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Kurzfassung

Um die Stärke von Spielern im Go-Spiel und anderen Bereichen des Wettkampfes zu
beziffern, bedienen wir uns üblicherweise eines paarweisen Wertungssystems wie Elo oder
Glicko-2. Derartige Systeme ordnen dem Spieler anhand seiner errungenen Siege und
Verluste eine Wertungszahl zu.

In dieser Arbeit vergleichen wir eine Implementierung des klassischen Wertungssystems
Glicko-2 mit einem neu entwickelten, verhaltensbasierten Ansatz, welcher auf einem
gelernten Stärkemodell basiert. Dieses Modell verarbeitet die Information über alle Züge
aus verfügbaren Spielen eines Spielers in der jüngeren Vergangenheit, wodurch es mit
erheblich weniger Partien ein klares Bild zur akkuraten Wertung erhält.

Wir konstruieren unser Stärkemodell in Form eines neuronalen Netzwerks. Da wir uns zur
Auswertung der Brettstellungen das fachspezifische neuronale Netzwerk des bestehenden
Go-spielenden Programms KataGo durch Transfer Learning zunutze machen, müssen
wir das Wissen über das Spiel nicht von vorne lernen. Unser Stärkemodell verwendet die
interne Wissensdarstellung aus dem neuronalen Netzwerk von KataGo als Eingabe weiter
und benötigt somit keine eigenhändig ausgearbeiteten Features.

Die Architektur unseres Stärkemodells basiert auf einem Set Transformer. Diese Archi-
tektur wendet wirkungsvolle Elemente aus der leistungsfähigen Transformer-Architektur,
wie Residual Blocks und Attention, auf eine ungeordnete Menge von Eingabe-Elementen
an. Die Anzahl der Rechenoperationen wächst nur linear mit der Größe der Menge, da die
Attention-Aufrufe auf eine konstante Zahl von Induktionselementen beschränkt sind. Die-
se Induktionselemente richten die Aufmerksamkeit des Modells auf wenige aussagekräftige
Spieler-Züge unter Hunderten.

Um eine geeignete Konfiguration für das Training unter dieser Architektur zu bestimmen,
führen wir eine randomisierte Suche in fünf Etappen über die Hyperparameter durch. Das
Modell aus jenem Trainingslauf, welcher die genauesten Vorhersagen über den Ausgang
der Test-Partien hervorbringt, wird als unser Stärkemodell im Endergebnis ausgewählt.

In Experimenten zeigt sich, dass unser Modell mit −0.58 durchschnittlicher log-Wahr-
scheinlichkeit generell etwa gleich genau wie Glicko-2 den Partie-Ausgang abschätzen kann.
Im Vergleich über eine Auswahl von Partien zwischen Spielern mit wenig Vorgeschichte
kommt unserem Modell der verhaltensbasierte Aspekt zugute, dass es jeden einzelnen Zug
aus den vorherigen Spielen heranziehen kann. Dadurch kann es eine durchschnittliche
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log-Wahrscheinlichkeit von −0.55 erreichen und Glicko-2 mit −0.64 in diesem Szenario
übertreffen.

Wir demonstrieren unser Stärkemodell an zwei praktischen Anwendungsfällen. Zum
einen stellen wir eine öffentliche Website zur Verfügung, wo interessierte Spieler das
Stärkemodell aufrufen können. Zum anderen führen wir eine vollständige Auswertung
einer Problemsammlung von Trickzügen durch.



Abstract

To quantify the performance of players in the game of Go and other competitive domains,
we usually employ a paired comparison rating system like Elo or Glicko-2. Such systems
assign a rating to a player based solely on their win/loss record.

In this work, we compare an implementation of the classical rating system Glicko-2
with a newly developed approach based on a learned strength model. This model uses
information about all of a player’s moves played in available recent games, providing a
clear picture with significantly fewer games to accurately determine the rating.

We construct our strength model as a neural network. We take advantage of the domain
neural network of the existing expert Go-playing program KataGo by transfer learning
for board position evaluation. Therefore we avoid learning game knowledge from scratch.
Our strength model uses the internal knowledge representation from the domain network’s
trunk as input and does not require us to manually engineer features.

The architecture of our strength model is based on a Set Transformer. This architecture
employs effective elements from the trendy Transformer architecture, such as residual
blocks and attention, on an unordered set of input elements. Its number of operations
grows just linearly in the size of the set because the attention queries are limited to a
fixed number of inducing points. These inducing points focus the attention of the model
on a few significant telling game moves among hundreds.

We determine a suitable configuration for training this architecture by executing a random
search in five iterations over all hyperparameters. The resultant model from the training
run that produces the most accurate predictions over the games in the test set becomes
our final strength model.

Our experiments show that our model can, with a mean log-likelihood of −0.58, estimate
the outcome of a game approximately as well as Glicko-2. In comparison over a selection
of games between players with scarce history, our model leverages the behavioral aspect,
being able to draw on every move of the players’ preceding games. Through this it can
achieve a mean log-likelihood of −0.55, surpassing Glicko-2 with −0.64 in this scenario.

We demonstrate our strength model in two practical applications. For one, we provide a
public website where interested players can query the strength model. For the other, we
perform a complete strength evaluation on a collection of trick play problems.
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CHAPTER 1
Introduction

Go is an ancient two-player strategy game that is popular all over the world, especially in
its Far Eastern origin countries. It used to be known for its intractability by traditional
game-playing algorithms like alpha-beta tree search, which could never reach the level
of expert human players. With the breakthrough development of AlphaGo by Deep-
Mind [Sil+16; Sil+17], Go-playing programs (bots) based on deep neural networks have
achieved the playing strength to defeat any human professional. Combining a learned
positional value and policy function with tree search, AlphaGo can accurately predict the
winrate of both the black and white player for many positions. DeepMind’s publication
demonstrated the effectiveness of its deep reinforcement learning approach in a domain
that long resisted classical approaches.
Following in the footsteps of AlphaGo, the open-source bot KataGo [Wu20] cannot only
estimate who is winning, but also by how many points. In addition to this judgement,
a human expert can read the strength of players from their moves. Although this task
has received comparatively little scientific attention so far, we recognize its practical
application. When a newcomer enters an established circle of Go players, such as a
Go club, there are only two realistic methods to ascertain the newcomer’s skill: They
either self-declare their “rank”, or they have to provide samples, i.e. play games against
established folk.
The rank is a traditional, globally recognized scale, on which “20-kyu” describes a beginner,
“1-kyu” describes a decent amateur, and “1-dan” to “9-dan” describe formidable amateur
enthusiasts whose knowledge of the game is not entirely misguided. Beyond that, there
are separate professional leagues in China, South Korea, Japan, Taiwan, Europe, and
North America. The expert Go players who often make their career competing in these
leagues are ranked from “1-dan” to “9-dan”. We can disambiguate between “1-dan
amateur” and “1-dan professional” where necessary. The drawbacks of this rank system
are that it is coarse, sometimes ambiguous, not well-regulated, and inconsistent between
distinct communities.
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1. Introduction

Hosts of tournaments and other organized competition, such as various Go associations
around the world and web-based Go platforms, mostly use rating systems to estimate
players’ strengths from wins and losses in the form of a rating. These classical rating
systems like Elo and Glicko-2 apply one objective algorithm equally and consistently to
all participants within the same pool. Rating numbers have a much finer resolution than
traditional ranks.

While a classical rating system needs quite a few samples—usually around 10 games—to
produce a decently accurate rating, a human expert can often make this judgement by
simply observing the moves played in just one or two games. As such, one traditional
method of estimating the strength of a newcomer is by having the person play an
evaluation game against the local master, who declares their rank. The “binary” rating
system based on wins and losses is distinguished from the “behavioral” strength estimation.
The term refers to observing the behavior of an agent in an environment, a common
perspective in the field of artificial intelligence.

Contemporary bots contain sufficient domain expertise within their neural network models
to perform the strength estimation task, but they have not yet been properly employed
for this specific purpose. The occasional previous research in this direction either was too
early to have access to this current generation of expert algorithms, or did not exploit
the technology to its full potential.

Our contribution in this thesis is the specification and development of a new, rigorous
behavioral solution to the strength estimation problem and its rigorous experimental
evaluation. It targets ratings and compares favorably to established binary rating systems.
We propose a trained neural network model that learns the task from public competitive
Go game data while leveraging the domain expertise of the KataGo network by transfer
learning.

In Chapter 2, we introduce the basic terminology and formal definitions, covering the
problem domain and techniques of machine learning. Chapter 3 delves into the literature
relating to the different groundwork topics for this work: classical rating systems including
aspects of Glicko-2 in a way that is tailored towards comparison with our approach, Go-
related algorithms and history, and previous strength estimation approaches comparable
to ours. Chapter 4 describes the dataset on which we train, the strength models that
we train and the training itself. Two of the models in this chapter serve as baselines for
our performance comparison. The third is our core work, the full strength model. In
Chapter 5, we show the results of the training process and evaluate model performance
experimentally by comparison. The concluding remarks in Chapter 6 summarize our
contribution and discuss notable aspects and caveats. Chapter 7 presents two practical
applications of our strength model: We offer a website as a public interface to perform
strength estimation and we examine a set of trick play challenges from a book.

2



CHAPTER 2
Preliminaries

We begin by introducing the fundamental concepts and definitions used in this work.

2.1 The Game of Go
The basic rules of the game are relatively simple: The game starts on an empty board, a
grid of 19 by 19 intersections. The player holding the black stones moves first by placing
a black stone on an unoccupied intersection, followed by the white player placing a white
stone. This alternating move sequence continues until the game is finished, the board
being unambiguously divided by closed borders of stones into black and white territories.
As as side effect of a move, one may capture the opponent’s stones, or even entire “strings”
of multiple stones linked by grid adjacency, by occupying all their neighboring locations
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Figure 2.1: The capture rule: If white plays a stone at A in the situation on the left, the
two surrounded black stones marked are taken off the board as prisoners for white.
Counting: On the small (9× 9) finished example board on the right, black has 23 points
of territory and white has 4 in the top left plus 11 on the right. The crossed-out white
stone in black’s territory counts as black’s prisoner for one more point. Even adding a
komi of 6.5 to the white score is not enough to overcome black’s total of 24 points, thus
black wins the game.
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2. Preliminaries

such that there are no free grid intersections (“liberties”) reachable from any stone in the
string. Captured stones are removed from the board and kept by the capturing player
as “prisoners”. It is forbidden to repeat board positions. At the end of the game, any
stones inside opponent territory are also taken prisoner. The total points of each player
are determined as the number of free intersections inside their own territory plus the
number of prisoners taken. Additionally, the white player receives 6.5 points called komi
to compensate for black’s first-move advantage and to exclude a draw result. Whoever
has more points is the winner.

