run MiniZinc with a model where we ignore the break constraints as those
are the hardest constraints to solve, thereby, the instances become ITC2021-NSC-NBC
instances. If this still does not lead to an initial solution, we run MiniZinc with a model
where we ignore all constraints leading to a random DRR. We then give the resulting
schedule to the SA as an initial solution. The SA has two tasks: improve a feasible
solution and secondly make infeasible solutions feasible. In the end, the results of each
thread are collected, written into a file, and the best found solution is returned.

51

CHAPTER 6
Computational Study

The experiments in this section were performed on Intel Xeon E5-2640 processors with
2.40 GHz in single-threaded mode, except for when it is explicitly defined that they
ran in multi-threaded mode. The translation from the XML instance files to MiniZinc
models and the hybridization approach were implemented in Python 3.7. The simulated
annealing approach was implemented and tested in Julia 1.7.3. The first experiments on
the MiniZinc models were performed with MiniZinc 2.5.5 and later with 2.6.1, which is
mentioned at the beginning of the corresponding sections.

6.1 Constraint Programming with MiniZinc

We first discuss different parameters for our experiments with MiniZinc, namely the
backend solver, variable and value choice heuristics, and randomization aspects.

6.1.1 Solvers

In this section, we briefly describe the tested CP solvers for MiniZinc.

Gecode

Gecode (short for generic constraint development environment) [44] is a software toolkit
written in C++ started by Christian Schulte in 2005 for solving CSPs. It is open source,
distributed under the MIT license and provides many features, for example, advanced
branching heuristics, many search engines and automatic symmetry breaking. It is
the default solver in the MiniZinc bundled binary distribution. It supports many of
MiniZinc’s global constraints natively and supports integer, float and set variables [41,
3.5].

53

6. Computational Study

Chuffed

Chuffed [6] uses lazy clause generation to solve CSPs. Lazy clause generation is a hybrid
approach that combines features of finite domain propagation and SAT solving. The
former is used to record the reasons for the propagation steps, thereby creating an
implication graph. Implication graphs are also built by SAT solvers and with the help of
them one can create so-called nogoods that record the reason for failure, which can be
propagated using SAT unit propagation technology.

Gurobi

Gurobi [20][4] was founded by Gu, Rothenberg and Bixby (hence GuRoBi) in 2008. The
Gurobi Solver is a commercial mathematical programming solver for solving linear pro-
gramming (LP), quadratic programming and mixed integer programming (mixed integer
linear programming, mixed integer quadratic programming, mixed integer quadratically
constrained programming) problems. However, it can also be used to some extent for
CSPs and COPs in MiniZinc when MiniZinc was compiled with its support [41, 3.5],
where a CP model is transformed into an integer programming (IP) model.

or-tools

Google’s or-tools (operations research tools) [35] are an open source software suite for
solving SAT, LP and CP problems; they were first introduced by Perron [34].

6.1.2 Search Parameters

There are several parameters one can set when solving a MiniZinc model [41, 2.5]. In the
following subsection, we describe those we used in our experiments.

As we have two arrays of decision variables, we can decide for which we want to define
the search process with the int_search annotation; the other one will be searched freely
(without a manual definition) after all variables of the first array are assigned.

In our preliminary experiments, we found that it is best to define the search for opponents
per team and round as we found solutions more quickly that way than when we defined
the search for venue per team and round. This is due to the larger domain size of the
former. One could also use seq_search to define a search process for both, which we did
not consider.

Variable Choice

For deciding the next variable, i.e. team and round, on which to branch, we consider the
following variable choice heuristics:

• input_order takes the variables one by one in the order they were defined; in our
case, the teams and rounds in lexicographic order.

54

6.1. Constraint Programming with MiniZinc

• first_fail chooses the variable with the smallest domain size; in our case the team
and round with the least opponents left.

• smallest chooses the variable with the smallest value in its domain.

• dom_w_deg takes the variable with the smallest domain size divided by a weighted
degree of how often that variable caused a failure earlier during the search.

• random/random_order chooses the variables in a random order.

The first three variable choice heuristics work on all described solvers, dom_w_deg only
works with Gecode and Gurobi. The random choice is called random for Gecode and
random_order for Chuffed; it does not work for or-tools and Gurobi.

Value Choice

For constraining the domain of the chosen variable in the left branch (with the corre-
sponding complement in the right branch), we consider the following different value
choice heuristics:

• indomain_min assigns the smallest value of the domain.

• indomain_median assigns the median value of the domain.

• indomain_split bisects the variable’s domain, excluding the upper half first.

• indomain_random assigns a random value of the domain.

The first three work for every described solver. indomain_random works only for Gurobi
and Gecode. Since we wanted some sort of randomness for chuffed regarding the value
choice, we implemented our own parameter for chuffed (see 6.1.3).

Restarting

As restarting options, we consider the following settings:

• no restarting

• restart_constant(n) where n defines after how many nodes of the search tree the
search is restarted.

• restart_linear(n) where n defines after how many nodes the search is restarted;
the second restart happens after 2n, the third after 3n, etc.

• restart_geometric(b, n) where b is a float base value and n is the factor, the k-th
restart happens after n · bk nodes.

55

6. Computational Study

• restart_luby(n) - the k-th restart happens after n · L[k] where L is the Luby
sequence that goes 112112411211248 . . . (it always repeats itself before adding the
next power of two).

6.1.3 Randomization for Value Choice in Chuffed

Since Chuffed does not support indomain_random and we wanted to make use of
randomness when choosing a value for a chosen variable in our randomized multi-start
approach, we implemented it on our own for Chuffed. The reason why we wanted
randomness in value choice is that the other value choice options (e.g., indomain_min
or indomain_median) only restrict the value choice in a certain way, but do not improve
the probability to find a feasible solution for scheduling problems when using restarting.
Since the code for that random value choice option seems to be just commented out in
the code basis of Chuffed, we first tried to implement it there. However, only commenting
in that code did not work, and all other attempts to get it to work failed, which is why
we went with a different approach.

The idea is to randomize the model by generating a random permutation perm of the
teams and use this permutation in all of the constraints when accessing the
venue_per_team_and_round or opponents_per_team_and_round variables. In List-
ing 6.1, we can see this approach in action. The perm_lookup is needed to map the
teams back according to the permutation for the output of the schedule. This can be
seen at the end of the listing.

Listing 6.1: Example of a CA1 constraint with randomness for Chuffed
<CA1 max="1" min="0" mode="H" pena l ty ="5" s l o t s ="9 ; 6 ; 7 " teams="0">

perm = [2 , 4 , 6 , 3 , 1 , 5]
perm_lookup = [5 , 1 , 4 , 2 , 6 , 3]
c o n s t r a i n t sum(s l o t in {10 ,7 ,8}

where venue_per_team_and_round [perm [1] , s l o t] == 1) (1) <= 1 ;

output [format (3 , 2 ,
perm_lookup [opponents_per_team_and_round [perm [i] , j]] − 1) ++
i f j == R then "\n" e l s e " " e n d i f |
i in TEAMS, j in SLOTS

] ;

6.2 Instances
The competition provided four instance groups 1, namely Test, Early, Middle and Late,
with Test containing nine instances and the others containing 15 instances each. These
instances were used to test our approaches. Further information about the instances can
be seen in Table 6.1 where we show how many of each constraint types there are for
every instance.

1https://www.sportscheduling.ugent.be/ITC2021/instances.php

56

https://www.sportscheduling.ugent.be/ITC2021/instances.php

6.3. First Comparison of MiniZinc Configurations

Table 6.1: Instances provided by the competition

CA1 CA2 CA3 CA4 GA1 BR1 BR2 FA2 SE1
Instance teams phased H S H S H S H S H S H S H S H S H S H S

Demo 4 X 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Test1 6 X 17 44 10 17 0 0 1 16 0 0 5 10 0 0 1 0 0 0 0 1
Test2 6 X 10 43 10 20 0 12 0 0 0 0 0 0 0 10 0 0 0 1 0 0
Test3 6 X 47 67 15 25 8 0 2 20 22 22 0 0 0 0 0 0 0 0 0 0
Test4 6 X 51 197 15 30 15 60 1 40 4 44 10 10 5 10 1 1 0 1 0 1
Test5 16 X 68 75 8 29 16 0 0 0 0 21 31 5 13 20 0 0 0 0 0 0
Test6 18 X 214 575 40 31 66 172 2 72 85 297 0 2 21 0 0 1 0 0 0 0
Test7 20 X 178 1091 40 0 72 619 2 112 50 340 0 19 13 0 1 0 0 0 0 1
Test8 20 X 47 672 5 15 12 264 1 45 29 305 0 41 0 0 0 1 0 0 0 1
Early1 16 X 83 113 25 17 10 0 0 0 0 84 12 10 35 0 1 0 0 1 0 1
Early2 16 X 53 114 38 30 0 0 2 82 0 0 0 1 12 0 1 0 0 1 0 0
Early3 16 X 148 186 24 0 72 21 0 112 0 0 34 51 18 0 0 1 0 1 0 0
Early4 18 X 164 268 0 32 0 235 0 0 85 0 34 0 44 0 1 0 0 0 0 1
Early5 18 X 207 587 41 27 36 331 2 111 81 117 23 0 23 0 1 0 0 0 0 1
Early6 18 X 192 797 38 31 71 591 2 54 81 115 0 3 0 0 0 1 0 1 0 1
Early7 18 X 175 1159 42 31 30 620 1 112 84 340 5 55 12 0 1 0 0 0 0 1
Early8 18 X 70 582 19 0 8 57 0 112 0 339 4 73 39 0 0 0 0 1 0 0
Early9 18 X 90 102 39 0 14 0 0 88 0 0 14 2 23 10 0 1 0 1 0 0
Early10 20 X 246 1015 42 32 72 620 2 23 85 339 0 0 44 0 1 0 0 0 0 1
Early11 20 X 246 1108 42 32 72 620 2 112 85 340 0 3 44 0 1 0 0 0 0 1
Early12 20 X 179 35 37 0 72 0 2 20 31 0 17 1 20 13 0 1 0 0 0 0
Early13 20 X 100 432 41 31 27 257 1 110 0 0 10 24 20 10 1 0 0 0 0 0
Early14 20 X 56 56 5 30 0 0 0 0 0 0 34 0 17 24 0 1 0 1 0 0
Early15 20 X 187 1224 42 0 72 620 2 112 71 340 0 126 0 24 0 1 0 1 0 0
Middle1 16 X 144 993 0 32 14 620 0 0 85 340 0 0 44 0 1 0 0 0 0 1
Middle2 16 X 246 1231 42 32 72 620 2 112 85 340 0 126 44 0 1 0 0 0 0 1
Middle3 16 X 237 1212 42 0 72 617 2 107 85 338 0 126 36 21 0 1 0 1 0 1
Middle4 18 X 97 168 31 18 17 0 1 0 0 41 25 85 23 24 0 0 0 0 0 0
Middle5 18 X 151 197 41 24 40 33 0 12 0 0 26 126 44 0 0 1 0 1 0 0
Middle6 18 X 162 154 39 0 41 0 2 111 30 27 6 1 44 13 0 1 0 0 0 1
Middle7 18 X 141 476 0 30 0 355 1 0 78 51 34 17 28 21 0 1 0 0 0 1
Middle8 18 X 62 224 16 0 0 27 2 108 0 34 12 41 32 14 0 0 0 0 0 0
Middle9 18 X 94 201 42 0 0 37 1 100 19 39 4 0 28 23 0 1 0 1 0 0
Middle10 20 X 198 714 41 15 71 363 0 0 46 262 0 74 39 0 1 0 0 0 0 0
Middle11 20 X 176 1048 7 0 71 612 2 88 84 340 0 7 12 0 0 0 0 1 0 0
Middle12 20 X 63 241 0 32 28 168 1 13 0 0 5 4 29 21 0 1 0 1 0 1
Middle13 20 X 219 350 42 29 72 242 1 0 85 76 7 2 12 0 0 0 0 0 0 1
Middle14 20 X 63 817 5 18 11 319 2 112 0 338 6 19 38 10 1 0 0 1 0 0
Middle15 20 X 95 133 12 0 23 0 0 77 0 0 23 44 37 10 0 1 0 0 0 1
Late1 16 X 235 542 42 32 72 198 1 13 82 283 0 15 38 0 0 0 0 1 0 0
Late2 16 X 246 1077 42 0 72 620 2 112 85 340 0 5 44 0 1 0 0 0 0 0
Late3 16 X 127 439 42 0 72 326 1 43 0 60 0 7 12 0 0 1 0 1 0 1
Late4 18 X 96 34 0 32 0 0 0 0 18 0 34 1 44 0 0 0 0 0 0 1
Late5 18 X 176 747 0 19 69 614 2 0 81 109 23 4 0 0 1 0 0 1 0 0
Late6 18 X 163 159 0 32 0 125 0 0 85 0 34 0 44 0 0 1 0 0 0 1
Late7 18 X 126 738 42 32 40 601 1 61 0 0 5 43 37 0 1 0 0 0 0 1
Late8 18 X 110 195 37 15 0 14 0 111 0 0 32 29 41 24 0 1 0 0 0 1
Late9 18 X 102 402 40 0 20 250 2 112 0 0 0 18 40 20 0 1 0 1 0 0
Late10 20 X 233 694 0 31 67 447 2 0 85 205 34 10 44 0 1 0 0 0 0 1
Late11 20 X 52 366 6 0 16 274 0 88 0 0 17 3 12 0 1 0 0 1 0 0
Late12 20 X 244 1009 40 32 72 620 2 16 85 340 0 0 44 0 1 0 0 0 0 1
Late13 20 X 169 134 14 32 72 15 2 0 81 71 0 13 0 0 0 1 0 1 0 1
Late14 20 X 116 993 42 0 72 390 2 112 0 340 0 126 0 24 0 0 0 1 0 0
Late15 20 X 51 41 5 0 0 0 0 15 0 0 34 0 12 24 0 1 0 1 0 0

6.3 First Comparison of MiniZinc Configurations
The experiments in this section were performed on MiniZinc 2.5.5.

First, we tried different configurations on the provided test instances. Because of the
low-level solver input language FlatZinc, there are many solvers that can be used to solve
MiniZinc models. Our first experiments were performed using the solvers Gecode, Chuffed
and Gurobi. We used the variable choice annotations input_order, first_fail, smallest,
dom_w_deg. As value choice heuristics, we used indomain_min, indomain_median,
indomain_random and indomain_split. indomain_random and dom_w_deg do not
work for Chuffed; random does not work for Gurobi.

Moreover, we also tried different settings for restarting with Gecode. We used constant,
linear, geometric and luby restarting with different values (10, 100, 1000, 10000) with
random variable choice and random value choice. Furthermore, we tried complete random

57

6. Computational Study

Table 6.2: Best results on Test instances after running the experiments for 24 hours.
objbest: the objective value of the best solution, gapbest: relative deviation to the best
known solution of our best solution, config: the configuration that achieved that solution,
tbest[s]: time to best solution.

Gecode Chuffed Gurobi
config objbest gapbest tbest[s] config objbest gapbest tbest[s] config objbest gapbest tbest[s]

TestInstanceDemo sm_min 0 0 1 sm_min 0 0 1 sm_split 0 0 1
ITC2021Test1 dwd_min 1066 0 14 ff_min 1066 0 17 ff_split 1066 0 2550
ITC2021Test2 sm_median 176 0 84 sm_median 176 0 160 ff_rand 176 0 56
ITC2021Test3 dwd_min 1253 0 6 dwd_median 1253 0 4 dwd_median 1253 0 8
ITC2021Test4 sm_median 4535 0 6 io_median 4535 0 7 dwd_median 4535 0 11
ITC2021Test5 rand_rand_luby(1000) 200 9900 51849 sm_min 152 7500 83884 dwd_min 2 0 12122
ITC2021Test6 - - - - io_median 4396 40 30214 - - - -
ITC2021Test7 - - - - - - - - - - - -
ITC2021Test8 - - - - - - - - - - - -

runs with Gecode, variable choice random and value choice indomain_random. Overall,
we tested 57 configurations in this experiment.

In Table 6.2, we can see the results of these experiments. We show the configurations
that found our best solution for each instance and each solver. Moreover, we see the
objective value, the gap to the best known solution expressed as a percentage and the
time it took the configuration to obtain its solution. In Table 6.3, we can see the fastest
time to first solution for each instance and solver.

We can see that Chuffed finds a solution to one more instance than the other two solvers.
Furthermore, we see that Gurobi finds the best solution to each of the instances where it
finds a solution, however, it takes the longest to find its first solutions. Gecode is the
fastest to find its first solutions and its best solutions, however, the objective value for
test instance 5 is the worst among the three solvers.