This brief summary of the rules, illustrated in Figure 2.1, shall suffice for our purposes.
We have glossed over details such as the rigorous definition of territory and different
rulesets. For more details, refer to the translated Japanese rules of Go [NK].

Go is a game of perfect information. Consequently, there exists a perfect strategy,
i.e. a total mapping from the set of legal board positions to the respective best move in
that position. The best move (under arbitrary resolution of ambiguity) preserves the
possibility of a forced win, if it exists, or otherwise preserves the possibility of a forced
draw by quirks of the rules, if it exists. Further, the best move preserves the maximum
forcibly achievable final score for the player to move, determined by their points minus
the opponent’s points. We refer to a sequence of best moves from both sides as optimal
play, possibly from a context position. Properties of a board position can be asserted
(implicitly) assuming optimal play, which means that the property holds if the game were
to be concluded using only optimal play from that position forward. For example, the
statements that “the white group of stones is alive” (immune to capture) or that “black
is 10 points ahead” are understood to hold assuming optimal play.

Which moves constitute optimal play is unknown in most positions and thus usually
hypothetical. Instead, we approximate the expected game outcome by estimating the
players’ winrate [ET20]. Unless stated otherwise, the winrate in a board position means
the winrate of the player to move. When we view (the remainder of) a game as a Bernoulli
experiment between equally matched opponents with leeway for mistakes, the winrate
allows us to quantify the advantage of one side in the current position. For example,
if the winrate for white is 60%, then the game outcome will be “white wins” 60% of
the time. Through the idea of equally matched—not necessarily perfect—opponents, we
separate the positional winrate concept from the particular player’s skill.

Especially at the level of human players, the extreme rate and scale of blunders can
quickly put one side at such a decisive advantage that even mediocre or bad moves do
not significantly impact the winrate. To retain a meaningful distinction between good
and bad moves in such scenarios, we need to measure the distance between the current
state and the tipping point of equal chances. This measure is the lead in points: the
number of additional points that would hypothetically have to be gifted to the other
player in the position to equalize the winning chances.

A Go-playing program can estimate both the winrate and the points lead. In this work,
we call a Go-playing program a bot for short. Derived from these estimates, the winrate

4



2.2. Neural Networks

loss and points loss of a single move are measures of move quality. They are determined
as the winrate or points lead in the board position before the move in question minus
the winrate or points lead in the resultant position after the move, viewed from the
perspective of the moving player. As a notable caveat, there may be a tradeoff between
winrate and lead. Since both are only ever estimates to substitute for the unknown
game outcome assuming optimal play, we can never absolutely state that one should be
preferred over the other. Strong bots maximize winrate, while humans prefer to assess
the more tangible points.

2.2 Neural Networks
In this section, we cover the relevant basics on neural networks as found in textbooks,
such as [GBC16; RN21].

A neural network f is a model for approximating a function mapping input x to output
y by tuning the model parameters θ. Formally,

f(x; θ) = y.

The input features in x and the output features in y are real-valued random variables.
We consider x to stem from an unknown data generating distribution. The parameters in
θ are real numbers.

The structure of x depends on the application. It consists of one or multiple feature
vectors. Multiple related feature vectors are compounded into multi-dimensional tensors
as a convention to simplify definitions of operations on them.

Networks are structured into layers, which are optionally compounded into blocks. Blocks
and layers as nodes form a directed acyclic graph, in which every source node represents
an input feature x(·) and every sink node represents an output feature y(·). Layers receive
inputs only from higher layers and pass output only to deeper layers.1 The most basic
structure is the chain, formally

f(x; θ) = fl(. . . f1(x; θ1) . . . ; θl), θ = θ1 ∪ · · · ∪ θl,

where fi, i = 1, . . . , l are blocks or layers. Blocks can have a chain structure as well,
following the same definition. If f is a block and f1 and f2 are layers or blocks, they are
nested inside f .

A layer models a clearly described function or class of functions using a few basic
operations.

A block models a higher-level abstraction as a composite of as many different functions
as the hidden dimensions, the dimensionality of its intermediate features between layers,
will allow.

1This specifically describes feed-forward networks, the only type of network used in this work.
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2. Preliminaries

2.2.1 Basic Layers

The most essential layer is the fully-connected layer with parameters W ∈ Rm×n and
b ∈ Rn, n, m ∈ N, which models an affine transformation of the input features. It may
further include an activation function σ : R → R that applies element-wise to feature
vectors, such as the rectified linear activation function ReLu(x) = max(0, x). The classical
definition of the fully-connected layer is

FC(x; W, b) = σ(Wx + b).

Fully-connected layers can be varied based on context, needs, and conventions. They
may be defined to include normalization of input features. They may use W as the
only parameter, implying b = 0. In a preactivation architecture, σ applies before the
transformation: Wσ(x) + b.

Originally inspired by the way biological neurons propagate information in the brain, the
fully-connected layer’s interpretation for our purposes is that it can recognize features in
the input that are more abstract. The role of the affine transformation in achieving this
is like aligning paper in a cutter, which is then metaphorically “cut” by the nonlinear
activation function.

Dimensionality reduction is the linear transformation into a lower-dimensional space.

f(x; W ) = Wx, where W ∈ Rm×n, m < n

This can be done as part of the first layer of a bottleneck residual block to prepare for
computing expensive layer operations more efficiently in fewer dimensions. The features
are projected back into the high-dimensional space at the end of the block.

The softmax layer implements weighted multiple-choice among any number of options,
such as output classes in a classification task. Each option i is weighted proportional to
its scalar logit zi.

softmax(z1, . . . , zn)i = ezi∑n
j=1 ezj

Another interpretation is that softmax generalizes the sigmoid activation function ς(z) =
ez

1+ez to multiple signals, only the strongest of which “fire”.

The batch normalization [IS15] layer normalizes all elements of its d-dimensional input x
to a mean of 0 and to a variance of 1, then applies a linear transformation according to
the learned parameters g ∈ Rd and b ∈ Rd:

BatchNorm(x; g, b)i = gi
xi − E[xi]√

Var[xi]
+ bi,

where xi, gi, and bi denote the i-th element of x, g, and b, respectively.

6



2.2. Neural Networks

To find the mean and variance of the input distribution, the batch normalization layer
estimates them from a moving average of every input value in the current batch during
training, and again from a larger sample size to finalize the layer after training. The
effect of BatchNorm is to reduce amplification of changes as they propagate through
many layers, leading to more reliable training of deep layers. Among the downsides to
this approach are that the output of one sample now depends on all other samples in the
batch, and that it assumes a feed-forward network architecture where every input is used
exactly once.

The layer normalization [BKH16] layer LayerNorm(x; g, b) works like batch normalization,
except that it estimates the input mean and variance from all the real-valued components
of the input sample. Batch elements are thus treated separately. This resolves some
downsides of batch normalization.

2.2.2 Residual Connection

A residual connection is a neural network component in which we train a residual function
F(x; θ) that adds to the input.

f(x; θ) = x + F(x; θ)

This centering of the model on the identity function mitigates a phenomenon of accuracy
degradation in deep networks during training [He+16]. A network built of components
with residual connections is a residual network or ResNet for short.

2.2.3 Pooling

For an input that consists of multiple elements that are same-size feature vectors, the
(global) pooling operation determines the occurrence or prevalence of a feature among all
elements. It spreads this global information to multiple output elements in the form of a
residual function added to them.

Given input features x(i) at location i, pooling inputs g which may be separate inputs
distinct from x, an aggregation function s, and weights W , pooling is defined as

y(i) = x(i) + Ws(g).

The function s computes one feature vector from statistics, for eaxmple, the mean or
maximum or both, of each channel.

2.2.4 Attention

Like pooling, attention can compute aggregated information from multiple inputs. Unlike
simple pooling, attention scores the elements according to their keys, which are feature
vectors derived from the inputs. The attention mechanism evaluates each key according

7



2. Preliminaries

to multiple queries, which are also feature vectors. The resultant attention coefficients
apply as weights to the values derived from the inputs. Each attention query thus results
in a differently-weighed sum of input values.

In this work, we use dot-product attention. Attention coefficients scale with the dot
product between the respective query and key feature vectors. Keys that are similar to
the query weigh more under this measure.

The attention operation for a singular query is defined as

AT(q, k, v) = softmax
(

q⊺k√
dq

)
v

where
q ∈ Rdq is a query feature vector,
k ∈ Rdq×n are n element keys and
v ∈ Rd×n are n element values.

We extend this definition to m queries q′ ∈ Rdq×m by concatenating the results, yielding
AT(q′, k, v) ∈ Rd×m.

2.2.5 Convolution

If the input features are arranged in a grid-like topology, like pixels in an image or
intersections on a Go board, we can apply the convolution operation defined as

y(i)j =
∑
a∈A

x(i− a)⊺fj(a)

where
x(i) ∈ Rd is the input feature vector associated with grid location i,
y(i)j ∈ R is the j-th component of the output feature vector at i,
fj(k) ∈ Rd is the weight vector defined by the j-th filter at offset k, and
A is a set of offsets defining an area the size of the filters.

For example, a “3× 3 convolution” models each output channel (feature component) as a
linear combination of the input features at the same location and in its 8-neighborhood.
A convolution layer is a layer that uses convolution as its basic operation in the same
way the fully-connected layer uses the affine transformation. A convolutional network
uses convolution layers as its core component.

The purpose of filters is to recognize local patterns. Since they are equivariant to transla-
tion—the filter detects the pattern no matter where it occurs—convolution separates the
concept of the pattern from its location in training and in application.

8
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2.2.6 Training

Let T ∪̇ V ∪̇ E ⊆ O = {(x1, y1), (x2, y2), . . .} be a set of observation data. We want to
approximate it by a function with a model f(x; θ). We do this by repeatedly sampling
minibatches B = {(xB

1 , yB
1 ), (xB

2 , yB
2 ), . . .} from the training set T .

The parameter update based on B with learning rate η towards minimal loss L, defined as

θ ← θ + ∆θ, ∆θ ∝ − η
∑

(x,y)∈B

∂L(y, f(x; θ))
∂θ

,

implements stochastic gradient descent. The learning rate starts at its maximum value
and decays over the training epochs, controlled by the (exponential) learning rate decay
parameter β.

ηi+1 ← (1− β) η

This allows early training to reach a promising region in parameter space and later
training to be sensitive to smaller improvements.

We choose the training loss function L = Lt to be a measure of distance from the training
target y. Minimal loss corresponds to desirable model behavior. The popular Adam
optimization algorithm [KB17] performs stochastic gradient descent and normalizes every
gradient update component according to an exponential moving estimate of its mean
and variance.

The variables that define the model architecture and training mode, such as the learning
rate η, number of network layers, and feature dimensions, are hyperparameters.

A well-chosen set of hyperparameters regulates the effective capacity of the model such
that it fits the training data and generalizes well. If the model is too small, it underfits,
and if it is too large, overfits the training data.

We use the validation error ∑
(x,y)∈V

Lp (y, f(x; θ))

to evaluate model performance during training and guide our search for the ideal hyper-
parameters. While the training loss function Lt includes aspects like secondary targets
and regularization to give the best learning experience to the model, the performance
loss function Lp specifies our true performance measure for model validation and testing.

If the validation error stops improving for a chosen fixed number of training iterations
(the patience), we omit the remainder of the training run and end with the model that
has the lowest validation error to that point. This early stopping technique implicitly
optimizes the training duration as a hyperparameter.

The iterated random search algorithm for hyperparameter optimization [BB12] proposes
a fixed number of n random points in the space of hyperparameters. For each point,
it assigns a random value to each hyperparameter according to an individually defined
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marginal distribution. The best point is determined as the one that minimizes the
validation error of the correspondingly trained model. The process iterates k times by
shrinking the search space to the lower-magnitude vicinity of the previous best point.
Training completes after n · k runs.

After we train the final model on the best of the found hyperparameters, the test error
based on E gives us an unbiased estimate of the expected trained model performance in
the real world.

2.3 Rating Systems

A rating system in games like Go is an algorithm that quantifies the fitness, called rating,
of players from a pool who participate in some competitive endeavour. Rating systems
are renowned for their application to sports and games, but they similarly apply to other
domains with competitive elements such as wine tasting, online dating and many more.
The central fitness quantity is the rating number : the higher, the fitter. Under more
detailed systems like Glicko-2, the rating includes more constituent components.

The two main purposes of rating systems are evaluation and matchmaking. Evaluation
is the determination of the competitors’ fitness—playing strength or just strength in
our setting—which can be taken as personal feedback, status symbol, or for ranking
purposes, for example to decide who qualifies to participate in a high-stakes championship
tournament. Matchmaking is the problem of brokering matches between worthy opponents
among willing would-be competitors. An opponent is worthy if their strength—a hidden,
time-varying value that is estimated by the rating number—is similar to that of the
matched player, giving both a chance at victory.

We restrict this work to paired rating systems, in which each in a series of games
constitutes a confrontation between a pair of players, exactly two opponents. One of
them is designated as the black player, the other as the white player. The outcome of the
game is determined by the opponents playing a series of moves. The black player makes
every odd move and the white player makes every even move in the game. As a result,
one opponent is the winner and the other is the loser. We represent this fact numerically
as the score s of the match: 1 if black is the winner, 0 if white is the winner. We further
do not take draws and other sorts of undecided games into consideration. All definitions
in this work can be extended to allow undecided outcomes by treating them as either
having never happened, or as half a win—with score 0.5—for both.

When we talk of “score”, unless stated otherwise, we are referring to the score of a game
and not to the—largely irrelevant—points lead in the end position of a Go game defined
in Section 2.1.

Definition 1 (Pool) A game is a tuple ⟨b, w, s⟩ that includes the opponents b and w,
b ̸= w, and the score s ∈ {0, 1}.

10
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We define the pool G as a time series of tmax games.

G = (gt), 1 ≤ t ≤ tmax

The set
P = {p | ∃⟨b, w, ·⟩ ∈ G : p = b ∨ p = w}

is the set of all players who appear in a game in G.

Every game gt has an associated move set M(gt) = {mt,1, . . . , mt,max}. For every move
in the set, we know all the necessary information to extract features, such as the board
state before the move, the move coordinates, and all previous moves. Every move mt,i

has an associated color c(mt,i) such that, for a move set M(gt) as just defined,

c(mt,i) =
{

black if i is odd,
white if i is even.

Additionally, we define the color c(p, g) of player p in the game g as

c(b, ⟨b, w, ·⟩) = black,

c(w, ⟨b, w, ·⟩) = white.

Definition 2 (Recent Moves) The history H of a player p at time tnow is the set of
all their games until and including time tnow.

H(p | tnow) = {gt = ⟨b, w, s⟩ ∈ G | t ≤ tnow and either b = p or w = p}

The past move set of p at time tnow is

Mpast(p | tnow) = {mt,i ∈M(gt) for all gt ∈ H(p | tnow) | c(m) = c(p, gt)}, except passes.

Let the window size N be a predetermined desired number of recent moves. Then the
recent move set

M−(p | tnow, N) = TopN (Mpast(p | tnow))

is the set of the latest up to N past moves mt,i according to the order

mt0,i < mt1,j if t0 < t1 and
mt,i < mt,j if i < j.

A rating system defines an estimator for the hidden true strength of the players parti-
cipating in G by mapping their past performance to a rating. Let R be the domain of
ratings in a rating system. We formally define the rating estimator as

11
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r̂(p | t) : P × {0, . . . , tmax} → R. (2.1)

The rating number µ(r) : R→ R is the key element in (or even the entirety of) a rating.
If p1 is a weaker player than p2, then we expect that µ(r̂(p1 | tmax)) < µ(r̂(p2 | tmax)).

A classical binary rating system like Elo or Glicko-2 infers the player ratings from the
binary score s alone, while a behavior rating system based on models like that of Moudřík
et al. [MBN15], or the ones presented in this work, infers ratings from the moves M of
previous games instead of s.

One design goal of rating systems is to predict game outcomes accurately. As a statistic
to measure the quality of a rating system, we can calculate its predictive accuracy α as the
rate of outcomes in which the system correctly predicted the winner. Let gt = ⟨bt, wt, st⟩.

α = 1
tmax

tmax∑
t=1

∣∣st − I≤0
(
µ(r̂(bt | t− 1))− µ(r̂(wt | t− 1))

)∣∣ (2.2)

This measure, although occasionally used in literature, is crude because it fails to
distinguish the degree of certainty with which the score was predicted. We therefore
use ŝ(t), an estimate of the outcome st of game gt based on the ratings r̂(bt | t− 1) and
r̂(wt | t− 1). We formally define the score estimator as

ŝ(t) : {1, . . . , tmax} → [0, 1]. (2.3)

For rating and score estimators, µ(r̂(bt | t − 1)) > µ(r̂(wt | t − 1)) holds if and only if
ŝ(t) > 0.5. The accuracy α is equivalently defined via ŝ.

α = 1
tmax

tmax∑
t=1
|st − I≤0(ŝ(t)− 0.5)| (2.4)

When the chances are dead even, our definition treats this as a prediction of white victory.
This is because white has a slightly higher empirical winning rate in Go and, absent
other information, the system should “guess” white.

Using a score estimator, we strive to maximize the log-likelihood statistic λ, the (normal-
ized) natural logarithm of the estimated probability that, for each game, the result will
be the observed result.

λ = 1
tmax

tmax∑
t=1

ln (1− |st − ŝ(t)|) (2.5)
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CHAPTER 3
Related Work

In this chapter, we review relevant literature on the general topics of rating systems,
Go-playing programs, and prediction of player attributes.

3.1 Rating Systems

All rating systems used in competitive Go environments, namely the Go associations of
the world with their amateur and professional leagues as well as online platforms such as
OGS, are binary rating systems: They determine rating numbers based entirely on game
outcomes (wins and losses). One major advantage is transparency through simplicity,
contributing to the perceived fairness that is necessary for their broad acceptance.
The determination of the winner becomes the bottleneck of any contention from the
competitors, systematically addressed through rigid game rules. Moreover, the resulting
numbers need only to be subjectively accurate enough to be fair and entertaining. A
hypothetical system that correctly predicted absolutely every game outcome would only
harm the general interest in the competition.

The Elo system [Elo78], invented by Arpad Elo to rank Chess players, is the most widely
recognized paired comparison system founded in statistics. Glickman [Gli99; Gli01]
formulated the Glicko and Glicko-2 rating systems, which expanded the representation
of a player’s skill from just the rating number to also include the rating deviation and
volatility parameters. We describe the Elo and Glicko-2 systems in in this section. For
further information on Glicko-2, refer to the example on Glickman’s website [Gli22] or to
the particular implementation of the Go platform OGS [NC]. The whole-history rating
system by Coulom [Cou08] improves accuracy by investing computation time into an
iterative approximation algorithm over the whole pool of games. As a welcome side effect,
match outcomes added over time can cause retroactive corrections on the ratings of all
participants, even of those who are not directly involved in the new paired comparisons.
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This makes whole-history rating a suitable basis for the international comparison of
professional Go players1, even if most games occur between players of the same country.

3.1.1 Bradley-Terry Model

The Bradley-Terry model [BT52] allows us to draw the connection between (scaled)
rating numbers and winning chances. We view the game outcome as a probabilistic event
based on the rating numbers which correspond to the real, hidden playing strengths of
the opponents. Let µ1 and µ2 be the rating numbers of opponents p1 and p2. Then the
probability that p1 defeats p2 in a game between the two is

ŝB-T(t) = eγµ1

eγµ1 + eγµ2
. (3.1)

The scaling factor γ is an arbitrary positive real number that we can adjust to make our
ratings “look nice”. We may choose γ to let beginners have rating numbers below 1000,
strong club players perform around 2000, and world-class players top out around 2800.
This fits established expectations in Chess and other disciplines.

To illustrate, imagine that player p1 puts eγµ1 red balls into an empty urn. Player p2
adds eγµ2 blue balls into the urn. Then the color of a single ball drawn from the urn
determines the winner of the match.

3.1.2 Elo System

In the binary rating system described by Elo [Elo78], the rating number is the sole
quantity that models the strength of a competitor. Players’ hidden strengths and rating
numbers are now defined as time-varying, i.e. as functions in t. The system keeps track of
the rating number µi(t) of every player pi over time, with the reference point µi(·) = 2000
describing a strong amateur club player based on tradition.

In the original application of the Elo system, the winning probability of p1 with rating
µ1 over p2 with rating µ2 at time t is modeled by the standard normal distribution.
Denoting its cumulative function by Φ, we have

ŝElo(t + 1) = Φ
( 1

200
√

2
(µ1(t)− µ2(t))

)
. (3.2)

In the book [Elo78], Elo discusses a logistic model like Bradley-Terry as an alternative in
his later chapter on rating system theory.

Furthermore, every game outcome st+1 at time t + 1 works as an incremental piece of
information to the system about the hidden strengths of the players involved. It adjusts,
for both players, the rating number µ(·)(t + 1) in proportion to the difference between
the expected score ŝElo(t + 1) and the actual score st+1.