In Figure 6.1, we see the success rate of each solver for the test instances 1 to 6 and the
demo instance over different configurations. The runs that found a solution are shown
in green, the ones that did not are shown in red. On the left, the domain value choice
indomain_random is not considered since Chuffed does not support it. On the right,
we show the diagram where it is considered for Gecode and Gurobi. As already stated,
Chuffed also finds a solution for test instance 6. However, Gurobi finds a solution for
each test run except for those with test instance 6. Therefore, the success rate of these
solvers is higher than that of Gecode.

After performing our initial experiments only on the test instances, we also ran experiments
on the Early, Middle and Late instances. We chose a promising looking configuration
without restarting for each of the solvers to run on the other instances, namely Chuffed and
Gurobi with input_order and smallest to choose the variable and indomain_median
to choose the value of the variable. Moreover, we tried Gecode with input_order and
indomain_median. Furthermore, we also tried Chuffed and Gurobi with first_fail and
indomain_min. In addition, we tested one configuration with restarting, namely Gecode
with dom_w_deg and indomain_random, with constant restarting and restarts after
10 000 fails. Overall we tested 8 configurations with Early, Middle and Late instances.

58

6.3. First Comparison of MiniZinc Configurations

Table 6.3: Fastest time to first solution on Test instances after running the experiments
for 24 hours. objfirst: the objective value of the first solution, gapfirst: relative deviation
to the best known solution of our first solution, config: the configuration that achieved
that solution, tfirst[s]: time to first solution.

Gecode Chuffed Gurobi
config objfirst gapfirst timefirst config objfirst gapfirst timefirst config objfirst gapfirst timefirst

TestInstanceDemo sm_min 0 0 1 sm_min 0 0 1 sm_split 20 1900 1
ITC2021Test1 rand_rand_geometric(1.5,1000) 1162 9 3 io_split 1103 3 2 ff_split 1137 7 10
ITC2021Test2 rand_rand_luby(100) 297 69 3 dwd_min 197 12 3 ff_rand 339 93 24
ITC2021Test3 dwd_min 1253 0 6 dwd_median 1253 0 4 dwd_median 1253 0 8
ITC2021Test4 sm_median 4535 0 6 io_median 4535 0 7 dwd_median 4535 0 11
ITC2021Test5 dwd_min 375 18650 6 io_median 230 11400 18 sm_median 259 12850 302
ITC2021Test6 - - - - io_median 4576 46 13623 - - - -
ITC2021Test7 - - - - - - - - - - - -
ITC2021Test8 - - - - - - - - - - - -

Gecode Chuffed Gurobi
0

10

20

30

40

50

60

70

80

53

73 72

31

11 12

Success rate of each solver

Gecode Chuffed Gurobi
0

20

40

60

80

100

72 73

96

40

11

16

Success rate of each solver

Figure 6.1: Experiments on test instances with the configurations of the experiment
shown in 6.2, only for instances Demo and 1-6; green bars show the number of runs
that found a solution with that solver, red bars show the amount that did not. Left:
indomain_random is ignored as Chuffed does not support it, right: indomain_random
is included (for Gecode and Gurobi).

Unfortunately, Gurobi only found a solution for one of the 45 instances. Moreover, it also
resulted in a wrong solution in which nearly all of the games should have been played by
team 1 (against itself), indicating an issue with the CP/IP model conversion. Therefore,
we did not further consider Gurobi.

For all of the instances where one of the runs found a solution, we also ran experiments to
compare the restarting results with the experiments without restarting. We used various
restarting configurations, with dom_w_deg (since it remembers part of the search tree
for the restart) and random_order; for each configuration three runs were performed.
Usually, the goal of restarting is to find solutions to difficult instances; however, we
restricted ourselves to the instances where we found a solution without restarting in
order to reduce the number of runs we needed to perform and to compare the resulting
objective values with the non-restarting runs. Moreover, we wanted to try restarting on
the easier instances to test if they find a solution to these.

59

6. Computational Study

Table 6.4: Best results on Early, Middle and Late instances after running the experiments
for 24 hours. objbest: the objective value of the best solution, gapbest: relative deviation
to the best known solution of our best solution, config: the configuration that achieved
that solution. Entries with (∗) mean that no restarting configuration found a solution for
that instance.

Gecode Chuffed
objbest gapbest(%) config objbest gapbest(%) config

Early3 3626 265 dwd_rand_luby(10) - - -
Early12 - - - 1775 367 sm_median (∗)
Middle4 257 3571 dwd_rand_const(10 000) 225 3114 io_median
Middle6 - - - 2560 129 io_median (∗)
Middle7 - - - 8521 378 ff_min (∗)
Middle8 1726 1238 io_median (∗) 1218 844 ff_min (∗)
Middle13 - - - 8417 3240 ff_min (∗)
Middle15 7055 1355 dwd_rand_const(10 000) - - -
Late1 - - - 3167 64 ff_min (∗)
Late3 7317 209 dwd_rand_const(10 000) 6958 194 rand_min_geo(1.5,100)
Late4 - - - 0 0 io_median
Late8 3526 278 io_median - - -

Table 6.5: Fastest time to first solution on Early, Middle and Late instances after running
the experiments for 24 hours. objfirst: the objective value of the first solution, tfirst:
the time to find the first solution, gapfirst: gap to the best known solution of the first
solution, config: the configuration that achieved that solution.

Gecode Chuffed
objfirst gapfirst(%) tfirst[s] config objfirst gapfirst(%) tfirst[s] config

Early3 6082 513 92 dwd_rand_const(10 000) - - - -
Early12 - - - - 1915 404 400 io_median
Middle4 311 4343 79 dwd_rand_const(10 000) 316 4414 24 ff_min
Middle6 - - - - 2685 140 16159 io_median
Middle7 - - - - 11328 535 4018 io_median
Middle8 1765 1268 111 io_median 1349 946 306 ff_min
Middle13 - - - - 12953 5040 1333 io_median
Middle15 9321 1822 62 dwd_rand_luby(10) - - - -
Late1 - - - - 3735 94 3128 ff_min
Late3 8803 272 952 dwd_rand_linear(1000) 10674 351 1711 ff_min
Late4 - - - - 285 - 128 io_median
Late8 4785 412 82 dwd_rand_const(10 000) - - - -

The best solutions found after 24 hours are shown in 6.4 (the instances where no restarting
run found a solution are marked with (∗)). The runs with the fastest time to first solution
are shown in 6.5. The results show that Chuffed is able to find solutions for more instances
than Gecode. Moreover, restarting is not to favor for Chuffed as it does not have an out
of the box randomization whereas for Gecode those runs find the best solutions of the
Gecode runs.

60

6.4. Comparison between Versions

Table 6.6: Best solutions after running the experiments for 24 hours with the newer
MiniZinc version 2.6.1. If the best known solution is 0 (and we do not find such a
solution), we calculate the gap by setting the best known solution to 1.

instance configuration objbest % tbest [s] restart
Early3 Gecode-dom-w-deg-indomain-random-restart-linear(1000) 2673 169 71509 X
Early8 Gecode-dom-w-deg-indomain-random-restart-geometric(1.5,100) 3455 229 79425 X
Early9 or-tools-input-order-indomain-median 2763 4833 37866 X
Early12 Chuffed 1680 425 19184 X
Early14 or-tools-input-order-indomain-median 4250 106150 84626 X
Early15 Chuffed-first-fail-indomain-min 6572 115 79378 X
Middle4 Chuffed-input-order-indomain-median 225 3114 74140 X
Middle5 Gecode-dom-w-deg-indomain-random-restart-geometric(1.5,100) 2490 744 44369 X
Middle6 Chuffed-input-order-indomain-median 2560 129 60736 X
Middle7 Chuffed-first-fail-indomain-min 7985 348 65446 X
Middle8 or-tools-first-fail-indomain-median 1203 833 85135 X
Middle9 or-tools-input-order-indomain-min 3105 606 74346 X
Middle12 Gecode-input-order-indomain-median 3229 439 12436 X
Middle13 Chuffed-first-fail-indomain-median 7084 2711 15766 X
Middle15 Gecode-dom-w-deg-indomain-random-restart-luby(10) 6774 1297 74250 X
Late1 Chuffed-first-fail-indomain-median 3062 59 23155 X
Late3 Chuffed-random-order-indomain-min-restart-geometric(1.5,100) 6859 190 65569 X
Late4 Chuffed-input-order-indomain-median 0 0 157 X
Late8 or-tools-input-order-indomain-min 3101 232 17773 X
Late9 or-tools-input-order-indomain-median 2824 436 68709 X
Late13 Chuffed-first-fail-indomain-median 10900 499 81137 X
Late14 or-tools-first-fail-indomain-min 3520 193 83388 X
Late15 or-tools-input-order-indomain-median 3845 3745 83799 X

Table 6.7: Fastest time to first solution for the same experiments as used in Table 6.6. If
the best known solution is 0 (and we do not find such a solution), we calculate the gap
by setting the best known solution to 1.

instance configuration objfirst % tfirst [s] restart
Early3 Gecode-dom-w-deg-indomain-random-restart-linear(1000) 6119 517 19 X
Early8 Gecode-random-indomain-random-restart-luby(1000) 7616 625 17 X
Early9 Gecode-dom-w-deg-indomain-random-restart-luby(10) 8088 14342 16 X
Early12 Chuffed-input-order-indomain-min 1805 464 274 X
Early14 Gecode-dom-w-deg-indomain-random-restart-constant(10000) 10651 26617 23 X
Early15 Chuffed-first-fail-indomain-min 6583 115 48751 X
Middle4 Chuffed-first-fail-indomain-min 316 4414 16 X
Middle5 Gecode-dom-w-deg-indomain-random-restart-geometric(1.5,100) 7949 2595 20 X
Middle6 Chuffed-first-fail-indomain-min 3415 205 11649 X
Middle7 Chuffed-first-fail-indomain-min 8792 393 4027 X
Middle8 Gecode 1865 1346 13 X
Middle9 or-tools-first-fail-indomain-median 3590 716 25313 X
Middle12 Gecode-input-order-indomain-median 4060 578 48 X
Middle13 Chuffed-input-order-indomain-median 11995 4660 809 X
Middle15 Gecode-dom-w-deg-indomain-random-restart-geometric(1.5,100) 9824 1926 36 X
Late1 Chuffed-first-fail-indomain-min 3210 67 4356 X
Late3 Gecode-dom-w-deg-indomain-random-restart-luby(10) 7944 235 119 X
Late4 Chuffed-first-fail-indomain-min 984 884 71 X
Late8 Gecode-first-fail-indomain-min 4863 421 27 X
Late9 Gecode-input-order-indomain-median 3179 503 38 X
Late13 Chuffed-first-fail-indomain-median 11632 539 47655 X
Late14 or-tools-input-order-indomain-median 3789 215 3228 X
Late15 Gecode-dom-w-deg-indomain-random-restart-luby(10) 13735 13635 16 X

6.4 Comparison between Versions

From that section on, all experiments are performed on MiniZinc version 2.6.1.

To compare the versions, we redid the previous experiments. We also added or-tools as a
possible solver. Again, we only started experiments with restarts on instances where we
found solutions without restarts. As we can see in Table 6.6 and Table 6.7, the restart

61

6. Computational Study

0 20000 40000 60000 80000
Seconds

1100

1200

1300

1400

1500

1600

1700

Di
ffe

re
nc

e
to

 b
es

t k
no

wn
 so

lu
tio

n

ITC2021_Middle_8
Gecode_input_order_indomain_median
Gecode_first_fail_indomain_min
Chuffed_first_fail_indomain_min
Gecode_input_order_indomain_min
Gecode
or-tools_input_order_indomain_min
or-tools_first_fail_indomain_median
or-tools_input_order_indomain_median
Chuffed_first_fail_indomain_median
Chuffed
Chuffed_input_order_indomain_min
Chuffed_input_order_indomain_median
or-tools_first_fail_indomain_min

20000 40000 60000 80000
Seconds

1200

1300

1400

1500

1600

1700

Di
ffe

re
nc

e
to

 b
es

t k
no

wn
 so

lu
tio

n

ITC2021_Late_1
Chuffed_input_order_indomain_median
Chuffed_first_fail_indomain_min
Chuffed_first_fail_indomain_median

Figure 6.2: Left: Minizinc runs that found solutions and their improvements over time
for Middle 8. Right: The same for Late 1.

runs often lead to the best solution; however, there are also a lot of instances where
non-restart runs find a solution and restart runs do not, which can be seen in the last
column of the tables, which indicate if the given instance was solved by a restart run.
For the runs where we do not find a solution with restart runs, a reason for this might
be that the restarting is performed prematurely. In general, Gecode is often the fastest
to find a solution; however, Chuffed finds solutions to instances that or-tools and Gecode
cannot find, which makes it preferable in our understanding.

In Figure 6.2 (left) we can see an anytime plot of the runs for Middle 8 for which all
solvers found a solution. The y-axis shows the difference to the best known solutions; the
x-axis shows the time. When no further definition apart from the solver is given for the
configuration, it means that we omitted to define a variable and value choice manually.
On the other hand, in Figure 6.2 (right), we can see the runs for Late 1 for which only
Chuffed found solutions.

6.5 Globals vs Non-globals

In this section, we describe the global constraints and compare our results of experiments
that used global constraints and those which did not. The global constraints of MiniZinc
are high-level abstractions for which the different solvers offer efficient implementations
[41, 4.2.2].

We experimented with the constraints all_different(array : x) and global_cardinality
(array : x, array : cover, array : count). The first one guarantees that all elements of the
given array x are different. For the second one x is the array in which we want to count
elements, cover is the array with the elements that should be found in x and count is the
array for the number of times an element of cover should be in x. For example, cover[i]
should appear count[i] times in x.

62

6.5. Globals vs Non-globals

In order to use these functions one needs to include them in the model file. Then we
could use them for the core constraints of the model. The altered model with the adapted
core constraints with respect to the original version (see Listing 5.2) can be seen in
Listing 6.2. The constraint that ensures that teams do not play against themselves as
well as the opponent and the venue connection constraints are left as they were. The
constraint that each team plays against each other team twice, once at home and once on
the road, is changed such that all games of each team need to be different (alldifferent).
To distinguish home games from away games, we multiply the opponent by the venue (-1
or 1).

The last constraint that every team needs to play exactly twice against all other teams
or, for phased instances, every team needs to play exactly once against all other teams in
each SRR phase of the tournament, is implemented using global_cardinality. In Listing
6.2, we see a phased tournament, therefore, we have two global_cardinality constraints,
one for each phase. For x we build an array with all the opponents of a team i in the
rounds 1 to the R/2 and from R/2 to R; for cover we take all teams except i and finally
count is an array consisting of 1s with the same length as cover.

Listing 6.2: Altered core constraints of the model using global constraints
% team does not play aga in s t i t s e l f
c o n s t r a i n t

f o r a l l (i in TEAMS, r in SLOTS) (
opponents_per_team_and_round [i , r] != i

) ;

% a l l games (opponent+venue) per team must be unique
c o n s t r a i n t

f o r a l l (i in TEAMS) (
a l l _ d i f f e r e n t (

[venue_per_team_and_round [i , r] ∗
opponents_per_team_and_round [i , r] | r in SLOTS]

)
) ;

% opponent connect ion c o n s t r a i n t
c o n s t r a i n t

f o r a l l (i in TEAMS, r in SLOTS) (
opponents_per_team_and_round [opponents_per_team_and_round [i , r] , r]

== i
) ;

% venue connect ion c o n s t r a i n t
c o n s t r a i n t

f o r a l l (i in TEAMS, r in SLOTS) (
venue_per_team_and_round [opponents_per_team_and_round [i , r] , r] ==

−venue_per_team_and_round [i , r]
) ;

% every team must play exac t l y once aga in s t every other team in
% each phase (SRR) o f the schedu le

63

6. Computational Study

c o n s t r a i n t
f o r a l l (i in TEAMS) (

g l o b a l _ c a r d i n a l i t y (
[opponents_per_team_and_round [i , r] | r in SLOTS1] ,
[j | j in TEAMS where j != i] ,
[1 | j in TEAMS where j != i]

) /\
g l o b a l _ c a r d i n a l i t y (

[opponents_per_team_and_round [i , r] | r in SLOTS2] ,
[j | j in TEAMS where j != i] ,
[1 | j in TEAMS where j != i])) ;

We tested these constraints with Gecode, Chuffed and or-tools with first_fail and
input_order as the variable choice heuristics and indomain_min and indomain_median
as the value choice heuristics on the Early instances for 24 hours and compared them to
the approach when not using global constraints. In these experiments we ignored the
soft constraints by leaving them out of the model since we wanted to focus on finding a
feasible solution. Thereby, we converted the instances to ITC2021-NSC instances.

In Table 6.8, we can see a comparison of the runtimes of the different configurations.
The columns equal the different Early instances from 1 to 15, the rows show the different
configurations (G - globals, NG - non globals, io - input order, ff - first fail). When the
process did not find a solution for an instance it is shown with a dash in the table. As
we can see, there is no clear trend observable which of the two options performs better.
Sometimes a global run is faster while other times a non global run is faster.

We also summed up the runtimes to compare them (see Table 6.9) and ranked the
configurations according to the sum. The runtime of unsolved instances is set to 86400
to penalize configurations that solved fewer instances than other configurations but in a
faster time. In the last column, we can see a ranking of the configurations based on the
sum of the runtimes.

In Table 6.10, we ranked the configurations for each instance separately. To penalize the
last place (which is taken by configurations that do not find a solution), ties are assigned
the highest rank, so the configurations that have not found a solution are assigned rank
24. Otherwise, we would have the ranks 1, 2 and 3, where 3 would be the ranking of all
configurations that did not find a solution. In the two rightmost columns we can see the
sum of the assigned ranks for each configuration and a ranking based on that sum.

In both cases Chuffed without globals with first_fail and indomain_min is the
best configuration, as it solved seven configurations. The same configuration with
indomain_median is second regarding time and fourth regarding the rankings. Sec-
ond place regarding the rankings takes Chuffed without globals with input_order and
indomain_median. Chuffed with globals, first_fail and indomain_median was fourth
best regarding the runtime and third regarding the ranking. The worst four rankings are
taken by Gecode using input_order as the variable choice heuristics, regardless of using
globals or not and indomain_min or indomain_median.

64

6.5. Globals vs Non-globals

Table 6.8: Comparison of the runtimes of different configurations on the Early instances.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gecode G-ff-median - - - - - - - 0.1 0.1 - - - - 0.2 -
Gecode G-ff-min - - 0.1 - - - - 0.1 0.1 - - - - 0.2 -
Gecode G-io-median - - - - - - - - 0.1 - - - - - -
Gecode G-io-min - - 121.0 - - - - 59.7 - - - - - - -
Gecode NG-ff-median - - - - - - - 0.2 0.2 - - - - 0.3 -
Gecode NG-ff-min - - 0.1 - - - - 0.2 - - - - - 0.5 -
Gecode NG-io-median - - - - - - - - 0.2 - - - - - -
Gecode NG-io-min - - 166.0 - - - - 57.3 - - - - - - -
Chuffed G-ff-median - - 0.2 - - - - 0.2 0.9 - - 530.3 - 1.5 786.1
Chuffed G-ff-min - - 0.2 - - 46257.3 - 0.1 0.3 - - - - 0.3 -
Chuffed G-io-median - - 0.3 - - - - 0.1 0.1 - - 129.9 - 0.5 -
Chuffed G-io-min - - 0.3 - - - - 2.2 0.4 - - 121.7 - - -
Chuffed NG-ff-median - - 0.6 - - - - 0.6 1.3 - - 638.7 - 2.7 266.0
Chuffed NG-ff-min - - 0.2 - - 19011.9 - 0.1 0.2 - - 47414.1 - 0.9 221.5
Chuffed NG-io-median - - 0.3 - - - - 0.1 0.1 - - 212.3 - 2.6 724.4
Chuffed NG-io-min - - 0.2 - - - - 5.6 1.1 - - 106.9 - - -
or G-ff-median - - 57.1 - - - - 141.4 135.5 - - - - 282.8 -
or G-ff-min - - 46.1 - - - - 128.6 226.4 - - - - 419.8 -
or G-io-median - - 79.0 - - - - 96.7 103.0 - - 22340.1 - 232.4 -
or G-io-min - - 44.3 - - - - 95.8 142.8 - - 9171.5 - 179.6 -
or NG-ff-median - - 64.9 - - - - 126.5 - - - - - 356.5 -
or NG-ff-min - - 29.9 - - - - 109.1 140.0 - - - - 2443.6 -
or NG-io-median - - 104.5 - - - - 103.4 97.1 - - 26912.2 - 277.2 -
or NG-io-min - - 70.1 - - - - 98.9 382.9 - - 13971.5 - 115.6 -

Our conclusion of that experiment is that Chuffed looks most promising as it has the
best performance with and without globals. More details on these runs can be found in
the Appendix (Table A.1 to A.12).

The break constraints seemed to be the constraints that made it the hardest to solve
the problem instances. Since Chuffed with first_fail looked the most promising in
the previous experiments, we tested with Chuffed ignoring the break constraints and
using globals as well as non-globals. The results can be seen in Table A.13 and A.14. By
ignoring the break constraints we were able to solve twelve of 15 instances regarding the
remaining constraints. Surprisingly, the configuration that did not use global constraints
and used indomain_min was most successful, solving twelve instances. The configuration
with indomain_median solved only ten instances, the same amount was also solved for
the same configurations but using global constraints. Therefore, the non-globals approach
looked more promising to us.

Regardless of which value choice was the best, the best variable choice was clearly
first_fail. However, to alter the results we needed some sort of randomness to the pro-
cess. Unfortunately, Chuffed does not provide a default option to use indomain_random
for choosing a value to assign to a variable. Therefore, we implemented our own random-
ness for value choice for Chuffed as already described in Section 6.1.3. The experiments
with our own randomization implementation for Chuffed are described in the next section,
Section 6.6.

65

6. Computational Study

Table 6.9: Comparison of the runtimes of different configurations on the Early instances
where the unsolved runs are shown with the maximum time. On the right, the times are
summed up and their ranking according to that runtime sum is shown.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Sum Rank

GecodeG-ff-median 86400 86400 86400 86400 86400 86400 86400 0.1 0.1 86400 86400 86400 86400 0.2 86400 1036800.4 17
GecodeG-ff-min 86400 86400 0.1 86400 86400 86400 86400 0.1 0.1 86400 86400 86400 86400 0.2 86400 950400.5 11
GecodeG-io-median 86400 86400 86400 86400 86400 86400 86400 86400 0.1 86400 86400 86400 86400 86400 86400 1209600.1 23
GecodeG-io-min 86400 86400 121.0 86400 86400 86400 86400 59.7 86400 86400 86400 86400 86400 86400 86400 1123380.7 21
GecodeNG-ff-median 86400 86400 86400 86400 86400 86400 86400 0.2 0.2 86400 86400 86400 86400 0.3 86400 1036800.7 18
GecodeNG-ff-min 86400 86400 0.1 86400 86400 86400 86400 0.2 86400 86400 86400 86400 86400 0.5 86400 1036800.8 19
GecodeNG-io-median 86400 86400 86400 86400 86400 86400 86400 86400 0.2 86400 86400 86400 86400 86400 86400 1209600.2 24
GecodeNG-io-min 86400 86400 166.0 86400 86400 86400 86400 57.3 86400 86400 86400 86400 86400 86400 86400 1123423.3 22
ChuffedG-ff-median 86400 86400 0.2 86400 86400 86400 86400 0.2 0.9 86400 86400 530.3 86400 1.5 786.1 778919.2 4
ChuffedG-ff-min 86400 86400 0.2 86400 86400 46257.3 86400 0.1 0.3 86400 86400 86400 86400 0.3 86400 910258.2 10
ChuffedG-io-median 86400 86400 0.3 86400 86400 86400 86400 0.1 0.1 86400 86400 129.9 86400 0.5 86400 864130.9 5
ChuffedG-io-min 86400 86400 0.3 86400 86400 86400 86400 2.2 0.4 86400 86400 121.7 86400 86400 86400 950524.6 13
ChuffedNG-ff-median 86400 86400 0.6 86400 86400 86400 86400 0.6 1.3 86400 86400 638.7 86400 2.7 266.0 778509.9 2
ChuffedNG-ff-min 86400 86400 0.2 86400 86400 19011.9 86400 0.1 0.2 86400 86400 47414.1 86400 0.9 221.5 757848.9 1
ChuffedNG-io-median 86400 86400 0.3 86400 86400 86400 86400 0.1 0.1 86400 86400 212.3 86400 2.6 724.4 778539.8 3
ChuffedNG-io-min 86400 86400 0.2 86400 86400 86400 86400 5.6 1.1 86400 86400 106.9 86400 86400 86400 950513.8 12
orG-ff-median 86400 86400 57.1 86400 86400 86400 86400 141.4 135.5 86400 86400 86400 86400 282.8 86400 951016.8 14
orG-ff-min 86400 86400 46.1 86400 86400 86400 86400 128.6 226.4 86400 86400 86400 86400 419.8 86400 951220.9 15
orG-io-median 86400 86400 79.0 86400 86400 86400 86400 96.7 103.0 86400 86400 22340.1 86400 232.4 86400 886851.2 8
orG-io-min 86400 86400 44.3 86400 86400 86400 86400 95.8 142.8 86400 86400 9171.5 86400 179.6 86400 873634.0 6
orNG-ff-median 86400 86400 64.9 86400 86400 86400 86400 126.5 86400 86400 86400 86400 86400 356.5 86400 1037347.9 20
orNG-ff-min 86400 86400 29.9 86400 86400 86400 86400 109.1 140.0 86400 86400 86400 86400 2443.6 86400 953122.6 16
orNG-io-median 86400 86400 104.5 86400 86400 86400 86400 103.4 97.1 86400 86400 26912.2 86400 277.2 86400 891494.4 9
orNG-io-min 86400 86400 70.1 86400 86400 86400 86400 98.9 382.9 86400 86400 13971.5 86400 115.6 86400 878639.0 7

Table 6.10: Ranking of the runtimes of the different configurations on the Early instances.
Ties are assigned the maximum rank. On the right, the sum of the ranks is shown and a
rank for each configuration based on that sum.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Sum Rank

GecodeG-ff-median 24 24 24 24 24 24 24 6 5 24 24 24 24 2 24 301 10
GecodeG-ff-min 24 24 2 24 24 24 24 6 5 24 24 24 24 2 24 279 7
GecodeG-io-median 24 24 24 24 24 24 24 24 5 24 24 24 24 24 24 341 21
GecodeG-io-min 24 24 19 24 24 24 24 14 24 24 24 24 24 24 24 345 23
GecodeNG-ff-median 24 24 24 24 24 24 24 9 8 24 24 24 24 4 24 309 13
GecodeNG-ff-min 24 24 2 24 24 24 24 9 24 24 24 24 24 6 24 305 12
GecodeNG-io-median 24 24 24 24 24 24 24 24 8 24 24 24 24 24 24 344 22
GecodeNG-io-min 24 24 20 24 24 24 24 13 24 24 24 24 24 24 24 345 23
ChuffedG-ff-median 24 24 6 24 24 24 24 9 11 24 24 5 24 8 4 259 3
ChuffedG-ff-min 24 24 6 24 24 2 24 6 9 24 24 24 24 4 24 267 4
ChuffedG-io-median 24 24 9 24 24 24 24 6 5 24 24 3 24 6 24 269 6
ChuffedG-io-min 24 24 9 24 24 24 24 11 10 24 24 2 24 24 24 296 9
ChuffedNG-ff-median 24 24 10 24 24 24 24 10 13 24 24 6 24 10 2 267 4
ChuffedNG-ff-min 24 24 6 24 24 1 24 6 8 24 24 11 24 7 1 232 1
ChuffedNG-io-median 24 24 9 24 24 24 24 6 5 24 24 4 24 9 3 252 2
ChuffedNG-io-min 24 24 6 24 24 24 24 12 12 24 24 1 24 24 24 295 8
orG-ff-median 24 24 14 24 24 24 24 22 16 24 24 24 24 15 24 331 18
orG-ff-min 24 24 13 24 24 24 24 21 19 24 24 24 24 17 24 334 19
orG-io-median 24 24 17 24 24 24 24 16 15 24 24 9 24 13 24 310 14
orG-io-min 24 24 12 24 24 24 24 15 18 24 24 7 24 12 24 304 11
orNG-ff-median 24 24 15 24 24 24 24 20 24 24 24 24 24 16 24 339 20
orNG-ff-min 24 24 11 24 24 24 24 19 17 24 24 24 24 18 24 329 17
orNG-io-median 24 24 18 24 24 24 24 18 14 24 24 10 24 14 24 314 16
orNG-io-min 24 24 16 24 24 24 24 17 20 24 24 8 24 11 24 312 15

6.6 Randomized Restart Experiments for Chuffed

To test our random value choice functionality for Chuffed, we tested it with first_fail,
input_order and random_order only using a runtime of two hours here to avoid the
long runs of the heavy-tailed distribution. We also left out the soft constraints again.
For each configuration we ran 60 test runs. In Table 6.11, we can see the results of that

66

6.7. Preliminary Experiments with TTSA

Table 6.11: 2h experiments for own randomization for Chuffed with no soft constraints.
Each of the three configurations was tested 60 times. For each variable choice heuristics
we show the minimum solve time, maximum solve time and the percentiles of the solve
time.

first-fail input-order random-order
min max 10 25 50 75 90 min max 10 25 50 75 90 min max 10 25 50 75 90

Early1 -
Early2 - - - - - - - 84.03 649.7 7200 7200 7200 7200 7200 - - - - - - -
Early3 0.06 0.62 0.09 0.11 0.14 0.17 0.24 0.05 5.66 0.1 0.13 0.17 0.28 0.64 0.08 3.24 0.34 0.57 1.12 1.62 2.07
Early4 -
Early5 -
Early6 880.25 6682.74 3998.86 7200 7200 7200 7200 - - - - - - - - - - - - - -
Early7 -
Early8 0.07 4794.49 0.09 0.11 0.2 1.17 9.63 0.09 184.02 0.1 0.11 0.23 5.27 31.21 0.08 0.37 0.1 0.11 0.14 0.16 0.21
Early9 0.1 10.28 0.11 0.14 0.26 0.42 1.32 0.1 19.43 0.12 0.16 0.3 0.94 6.32 0.1 1.08 0.15 0.21 0.31 0.49 0.61
Early10 -
Early11 -
Early12 80.13 6522.28 996.88 1971.29 7200 7200 7200 38.02 6528.67 75.34 288.17 3132.04 7200 7200 - - - - - - -
Early13 -
Early14 0.16 1426.6 0.28 0.36 0.56 1.84 17.45 0.34 3251.55 0.86 4.32 432.79 7200 7200 0.18 1.31 0.24 0.33 0.51 0.62 0.81
Early15 112.73 4075.37 222.47 356.19 530.14 991.31 2558.41 - - - - - - - - - - - - - -

experiment. It shows the minimum and maximum runtime for finding a feasible solution
as well as several percentiles of the runs. When a run does not find a solution, it is
counted as 7200 seconds for calculating the percentiles.

The variable choice first_fail finds the most feasible solutions after two hours and
looking at the percentile is also more consistent in finding solutions, which is why we
will use this configuration for further experiments although input_order is the only
configuration that finds a solution for Early 2, but only in two of the test runs, which is
why we choose first_fail. The variable choice random_order does not perform well in
such short experiments; randomizing both variable choice and value choice seems to be
too unguided.

6.7 Preliminary Experiments with TTSA

We implemented the classic Traveling Tournament Simulated Annealing (TTSA) approach
by Anagnostopoulos et al. [1] in Julia and reran experiments on the TTP NL instances2

as a sanity check since it serves as our basis for the ITC2021 SA variant with its different
objective function and constraints. The algorithm is local search based and uses the five
neighborhood structures (see Section 5.2.1) to perform a guided random walk through
the solution space of double round robin tournaments. During that, it permits constraint
violations and uses strategic oscillation to traverse infeasible regions of the search space.
Its highly parallelized variant by Van Hentenryck and Vergados [53] is responsible for
many best feasible solutions found so far over the benchmark instances. A version of
the following study of TTSA for the TTP has also been published in one of our related
works in the context of the comparison with a randomized beam search approach to the
TTP [15].

2https://mat.tepper.cmu.edu/TOURN/

67

https://mat.tepper.cmu.edu/TOURN/

6. Computational Study

Table 6.12: Parameters used for our TTSA(FC) experiments with a time limit of two
hours. The parameters for NL16 are taken from the fast cooling experiment of [1], the
parameters for the other instances were changed accordingly based on the parameters of
their full run experiments.

n T0 β w0 δ θ maxC maxP maxR γ

8 400 0.98 4000 1.04 1.04 2500 70 2000 2
10 400 0.98 6000 1.04 1.04 2500 70 2000 2
12 600 0.98 10000 1.03 1.03 2000 14 10000 1.6
14 600 0.98 20000 1.03 1.03 2000 70 6000 1.8
16 700 0.98 60000 1.05 1.05 5000 70 10000 2

After preliminary experiments, we made the following implementation detail choices,
which are not specified in the original paper: We add a penalty proportional to the
streak limit excess, to penalize longer streaks more strongly. For example, a stand of five
home games counts as two violations since it is two games longer than the maximum
length of U = 3. Moreover, violations of the no-repeat constraint are counted team-wise,
therefore, we count a no-repeat constraint violation twice. Anagnostopoulos et al. [1] use
five neighborhoods: Swap Homes, Swap Rounds, Swap Teams, Partial Swap Rounds and
Partial Swap Teams. In our implementation each of those neighborhoods is equally likely
to be chosen when generating the next neighbor. We managed to obtain a moderate
decrease in runtime using incremental evaluation for calculating changes of the objective
value for the more round-local moves, but found to achieve this rather difficult, likely
due to the rather small schedule size n× (2n− 2) and that we did not consider large n
for the TTP.