1Current whole-history ratings of top players: https://www.goratings.org, visited: 2024-10-01
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µi(t + 1)← µi(t) + K · (st+1 − ŝElo(t + 1)) (3.3)

All other ratings are unaffected: µi(t + 1)← µi(t).

The scaling factor K is a positive global constant. A high K allows faster adjustment to
change, while a low K keeps the rating estimate closer to the target.

The Elo system can be interpreted as performing stochastic gradient descent on rating
numbers towards the moving target of hidden strengths. Then K is the learning rate.

In terms of our rating system definition, the rating estimator of Equation 2.1 is defined
under the Elo system as

r̂(pi | t) = µi(t).

The original definition by Elo includes more details which we omit here. For example,
it extends to multiple matches, akin to minibatches, happening at the same time. This
applies when rating all games from a tournament at the end.

Since the inception of the Elo system, numerous extensions and improvements have been
suggested: more accurate representations of ratings, more accurate models of winning
probability, better handling of drop-outs and newcomers to the pool, team ratings, and
so on. Thanks to the Elo system’s simplicity, it enjoys widespread use as a practical
rating system and as a reference point for other systems.

3.1.3 Glicko-2

The Glicko rating system was introduced by Glickman [Gli99; Gli16] as an improvement
over the Elo system. It represents a player’s rating with a rating deviation value on top
of the rating mean. The rating deviation models the system’s confidence in the rating
estimate. The deviation decreases with each rating update and increases over time.

The newer revision Glicko-2 [Gli01; Gli22] adds a third player property, the rating
volatility. This volatility discriminates established, stable players from those who are
fast-improving—or, less realistically, getting worse fast. In Glicko-2, the ratings deviation
increases over time proportional to the volatility.

Let ⟨µi(t), ϕi(t), σi(t)⟩ be the estimated rating r̂(pi | t) of player pi at time t, constituted of
the rating mean µi(t), rating deviation ϕi(t) and rating volatility σi(t). The calculations
for Glicko-2 operate on a smaller scale than Elo for a more natural formulation, but the
rating and deviation are always scaled to Elo-like numbers in the thousands of points for
presentation. The relationship is

rating number µ(r̂(pi | t)) = 1500 + 400
ln 10µi(t),

presented rating deviation = 400
ln 10ϕi(t).
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In this section, we use the Glicko-2 scale for µi(t), ϕi(t) and σi(t) to match Glickman’s
definitions. In all other parts of this work, we always use the large-scale presentation
numbers; we even use the term “rating deviation” to mean the presented rating deviation
and not ϕ.

Consider a match ⟨b, w, s⟩ at time t + 1 against an opponent po with an estimated rating
specified by r̂(po | t) = ⟨µo(t), ϕo(t), σo(t)⟩. The Glicko-2 system takes the players’ rating
deviations into account for the winning probability.

g(ϕ) = 1√
1 + 3ϕ2/π2

γ = −g

(√
ϕ2

i + ϕ2
o

)
ŝGlicko-2(t + 1) = eγµi(t)

eγµi(t) + eγµo(t)

(3.4)

Let ξ be the score from the perspective of pi: 0 for a loss and 1 for a win.

ξ =
{

s if b = pi

1− s if w = pi

The (simplified) process to determine the given player’s successive rating ⟨µi(t + 1), ϕi(t +
1), σi(t + 1)⟩ based on the actual match score st+1 consists of the following steps.

1. g ← 1√
1+3ϕo(t)2/π2

2. E ← 1
1+e−g·(µi(t)−µo(t))

3. estimated rating variance v ← [g · E · (1− E)]−1

4. estimated rating improvement ∆← v · g · (ξ − E)

5. determine σi(t + 1) from all of the above by a certain iterative process

6. volatility-adherent deviation ϕ∗ ←
√

ϕ2
i + σ(t)2

7. ϕi(t + 1)← 1/
√

1
ϕ∗2 + 1

v

8. µi(t + 1)← µi(t) + ϕi(t + 1)2 · g · (ξ − E)

All players pj in the pool who are not involved in a match at time t + 1 increase their
rating deviation based on their unchanged volatility σj(t + 1)← σj(t) by ϕj(t + 1)← ϕ∗

as defined in Step 6. This models the increasing uncertainty of the system as time passes
without new knowledge on inactive players.
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Figure 3.1: For the minimax algorithm, the bot builds a game tree from the current
position at the top. It labels positions with their estimated utility towards winning the
game, which it strives to maximize. When it is the opponent’s turn, the opponent wants
to minimize the same value. When we discover an option for the opponent to refute our
initial move, the resultant low value propagates up the tree and we avoid a blunder.

Glicko-2 fulfills our rating system definition in Equation 2.1 and Equation 2.3 using the
rating estimator and score estimator

µ(r̂(pi | t)) = 1500 + 400
ln 10µi(t),

ŝ(t) = ŝGlicko-2(t).

The guide provided by Glickman [Gli22] includes details on the volatility update and
allows for multiple matches to be ranked in a single “rating period”, just like the original
definition of the Elo system. In this work, we simplify to one match at a time. This agrees
with the reference implementation of OGS, which is also the source of our dataset. The
implementation choice is motivated by the online platform context, where new matches
continuously add to the pool. Users expect to see their results immediately reflected in
their rating rather than to wait for an “update window”.

3.2 Go-Playing Programs

In this section, we summarize the history and methods of Go bots. Figure 3.2 illustrates
their progression.

Throughout the 1960s, 1970s and 1980s, the first Go programs were developed. They were
mostly restricted to smaller board sizes like the beginner-friendly, popular 9× 9 [Ass].

The basic design of a Go bot is the same as that for many turn-based perfect information
games: the minimax algorithm with alpha-beta pruning [RN21], illustrated in Figure 3.1.
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We build a tree of game positions with the current position as the root. The edges
represent legal moves. This tree reaches the entire search space of the problem. The
hard part is knowing which parts of the tree we should explore by expanding the nodes.
Expansion generates the successors of a chosen node for further consideration. Only
expanded nodes can inform the bot’s next move decision. The bot decides on the next
node to expand using its policy function and it evaluates the discovered positions using
its value function.

Compared to Chess, in which the breakthrough of a computer defeating a world cham-
pion human player happened with the victory of Deep Blue over Garry Kasparov in
1997 [CHH02], Go remained the more challenging computer discipline for several rea-
sons [McD+01; BW95]. First, the search space of legal moves is substantially larger. In
Chess, we expect around 35 legal moves in an average position (the branching factor) and
around 80 moves in an average game. The Go board allows 361 legal moves in its empty
initial state, gradually declining over a game length of more than 200 moves in most cases.
These numbers may be just rough upper bounds, but the difference is clear. Second, the
discovery of promising moves is only viable using pattern recognition. These patterns
are too numerous and vague to be defined as hand-crafted heuristics. Third, tactical
choices often depend on a late payoff. The difference between a particular move being
either very beneficial or actively detrimental might only be revealed at the end of a long
hypothetical line of play. In addition to the calculation of potentially viable moves, the
player is burdened with reading out these sequences that will never realistically happen
on the board. At its extreme, the ownership of every point on the entire board can only
be definitively determined at the latest time, the very end of the game.

Around 2007, the adoption of Monte Carlo Tree Search (MCTS) [Cou06] algorithms with
Upper Confidence Bounds applied to Trees (UCT) [KS06] for Go bots established a new
state of the art, capable of challenging stronger, about 2-dan, human amateur players.
These algorithms address the above difficulties in the following manner.

We start with the general assumption that the expected game outcome from a starting
position between equally matched very strong opponents does not change if we substitute
equally matched weak opponents. Monte Carlo tree search gathers information about
candidate moves following this idea by sampling “playouts”, entire games played to the
end using fast heuristics. The finished sample games can be scored and aggregated into
an expected outcome. This algorithm still grows a tree of positions, one node at a time, to
hold statistics about the new variation it played out, but the size of this tree is no longer
a limiting horizon beyond which we cannot see. Figure 3.3 shows this idea. Furthermore,
within this grown tree of known positions, the UCT rule guides the selection of the next
playout move. This rule chooses the next move to maximize the sum of an exploration
term and an exploitation term. The exploration term encourages moves that have a low
playout count, while the exploitation term encourages moves with high expected value.
Finally, the programs of this generation recognize patterns learned from human games.
The approach is generally to simply remember prevalent patterns and prefer these moves
when they are an option.
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Figure 3.2: The timeline of Go bots and their respective strengths can be divided into
three phases based on the dominant technology at the time. Despite their assorted
creative ways to mitigate the difficulties of Go on top of traditional search methods, early
programs were very restricted in their results. MCTS with UCT constituted one notable
breakthrough. With MCTS in combination with neural networks, Go bots have exceeded
all the strongest players. Arrows are drawn from the earliest appearance of the respective
bot to its latest released version.

Examples of MCTS-based programs are Crazy Stone [Cou07b; Cou07a], Fuego [Enz+10]
and Pachi [HP11].

The debut of AlphaGo [Sil+16] proved the viability of the deep learning approach for
positional evaluation, resulting in superhuman performance. One year later, the follow-up
paper [Sil+17] documented that the bot could be trained without training data from
human games, setting it free to discover its own style and break entrenched notions.

Since the source code and network data of AlphaGo were never released to the public,
several projects emerged to replicate its training process. The open-source bots Leela
Zero [THW22; Pas] and KataGo crowdsourced the computation to community volunteers.
KataGo adds new techniques which accelerate the training process [Wu20] and new
network heads. These heads provide a variety of information about the evaluated
positions, which makes the program stronger and also more versatile.
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Figure 3.3: This visualization of MCTS is taken from two slides of Coulom’s presentation
on Crazy Stone [Cou07b]. New playouts are allocated to the preferred leaf in the tree
according to the UCT formula, the first of three in this example. As more playouts pass
through each node, it accumulates its value as the mean of playout values instead of the
traditional min-max backup. This value is proven to converge to the theoretical min-max
values when the most promising nodes are expanded first.
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3.3 KataGo Architecture

KataGo is the dominant state-of-the-art Go bot2. Inspired by the AlphaGo Zero ar-
chitecture [Sil+17], it consists of a search algorithm guided by a deep neural network.
This network is relevant for us because it holds the domain knowledge to support our
strength model. In this section, we compile the most important bits from the original
KataGo paper [Wu20] and the documentation page “Other Methods Implemented in
KataGo” [Wub] as an overview.

The search tree grows by MCTS playouts and it is guided by UCT. However, its playouts
only reach the next new node, where its trained neural network performs the positional
evaluation in place of the full sample games of previous-generation bots. The next node
u at any step in a playout is the one that maximizes

PUCT(u) = V (u) + cPUCTP (u)
√∑

u′ N(u′)
1 + N(u)

where V (u) is the expected value determined as the average utility of all sub-nodes,
cPUCT is a weighing coefficient, P (u) is the policy value of u determined by the neural
net, and N(u) is the number of previous playouts involving u.