To generate an initial double round tournament (possibly with constraint violations), a
randomized backtracking algorithm is used in the original paper, which constructs the
schedule team-wise. It is observed that this does not scale well starting already from 16
teams with runtime outliers in the range of hours. As used in the ant colony optimization
approach by [46], we restart the construction in a Las Vegas algorithm fashion after a
backtracking limit is hit, which we set empirically to 30 000. This allows us to construct
random double round robin tournaments even up to 20 teams below one minute. A faster
method can be found in the Appendix (Figure A.1), where Gecode with restarting and
global constraints (Listing A.1) allows us to construct random feasible DRR and TTP
schedules within at most a couple of seconds for up to 40 teams.

There are nine parameters for the algorithm that can be set: T0 defines the initial
temperature for the SA, β declares the cooling rate, w0 is the initial weight with which
constraint violations are penalized, δ and θ define how the weight changes when a
new best feasible or a new best infeasible schedule is found. The number of iterations
until equilibrium is reached is specified by maxC, the number of phases by maxP ,
and the number of reheats by maxR. While γ was not explicitly defined in the paper,
we reasonably assumed it to be the reheating factor which is the factor by which the

68

6.8. First Hybridization with Simulated Annealing

Table 6.13: Results of 30 TTSA runs with fast-cooling and a time limit of two hours on
the NL instances.

instance min max avg std

NL8 39721 39721 39721.0 0.0
NL10 59583 60769 60113.9 346.0
NL12 114920 130829 120651.4 2916.0
NL14 195144 201506 198947.0 1363.9
NL16 279226 287312 284137.1 2209.1

temperature is multiplied when reheating.

We performed 30 TTSA runs using fast cooling, which is as also described by Anagnos-
topoulos et al. [1], to quickly generate good solutions by faster intensification of the search
and more reheats. The used parameters are shown in Table 6.12, together with a fixed
time limit of two hours; the results are shown in Table 6.13. These results compare well
with [1], leading to the conclusion that we have derived a sound TTSA implementation
to be suitably modified further for the ITC2021 problem.

6.8 First Hybridization with Simulated Annealing

We subsequently tested our hybridization approach, combining CP and SA still follow-
ing TTSA’s algorithmic pattern, but with the corresponding objective functions and
constraints adapted for the ITC2021 instances instead of the ones for the TTP. As a
starting point, we took the parameter sets for the TTP instances with 16 teams [1], for
fast cooling (β = 0.98) and their long runs with slow cooling (β = 0.9999) respectively,
see Table 6.14. For the CP part we used Chuffed as the solver, first_fail as the variable
choice and indomain_min with our own randomization for Chuffed for the value choice
as it looked most promising during prior experiments and to bring randomness into the
procedure.

We tested the approach with four threads, which ran for 24 hours each. For the MiniZinc
runs all soft constraints are ignored to speed up the search for an initial solution as then
the solver does not need to calculate the objective value. Thereby, the instances used
become ITC2021-NSC instances. For each thread the first stage of the CP was given a
one-hour time limit, the second stage of CP, where we dropped the break constraints,
converting the instances to ITC2021-NSC-NBC instances, was given a 30-minute time
limit and for the last stage, which uses only the DRR constraints, the process was given
five minutes. Whenever a solution was found, the SA took over and used up the rest
of the time up to 24 hours. The probability of the neighborhoods to be chosen was
defined according to their number of possible moves, i.e., SwapHomes was less likely
than PartialSwapTeams as the latter has much more possible moves.

For the Late instances we passed on the classic TTSA and stuck with the fast cooling

69

6. Computational Study

Table 6.14: parameters of the different SA configurations that are tested in this section

config T β w δ θ maxC maxP maxC γ MV
TTSA-FC 700 0.98 60000 1.05 1.05 5000 70 10000 2 X
TTSA-FC-MV 700 0.98 60000 1.05 1.05 5000 70 10000 2 X
TTSA 700 0.9999 60000 1.05 1.05 10000 7100 50 2 X
TTSA-MV 700 0.9999 60000 1.05 1.05 10000 7100 50 2 X

Table 6.15: Hybridization experiments with four threads, avg shows the mean objective
value of that configuration,min shows the best objective value and % shows the percentage
gap of the best solution found with that configuration to the best known solution. FC
means fast cooling, MV means minimize violations; where the best known solution is 0
we calculated the gap using an objective value of 1.

TTSA-FC TTSA-FC-MV TTSA TTSA-MV known sol

avg CP sol min % avg CP sol min % avg CP sol min % avg CP sol min %

ITC2021Early1 - - - - - - - - - - - - - - - - 362
ITC2021Early2 - - - - - - - - - - - - - - - - 145
ITC2021Early3 1282.25 4590 1239 24.90 1410.00 4616 1272 28.23 2950.75 5609 2927 195.06 2930.75 5473 2713 173.49 992
ITC2021Early4 - - - - - - - - - - - - - - - - 507
ITC2021Early5 - - - - - - - - - - - - - - - - 3127
ITC2021Early6 - - - - 5700.00 5700 5700 71.43 - - - - - - - - 3325
ITC2021Early7 - - - - - - - - - - - - - - - - 4763
ITC2021Early8 3103.75 5285 3047 189.91 3537.33 5728 2902 176.12 5132.25 5593 5087 384.02 4903.00 4684 4684 345.67 1051
ITC2021Early9 554.00 3982 518 825.00 496.75 4078 443 691.07 2958.75 4588 2868 5021.43 3015.25 3988 2998 5253.57 56
ITC2021Early10 - - - - - - - - - - - - - - - - 3400
ITC2021Early11 - - - - - - - - - - - - - - - - 4426
ITC2021Early12 2120.00 2120 2120 573.02 - - - - 1911.00 1911 1911 506.67 1900.00 1900 1900 503.17 315
ITC2021Early13 - - - - - - - - - - - - - - - - 121
ITC2021Early14 144.50 5628 105 2525.00 130.50 5894 105 2525.00 3358.00 6142 3305 82525.00 3351.25 6381 3177 79325.00 4
ITC2021Early15 7007.75 6748 6748 128.36 6818.67 6577 6577 122.57 6917.00 6818 6818 130.73 6789.25 6543 6543 121.42 2955
ITC2021Middle1 - - - - - - - - - - - - - - - - 5177
ITC2021Middle2 - - - - - - - - - - - - - - - - 7381
ITC2021Middle3 - - - - - - - - - - - - - - - - 9542
ITC2021Middle4 332.50 295 295 4114.29 354.50 337 337 4714.29 364.00 353 353 4942.86 344.75 323 323 4514.29 7
ITC2021Middle5 834.25 5164 810 190.32 801.75 5621 775 177.78 2595.25 4704 2494 793.91 2642.75 5477 2524 804.66 279
ITC2021Middle6 3433.75 3110 3110 177.68 3407.50 3385 3385 202.23 3450.00 3315 3315 195.98 3426.25 3175 3175 183.48 1120
ITC2021Middle7 9179.75 8285 8285 364.67 9338.75 8157 8157 357.49 9005.25 8413 8413 371.85 9496.00 8519 8519 377.79 1783
ITC2021Middle8 549.00 1561 374 189.92 397.00 1473 388 200.78 1055.00 1515 1032 700.00 1049.75 1521 1039 705.43 129
ITC2021Middle9 3278.33 3125 3125 653.01 3401.25 3160 3160 661.45 3312.50 3135 3135 655.42 3360.00 3230 3230 678.31 415
ITC2021Middle10 - - - - - - - - - - - - - - - - 1250
ITC2021Middle11 - - - - - - - - - - - - - - - - 2446
ITC2021Middle12 1530.25 5140 1443 140.90 1499.50 5128 1431 138.90 3338.75 5154 3326 455.26 3365.00 4836 3286 448.58 599
ITC2021Middle13 8509.50 7532 7532 2888.89 8973.00 7802 7802 2996.03 8537.00 7442 7442 2853.17 9041.75 7993 7993 3071.83 252
ITC2021Middle14 - - - - - - - - - - - - - - - - 1140
ITC2021Middle15 1469.75 12164 1394 187.42 1417.75 12211 1338 175.88 6247.75 13557 6190 1176.29 6306.00 13234 6275 1193.81 485
ITC2021Late1 3424.50 3160 3160 64.41 3450.00 3263 3263 69.77 - - - - - - - - 1922
ITC2021Late2 - - - - - - - - - - - - - - - - 5400
ITC2021Late3 3420.00 10209 3249 37.15 3450.25 9099 3313 39.85 - - - - - - - - 2369
ITC2021Late4 1217.00 1086 1086 108500.00 1180.25 1004 1004 100300.00 - - - - - - - - 0
ITC2021Late5 - - - - - - - - - - - - - - - - 1923
ITC2021Late6 - - - - - - - - - - - - - - - - 923
ITC2021Late7 - - - - - - - - - - - - - - - - 1558
ITC2021Late8 1491.50 4514 1427 52.78 1482.75 4567 1420 52.03 - - - - - - - - 934
ITC2021Late9 1705.00 3243 1643 229.92 1593.00 3120 1149 130.72 - - - - - - - - 498
ITC2021Late10 - - - - - - - - - - - - - - - - 1945
ITC2021Late11 - - - - - - - - - - - - - - - - 202
ITC2021Late12 - - - - - - - - - - - - - - - - 3428
ITC2021Late13 11792.25 10540 10540 479.12 11634.00 10702 10702 488.02 - - - - - - - - 1820
ITC2021Late14 3855.50 3717 3717 216.61 3855.50 3753 3753 219.68 - - - - - - - - 1174
ITC2021Late15 128.75 6935 115 11400.00 120.00 7155 120 11900.00 - - - - - - - - 0

TTSA (TTSA-FC and TTSA-FC-MV) as it outperformed the former in the Early and
Middle instances.

The results of runs with four threads on the ITC2021 instances are shown in Table 6.15.
TTSA was able to improve some of the solutions found by MiniZinc. However, it did not
manage to find feasible solutions for the other instances that were not solved to feasibility
by CP, i.e., it could not handle infeasible initial solutions effectively.

70

6.9. Simulated Annealing Standalone

Table 6.16: Parameters for SA tuning

config T β w δ & θ maxC maxP maxC γ MV alt

ttsa-FC {700, 1200} {0.98, 0.999} {10, 50, 100} { 1.03, 1.05 } 5000 70 10000 2 {X, X} {X, X}

6.9 Simulated Annealing Standalone
Tuning the SA with its numerous parameters deserves more attention. Therefore, we tested
different configurations of the parameters on the Early instances. Each configuration was
tested three times; each test run lasted two hours. The configurations are the Cartesian
product of the parameters shown in Table 6.16, which results in 96 different configurations;
to the already known parameters, we added alt whether to use the alternative objective
function or not. Moreover, we also altered the SA process to monitor the acceptance rates
and reset temperature and weights when it drops to 0 for some time (described in detail
in Section 5.2). For the parameters of QLN , ITER and DIV we performed preliminary
tests on a few instances and set them to QLN = 5, ITER = 1000 and DIV = 4 for
further experiments, as these values looked the most promising.

For example, if we start with a weight of 10, then the weight is increased by lots of
infeasible solution improvements (for example up to 150) and afterwards the temperature
is so low that the acceptance rate drops to 0. Then we reset the temperature to its initial
value and set the weight to 37.5.

We also tried to only adapt the weight if the violations have been down to 0 for once,
but first tests showed that this is not beneficial. Furthermore, we tried to reheat the
temperature to the initial temperature instead of setting it to the bestTemperature times
γ. However, that did not work out in initial test runs either. The goal was to first find
configuration that brings most of the instances to feasibility from an initial infeasible
solution.

In Figure 6.3, we can see the distribution of the runs that found a feasible solution in
the two-hour time frame. The labels of the bars show the value of one of the variables
of the configuration. All of our tested parameters performed similarly, except for the
value β = 0.98, the fast cooling regime, which clearly outperformed β = 0.999—not too
surprisingly as the latter is designed for longer runs, and intensification is reached later.

In Table 6.17, we can see the sorted results of the configurations. The column #sols
shows how many solutions were found with that configuration. Each configuration was
used in 45 runs (3 runs per instance and configuration over 15 instances). When we look
at the temperature, it does not matter if we start with 700 or 1200. For β it is essential
to use a lower cooling factor. For the weight factor it appears to be beneficial to use a
factor on the higher end. For β and θ it does not make a difference if one uses 1.03 or
1.05. For MV and alt it appears to be slightly beneficial to use both with true as the
first five entries were all found with that configuration. In Table 6.18 we can see the best
results of our first SA experiments.

To test the ability of our SA to further improve the solutions when starting with a feasible

71

6. Computational Study

temp beta w delta mv alt
0

100

200

300

400

500

600

nu
m

be
r o

f s
uc

ce
sf

ul
 se

ar
ch

es

700

0.98

10

1.03
true true

1200

0.999

50

1.05
false false100

Parameters

Figure 6.3: Distribution of the successful runs regarding the parameters.

Table 6.17: Sorted configurations of the SA runs, shown are best and worst configurations
#sols is how many solutions were found, Fks is the average factor our solutions are worse
than the best known solution.

T β w δ, θ MV alt #sols Fks #insts

700.0 0.98 10.0 1.05 true true 18 22.31 7
1200.0 0.98 100.0 1.05 true true 18 24.48 6
700.0 0.98 50.0 1.03 true true 17 21.04 7
700.0 0.98 100.0 1.03 true true 17 25.14 6

1200.0 0.98 100.0 1.03 true true 17 28.47 6
700.0 0.98 100.0 1.03 false false 16 21.51 6

1200.0 0.98 100.0 1.03 false true 16 23.21 6
700.0 0.98 100.0 1.03 false true 16 23.82 6

1200.0 0.98 50.0 1.05 true true 16 27.83 6
700.0 0.98 100.0 1.03 true false 16 30.80 6
700.0 0.98 50.0 1.05 true true 16 31.52 6

1200.0 0.98 100.0 1.05 true false 16 37.41 6
...

...
...

...
...

...
...

...
...

700.0 0.999 100.0 1.03 true true 4 7.39 3
700.0 0.999 50.0 1.05 true true 4 8.42 2
700.0 0.999 100.0 1.05 true false 3 5.50 2

1200.0 0.999 50.0 1.05 true true 2 6.42 2
1200.0 0.999 50.0 1.03 true true 1 10.24 1

Table 6.18: Best objective values of each instance where the previous experiment found a
solution and the configuration it was found with.

config T β w δ, θ MV alt obj known solution

Early1 1200.0 0.98 100.0 1.03 false true 1195 362
Early2 1200.0 0.98 50.0 1.03 false false 548 145
Early3 1200.0 0.98 10.0 1.05 false true 1428 992
Early8 700.0 0.98 10.0 1.03 false false 2930 1051
Early9 1200.0 0.98 10.0 1.05 false true 608 56
Early13 700.0 0.98 10.0 1.03 false true 398 121
Early14 1200.0 0.98 100.0 1.03 false false 186 4

72

6.9. Simulated Annealing Standalone

Table 6.19: Sorted configurations of the SA feasible runs, shown are the best and worst
configuration, #improve is how many initial solutions were improved, Fis is the average
factor of how much the initial solution was improved.

T β w δ, θ MV alt #improve Fis #insts

1200 0.98 10 1.05 true true 12 0.30 4
700 0.98 10 1.03 true true 11 0.28 4
700 0.98 10 1.05 false true 11 0.29 4
700 0.98 10 1.03 false true 11 0.30 4
700 0.98 10 1.05 true true 10 0.27 4
700 0.98 10 1.05 true false 10 0.29 4
700 0.98 50 1.05 false false 10 0.31 4
1200 0.98 50 1.03 false false 9 0.29 4
1200 0.98 50 1.05 true false 9 0.29 4
700 0.98 50 1.03 false false 9 0.29 4
700 0.98 50 1.03 true false 9 0.36 4
1200 0.98 10 1.03 true false 9 0.36 4
...

...
...

...
...

...
...

...
...