In other words, V (u) is the exploitation term which prioritizes the best known moves so

far, while P (u)
√∑

u′ N(u′)
1+N(u) is the exploration term with neural net guidance. It generally

grows with the proportion between total number of playouts
√∑

u′ N(u′) and node
playouts like the traditional UCT exploration term. The policy P (u) contributes bias
towards exploring moves that “look interesting”. Utility is different from winrate in that
KataGo adds a slight preference for more points. Also, KataGo can estimate its own
uncertainty and counts broad utility estimates as fractional playouts.

The neural network of KataGo is a convolutional residual network with a deep trunk
and several output heads as depicted in Figure 3.4. Its main hyperparameters are the
number of blocks b and the number of channels c. Through public-distributed training
efforts, the KataGo project produced different networks with up to 60 blocks and 320
channels. The strongest networks as of April 2024 use just 18 blocks with 384 channels
because a faster network allows deeper searches. The KataGo program can load any of
these different networks at run time.

The network takes the board state as its input, including more algorithmically determined
higher-level input features used by previous-generation bots, but not by AlphaGo. Its

2Current competitive bot ratings can be observed in the ratings on CGOS (Computer Go Server):
http://www.yss-aya.com/cgos/19x19/bayes.html, visited: 2024-10-01. Several strong com-
mercial bots with no presence on CGOS are not represented in this list. There is currently no
comprehensive and reliable comparison between bots. In a September 24, 2024 interview (https:
//www.youtube.com/watch?v=ix-OE1rsAYE, visited: 2024-10-01), top professional Shin Jinseo
stated that he personally uses KataGo and that Fine Art is currently the strongest bot.
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Figure 3.4: The KataGo network outlined on the left consists of a long chain of blocks
forming the trunk. The game state is split into spatial and global features, both of
which are raised to the full number of channels and combined to be input to the first
block. Various heads transform the output of the final block into purposeful results.
The nested bottleneck block structure, shown on the right, allows these blocks to process
features efficiently through the expensive convolutions by projecting them onto fewer
dimensions. The inspiration for this idea is attributed to the appendix of [Dan+22],
which references [Kai+16]. Additional curved arrows indicate residual connections. A
select few blocks, spread out evenly in the trunk, include an extra global pooling structure,
an adaptation from other domains into KataGo, by which the network can recognize and
process whole-board features.
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3.4. Prediction from Moves

output heads include the obligatory policy head π̂(m), which predicts the probability
that m is the best next move, and value head ẑ, which predicts the winrate. Whereas the
initial version of AlphaGo used two separate networks for these predictions, AlphaGo
Zero and newer bots train both functions into one network by summing the loss functions
of all the heads. As such, the single network benefits from shared information learned
via both training targets.
The KataGo paper conjectures that additional, even auxiliary, training targets can
improve performance if the added target correlates with the desired target. KataGo
includes many more heads for auxiliary targets. Among the more important ones, the
opponent policy head π̂opp(m) predicts likely response moves, the ownership head ô(l, p)
predicts whether location l will become territory3 for player p and the score belief head
p̂s(x) predicts whether the final points difference will be x.
Compared to previous AlphaGo-like bots, KataGo also improves self-play training by
playout cap randomization. Most moves receive few playouts so that more finished games
may be used to train the value estimation, while a few randomly selected moves receive
many playouts to gather data for training policy estimation. Another improvement, a
minimum number of forced playouts, increases exploration during training.
All these improvements and several more [Wub] drastically shorten the required training
time and resources of KataGo compared to earlier bots. Now, a network near top human
strength can be self-trained on just a single GPU in several days.

3.4 Prediction from Moves
Professional Go player Alexander Dinerchtein authored two interactive web quizzes which
automate the assessment by move choice of the user’s rank [Dina] and playing style [Dinb].
Over 15-20 questions, each consisting of a board position and a choice for the next point
to play, this site estimates its result based on a simple tally of points.
The idea that we can infer information about the players of the game from the moves
using trained models is not entirely novel. It dates back to before the advent of strong Go
bots and modern neural network architectures. Past approaches relied on hand-picked
features taken from the output of the bots available at the time.
Ghoneim et al. [GEA11] aimed to assess the “competency” of actors given their actions
in situations in a Go game context, i.e. to evaluate players’ strengths based on their
moves. They accomplished this by analyzing the reason for the action/move with the bot
GNU Go and classifying the player as beginner, intermediate or advanced using trained
random forests.
Moudřík et al. [MBN15] also used a bot, Pachi [HP11], to extract features like patterns
from game records. Using a bag of 20 feed-forward neural networks, each with one hidden

3To be precise, ownership is not just territory. The KataGo paper defines ownership in accordance
with area scoring, another counting method used under e.g. Chinese rules, which yields the same result
as territory scoring in almost all cases.
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layer of 20 units, they predicted the player’s rank with an estimated standard deviation of
2.66 ranks. Additionally, the authors applied the same model to classify the playing style.
Complementing this, Moudřík and Neruda [MN16] turned to deep convolutional networks
without involving a Go bot. This time, the authors simply trained such a network on a
large number of Go positions with three output classes: weak, intermediate and strong.

A newer conference paper by Kosaka and Ito [KI18] examines game statistics derived
from the evaluation of the moves by the open-source bot Ray as indicators of strength.
They concluded that the bot is too weak—about 2-dan amateur strength—to judge player
move strength with confidence.

Gao et al. [GZL23] present a dataset of professional Go games, annotated with statistics.
The authors applied different models to this data for prediction of game outcomes. For
input features, they used various player statistics, including pre-existing ratings computed
using the whole-history rating system [Cou08] and aggregate move quality indicators
determined by KataGo. The authors increased predictive accuracy above the level given
by just the input ratings.

The KataGo program supports the supplementation of a separate human policy network
trained on human games [Wua]. This network takes game metadata as additional inputs.
Among these is the rank of the players, which allows the network to imitate the board
perception of humans at a specific strength level and adjust its policy accordingly. In
contrast to our approach, the human network only operates on one position at a time. The
author mentioned that one could use this feature for strength estimation by evaluating
it on a player’s game positions across a variety of ranks. The player’s rank might be
the one that, when input to the human network, gives the highest policy values for the
player’s actual move locations.
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CHAPTER 4
Strength Model

As the core of this work, we design and train a model that predicts player ratings. This
strength model combines with the Bradley-Terry model from Section 3.1.1 for expected
scores into a behavior rating system. It distinguishes itself from our reference systems
presented in Section 3.1 first and foremost by taking more input information, namely
the moves contained in evaluated game records, into account. From this basic idea, we
expect improved prediction accuracy.

This chapter begins with our training data and its preparation. Then we introduce the
different models that we use as baselines and for our core experiment. The measured
goal for all our models is high prediction performance as a rating system.

All our models, the baselines and the full model, draw on ingame player behavior via
preprocessed move information through the KataGo bot. We start by introducing our
stochastic model as the first baseline, which provides us with a realistic expectation
for predictive performance when using ingame features. Then we describe the common
architecture and training process of our neural network models: the basic model built on
normal KataGo output features and the full strength model using features taken directly
from the internal representation of the KataGo network trunk.

The chapter concludes with our training targets and methods.

4.1 Dataset

Our dataset is the OGS 2021 collection [Van], a public set of games played on the OGS
platform. This dataset is a representative sample of online amateur Go over almost two
decades. We present the preparatory steps by which we select the games that we need
for model training. Then we present some statistics and insights into the data.
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4. Strength Model

4.1.1 Dataset Preparation

This dataset is not only very large, it also contains many records of insufficient quality.
We must aggressively prune records that we deem unfit to be used and fill in missing
data.

We instantly dismiss any games on alternative board sizes, i.e. not the standard 19-by-19
lines. These are not the focus of our experiment. The same applies to games with
handicap stones, which are defined by a starting disadvantage for the white stones and
the incentive to turn the position around with unconventional moves. We filter out games
with time allowance of five seconds per move or less. They contain noise (moves below
the players’ true ability) introduced by internet connection delays. If a game ends in less
than 20 moves, it can hardly be called a competition of skill and is filtered out. Games
on OGS are either “ranked” or “unranked”, the latter meaning that the players can enjoy
the game without putting their rating points at stake. We respect this designation by
retaining ranked games only.

Games can be decided not just by counting at the end of the game, but also by resignation,
timeout, cancellation, or forfeit. In the interest of providing accurate learning data, we
consider only games that result in counting, resignation or timeout. The results by
resignation and timeout may be inaccurate. Resignation may be based on the resigning
player’s emotional state or external circumstances. Timeout can happen even to the
player who holds the positional advantage. We overwrite the winner of these games with
the winner as designated by KataGo evaluation and throw out games where KataGo is
less than 60% sure either way.

Some records contain illegal moves or early passes before move 50, lack mandatory
properties like the result, or are otherwise malformed. We dismiss all those records as
well.

All the records that we have not excluded form our pool. We need to select a training set
T , a validation set V and a test set E from the sequence of games G. However, if we just
form three distinct pools from the original one, we tear apart players’ rating histories,
depriving our algorithms of the data from which they derive their predictions. Instead,
we assign 10,000 games to the training set and 5000 each to the validation and test sets,
while keeping them in the same pool. An additional 5000 games form the exhibition set X .
This is a collection of games between players with short histories: no more than 4 recent
games each. While the test set is representative of the entire pool, the exhibition set is
representative of conditions where our model outperforms classical paired comparison
systems. The remaining games go unused due to constraints on computation resources.
In the training process, we train only on training games and test only on validation
games, while the combined game data is available in the rating history. This technique
stems from link prediction problems in social networks, where random test edges are
removed from the full graph and later predicted by the model trained on the remaining
edges.
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Figure 4.1: This figure shows the density of rating labels in our training set. The bulk of
samples have ratings in the SDK (single-digit kyu: 1-kyu to 9-kyu) range. Fewer samples
are labeled with DDK (double-digit kyu: 10-kyu and below) ratings, shown in red, or
labeled with dan (1-dan and above) ratings.

Even more than the players’ strength, match outcomes are very noisy. To improve the
quality of training information, we withhold noisy records from the training set, but not
from the other sets. We admit a game to the training set only if its rating labels, defined
in Section 4.7.1, agree with the score. This means that the stronger player beats the
weaker player. Training games must additionally involve players with at least an amount
A = 10 of future game history. This ensures that more information flows into the rating
labels in the training set.