1200 0.999 100 1.03 true false 1 0.93 1
700 0.98 50 1.03 true true 1 0.96 1
1200 0.999 100 1.05 true true 1 0.97 1
700 0.999 50 1.05 false true 1 0.97 1
700 0.999 50 1.03 false true 1 0.98 1
1200 0.98 50 1.03 false true 1 0.98 1
1200 0.98 100 1.05 false true 1 0.98 1
700 0.999 10 1.05 true false 1 0.98 1
1200 0.999 10 1.03 false false 1 0.98 1
700 0.999 10 1.03 true false 1 0.98 1

Table 6.20: Best objective values of each instance where the previous experiment found
an improved solution and the configuration it was found with.

config T β w δ, θ MV alt obj known solution

Early3 1200 0.98 50 1.03 false false 1336 992
Early8 1200 0.98 10 1.03 false false 2923 1051
Early9 1200 0.98 10 1.05 true false 598 56
Early14 1200 0.98 10 1.05 false false 183 4

solution we started it from feasible initial solutions and the same parameters as in the
above experiments. However, since we were not able to find initial solutions for all of
the Early instances, we only tested it for 10 of the 15 instances. Where possible, we
used a solution from a MiniZinc run since on those solutions there was no SA performed
yet; however, for those instances we already found a solution with SA but did not with
MiniZinc, we used the SA solution. We took the solution from a previous SA run for
Early 1, Early 2 and Early 13. For Early 3, Early 6, Early 8, Early 9, Early 12, Early 14
and Early 15 we used a solution from a MiniZinc run.

The results of this experiment can be seen in Table 6.19. The improvement factor Fis

describes how much the initial solution was improved on average (0.3 means a value of
100 was improved to 30 on average).

In Table 6.20 we can see the instances where the runs of this experiment found improved
solutions regarding their initial solution.

Since we were only able to improve 4 of the 10 instances, we decided to rerun the tests
but with higher weights. The results of these experiments can be seen in Table 6.21.

73

6. Computational Study

Table 6.21: Sorted configurations of the SA feasible runs with higher weights, shown are
the best and worst configurations, #improve is how many initial solutions were improved,
Fis is the average factor of how much the initial solution was improved.

T β w δ, θ MV alt #improve Fis #insts

700 0.999 10000 1.05 false false 14 0.88 5
700 0.98 100000 1.03 true true 13 0.37 5
700 0.98 10000 1.05 true false 13 0.37 5
700 0.98 10000 1.03 true false 13 0.40 5
1200 0.98 100000 1.03 false false 13 0.42 5
700 0.98 100000 1.05 true true 13 0.42 5
1200 0.98 100000 1.05 true false 13 0.43 5
700 0.999 100000 1.05 true false 13 0.83 5
700 0.999 10000 1.03 false true 13 0.84 5
700 0.999 10000 1.03 true false 13 0.85 5
700 0.999 10000 1.05 true false 13 0.87 5
...

...
...

...
...

...
...

...
...

700 0.999 1000 1.03 false true 2 0.95 2
1200 0.999 1000 1.05 true true 2 0.99 1
1200 0.999 1000 1.05 false true 2 0.99 1
700 0.999 1000 1.05 true false 2 0.99 1
700 0.999 1000 1.05 false true 2 1.00 2
1200 0.98 1000 1.05 true false 1 0.92 1
1200 0.999 1000 1.03 false false 1 0.94 1
700 0.999 1000 1.05 false false 1 0.97 1
1200 0.98 1000 1.03 true false 1 0.99 1

Table 6.22: Best objective values of each instance where the previous experiment with
higher weights found an improved solution and the configuration it was found with.

config T β w δ, θ MV alt obj known solution

Early2 700 0.98 100000 1.05 true true 439.00 145
Early3 1200 0.98 100000 1.03 false true 1352.00 992
Early8 1200 0.98 10000 1.05 true false 2929.00 1051
Early9 700 0.98 1000 1.05 false false 688.00 56
Early14 700 0.98 1000 1.03 false true 202.00 4

Here we can see that more configurations found improvements than in the previous run
in Table 6.19. In Table 6.22, we can see the instances where we found improvements with
the higher weights. In contrast to Table 6.20 we found an improved solution for Early 2.

6.10 Second Hybridization with Simulated Annealing

For this approach we chose 16 configurations of SA from the previous Section 6.9 and let
the hybridization algorithm randomly choose one of those configurations. We chose the
top 5 configurations from Table 6.17, the top 4 from Table 6.19 and the top 7 from Table
6.21, in order to get to feasibility and improve feasible solutions. In this experiment we
tested the algorithm with 16 threads for 24 hours. The results can be seen in Table 6.23.

The first column shows the average objective value over all threads that found a solution
to that instance and column neigh shows the number of examined neighbors. Column

74

6.10. Second Hybridization with Simulated Annealing

Table 6.23: Hybridization with 16 threads and the best configurations from the SA tuning.
avg: the average objective value over all threads that found a solution, neigh: the number
of neighbors examined by the SA, config: the configuration that found the best solution,
status: how that solution was found, best: the objective value of the best solution, t[s]:
time to best solution, Fks: factor of our best solution to the best known solution, F to
[39] and [51]: factor of our best solution to the solutions of [39] and [51].

avg neigh config status best tbest [s] Fks F to [39] F to [51]

Early1 1459.14 119824555.38 700_0.98_10_1.05_false_true SA 1098 70292 3.03 2.60 1.77
Early2 599.00 38233262.62 700_0.98_100000_1.05_true_true SA 599 63146 4.13 1.88 1.62
Early3 3519.62 30476488.06 700_0.98_10_1.03_false_true impr 1302 85654 1.31 1.22 1.07
Early4 - 69688455.00 - - - - - - -
Early5 - 15570032.81 - - - - - - -
Early6 5605.00 21810504.56 - CP 5432 2630 1.63 1.38 1.16
Early7 - 17032941.00 - - - - - - -
Early8 4617.75 24092877.12 700_0.98_10_1.05_true_true impr 2837 55269 2.70 2.70 1.79
Early9 1957.50 44385678.56 700_0.98_10000_1.05_true_false impr 453 52447 8.09 3.43 2.20
Early10 - 14885097.69 - - - - - - -
Early11 - 16374088.38 - - - - - - -
Early12 2081.67 60414727.50 - CP 2020 3468 6.41 2.00 1.79
Early13 773.67 36798657.62 1200_0.98_100000_1.03_false_false SA 483 11287 3.99 2.79 1.30
Early14 1608.81 75274727.75 1200_0.98_10_1.05_true_true impr 105 48447 26.25 1.67 4.38
Early15 6893.20 21883620.88 - CP 6534 357 2.21 1.84 1.37

config shows the configuration that was used for SA for the best run. The column status
tells us how the solution was found: SA means we found a feasible solution only in the
SA phase, impr means we found a feasible solution with CP and improved it with SA,
CP means we found a solution with CP and did not further improve it with SA. We
can find all three cases in the table, which shows that the hybridization is preferable to
using only one component. Column best shows the best found solution, t [s] shows the
time in seconds when the best solution was found, Fks shows the ratio to the best known
solution (e.g., 1.0 corresponds to the same quality, 2.0 would mean our approach returns
an objective value twice as bad), F to [39] shows the ratio to the best found solution
by Rosati et al. who used a SA-only approach and F to [51] shows the ratio to the best
found solution by van Doornmalen et al. who used a hybrid approach combining mixed
integer programming and local search in a fix-and-optimize fashion.

As we can see, we are not able to compete with the best known solutions and the paper
of Rosati et al. [39]; however, we came closer to the results of van Doornmalen et al. [51].
On the other hand, they managed to find solutions to instances Early 7 and Early 11,
where we did not find solutions.

Exemplarily, we show the improvements over the iterations of Early 3 and Early 13 in
Figure 6.4. For Early 3, we can see that all of the 16 threads found a solution but only
eight of them were improved by SA. For Early 13, we can see that CP did not find a
feasible solution and SA found six of them.

In previous experiments, to choose a move for the SA we used a probability based on the
number of possible moves in that neighborhood. Therefore, SwapHomes was chosen far
less than, for example, PartialSwapRounds since the prior has far less possible moves.

75

6. Computational Study

0.0 0.5 1.0 1.5 2.0 2.5 3.0
iterations 1e7

2000

3000

4000

5000

6000

o
b
je
ct
iv
e

1200_0.98_100_1.05_true_true

1200_0.98_100000_1.05_true_false

700_0.98_100_1.03_true_true

700_0.98_10_1.03_false_true

700_0.98_10_1.03_false_true

700_0.98_10_1.05_false_true

700_0.98_10_1.03_false_true

1200_0.98_10_1.05_true_true

700_0.98_10_1.05_false_true

1200_0.98_100_1.05_true_true

700_0.98_10000_1.05_true_false

700_0.98_10000_1.05_true_false

700_0.98_100_1.03_true_true

700_0.98_100000_1.05_true_true

1200_0.98_100_1.03_true_true

700_0.98_10_1.03_false_true

0.5 1.0 1.5 2.0 2.5 3.0
iterations 1e6

600

800

1000

1200

1400

1600

o
b
je
ct
iv
e

700_0.98_10000_1.05_true_false

1200_0.98_100000_1.03_false_false

1200_0.98_100000_1.03_false_false

700_0.98_100000_1.05_true_true

700_0.98_10000_1.03_true_false

1200_0.98_100000_1.05_true_false

Figure 6.4: Objective values over the iterations of the second hybridization. Left: Early
3, right: Early 13.

0.0 0.5 1.0 1.5 2.0 2.5
iterations 1e7

2000

3000

4000

5000

6000

o
b
je
ct
iv
e

700_0.98_10000_1.05_true_false

700_0.98_10_1.03_true_true

1200_0.98_100_1.05_true_true

700_0.98_10_1.05_false_true

700_0.98_10000_1.03_true_false

700_0.98_10_1.05_true_true

700_0.98_100000_1.03_true_true

1200_0.98_100_1.03_true_true

1200_0.98_100000_1.03_false_false

700_0.98_100000_1.05_true_true

1200_0.98_100000_1.05_true_false

1200_0.98_100_1.05_true_true

700_0.98_100000_1.05_true_true

1200_0.98_100_1.03_true_true

1200_0.98_100_1.03_true_true

700_0.98_100000_1.05_true_true

0.5 1.0 1.5 2.0 2.5 3.0
iterations 1e6

700

800

900

1000

1100

1200

1300

1400

1500

o
b
je
ct
iv
e

1200_0.98_100000_1.03_false_false

700_0.98_100000_1.05_true_true

1200_0.98_100000_1.03_false_false

700_0.98_100000_1.05_true_true

1200_0.98_100000_1.03_false_false

700_0.98_100000_1.05_true_true

700_0.98_100000_1.03_true_true

Figure 6.5: Objective values over the iterations of the hybridization with equal neighbor-
hood probability. Left: Early 3, right: Early 13.

For our next experiment we changed the probability of the neighborhoods to be equal,
so each of the five neighborhoods is equally likely to be chosen. As the experiments for
Early had better average objective values and the SA found more improvements, we
continued with experiments for Middle and Late with the same configuration for the
neighborhood choice as well.

In Table 6.24, we can see the best results of those experiments. The same columns are
used as in Table 6.23, except that for Middle and Late instances there is no comparison to
the paper of van Doornmalen et al. [51] as they only included results for Early instances in
their paper. Unfortunately, we can again see that we cannot compete with the best known
solutions, and also still do not find a solution to Early 7 and 11 where van Doornmalen
et al. [51] did find a solution.

Moreover, we can see that for 13 instances we only found a solution in the CP phase and
did not improve these solutions in the SA phase. Looking further into this problem, we
see that the acceptance rate of the SA process is high enough; it starts around 0.9 and

76

6.10. Second Hybridization with Simulated Annealing

Table 6.24: Hybridization with 16 threads and the best configurations from the SA tuning
with equal neighborhood probabilities. avg: the average objective value over all threads
that found a solution, neigh: the number of neighbors examined by the SA, config: the
configuration that found the best solution, status: how that solution was found, best:
the objective value of the best solution, t[s]: time to best solution, Fks: factor of our best
solution to the best known solution, F to [39] and [51]: factor of our best solution to the
solutions of [39] and [51].

avg neigh config status best tbest [s] Fks F to [39] F to [51]

Early1 1419.33 57457972.31 700_0.98_10000_1.03_true_false SA 1129 76691 3.12 2.67 1.82
Early2 644.67 36407895.38 700_0.98_10000_1.03_true_false SA 592 17296 4.08 1.86 1.60
Early3 3140.25 30636369.56 1200_0.98_100000_1.03_false_false impr 1351 43873 1.36 1.26 1.11
Early4 - 66683884.69 - - - - - - -
Early5 - 14735000.69 - - - - - - -
Early6 5634.00 16436580.31 - CP 5634 1877 1.69 1.43 1.20
Early7 - 15929553.12 - - - - - - -
Early8 4133.44 38785941.69 700_0.98_10000_1.05_true_false impr 2674 80195 2.54 2.54 1.68
Early9 2268.75 32531785.44 700_0.98_10000_1.03_true_false impr 652 48128 11.64 4.94 3.17
Early10 - 14624669.25 - - - - - - -
Early11 - 13705015.94 - - - - - - -
Early12 2032.50 51054620.44 - CP 2000 768 6.35 1.98 1.77
Early13 919.00 30044495.81 700_0.98_100000_1.05_true_true SA 670 10226 5.54 3.87 1.80
Early14 1577.19 52448378.38 700_0.98_10_1.05_true_true impr 165 50708 41.25 2.62 6.88
Early15 6907.00 11796721.31 - CP 6631 384 2.24 1.86 1.39
Middle1 - 24919025.50 - - - - - - -
Middle2 - 10783365.50 - - - - - - -
Middle3 - 12369352.56 - - - - - - -
Middle4 362.19 97702384.50 - CP 317 35 45.29 19.81 -
Middle5 2706.00 56683288.75 1200_0.98_100000_1.05_true_false impr 1049 7098 3.76 2.06 -
Middle6 3514.17 40094887.81 - CP 3070 156 2.74 1.80 -
Middle7 9445.56 70309652.25 - CP 7923 268 4.44 3.60 -
Middle8 1280.56 49839021.94 1200_0.98_100000_1.03_false_false impr 416 20592 3.22 3.06 -
Middle9 3439.06 52874080.69 - CP 3145 1665 7.58 4.91 -
Middle10 - 32994274.56 - - - - - - -
Middle11 4388.00 12058887.19 - CP 4388 1442 1.79 1.63 -
Middle12 3956.94 32093070.25 700_0.98_10000_1.03_true_false impr 1919 3618 3.20 2.02 -
Middle13 8794.56 40924701.56 - CP 7984 526 31.68 22.06 -
Middle14 3695.62 13332198.00 700_0.98_100_1.03_true_true SA 3138 63094 2.75 2.68 -
Middle15 2710.31 45757405.00 1200_0.98_100_1.03_true_true impr 1316 74209 2.71 1.34 -
Late1 3403.69 38372349.25 - CP 3171 1290 1.65 1.57 -
Late2 - 12488717.94 - - - - - - -
Late3 4585.25 67577741.12 700_0.98_10_1.03_false_true impr 3264 39964 1.38 1.33 -
Late4 1152.25 200359451.75 - CP 649 10 649.00 649.00 -
Late5 - 18442098.56 - - - - - - -
Late6 - 67661874.06 - - - - - - -
Late7 3773.43 41141110.00 700_0.98_100000_1.03_true_true SA 2762 24564 1.77 1.56 -
Late8 3380.00 82007068.88 700_0.98_100000_1.05_true_true impr 1550 17762 1.66 1.55 -
Late9 2338.00 27042668.62 700_0.98_10000_1.03_true_false impr 1319 85866 2.65 1.84 -
Late10 - 23063277.25 - - - - - - -
Late11 - 37888390.75 - - - - - - -
Late12 - 28207700.75 - - - - - - -
Late13 10534.00 44590868.06 - CP 8618 2232 4.74 4.61 -
Late14 3859.94 21229173.75 - CP 3599 46 3.07 2.99 -
Late15 765.94 89765669.94 700_0.98_10_1.03_true_true impr 180 82106 180.00 3.00 -

then goes down to about 0.6. At that point the next reheat happens, which brings the
acceptance rate back up again. However, the process only accepts infeasible solutions
as it does not find any feasible ones. The problem might be that the weight is too low
to bring the search towards a feasible solution. However, we already tried using higher
weights in our first hybridization experiments; there we had the problem that the overall
acceptance rate tended towards zero.

Again, we show exemplarily the improvements over the iterations of Early 3 and Early
13 in Figure 6.5. As we can see in comparison to the plots of the previous experiment
with a neighborhood probability according to the number of possible moves, we improved
more CP solutions for Early 3 and found one more solution for Early 13 with SA.

77

6. Computational Study

Table 6.25: Comparison of CP runs with hybridization runs. Best solutions among our
approaches are shown in bold.