For all recent move sets M−(p | t− 1, N)—see Definition 2—and for each t indicating a
game in our drafted subsets T ,V, E , and X , we prepare precomputed move features, to
be described in Section 4.2. We choose the prepared maximum window size N = 500
within our computational constraints. This is the extent of data that we make available
for our training and evaluation.
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Figure 4.2: This figure shows the density of points loss in the recent moves of our training
set. Stronger players lose fewer points per move. We can expect dan-level players to lose
less than one point in 25% of moves. While the modal loss is close to 0 in all classes,
weaker players have a much wider distribution into blunder territory. The bars on the left
and right summarize the outlier surprising gains above 2 points and the huge blunders
beyond 15 points. Beginners make such mistakes about 7% of the time.

4.1.2 Dataset Analysis

In this sample of 6,986,379 games, we adjudicated 60.53% of them as won by white and
39.47% by black.

Figure 4.2 illustrates the a-priori distribution of points loss values in our data, broadly
categorized by rating. Our measurement of points loss here is the same as defined for the
stochastic model in Section 4.3, using the raw KataGo network estimate without search.
This explains the frequent “surprising gains” on the negative side of the axis. With some
search effort, making gains against KataGo’s positional evaluation (anything left of 0)
becomes much less likely.

Figure 4.3 illustrates the a-priori distribution of winrate loss values by rating, again
determined by raw KataGo evaluation with the same caveats.
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Figure 4.3: This figure shows the estimated density of winrate loss data in our dataset.
The difference between players of different skill is not as clear as in the case of points
loss. This is because, at a human level, much of the game takes place in very one-sided
positions where frequent winrate shifts of less than 1 percentage point do not produce a
reliable signal.

In Figure 4.4 and Figure 4.5, we observe how long it takes for Glicko-2 to narrow down
its rating estimate. It settles at a rating deviation of around 73.

Among the match outcomes in the dataset, 2,069,239 ended by counting. Their number
of moves is shown in Figure 4.6. Unless one loses due to some sudden circumstance like
resignation, timeout or forfeit, the players normally continue until there are no more gains
to be made on the board. Only then does it make sense to agree to stop and count the
points. Yet we observe a wide spread of moves until counting. Hundreds of games have
been counted with as little as 100 moves. This is usually too few to properly play out the
board. In practice, the end of the game and counting phase is triggered by agreement of
the players and can happen at any time. The longest game lasted for 1087 moves.
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Figure 4.4: As players play more games under the Glicko-2 system, their rating deviation
decreases from its initial value of 350. Thus, the confidence of the rating system in
its rating estimate increases. For this plot, we use the rating deviations computed by
Glicko-2 over our entire dataset. This plot shows a representative sample of 20 deviation
values after 1-50 games each. The line shows the mean deviation. It settles around 73
rating points after 50 games played.
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Figure 4.5: Over our entire dataset, the rating system settles new participants into their
place in the rating distribution. Each column by itself is a histogram of the amount of
players at the various traditional ranks, clipped to the range from 20-kyu through 9-dan,
after the specified amount of games on record. The distribution stabilizes after about 7
games. We see the bulk of players in the single-digit kyu range.
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Figure 4.6: This figure shows the distribution of game lengths across our entire dataset.
The graph shows the absolute number among ≈2 million counted games. The dashed
line indicates the mean length at ≈254 moves.
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4.2. Preprocessing by KataGo

4.2 Preprocessing by KataGo
All our models are built entirely without exploiting any knowledge of the game of Go.
Instead, they depend on the existing KataGo network to understand board positions. More
accurately, KataGo networks are available online1 as weight files, which are continually
released when they achieve good performance in ongoing training. These networks differ
in their weight values, number of layers, and even layer composition. The specific network
that we use in this thesis is kata1-b18c384nbt-s9131461376-d4087399203.

# Channels Feature
1 Location is on board
2 Location has {own,opponent} stone
3 Location has stone with {1,2,3} liberties
1 Moving here illegal due to ko/superko
5 The last 5 move locations, one-hot
3 Ladderable stones {0,1,2} turns ago
1 Moving here catches opponent in ladder
2 Pass-alive area for {self,opponent}

Table 4.1: These are the 18 binary spatial-varying features of the board state passed as
input to the KataGo network. They are represented as a b× b× 18 tensor, where b = 19
is the board size. A “ladder” is a direct threat to capture stones on the next move, in a
position where this threat could be immediately renewed again and again if the opponent
were to attempt an escape. This table is taken from appendix A.1 of [Wu20].

# Channels Feature
5 Which of the previous 5 moves were pass?
1 Komi / 15.0 (current player’s perspective)
2 Ko rules (simple,positional,situational)
1 Suicide allowed?
1 Komi + board size parity

Table 4.2: These are the 10 overall features of the board state passed as input to the
KataGo network. Only the first 5 are relevant to our use case because we restrict all
evaluations to the same rule set, regardless of the rules under which the games were
actually played. This table is taken from appendix A.1 of [Wu20].

1https://katagotraining.org/networks/, visited: 2024-10-01
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4. Strength Model

As the basis for move evaluation in our models, we draw from the KataGo network
preprocessing the pre-move and the post-move board state. A breakdown of the board
state input representation is listed in Tables 4.1 and 4.2.

Our baseline models to be introduced in Sections 4.3 and 4.5 use the following usual
KataGo outputs:

• the winrate in both the pre-move and the post-move board states,

• the points lead in both the pre-move and the post-move board states,

• the policy value of the move, i.e. the bot’s estimated likelihood that this is the best
move, in the pre-move board state,

• the maximum policy value anywhere in the pre-move board state.

These outputs are typical for Go bots. Building other models on them is the natural
choice for comparable topical works such as Moudřík et al. [MBN15]

Our full strength model to be introduced in Section 4.6 uses only the trunk output of
the KataGo network in the pre-move board state. It does not use the network’s heads.
The trunk output is a b× b× c tensor, where b = 19 is the board size and c = 384 is the
number of channels representing the knowledge associated with each board location. We
determine the output feature vector ∈ Rc at the location of the move under evaluation
as its associated preprocessed feature vector.

4.3 Stochastic Model

Our first ingame-baseline model is the stochastic model. This approach foregoes the
estimate of rating numbers for the players and the Bradley-Terry formula. This is not
a rating system according to our definition in Section 2.3, but we can still determine
its accuracy and log-likelihood measures. All that we really need is the estimated score
ŝ(t), which we estimate in the simplest possible way from the recent move sets of both
contestants.

The single move feature that we use in this model is the points loss, determined as the
difference between the pre-move lead and the post-move lead of the moving player. We
model the points loss of a move as an independent stochastic experiment under a normal
probability distribution with mean µ and variance σ2. The parameter values depend
only on the player. Naturally, players of higher skill lose fewer points on average.

Let Xi be a specific player’s random total amount of points lost over i moves by this
player. Its mean is µi = iµ and its variance is σ2

i = iσ2. Due to the central limit theorem,
as i increases, the distribution of Xi ever more closely approximates the cumulative
normal distribution function Φ:
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lim
i→∞

P

(
Xi − µi

σi
≤ x

)
= Φ(x). (4.1)

This motivates our choice to model even single moves with Φ instead of with a more
complicated model that better fits Figure 4.2.

To estimate the score ŝ(t) under the stochastic model, we use all available information
from the points loss feature to estimate the distribution parameters µB, σ2

B, µW and σ2
W

for the black player and the white player. Knowing the distributions, we can use them to
determine the probability that black is ahead or behind on points after C moves. The
score estimate concerns the end of the game, assuming that it finishes by counting and
not by other outcomes such as resignation. As we can not know the total number of
moves in the game beforehand, we simply assume the average that we can observe from
our training set. We determine that this average game length rounds to 254 and thus
choose C = 127. Whoever has blundered fewer points up to that point is the winner.

Let BC ∼ N (CµB, Cσ2
B) and WC ∼ N (CµW , Cσ2

W ) with σ2
B, σ2

W > 0 be the approximate
random points losses of the black and white player respectively. Then the approximate
black win probability is

P (BC < WC) = Φ

 CµW − CµB√
Cσ2

B + Cσ2
W

 . (4.2)

To estimate this probability for a game gt = ⟨pb, pw, s⟩ at time t, we obtain the recent
move sets M−(pb | t− 1, NB) and M−(pw | t− 1, NW ) of the black and white player. In
our comparative evaluation, the window sizes NB, NW ≤ 500 are constrained by what we
have prepared from our dataset as specified in Section 4.1.1. Let B = |M−(pb | t−1, NB)|
and W = |M−(pw | t − 1, NW )|. We derive the observed points losses b1, . . . , bB and
w1, . . . , wW from the respective recent move sets. To “observe” points loss in our context
always means to preprocess the move data through a strong engine, KataGo in our case,
as detailed in Section 4.2. The inaccuracy of the engine becomes noise in our observations.
From this data, and if B, W > 1, we straightforwardly estimate the win probability:

µ̂B = 1
B

∑
i

bi, σ̂2
B = 1

B − 1
∑

i

(bi − µ̂B)2,

µ̂W = 1
W

∑
i

wi, σ̂2
W = 1

W − 1
∑

i

(wi − µ̂W )2,

ŝ(t) = Φ

 Cµ̂W − Cµ̂B√
Cσ̂2

B + Cσ̂2
W + ε

 .

(4.3)

The arbitrary small value ε > 0 prevents division by 0.
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4.4 Network Architecture

Our neural network models are based on the Set Transformer [Lee+19] architecture. In
this architecture, the inputs x represent n elements of an unordered set—in our case,
the set of recent moves. Unlike the popular Transformer [Vas+17], which operates on
an ordered sequence, its inputs are position-invariant. Any permutation of the input
elements yields the same output.

The network consists of a multi-block encoder, which uses an attention mechanism to find
and distribute knowledge among the set elements, and a single decoder layer, which pools
the encoded feature vectors into a single output using a final attention query. Residual
connections improve training at every step.

The encoder blocks are induced set attention blocks or ISABs, characterized by their
fixed number m = |i| of learned inducing points. In a first attention query, the inducing
points act as query inputs to the attention mechanism, attending to all set elements.
The second attention query then attends from every set element to the results of the first
query. In contrast to the popular self-attention from every element to every element with
its expensive O(n2) parallelizable operations for n = |x| elements, induced set attention
requires O(mn) parallelizable operations. It suits our use case with up to hundreds of
moves, only a few of which are probably interesting.

x1

ISAB1

ISAB2

FC

AttentionBlock

x2 x3 x4

i1,1 i1,2

z1 z2 z3 z4

s

i2,1 i2,2

y

inducing points

seed vector

Encoder

Decoder

FC

Figure 4.7: Our architecture is a basic implementation of the Set Transformer. The
encoder transforms the input set using a stack of efficient attention blocks. The decoder
pools the information into the output rating.
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4.4. Network Architecture

We formally define our network as follows.