CP TTSA tuned best known

Early1 - - 1129 362
Early2 - - 592 145
Early3 2673 1239 1351 992
Early4 - - - 507
Early5 - - - 3127
Early6 - 5700 5634 3325
Early7 - - - 4763
Early8 3455 2902 2674 1051
Early9 2763 443 652 56
Early10 - - - 3400
Early11 - - - 4426
Early12 1680 1900 2000 315
Early13 - - 670 121
Early14 4250 105 165 4
Early15 6572 6543 6631 2955
Middle1 - - - 5177
Middle2 - - - 7381
Middle3 - - - 9542
Middle4 225 295 317 7
Middle5 2490 775 1049 279
Middle6 2560 3110 3070 1120
Middle7 7985 8157 7923 1783
Middle8 1203 374 416 129

CP TTSA tuned best known

Middle9 3105 3125 3145 415
Middle10 - - - 1250
Middle11 - - 4388 2446
Middle12 3229 1431 1919 599
Middle13 7084 7442 7984 252
Middle14 - - 3138 1140
Middle15 6774 1338 1316 485
Late1 3062 3160 3171 1922
Late2 - - - 5400
Late3 6859 3249 3264 2369
Late4 0 1004 649 0
Late5 - - - 1923
Late6 - - - 923
Late7 - - 2762 1558
Late8 3101 142 1550 934
Late9 2824 1149 1319 498
Late10 - - - 1945
Late11 - - - 202
Late12 - - - 3428
Late13 10900 10540 8618 1820
Late14 3520 3717 3599 1174
Late15 3845 115 180 0

6.11 Final Results
In this section, we will provide a side by side comparison of our best MiniZinc standalone
results (without our random implementation for Chuffed), the hybridization with the
untuned TTSA and the latest hybridization results for each instance. The experiments
ran for 24 hours. The results can be seen in Table 6.25.

Of the 45 instances we found solutions for 30 of them with the latest hybridization. With
the MiniZinc configurations we only found solutions for 23 of the instances; with the
TTSA hybridization for 24 of the instances. There are 22 instances for which hybridization
beat the MiniZinc approach and eight instances where it did not. In these cases, where
MiniZinc was better, the gap to the hybridization solution is rather small, except for Late
4 where MiniZinc found the best known solution, which is 0 and can therefore not be
improved. The TTSA hybridization is especially good in improving CP results, whereas
the latest hybridization excels in finding solutions to prior infeasible instances in the CP
phase.

To sum up, hybridization is to prefer when comparing it to MiniZinc standalone runs
as it finds more solutions and also better solutions on average. Ideally, full CP runs
would be made part of the portfolio in the multi-start hybrids since there are instances
where SA was not able to improve initial solutions. Therefore, further work should deal
with, possibly automated, tuning of SA with potentially feature-based parameters to be
effective on all ITC instances with their varying properties, as done by Rosati et al. [39].
In particular, starting from initial solutions satisfying the phased constraint and only
accepting phased-retaining neighbors could be more effective for the phased instances.

78

CHAPTER 7
Conclusions & Future Work

In this thesis, we investigated a hybrid approach to tackle sports league scheduling
based on constraint programming (CP) with MiniZinc and simulated annealing (SA). As
challenging representative problems, we considered the Traveling Tournament Problem
(TTP) and the recent International Timetabling Competition 2021 (ITC2021). The former
was introduced by Easton et al. [10] in 2001 and combines a difficult feasibility and
optimality aspect in a rather simple yet NP-hard problem formulation while the latter,
introduced by Van Bulck et al. [50] in 2021, aims towards modeling messy real-world
problem instances with their plethora of hard and soft constraints.

We started by covering related state-of-the-art works on heuristic approaches to these
problems. In our methodology we described foundations for combinatorial and constraint
optimization, the CP paradigm, and improvement metaheuristics with the focus on SA.
Afterwards, we defined the ITC2021, describing its constraints and objective function.
Then we explained our solution approaches regarding CP, including the automated
translation of the ITC instance files into MiniZinc models, an adaption of the simulated
annealing approach from Anagnostopoulos et al. [1] to the TTP, and a combination
of both in a parallel multi-start hybridization. Finally, we presented our thorough
computational results.

In the computational study, we compared different configurations for solving the MiniZinc
CP models using four backend solvers, two MiniZinc versions, various variable choice
heuristics as well as value choice heuristics, and the impact of global constraints and
restarting mechanisms. The Chuffed solver with multi-starting and a custom random-
ization turned out to be the most effective for finding feasible solutions quickly, while
for standalone CP optimization long-runs also Gecode and Google OR-Tools provided
best results over our approaches on the 45 tested ITC2021 instances. Given the highly
constrained nature of this problem, we expected the CP approach to work better but it
could only find a feasible solution to slightly more than half of the instances.

79

7. Conclusions & Future Work

Turning to the improvement heuristic, we reimplemented Traveling Tournament Simulated
Annealing (TTSA) [1] in the Julia programming language and tested it in the fast cooling
regime on TTP benchmark instances with which we could confirm results from the
literature. This implementation and the suggested parameters served as a basis for
the ITC2021, for which we implemented the corresponding hard and soft constraints,
penalization of infeasible solutions and algorithmic improvements. In a second step,
we tuned and measured the impact of the various parameters of the adapted SA for
ITC2021, for example, the initial temperature, penalization of infeasible solutions, the
cooling schedule, neighborhood probabilities, acceptance rate monitoring, and more.

In the end, we combined both parts in a parallel hybrid approach, which uses multiple
threads to run a randomized CP solver to find an initial solution, which is subsequently
handed over to SA to improve it further with a sampled configuration from the previously
tuned portfolio. This allowed us to find feasible solutions for two thirds of the instances
and frequently improve initial CP solutions while sometimes the CP full-runs provided
better solutions. Finding an effective parameter set over all ITC2021 instances for the SA
remained a challenge for us, therefore, we were not able to compete with the best known
solutions nor with the work of Rosati et al. [39] who used a three-stage SA approach
(second place in the ITC2021). We were a bit closer to the results of van Doornmalen
et al. [51] who used a hybrid approach combing mixed integer programming and local
search intertwined in a fix and optimize fashion, which seems to be the more promising
way to go over CP.

Whether it is more beneficial to use more time to get to a feasible solution in the CP
phase or if it is better to spend more time in a local search phase possibly starting with an
infeasible solution cannot be definitely answered as it depends in our case on the specific
instance. We dealt with instances where we only found a solution with CP and with
instances where we only found a solution in the SA phase. Given the rather disappointing
performance of CP and the success of SA as demonstrated in the literature, we believe
it is beneficial to spend more time in the improvement phase and use CP to quickly
generate a random infeasible or partly feasible (e.g., adhering to phased constraints)
solution while retaining this partial feasibility in the subsequent improvement by suitable
neighborhood structures, see, e.g., Van Hentenryck and Vergados [52].

Future work should include automated tuning, e.g., using irace [28], and studying
extensions/improvements for the five, somewhat canonical, TTP neighborhood structures
as proposed by Van Hentenryck and Vergados [52] or by Langford [27]. Another interesting
direction is to make use of cooperative search for a more effective paralleliziation, e.g.,
to use Population-Based SA as proposed by Van Hentenryck and Vergados [53] for the
TTP, where elite solutions are shared at synchronization points to restart threads which
are stuck with worse solutions. Moreover, the search throughput should be increased
by performing incremental evaluation, which we implemented for the TTP but omitted
for the ITC2021 due the complexity of the constraints. Another improvement could be
to choose from a portfolio of configurations for the CP phase from which the algorithm
picks one at random as we do it for the SA part.

80

APPENDIX A
Additional CP Results

In this appendix we show result tables that we deemed to be too exhaustive for the
main part of the thesis. The Tables A.1 to A.12 show experiments with MiniZinc on
the Early instances comparing the use of global constraints and avoiding them. The
Tables A.13 and A.14 show the results of an experiment using Chuffed and first_fail
where we dropped the break constraints, which appeared to be the hardest constraints to
fulfill in preliminary experiments, to get to more “near-feasible” solutions than with the
break constraints enabled. Thereby, we convert the used instances to ITC2021-NSC-NBC
instances. If we compare the Table A.13 to its equivalent with the break constraints
Table A.7, we can see the number of solutions was brought up from six to ten, however,
of course the solutions found are not feasible anymore.

The columns of the tables show the following: t[s] is the time to first solution, nnd is
the number of examined nodes, npd is the maximum depth of the search tree, nfl is
the number of fails, nre is the number of restarts, npr is the number of propagations,
nps is the number of propagators and t̄nd[µs] is the used time per node in milliseconds.
Whenever there is no time given, then there was no solution found for that instance with
the particular configuration. If other columns are left blank, the solver did not provide
information for it.

Table A.1: Gecode globals first-fail

first-fail-indomain-median first-fail-indomain-min
t[s] nnd npd nfl nre npr nps t̄nd[µs] t[s] nnd npd nfl nre npr nps t̄nd[µs]

ITC2021Early1 - 500317016 209 250158419 0 114844957598 3123 173 - 520847196 207 260423509 0 110490017139 3123 166
ITC2021Early2 - 183455859 205 91727856 0 96031980437 40513 471 - 142775683 182 71387763 0 122678596250 40513 605
ITC2021Early3 - 300814678 121 150407293 0 53657003698 4076 287 0.1 221 210 10 0 54422 4076 243
ITC2021Early4 - 178657896 193 89328866 0 54960067727 15734 484 - 174874582 186 87437212 0 54204981543 15734 494
ITC2021Early5 - 322799604 241 161399702 0 123112079792 55140 268 - - - - - - - -
ITC2021Early6 - - - - - - - - - - - - - - - -
ITC2021Early7 - 132711143 257 66355456 0 41557073415 44828 651 - 365514712 263 182757245 0 96599246021 44828 236
ITC2021Early8 0.1 338 336 1 0 69055 2868 295 0.1 338 337 0 0 68798 2868 315
ITC2021Early9 0.1 318 316 1 0 70410 3453 337 0.1 326 318 7 0 72800 3453 340
ITC2021Early10 - - - - - - - - - - - - - - - -
ITC2021Early11 - - - - - - - - - - - - - - - -
ITC2021Early12 - - - - - - - - - - - - - - - -
ITC2021Early13 - 140744358 334 70372028 0 101689619346 49148 614 - 148616864 337 74308280 0 121683337352 49148 581
ITC2021Early14 0.2 476 450 18 0 108180 3605 398 0.2 456 447 8 0 100978 3605 387
ITC2021Early15 - - - - - - - - - - - - - - - -

81

A. Additional CP Results

Table A.2: Gecode globals input-order

input-order-indomain-median input-order-indomain-min
t[s] nnd npd nfl nre npr nps t̄nd[µs] t[s] nnd npd nfl nre npr nps t̄nd[µs]

ITC2021Early1 - 513556382 188 256778115 0 114627920637 3123 168 - 510389135 187 255194490 0 111248291423 3123 169
ITC2021Early2 - 88852091 133 44425992 0 25365387647 40513 972 - 156431450 178 78215649 0 151601728179 40513 552
ITC2021Early3 - 387832176 158 193916029 0 77283941684 4076 223 121.0 1468793 192 734309 0 215154741 4076 82
ITC2021Early4 - 249415159 220 124707487 0 47584354754 15734 346 - 97637156 104 48818532 0 27077196847 15734 885
ITC2021Early5 - - - - - - - - - 52547120 154 26273499 0 17333831231 55140 1644
ITC2021Early6 - - - - - - - - - - - - - - - -
ITC2021Early7 - 126772134 230 63385969 0 32271743159 44828 682 - 84220375 196 42110111 0 47411885395 44828 1026
ITC2021Early8 - 284159914 216 142079861 0 45890169982 2868 304 59.7 211627 317 105656 0 28464721 2868 282
ITC2021Early9 0.1 317 307 8 0 71043 3453 269 - 322448293 197 161224059 0 30705138491 3453 268
ITC2021Early10 - - - - - - - - - - - - - - - -
ITC2021Early11 - - - - - - - - - - - - - - - -
ITC2021Early12 - - - - - - - - - - - - - - - -
ITC2021Early13 - 167685508 318 83842612 0 51414561029 49148 515 - 107421912 251 53710847 0 38386822823 49148 804
ITC2021Early14 - 513049616 238 256524701 0 134428940904 3605 168 - 202315104 245 101157454 0 38377889183 3605 427
ITC2021Early15 - - - - - - - - - - - - - - - -

Table A.3: Gecode non-globals first-fail

first-fail-indomain-median first-fail-indomain-min
t[s] nnd npd nfl nre npr nps t̄nd[µs] t[s] nnd npd nfl nre npr nps t̄nd[µs]

ITC2021Early1 - 703816744 208 351908285 0 124939835070 37373 123 - 699929410 207 349964617 0 121245568434 37373 123
ITC2021Early2 - - - - - - - - - - - - - - - -
ITC2021Early3 - 104178265 120 52089087 0 36591144912 35142 829 0.1 221 213 7 0 149074 35142 578
ITC2021Early4 - 96164473 199 48082155 0 79414748160 62213 898 - 85301115 179 42650482 0 84016636031 62213 1013
ITC2021Early5 - - - - - - - - - - - - - - - -
ITC2021Early6 - - - - - - - - - - - - - - - -
ITC2021Early7 - - - - - - - - - - - - - - - -
ITC2021Early8 0.2 338 336 1 0 217866 54098 718 0.2 338 337 0 0 215841 54098 710
ITC2021Early9 0.2 322 316 3 0 219551 54681 680 - 321888971 255 160944375 0 106079386900 54681 268
ITC2021Early10 - - - - - - - - - - - - - - - -
ITC2021Early11 - - - - - - - - - - - - - - - -
ITC2021Early12 - - - - - - - - - - - - - - - -
ITC2021Early13 - - - - - - - - - - - - - - - -
ITC2021Early14 0.3 472 450 16 0 338538 72701 548 0.5 456 447 8 0 326477 72701 990
ITC2021Early15 - - - - - - - - - - - - - - - -

Table A.4: Gecode non-globals input-order

input-order-indomain-median input-order-indomain-min
t[s] nnd npd nfl nre npr nps t̄nd[µs] t[s] nnd npd nfl nre npr nps t̄nd[µs]

ITC2021Early1 - 723220224 189 361610033 0 127828704865 37373 119 - 695764678 190 347882264 0 120243021236 37373 124
ITC2021Early2 - 140945467 134 70472681 0 50463773583 69505 613 - - - - - - - -
ITC2021Early3 - 269952299 158 134976088 0 143830810793 35142 320 166.0 1230580 190 615203 0 657342085 35142 135
ITC2021Early4 - 220372506 219 110186164 0 100315778659 62213 392 - - - - - - - -
ITC2021Early5 - - - - - - - - - - - - - - - -
ITC2021Early6 - - - - - - - - - - - - - - - -
ITC2021Early7 - - - - - - - - - - - - - - - -
ITC2021Early8 - 216579593 216 108289699 0 98373687862 54098 399 57.3 225855 330 112770 0 75173845 54098 254
ITC2021Early9 0.2 362 310 30 0 227921 54681 660 - 239708277 205 119854050 0 73765782274 54681 360
ITC2021Early10 - - - - - - - - - - - - - - - -
ITC2021Early11 - - - - - - - - - - - - - - - -
ITC2021Early12 - - - - - - - - - - - - - - - -
ITC2021Early13 - - - - - - - - - - - - - - - -
ITC2021Early14 - - - - - - - - - - - - - - - -
ITC2021Early15 - - - - - - - - - - - - - - - -

In Figure A.1, MiniZinc solution times with Gecode and restarting using the model listed
in A.1 (or corresponding relaxations) are shown. We can see that feasible DRR (plain,
phased, and mirrored) and TTP (plain, phased, and mirrored) solutions can be created
for up to 40 teams within at most a couple of seconds, therefore, their creation is deemed
not to be a bottleneck for approaches with dominant improvement phases.