ĥ = LayerNorm(q + AT(W Qq, W Kh, W Vh)), (4.4)
AttentionBlock(q, h) = LayerNorm(ĥ + FCb(ĥ; d, ReLu)), (4.5)

ISAB(h) = AttentionBlock(h, AttentionBlock(i, h)), (4.6)
z = Encoder(x) = ISABl(FC(x; d, id)), (4.7)
y = Decoder(z) = FC(AttentionBlock(s, z); 1, id), (4.8)

where
AT(q, k, v) is dot-product attention as defined in Section 2.2.4,
LayerNorm(x) is layer normalization as defined in Section 2.2.1,
FC(·; d, σ) is an unbiased fully-connected layer with output dimension d

and activation function σ (ReLu or the identity function id),
FCb(·; d, σ) is a fully-connected layer with a bias parameter,
x ∈ Rdx×n is the input set,
y ∈ R is the predicted rating number (not to Glicko-2 scale),
i ∈ Rd×m are the learnable inducing points,
s ∈ Rd is a learnable seed vector ,

W Q ∈ Rdq×d is a learnable transformation yielding queries,
W K ∈ Rdq×d is a learnable transformation yielding keys,
W V ∈ Rd×d is a learnable transformation yielding values, and
d, dq, m, l are hyperparameters.

Refer to Figure 4.7 for the overall architecture, and to Figure 4.8 for a diagram of the
attention blocks.

We initialize every element of all weights and biases W ∈ Rdout×din from a continuous
uniform distribution U(− 1

din
, 1

din
). This is a popular heuristic that aims to give the

distribution of initial layer outputs the same standard deviation as the inputs. Inducing
points i and the seed vector s are simply initialized from U(0, 1).

4.4.1 Motivation

Attention, normalization layers, and residual connections are popular staples of modern
neural networks that can be adopted almost by default. The Set Transformer is a solid
choice for our application that includes all of these.

We intuitively speculate that the attention mechanism affords our network a sharp focus
on the few interesting moves among the input from which it must discern player strength.
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Figure 4.8: The Induced Set Attention Block (ISAB) is an attention mechanism with two
phases. First, the inducing points i, which are part of the ISAB as learnable parameters,
attend to the inputs x. Through a fully-connected layer with ReLu activation, the query
results become the hidden features h. The input elements attend to the hidden values in
the second phase and then pass through another fully-connected layer to yield the block
outputs y. All attention and fully-connected operations have residual connections.
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This improves on the previous work by Moudřík and Neruda [MN16], in which the authors
aggregate per-move strength estimates with basic functions like sum and mode.

Considering how a Go game record holds a sequence of moves, one might wonder why a
sequence-based architecture like the original Transformer is not our first choice. However,
a recent move set as we define it does not fit the sequence structure well for several
reasons.

First, recent moves can stem from multiple past games. It would be dubious to simply
concatenate these games’ moves as if the last move of the previous game was the sequential
predecessor to the first move of the next game. Second, we only include every second
move according to the perspective of the player under evaluation. This takes out half the
sequence elements. Finally, pertaining to our full model of Section 4.6, the board state
inputs to the KataGo network include information on five preceding moves, including
the opponent’s. We can assume that, insofar this information is relevant to KataGo’s
opinion of the position, the knowledge gained from it is also encoded in the trunk feature
vector that we sample for our inputs. This alleviates the need for an explicit sequence
structure.

4.4.2 Differences to Original Set Transformer

The authors of [Lee+19] leave room in their Set Transformer definition to choose any
kind of feed-forward layer, any number of decoder outputs, and multi-head attention. In
this work, we specifically opt for the simplest composition for our purpose. We have also
adapted the notation and superficial conventions, e.g. we use column vectors instead of
row vectors.

4.5 Basic Model

We build the basic model as a Set Transformer model that uses regular bot outputs as
input features. It is this thesis’s analogue to existing neural-network approaches from
literature, such as that of Moudřík et al. [MBN15] The main difference to our full strength
model is that by building on the final output of KataGo on every move, the basic model
only sees a condensed summary of events rather than the full internal representation
of the KataGo network. As such, it is an ablation model with regards to the transfer
learning aspect of the full model.

Let M− be a set of recent moves by the player whose rating we want to predict. We
determine the inputs x ∈ R6×n to the basic model for every move based on the bot
outputs listed in Section 4.2. The input features for the move of player p are

1. the post-move winrate from p’s perspective, normalized to [−0.5, 0.5],

2. the post-move points lead from p’s perspective, scaled by 0.1,
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3. the policy value of the move, i.e. the bot’s estimated likelihood that this is the best
move, normalized to [−0.5, 0.5],

4. the maximum policy value anywhere in the pre-move position, normalized to
[−0.5, 0.5],

5. the winrate loss, i.e. the percentage points difference between the pre-move and
post-move position,

6. the points loss, i.e. the lead difference between the pre-move and post-move position,
scaled by 0.1.

4.6 Full Strength Model
The full strength model is our main contribution in this thesis. It uses the existing expert
knowledge in the domain network—for which we use the KataGo network—to its full
potential while training the same architecture towards the same targets as the basic
model.

The input is a set of n recent moves M−, preprocessed into feature vectors x ∈ Rc×n

taken from the trunk output of KataGo as specified in Section 4.2.

Again, these inputs are fed into our Set-Transformer-based architecture from Section 4.4.

The trunk output features represent refined insights that form the basis of KataGo’s
decisionmaking. Our hypothesis is that they contain more pertinent information for
strength estimation than the final bot outputs used in other neural network models,
specifically our basic model and the model of Moudřík et al [MBN15].

Figure 4.9 illustrates the feature pipeline for the full strength model.

4.7 Training Regime
We train both the basic model and the full strength model using the same process, de-
scribed here. The only difference between the two models is the nature and dimensionality
of their input features.

Our optimizer algorithm of choice is Adam [KB17]. We first determine our opimiza-
tion targets. Then we delve into the details of the algorithm. We conclude with the
orchestration of multiple training runs to find good hyperparameters.

4.7.1 Targets

Our experiment covers three kinds of targets: the future Glicko-2 target, the Bradley-Terry
target and the regularization target. For the future Glicko-2 target, we precompute the
full Glicko-2 rating history over the training pool. Every game provides two rating labels,
one for each opponent. They are determined as the normalized calculated Glicko-2 rating
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KataGo Trunk

board (x,y)

x1

384 ch

18 ch

Recent Moves M−

Strength Model Inputs ...

board (x,y)

x2

board (x,y)

x3

Figure 4.9: The full strength model works on trunk output features of the KataGo
network, which extracts expert domain knowledge from the raw input. To that end, the
board state before every input move is preprocessed by KataGo, and the feature vector
from the internal representation at the move location forms one element of the strength
model input set.

number of the particular player, A = 10 of their games down the line. The arbitrary
value of A is justified by Figure 4.4: An A of 10 roughly halves uncertainty towards its
asymptotic value.

We apply standard normalization to all labels, estimated from the ratings in the training
set. This allows us to train our neural networks at conventional scales for their output
and error values.

For the Bradley-Terry target, every game provides its outcome (score) as the only label.
The model under training predicts the rating numbers of both opponents, which feed
into the Bradley-Terry model to estimate the expected score.
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4. Strength Model

Let
G = (gt), 1 ≤ t ≤ tmax be the pool as a sequence of games,
T ⊆ G be the training set,
µp(t) be the Glicko-2 rating number of player i at time t,

H(p) = H(p | tmax) be the game history of player p (see Definition 2),
{hp

1, . . . , hp
|H(p)|} be the elements of H(p), and

A = 10 be how many games in H(p) we advance.

The rating label r(p | t) for player p at time t is based on their Glicko-2 rating either A
history elements ahead, or, if there are not that many future games in H(p), their latest
known rating.

r′(p | t0) = µp(t1) with j = min(i + A, |H(p)|), hp
i = gt0 , hp

j = gt1

r′ = 1
2|T |

∑
gt∈T ,

gt=⟨b,w,·⟩

(
r′(b | t) + r′(w | t)

)
≈ 1623.19

s2
r = 1

2|T | − 1
∑

gt∈T ,
gt=⟨b,w,·⟩

((
r′(b | t)− r′

)2
+
(
r′(w | t)− r′

)2
)
≈ (315.81)2

r(p | t) = r′(p | t)− r′

sr

Let M−(p | t, N) be the set of recent moves of player p at time t (see Definition 2), and
f the model under training. The estimated rating produced by the model is

r̂(p | t) = f
(
M−(b | t, N)

)
.

When we learn the Glicko-2 target from a game gt = ⟨b, w, s⟩, we minimize the two
squared errors as losses:

Lb = (r(b | t)− r̂(b | t))2 and
Lw = (r(w | t)− r̂(w | t))2 .

Our trained models are rating systems conforming to Equation 2.1 and Equation 2.3
using the rating estimator r̂ and score estimator ŝ:

µ(r̂(p | t)) = r′ + srr̂(p | t),

ŝ(t) = ŝB-T(t) = eγr̂(b|t)

eγr̂(b|t) + eγr̂(w|t) , γ = sr
ln 10
400 .

42



4.7. Training Regime

The Bradley-Terry target of the same game gt is its score s. When we learn the Bradley-
Terry target from game gt = ⟨b, w, s⟩, we minimize the negative log-likelihood

Ls = − ln(1− |s− ŝ(t)|).

Let θ be the set of model parameters. For the regularization target, we simply minimize
the mean of squares

Lθ = 1
|θ|
∑

i

θ2
i .

Our training loss function Lt uses all three targets. The balance between them is given
by two hyperparameters: the rating loss scaling factor τr and the regularization factor
τθ.

Lt = Ls + τr(Lb + Lw) + τθLθ

The performance loss function for validation and testing is just the score loss.

Lp = Ls

4.7.2 Training Algorithm

Let f(B; θ) be a strength model function on a batch of recent moves B with parameters θ.
Let f be extended here to apply the Bradley-Terry model from Section 3.1.1 to the black
and white estimated ratings r̂b and r̂w, producing the estimated score ŝ.

All parameters of all weight tensors W in the initial set θ0 are initialized with uniform
probability over

[
− 1√

d
, 1√

d

]
where d is the input dimension of W . This initialization

preserves the variance of the input data to stabilize the first steps of training.

We train the models for E = 100 epochs. Each epoch consists of T = 100 steps. In each
step, we sample a random minibatch of B = 100 from the training games in the pool.
After every epoch, we test against the set of validation games. The test calculates the
mean squared error of all targets as well as the predictive accuracy α and log-likelihood λ
on the validation games. We stop the training early after we have seen no improvement
for p = 10 consecutive epochs.