82

Table A.5: Chuffed globals first-fail

first-fail-indomain-median first-fail-indomain-min
t[s] nnd npd nfl nre npr nps t̄nd[µs] t[s] nnd npd nfl nre npr nps t̄nd[µs]

ITC2021Early1 - 235707021 226 202102454 0 32504787741 4778 367 - - - - - - - -
ITC2021Early2 - - - - - - - - - - - - - - - -
ITC2021Early3 0.2 5441 221 218 0 452037 3608 42 0.2 2698 239 90 0 231328 3608 70
ITC2021Early4 - 161028679 242 80056634 0 32449069664 6206 537 - - - - - - - -
ITC2021Early5 - - - - - - - - - - - - - - - -
ITC2021Early6 - - - - - - - - 46257.3 33455678 223 18410567 0 9088055437 5582 1383
ITC2021Early7 - - - - - - - - - - - - - - - -
ITC2021Early8 0.2 7721 362 654 0 413006 4032 29 0.1 2102 356 127 0 120965 4032 44
ITC2021Early9 0.9 17599 356 685 0 1170242 3947 51 0.3 5502 344 520 0 457132 3947 61
ITC2021Early10 - - - - - - - - - - - - - - - -
ITC2021Early11 - - - - - - - - - - - - - - - -
ITC2021Early12 530.3 749173 283 172809 0 202769395 7069 708 - - - - - - - -
ITC2021Early13 - 275289348 330 183256850 0 36119367844 7559 314 - - - - - - - -
ITC2021Early14 1.5 22264 447 2272 0 1822932 4764 66 0.3 4383 427 233 0 436647 4764 62
ITC2021Early15 786.1 4192089 313 189186 0 419482424 6140 188 - - - - - - - -

Table A.6: Chuffed globals input-order

input-order-indomain-median input-order-indomain-min
t[s] nnd npd nfl nre npr nps t̄nd[µs] t[s] nnd npd nfl nre npr nps t̄nd[µs]

ITC2021Early1 - 230384628 198 206488776 0 23549808466 4778 375 - 213541889 179 200143471 0 33908283864 4778 405
ITC2021Early2 - - - - - - - - - - - - - - - -
ITC2021Early3 0.3 3746 209 246 0 472476 3608 85 0.3 3906 212 312 0 391897 3608 73
ITC2021Early4 - - - - - - - - - - - - - - - -
ITC2021Early5 - - - - - - - - - - - - - - - -
ITC2021Early6 - - - - - - - - - - - - - - - -
ITC2021Early7 - - - - - - - - - - - - - - - -
ITC2021Early8 0.1 2385 354 144 0 216174 4032 46 2.2 19249 353 16277 0 3389293 4032 114
ITC2021Early9 0.1 3718 337 122 0 271637 3947 28 0.4 6711 324 966 0 656428 3947 66
ITC2021Early10 - - - - - - - - - - - - - - - -
ITC2021Early11 - - - - - - - - - - - - - - - -
ITC2021Early12 129.9 139024 265 44081 0 66105718 7069 934 121.7 193044 226 86747 0 75327996 7069 630
ITC2021Early13 - - - - - - - - - - - - - - - -
ITC2021Early14 0.5 13110 428 1931 0 2176424 4764 37 - 176306515 203 175612817 0 68625853746 4764 490
ITC2021Early15 - - - - - - - - - - - - - - - -

Table A.7: Chuffed non-globals first-fail

first-fail-indomain-median first-fail-indomain-min
t[s] nnd npd nfl nre npr nps t̄nd[µs] t[s] nnd npd nfl nre npr nps t̄nd[µs]

ITC2021Early1 - - - - - - - - - - - - - - - -
ITC2021Early2 - - - - - - - - - - - - - - - -
ITC2021Early3 0.6 3076 184 170 0 530915 17992 190 0.2 930 193 58 0 190221 17992 211
ITC2021Early4 - - - - - - - - - - - - - - - -
ITC2021Early5 - - - - - - - - - - - - - - - -
ITC2021Early6 - - - - - - - - 19011.9 8391410 197 6064800 0 4097466277 26372 2266
ITC2021Early7 - - - - - - - - - - - - - - - -
ITC2021Early8 0.6 5101 336 528 0 502384 24822 116 0.1 338 330 7 0 71271 24822 266
ITC2021Early9 1.3 9099 320 448 0 1069088 24737 148 0.2 733 306 119 0 136453 24737 228
ITC2021Early10 - - - - - - - - - - - - - - - -
ITC2021Early11 - - - - - - - - - - - - - - - -
ITC2021Early12 638.7 581158 257 157875 0 241348345 35929 1099 47414.1 12066999 255 10684590 0 10814793070 35929 3929
ITC2021Early13 - - - - - - - - - - - - - - - -
ITC2021Early14 2.7 15341 425 921 0 1937221 33624 173 0.9 3190 414 147 0 703093 33624 267
ITC2021Early15 266.0 1017217 307 51223 0 175701289 35000 262 221.5 564206 289 31691 0 114829599 35000 393

Table A.8: Chuffed non-globals input-order

input-order-indomain-median input-order-indomain-min
t[s] nnd npd nfl nre npr nps t̄nd[µs] t[s] nnd npd nfl nre npr nps t̄nd[µs]

ITC2021Early1 - - - - - - - - - - - - - - - -
ITC2021Early2 - - - - - - - - - - - - - - - -
ITC2021Early3 0.3 1306 178 115 0 336574 17992 250 0.2 672 171 101 0 221124 17992 312
ITC2021Early4 - - - - - - - - - - - - - - - -
ITC2021Early5 - - - - - - - - - - - - - - - -
ITC2021Early6 - - - - - - - - - - - - - - - -
ITC2021Early7 - - - - - - - - - - - - - - - -
ITC2021Early8 0.1 636 328 17 0 145685 24822 225 5.6 14870 330 14149 0 4333877 24822 375
ITC2021Early9 0.1 441 311 9 0 108872 24737 252 1.1 4973 296 1153 0 1224776 24737 218
ITC2021Early10 - - - - - - - - - - - - - - - -
ITC2021Early11 - - - - - - - - - - - - - - - -
ITC2021Early12 212.3 117430 237 62038 0 99172300 35929 1808 106.9 90419 212 46746 0 54674084 35929 1182
ITC2021Early13 - - - - - - - - - - - - - - - -
ITC2021Early14 2.6 10660 411 1501 0 2409046 33624 248 - - - - - - - -
ITC2021Early15 724.4 433575 274 202453 0 180710042 35000 1671 - - - - - - - -

83

A. Additional CP Results

Table A.9: or-tools globals first-fail

first-fail-indomain-median first-fail-indomain-min
t[s] nnd npd nfl nre npr nps t̄nd[µs] t[s] nnd npd nfl nre npr nps t̄nd[µs]

ITC2021Early1 - - - - - - - - - - - - - - - -
ITC2021Early2 - - - - - - - - - - - - - - - -
ITC2021Early3 57.1 - - 11 - 1920471 - - 46.1 - - 23 - 1921463 - -
ITC2021Early4 - - - - - - - - - - - - - - - -
ITC2021Early5 - - - - - - - - - - - - - - - -
ITC2021Early6 - - - - - - - - - - - - - - - -
ITC2021Early7 - - - - - - - - - - - - - - - -
ITC2021Early8 141.4 - - 7 - 2711732 - - 128.6 - - 6 - 2708632 - -
ITC2021Early9 135.5 - - 5 - 2765276 - - 226.4 - - 27 - 2821368 - -
ITC2021Early10 - - - - - - - - - - - - - - - -
ITC2021Early11 - - - - - - - - - - - - - - - -
ITC2021Early12 - - - - - - - - - - - - - - - -
ITC2021Early13 - - - - - - - - - - - - - - - -
ITC2021Early14 282.8 - - 12 - 4138418 - - 419.8 - - 24 - 4190497 - -
ITC2021Early15 - - - - - - - - - - - - - - - -

Table A.10: or-tools globals input-order

input-order-indomain-median input-order-indomain-min
t[s] nnd npd nfl nre npr nps t̄nd[µs] t[s] nnd npd nfl nre npr nps t̄nd[µs]

ITC2021Early1 - - - - - - - - - - - - - - - -
ITC2021Early2 - - - - - - - - - - - - - - - -
ITC2021Early3 79.0 - - 19 - 1956472 - - 44.3 - - 35 - 1940989 - -
ITC2021Early4 - - - - - - - - - - - - - - - -
ITC2021Early5 - - - - - - - - - - - - - - - -
ITC2021Early6 - - - - - - - - - - - - - - - -
ITC2021Early7 - - - - - - - - - - - - - - - -
ITC2021Early8 96.7 - - 5 - 2708994 - - 95.8 - - 16 - 2720923 - -
ITC2021Early9 103.0 - - 12 - 2780538 - - 142.8 - - 34 - 2825835 - -
ITC2021Early10 - - - - - - - - - - - - - - - -
ITC2021Early11 - - - - - - - - - - - - - - - -
ITC2021Early12 22340.1 - - 52054 - 174160442 - - 9171.5 - - 7877 - 34263665 - -
ITC2021Early13 - - - - - - - - - - - - - - - -
ITC2021Early14 232.4 - - 35 - 4190717 - - 179.6 - - 61 - 4142653 - -
ITC2021Early15 - - - - - - - - - - - - - - - -

Table A.11: or-tools non-globals first-fail

first-fail-indomain-median first-fail-indomain-min
t[s] nnd npd nfl nre npr nps t̄nd[µs] t[s] nnd npd nfl nre npr nps t̄nd[µs]

ITC2021Early1 - - - - - - - - - - - - - - - -
ITC2021Early2 - - - - - - - - - - - - - - - -
ITC2021Early3 64.9 - - 16 - 11130725 - - 29.9 - - 23 - 11119755 - -
ITC2021Early4 - - - - - - - - - - - - - - - -
ITC2021Early5 - - - - - - - - - - - - - - - -
ITC2021Early6 - - - - - - - - - - - - - - - -
ITC2021Early7 - - - - - - - - - - - - - - - -
ITC2021Early8 126.5 - - 7 - 10783514 - - 109.1 - - 6 - 10778754 - -
ITC2021Early9 - - - - - - - - 140.0 - - 32 - 10702527 - -
ITC2021Early10 - - - - - - - - - - - - - - - -
ITC2021Early11 - - - - - - - - - - - - - - - -
ITC2021Early12 - - - - - - - - - - - - - - - -
ITC2021Early13 - - - - - - - - - - - - - - - -
ITC2021Early14 356.5 - - 12 - 10300457 - - 2443.6 - - 94 - 11439976 - -
ITC2021Early15 - - - - - - - - - - - - - - - -

Table A.12: or-tools non-globals input-order

input-order-indomain-median input-order-indomain-min
t[s] nnd npd nfl nre npr nps t̄nd[µs] t[s] nnd npd nfl nre npr nps t̄nd[µs]

ITC2021Early1 - - - - - - - - - - - - - - - -
ITC2021Early2 - - - - - - - - - - - - - - - -
ITC2021Early3 104.5 - - 20 - 11150576 - - 70.1 - - 43 - 11153600 - -
ITC2021Early4 - - - - - - - - - - - - - - - -
ITC2021Early5 - - - - - - - - - - - - - - - -
ITC2021Early6 - - - - - - - - - - - - - - - -
ITC2021Early7 - - - - - - - - - - - - - - - -
ITC2021Early8 103.4 - - 4 - 10791319 - - 98.9 - - 16 - 10793387 - -
ITC2021Early9 97.1 - - 12 - 10681057 - - 382.9 - - 63 - 10910456 - -
ITC2021Early10 - - - - - - - - - - - - - - - -
ITC2021Early11 - - - - - - - - - - - - - - - -
ITC2021Early12 26912.2 - - 54133 - 249704696 - - 13971.5 - - 12674 - 58516858 - -
ITC2021Early13 - - - - - - - - - - - - - - - -
ITC2021Early14 277.2 - - 73 - 10599246 - - 115.6 - - 60 - 10284991 - -
ITC2021Early15 - - - - - - - - - - - - - - - -

84

Table A.13: Chuffed non-globals on ITC2021-NSC-NBC instances (without soft con-
straints and break constraints)

first-fail-indomain-median first-fail-indomain-min
t[s] nnd npd nfl nre npr nps t̄nd[µs] t[s] nnd npd nfl nre npr nps t̄nd[µs]

ITC2021Early1 0.3 2685 261 247 0 307668 17780 123 0.1 261 246 7 0 50831 17780 218
ITC2021Early2 - - - - - - - - 43.1 45200 150 33102 0 21928139 18687 955
ITC2021Early3 0.3 2740 210 152 0 449992 17830 95 0.2 947 212 57 0 188486 17830 207
ITC2021Early4 - - - - - - - - - - - - - - - -
ITC2021Early5 - - - - - - - - - - - - - - - -
ITC2021Early6 - - - - - - - - 2541.1 2258904 204 966566 0 899457118 26372 1125
ITC2021Early7 796.1 2468631 233 167664 0 397278374 25186 323 109.4 340068 220 19965 0 68007238 25186 322
ITC2021Early8 0.6 5132 368 527 0 501344 24494 109 0.1 364 356 7 0 70581 24494 258
ITC2021Early9 1.3 9040 338 441 0 1049802 24525 147 0.2 759 332 119 0 135636 24525 208
ITC2021Early10 - - - - - - - - - - - - - - - -
ITC2021Early11 113.9 296415 290 19040 0 50592949 35020 384 2038.5 1096595 280 520793 0 515611524 35020 1859
ITC2021Early12 25243.8 5920814 257 5072383 0 5591658913 35739 4264 4371.5 1288649 255 950949 0 1218744257 35739 3392
ITC2021Early13 5.1 19624 345 832 0 2565258 34199 258 0.6 2700 325 689 0 753779 34199 238
ITC2021Early14 2.7 15367 451 921 0 1933666 33460 174 0.8 3165 433 143 0 701352 33460 264
ITC2021Early15 394.6 1017217 307 51223 0 175701191 35000 388 231.6 564206 289 31691 0 114829600 35000 411

Table A.14: Chuffed globals on ITC2021-NSC-NBC instances (without soft constraints
and break constraints)

first-fail-indomain-median first-fail-indomain-min
t[s] nnd npd nfl nre npr nps t̄nd[µs] t[s] nnd npd nfl nre npr nps t̄nd[µs]

ITC2021Early1 0.3 5555 279 367 0 353593 3396 46 0.1 2765 270 108 0 133631 3396 38
ITC2021Early2 - 213212954 170 100013256 0 39401360166 4303 405 100.3 76564 167 63695 0 39998196 4303 1309
ITC2021Early3 0.3 4852 250 210 0 376591 3446 61 0.2 2851 253 98 0 229115 3446 64
ITC2021Early4 - - - - - - - - - - - - - - - -
ITC2021Early5 - - - - - - - - - - - - - - - -
ITC2021Early6 - - - - - - - - 47355.2 33455678 223 18410567 0 9088055437 5582 1415
ITC2021Early7 734.6 3654947 240 207310 0 413026474 4396 201 840.9 2387740 232 358458 0 463069371 4396 352
ITC2021Early8 0.3 7205 384 669 0 376324 3704 42 0.1 2319 371 145 0 117592 3704 44
ITC2021Early9 0.8 13846 361 580 0 893180 3735 55 0.4 5459 359 527 0 441953 3735 69
ITC2021Early10 - - - - - - - - - - - - - - - -
ITC2021Early11 233.9 601880 312 93139 0 111368516 6160 389 - - - - - - - -
ITC2021Early12 7230.9 2555104 283 1831879 0 1891312351 6879 2830 163.4 440026 266 114681 0 138269376 6879 371
ITC2021Early13 2.6 22163 371 1005 0 1805854 5339 116 56.3 117619 317 56894 0 24756363 5339 479
ITC2021Early14 1.4 22459 463 2282 0 1834918 4600 63 0.3 4103 438 235 0 403080 4600 77
ITC2021Early15 919.1 4192089 313 189186 0 419482424 6140 219 - - - - - - - -

10 15 20 25 30 35 40
number of teams

0.0

0.2

0.4

0.6

0.8

1.0

1.2

av
er

ag
e

so
lv

er
 ti

m
e

ra
nd

om
 so

lu
tio

n
[s

] DRR
DRR-P
DRR-M

10 15 20 25 30 35 40
number of teams

0

1

2

3

4

av
er

ag
e

so
lv

er
 ti

m
e

ra
nd

om
 so

lu
tio

n
[s

] TTP
TTP-P
TTP-M

Figure A.1: Mean solving times for one solution over 100 solutions created with MiniZ-
inc/Gecode runs to construct either feasible DRR schedules (left) or TTP schedules
(right) from 10 up to 40 randomly, also with additional phased and mirrored constraints.

85

A. Additional CP Results

Listing A.1: MiniZinc model for Gecode with restarting for the mirrored TTP.
include "globals.mzn";
include "gecode.mzn";
include "alldifferent.mzn";
include "symmetric_all_different.mzn";
include "global_cardinality.mzn";

int: N;
int: R = 2*N-2;
int: R2 = N-1;
int: U = 3;
set of int: TEAMS = 1..N;
set of int: SLOTS = 1..R;
set of int: SLOTSNOREP = 1..R-1;
set of int: SLOTSATMOST = U+1..R;
set of int: SLOTS1 = 1..R2;
set of int: SLOTS2 = (R2 + 1)..R;

array[TEAMS,SLOTS] of var TEAMS: opponents_per_team_and_round;
array[TEAMS,SLOTS] of var {-1, 1}: venue_per_team_and_round;

% team does not play against itself
constraint forall (i in TEAMS, r in SLOTS) (opponents_per_team_and_round[i, r] != i);

% all games (opponent+venue) per team must be unique
constraint forall (i in TEAMS) (all_different([venue_per_team_and_round[i,r]*opponents_per_team_and_round[i,r] | r in SLOTS]));
% every team must play exactly twice against every other team over the whole schedule
%constraint forall (i in TEAMS) (global_cardinality([opponents_per_team_and_round[i,r] | r in SLOTS],
[j | j in TEAMS where j != i], [2 | j in TEAMS where j != i]));

% phased: every team must play exactly once against every other team in each half of the schedule
constraint forall (i in TEAMS) (global_cardinality([opponents_per_team_and_round[i,r] | r in SLOTS1],
[j | j in TEAMS where j != i], [1 | j in TEAMS where j != i]));

constraint forall (i in TEAMS) (global_cardinality([opponents_per_team_and_round[i,r] | r in SLOTS2],
[j | j in TEAMS where j != i], [1 | j in TEAMS where j != i]));

% mirror (implies phased)
constraint forall (i in TEAMS, r in SLOTS1) (opponents_per_team_and_round[i, r] == opponents_per_team_and_round[i, r+N-1]);

% venue connection constraint
constraint forall (i in TEAMS, r in SLOTS) (venue_per_team_and_round[opponents_per_team_and_round[i,r],r]
== -venue_per_team_and_round[i,r]);

% opponent connection constraint, symmetric_all_different works better with Gecode first_fail/indomain_random
constraint forall (r in SLOTS) (symmetric_all_different([opponents_per_team_and_round[i,r] | i in TEAMS]));
%constraint forall (i in TEAMS, r in SLOTS) (opponents_per_team_and_round[opponents_per_team_and_round[i,r],r] == i);

% no repeat constraint
constraint forall (i in TEAMS, r in SLOTSNOREP) (opponents_per_team_and_round[i, r] != opponents_per_team_and_round[i, r+1]);

% at most constraint, hardcoded for U=3
%constraint forall (i in TEAMS) (sliding_sum(-U, U, U+1, [venue_per_team_and_round[i,r] | r in SLOTS]));
constraint forall (i in TEAMS, r in SLOTSATMOST) ((venue_per_team_and_round[i, r-3] == 1 /\
venue_per_team_and_round[i, r-2] == 1 /\ venue_per_team_and_round[i, r-1] == 1) -> (venue_per_team_and_round[i, r] == -1));

constraint forall (i in TEAMS, r in SLOTSATMOST) ((venue_per_team_and_round[i, r-3] == -1 /\
venue_per_team_and_round[i, r-2] == -1 /\ venue_per_team_and_round[i, r-1] == -1) -> (venue_per_team_and_round[i, r] == 1));

% solving
solve
:: seq_search([
int_search(opponents_per_team_and_round, first_fail, indomain_random),
int_search(venue_per_team_and_round, first_fail, indomain_random)])
:: restart_constant(5000)
satisfy;

output [format(3, 2, opponents_per_team_and_round[i,j]*venue_per_team_and_round[i,j]) ++
if j == R then "\n" else " " endif |
i in TEAMS, j in SLOTS
];
output ["\n"];

86

List of Figures

3.1 Objective function with multiple local minima and one global minimum . 10
3.2 Left: First queen positioned in the first row. Right: Marked squares are no

possible positions for other queens. 16
3.3 Left: Second queen positioned in the third row, which leaves no option for

the third queen. Right: Second queen positioned in the fourth row leaves the
second row as only option for the third queen, which then leaves no option
for the fourth queen. 16

3.4 Left: First queen positioned in the second row leaves only one position open
for second queen. Right: Second queen positioned in the fourth row leaves
the first row as only option for third queen. 17

3.5 Left: Third queen positioned in the first row leaves one position open for
last queen. Right: Last queen positioned in the third row, all queens are
positioned. 17

3.6 Worst possible solution for the n-queens problem as a COP for n = 4. . . 17
3.7 Left: A weighted graph G. Right: Graph G with a Hamiltonian cycle of length

33 (ABCDEF). 22
3.8 Left: Graph G with a Hamiltonian Cycle of length 21 (ABDCFE). Right:

Neighbor of (ABCDEF) with a non-existing edge used and a Hamiltonian
Cycle with cost 67. 23

5.1 Two solutions for n = 4 . 33
5.2 Search tree for TestInstanceDemo (4 teams) before adding a constraint that

forbids teams to play against themselves. 42
5.3 Search tree for TestInstanceDemo after adding that constraint. 42

6.1 Experiments on test instances with the configurations of the experiment shown
in 6.2, only for instances Demo and 1-6; green bars show the number of runs
that found a solution with that solver, red bars show the amount that did not.
Left: indomain_random is ignored as Chuffed does not support it, right:
indomain_random is included (for Gecode and Gurobi). 59

6.2 Left: Minizinc runs that found solutions and their improvements over time
for Middle 8. Right: The same for Late 1. 62

6.3 Distribution of the successful runs regarding the parameters. 72

87

6.4 Objective values over the iterations of the second hybridization. Left: Early
3, right: Early 13. 76

6.5 Objective values over the iterations of the hybridization with equal neighbor-
hood probability. Left: Early 3, right: Early 13. 76

A.1 Mean solving times for one solution over 100 solutions created with MiniZ-
inc/Gecode runs to construct either feasible DRR schedules (left) or TTP
schedules (right) from 10 up to 40 randomly, also with additional phased and
mirrored constraints. 85

88

List of Algorithms

3.1 Revise3 . 14

3.2 AC3 . 14

3.3 Classical simulated annealing . 21

5.1 Slightly altered TTSA from Anagnostopoulos et al. [1] 43

5.2 Acceptance handling part of altered TTSA from [1] 44

5.3 Acceptance rate monitoring for TTSA 45

5.4 Adapted function C [1, 39] to calculate the costs of a schedule 46

5.5 RandomSchedule function for generating an initial schedule [1] 49

5.6 Altered backtracking algorithm GenerateSchedule to create an initial DRR
tournament [1] . 50

5.7 Thread Function Parallel Multi-Start Hybridization CP/SA 51

89

Bibliography

[1] Aris Anagnostopoulos, Laurent Michel, Pascal Van Hentenryck, and Yannis Vergados.
A simulated annealing approach to the traveling tournament problem. Journal of
Scheduling, 9(2):177–193, 2006.

[2] Ian Anderson. Combinatorial designs and tournaments, volume 6 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, 1997.

[3] Timo Berthold, Thorsten Koch, and Yuji Shinano. MILP. try. repeat. computing
solutions to the ITC 2021 instances by repeated massive parallel MILP computa-
tions. In 13th International Conference on the Practice and Theory of Automated
Timetabling, 2021.

[4] Bob Bixby. The gurobi optimizer. Transp. Research Part B, 41(2):159–178, 2007.

[5] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman
problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management
Sciences Research Group, 1976.

[6] Geoffrey Chu, Peter J. Stuckey, Andreas Schutt, Thorsten Ehlers, Graeme Gange,
and Kathryn Francis. Chuffed website. URL https://github.com/chuffed/
chuffed.

[7] Dominique De Werra. Scheduling in sports. Studies on Graphs and Discrete
Programming, 11:381–395, 1981.

[8] Luca Di Gaspero and Andrea Schaerf. A composite-neighborhood tabu search
approach to the traveling tournament problem. Journal of Heuristics, 13(2):189–207,
2007.

[9] Guillermo Durán. Sports scheduling and other topics in sports analytics: a survey
with special reference to latin america. Top, 29(1):125–155, 2021.

[10] Kelly Easton, George Nemhauser, and Michael Trick. The traveling tournament
problem description and benchmarks. In International Conference on Principles
and Practice of Constraint Programming, pages 580–584. Springer, 2001.

91

https://github.com/chuffed/chuffed
https://github.com/chuffed/chuffed

[11] Matthias Elf, Michael Jünger, and Giovanni Rinaldi. Minimizing breaks by maxi-
mizing cuts. Operations Research Letters, 31(5):343–349, 2003.

[12] George H.G. Fonseca and Túlio A.M. Toffolo. A fix-and-optimize heuristic for
the ITC2021 sports timetabling problem. In 13th International Conference on the
Practice and Theory of Automated Timetabling, 2021.

[13] Nikolaus Frohner, Bernhard Neumann, and Günther R. Raidl. A beam search
approach to the traveling tournament problem. In Luís Paquete and Christine
Zarges, editors, Evolutionary Computation in Combinatorial Optimization, pages
67–82, Cham, 2020. Springer International Publishing.

[14] Nikolaus Frohner, Jan Gmys, Nouredine Melab, Günther R Raidl, and El-Ghazali
Talbi. Parallel beam search for combinatorial optimization. In 51th International
Conference on Parallel Processing Workshop, ICPP Workshops ’22. Association for
Computing Machinery, 2022.

[15] Nikolaus Frohner, Bernhard Neumann, Giulio Pace, and Günther R Raidl. Approach-
ing the traveling tournament problem with randomized beam search. Evolutionary
Computation Journal, 2022. in press.

[16] Michel Gendreau and Jean-Yves Potvin. Handbook of metaheuristics, volume 2.
Springer, 2010.

[17] Ian P Gent, Christopher Jefferson, and Peter Nightingale. Complexity of n-queens
completion. Journal of Artificial Intelligence Research, 59:815–848, 2017.

[18] Fred Glover. Heuristics for integer programming using surrogate constraints. Decision
Sciences, 8(1):156–166, 1977.

[19] Fred Glover and Manuel Laguna. Tabu search. In Handbook of combinatorial
optimization, pages 2093–2229. Springer, 1998.

[20] Zonghao Gu, Edward Rothberg, and Robert Bixby. Gurobi website. URL https:
//www.gurobi.com/.

[21] Eric J Hoffman, JC Loessi, and Robert C Moore. Constructions for the solution of
the m queens problem. Mathematics Magazine, 42(2):66–72, 1969.

[22] Tiago Januario, Sebastián Urrutia, Celso C Ribeiro, and Dominique De Werra. Edge
coloring: A natural model for sports scheduling. European Journal of Operational
Research, 254(1):1–8, 2016.

[23] Richard M Karp. Reducibility among combinatorial problems. In Complexity of
computer computations, pages 85–103. Springer, 1972.

[24] Graham Kendall, Sigrid Knust, Celso C Ribeiro, and Sebastián Urrutia. Scheduling
in sports: An annotated bibliography. Computers & Operations Research, 37(1):
1–19, 2010.

92

https://www.gurobi.com/
https://www.gurobi.com/

[25] Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by
simulated annealing. Science, 220(4598):671–680, 1983.

[26] Carlos Lamas-Fernandez, Antonio Martinez-Sykora, and Chris N Potts. Scheduling
double round-robin sports tournaments. In 13th International Conference on the
Practice and Theory of Automated Timetabling, 2021.

[27] Glenn Langford. An improved neighbourhood for the traveling tournament problem.
arXiv preprint arXiv:1007.0501, 2010.

[28] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari,
and Thomas Stützle. The irace package: Iterated racing for automatic algorithm
configuration. Operations Research Perspectives, 3:43–58, 2016.

[29] Alan K Mackworth. Consistency in networks of relations. Artificial intelligence, 8
(1):99–118, 1977.

[30] Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J
Duck, and Guido Tack. Minizinc: Towards a standard CP modelling language. In
International Conference on Principles and Practice of Constraint Programming,
pages 529–543. Springer, 2007.

[31] Ibrahim H Osman and N Christofides. Simulated annealing and descent algorithms
for capacitated clustering problem. Imperial College, University of London, Research
Report, 1989.

[32] Ibrahim Hassan Osman. Metastrategy simulated annealing and tabu search algo-
rithms for the vehicle routing problem. Annals of operations research, 41(4):421–451,
1993.

[33] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization:
algorithms and complexity. Courier Corporation, 1998.

[34] Laurent Perron. Operations research and constraint programming at google. In
International Conference on Principles and Practice of Constraint Programming,
pages 2–2. Springer, 2011.

[35] Laurent Perron and Vincent Furnon. Or-tools. URL https://developers.
google.com/optimization/.

[36] Antony E. Philips, Michael O’Sullivan, and Cameron Walker. An adaptive large
neighbourhood search matheuristic for the ITC2021 sports timetabling competi-
tion. In 13th International Conference on the Practice and Theory of Automated
Timetabling, 2021.

[37] Rasmus V Rasmussen and Michael A Trick. A benders approach for the constrained
minimum break problem. European Journal of Operational Research, 177(1):198–213,
2007.

93

https://developers.google.com/optimization/
https://developers.google.com/optimization/

[38] Jean-Charles Régin and Arnaud Malapert. Parallel constraint programming. In
Handbook of Parallel Constraint Reasoning, pages 337–379. Springer, 2018.

[39] Roberto Maria Rosati, Matteo Petris, Luca Di Gaspero, and Andrea Schaerf. Multi-
neighborhood simulated annealing for the sports timetabling competition ITC2021.
Journal of Scheduling, 25(3):301–319, 2022.

[40] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint program-
ming. Elsevier, 2006.

[41] Peter J. Stuckey, Kim Marriott, and Guido Tack. Minizinc handbook, release 2.6.4,
2021. URL https://www.minizinc.org/doc-2.6.4/en/index.html.

[42] Elias Subba and Ole Jacob Lygre Stordal. Scheduling sports tournaments by mixed-
integer linear programming and a cluster pattern approach: computational imple-
mentation using data from the international timetabling competition 2021. Master’s
thesis, 2021. URL https://openaccess.nhh.no/nhh-xmlui/bitstream/
handle/11250/2766790/masterthesis.pdf.

[43] Daniil Sumin and Ivan Rodin. MILP based approaches for scheduling double round-
robin tournaments. In 13th International Conference on the Practice and Theory of
Automated Timetabling, 2021.

[44] Guido Tack and Mikael Zayenz Lagerkvist. Gecode website. URL https://www.
gecode.org/.

[45] Clemens Thielen and Stephan Westphal. Complexity of the traveling tournament
problem. Theoretical Computer Science, 412(4-5):345–351, 2011.

[46] David C Uthus, Patricia J Riddle, and Hans W Guesgen. An ant colony optimization
approach to the traveling tournament problem. In Proceedings of the 11th Annual
conference on Genetic and evolutionary computation, pages 81–88. ACM, 2009.

[47] David C Uthus, Patricia J Riddle, and Hans W Guesgen. DFS* and the traveling
tournament problem. In International Conference on Integration of Constraint Pro-
gramming, Artificial Intelligence, and Operations Research, pages 279–293. Springer,
2009.

[48] David C Uthus, Patricia J Riddle, and Hans W Guesgen. Solving the traveling
tournament problem with iterative-deepening A*. Journal of Scheduling, 15(5):
601–614, 2012.

[49] David Van Bulck, Dries Goossens, Jörn Schönberger, and Mario Guajardo. Robinx:
A three-field classification and unified data format for round-robin sports timetabling.
European Journal of Operational Research, 280(2):568–580, 2020.

94

https://www.minizinc.org/doc-2.6.4/en/index.html
https://openaccess.nhh.no/nhh-xmlui/bitstream/handle/11250/2766790/masterthesis.pdf
https://openaccess.nhh.no/nhh-xmlui/bitstream/handle/11250/2766790/masterthesis.pdf
https://www.gecode.org/
https://www.gecode.org/

[50] David Van Bulck, Dries Goossens, Jeroen Belien, and Morteza Davari. The fifth
international timetabling competition (ITC 2021): Sports timetabling. In MathSport
International 2021, pages 117–122. University of Reading, 2021.

[51] Jasper van Doornmalen, Christopher Hojny, Roel Lambers, and Frits Spieksma.
A hybrid model to find schedules for double round robin tournaments with side
constraints. In Proceedings of the 13th International Conference on the Practice and
Theory of Automated Timetabling-PATAT 2021, page 412, 2021.

[52] Pascal Van Hentenryck and Yannis Vergados. Traveling tournament scheduling:
A systematic evaluation of simulated annealling. In International Conference on
Integration of Artificial Intelligence (AI) and Operations Research (OR) Techniques
in Constraint Programming, volume 3990 of LNCS, pages 228–243. Springer, 2006.

[53] Pascal Van Hentenryck and Yannis Vergados. Population-based simulated annealing
for traveling tournaments. In Proceedings of the 22nd National Conference on
Artificial Intelligence, number 1, pages 267–262. MIT Press, 2007.

[54] Laurence A Wolsey. Integer programming. John Wiley & Sons, 2020.

95

	Kurzfassung
	Abstract
	Contents
	Introduction
	Aim of this Work
	Outline
	Key Results

	State of the Art
	ITC2021 Solution Approaches
	Traveling Tournament Problem

	Methodology
	Constraint Programming
	Heuristic Optimization

	Problem Description
	Double Round Robin Tournament
	ITC2021 Problem Definition
	Constraints
	Objective Function
	NP-Hardness
	Derived Problems

	Solution Approaches
	Constraint Programming
	Simulated Annealing
	Parallel Multi-Start Hybridization

	Computational Study
	Constraint Programming with MiniZinc
	Instances
	First Comparison of MiniZinc Configurations
	Comparison between Versions
	Globals vs Non-globals
	Randomized Restart Experiments for Chuffed
	Preliminary Experiments with TTSA
	First Hybridization with Simulated Annealing
	Simulated Annealing Standalone
	Second Hybridization with Simulated Annealing
	Final Results

	Conclusions & Future Work
	Additional CP Results
	List of Figures
	List of Algorithms
	Bibliography