Algorithm 4.1 describes the process in pseudocode.

4.7.3 Hyperparameter Optimization

This section describes how we use search to determine the best configuration of hyperpa-
rameters for our full strength model. In contrast, we only train one basic model using the
same set of hyperparameters as the best-performing full model at the end of the search.

We use random search in 5 iterations of 15 training runs each to locate a good point in
hyperparameter space according to the trained model’s validation error. The scope of
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4. Strength Model

Algorithm 4.1: Our training algorithm, a classical gradient descent optimization
algorithm.
1 Function training(f, T ,V, E, T, B)
2 θ ← initial values ∼ U(− 1√

d
, 1√

d
);

3 θ∗ ← θ;
4 η ← η0;
5 s← 0;
6 λ∗ ← −∞;
7 for epoch = 1 to E do
8 for step = 1 to T do
9 B ← B random games from T ;

10 grads ← 0;
11 for gt = ⟨b, w, s⟩ ∈ B do
12 r̂b, r̂w, ŝ← f(B; θ);
13 Lb ← (r(b | t)− r̂b)2; // black rating target
14 Lw ← (r(w | t)− r̂w)2; // white rating target
15 Ls ← − ln(1− |s− ŝ|); // Bradley-Terry target
16 Lθ ← 1

|θ|
∑

i θ2
i ; // regularization target

17 grads ← grads + η∇θ (Ls + τr(Lb + Lw) + τθLθ);
18 end
19 θ ← Adam(θ, grads);
20 end
21 η ← (1− β) η; // learning rate decay
22 λ← 0;
23 for gt = ⟨b, w, s⟩ ∈ V do
24 r̂b, r̂w, ŝ← f(B; θ);
25 λ← λ + ln(1− |s− ŝ|);
26 end
27 if λ > λ∗ then
28 θ∗ ← θ;
29 λ∗ ← λ;
30 s← 0;
31 else
32 s← s + 1;
33 if s ≥ p then // early stopping with patience p = 10
34 break;
35 end
36 end
37 end
38 return θ∗;
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4.7. Training Regime

the random search scales with a factor γ. It starts with γ = 1 in the first and broadest
iteration, allowing for minimalist to million-parameter models. The scale decays by a
factor of 0.6 in each iteration, yielding γ = 1, 0.6, 0.36, 0.216, and 0.1296. The later
iterations refine the selection in the local space around the most promising point.

The space of hyperparameters that we consider is the following.

• initial learning rate η0 ∈ [10−5, 1]

• learning rate decay β ∈ [0.9, 1]

• rating loss scaling factor τr ∈ [0.001, 10]

• regularization factor τθ ∈ [0.001, 100]

• model depth l ∈ {1, 2, 3, 4, 5}

• hidden feature dimensions d ∈ [8, 256]

• attention query feature dimensions dq ∈ [8, 256]

• number of inducing points m ∈ [1, 64]

This does not include the number of training epochs, which is implicitly optimized using
early stopping with patience 10.

In the extreme case of the largest hyperparameters, the full strength model with dx = 384
contains 2,821,376 trainable parameters.

Let θ− be the assignment to hyperparameter θ from the best-performing hyperparameter
set of the previous iteration, or the specific values

η−
0 = 10−3, β− = 0.95, τ−

r = 1.0, τ−
θ = 10.0, l− = 3, d− = 64, d−

q = 64, m− = 32

in the first iteration. Let

clamp(θ) = min(θmax, max(θmin, θ))

be the clamping function that limits θ within its individual domain D(θ) = [θmin, θmax]
as specified above. Let U(a, b) be the continuous uniform distribution with bounds a and
b and let UZ(a, b) be the discrete uniform distribution on [a, b] ∩ Z. In each iteration, we
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4. Strength Model

randomly adjust the hyperparameters under individual marginal distributions as follows.

η0 ∼ clamp(η−
0 · 10X), X ∼ U(−3γ, 3γ)

β ∼ clamp(β− + X), X ∼ U(−0.05γ, 0.05γ)
τr ∼ clamp(τ−

r · 2X), X ∼ U(−3γ, 3γ)
τθ ∼ clamp(τ−

θ · 2
X), X ∼ U(−3γ, 3γ)

l ∼ U(D(l))
d ∼ clamp(⌈d− · 2X⌉), X ∼ U(−2γ, 2γ)

dq ∼ clamp(⌈d−
q · 2X⌉), X ∼ U(−2γ, 2γ)

m ∼ clamp(m− + X), X ∼ UZ(⌊−32γ + 0.5⌋, ⌊32γ + 0.5⌋)

Finally, we designate the network with the smallest validation error over all training runs
over all iterations as the single resultant trained network.
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CHAPTER 5
Results

Here we describe the results of the training process and compare the reference system
Glicko-2, discussed in Section 3.1.3, with our strength models presented in Chapter 4.

5.1 Training of the Basic Model

The basic model was trained on the same data with the same hyperparameters as the
best-performing full model. The hyperparameters are listed in Table 5.1. Figure 5.1
shows the training progress, which is by itself unremarkable. As expected, its performance
turned out slightly worse than that of the full strength model.

5.2 Full Model Training

We determined the approximate space of hyperparameters to search for through informal
experimentation and consideration of computational resource limits. A preliminary
hyperparameter search is illustrated in Figure 5.2. This search used only T = 10 steps
per epoch, it used early stopping after p = 3 non-improvements, and it did not include a
few rigorous training features like the regularization target. The window size N examined
here is the maximum number of recent moves from the player’s history that the model
should use for training. The maximum available window size is N = 500 from our feature
precomputation. Due to the preliminary results, we discarded N as a hyperparameter
and fixed it to the maximum.

The proper hyperparameter search is shown twice: once in Figure 5.3 and again, zoomed-
in to the more interesting later iterations, in Figure 5.4. Table 5.1 lists the resultant
hyperparameters of the best-performing model. We illustrate the training progress of the
best model out of the search in Figure 5.5. With 2,469,388 parameters in total, this best
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Figure 5.1: Validation performance of the basic model peaked after 11 epochs and training
stopped early after 21 epochs. The three components of the training error are sampled
at every training step and stacked in blue.

Hyperparameter Best Value
initial learning rate η0 ≈ 2.14 · 10−4

learning rate decay β ≈ 0.995
rating loss scaling factor τr ≈ 2.05
regularization factor τθ ≈ 73.9
model depth l 5
hidden feature dimensions d 254
attention query feature dimensions dq 154
number of inducing points m 61

Table 5.1: Our final hyperparameter search settled on these parameter values as the
highest-performing configuration, achieving a mean log-likelihood of λ ≈ −0.578 on the
validation set.
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5.2. Full Model Training
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Figure 5.2: A preliminary hyperparameter search showed that the window size N should
be as high as possible within our computational constraints. We fixed N = 500 in the
proper hyperparameter search.
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Figure 5.3: Each mark in the scatter plot represents one training run in the hyperparam-
eter search. From broad to fine iterations, we shape them as circles, squares, diamonds,
triangles, and crosses.
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Figure 5.4: This plot shows only training runs that score −λ ∈ [0.578, 0.59] on the
validation set. As in the full view, each mark represents one training run.
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5. Results

model emerged at the larger end of the size spectrum afforded by our hyperparameter
search space.

With our patience setting of 10, three of the early runs in the first search iteration indeed
stopped after only 11 epochs, having seen no improvement after epoch 1. We did allow
for up to 100 epochs, but the maximum training length under our early stopping policy
was 78 epochs. On average, a training run stopped after 30 epochs.

5.3 Performance Comparison

Algorithm 5.1: This is the algorithm to evaluate a given fully-defined rating
system as per the definitions in Section 2.3. For the dataset parameter D, we
pass—one after another—the training set T , the validation set V , the test set E ,
and the exhibition set X in turn.
1 Function evaluate(⟨r̂, ŝ⟩ : rating system, G : pool,D ⊆ G : dataset)
2 α← 0;
3 λ← 0;
4 for gt = ⟨b, w, s⟩ ∈ D do
5 ŝg ← ŝ(t);
6 α← α + 1

|D| |s− I≤0.5(ŝg)|;
7 λ← λ + ln(1− |s− ŝg|);
8 end
9 return α and λ;

For the main result of this chapter, we present the full comparison between all our reference
models and our own models across all drafted subsets of our pool from Section 4.7. The
measures of comparison are the rating system quality criteria as defined in Section 2.3:
the accuracy α and the log-likelihood λ. Algorithm 5.1 lists the pseudocode for the
evaluation.

Our first baseline is the 50:50 prediction. Under this “model”, we predict that white wins
every game with a chance of exactly 50%. Any sensible model should be able to surpass
this low bar.

Glicko-2, described in Section 3.1.3, is our reference and state-of-the-art rating system.
As a binary rating system, it struggles on the exhibition set. This is expected due to lack
of information about the players.

The pseudo-model Future Glicko-2 “estimates” player ratings as their rating label
r̂(p | t − 1) = r(p | t) and match scores as ŝ(t) = ŝB-T(t), using the estimated ratings
without rating deviation. The information about the result is already contained in the
label, which is taken from the future of the player’s rating history. These predictions
can therefore perform unrealistically well. We treat it as an upper bound of what can
theoretically be achieved.
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5.3. Performance Comparison

Model Training
Set

Validation
Set

Test
Set

Exhibition
Set

α λ α λ α λ α λ

50:50 70.1% -0.69 61.1% -0.69 61.9% -0.69 55.6% -0.69
Glicko-2 89.7% -0.40 68.6% -0.58 69.1% -0.58 64.4% -0.64
Future Glicko-2 100.0% -0.34 74.6% -0.52 75.4% -0.51 83.4% -0.38
Stochastic Model 65.7% -0.94 59.2% -1.21 58.5% -1.18 64.4% -2.03
Basic Model 76.1% -0.50 65.2% -0.63 65.2% -0.61 70.9% -0.57
Full Model 83.5% -0.44 69.0% -0.58 68.8% -0.58 73.7% -0.55

Table 5.2: These are the main results of our evaluation. We compare the different
baselines, references, and our approaches. The bold emphasis marks the predictive
log-likelihood of our full model on the representative test set, on par with the general
performance of Glicko-2. Also listed in bold is its superior log-likelihood on our exhibition
set between players with 4 or fewer recent games each.

Our stochastic model from Section 4.3 illustrates a lower bound for behavior-based
rating estimation using ingame features. It performs below even the 50:50 model on
representative game sets, but already meets the accuracy level of Glicko-2 on the exhibition
set. It further tends to be overconfident in the result, yielding terrible log-likelihood
statistics.

Our basic model from Section 4.5 shows how much less information the strength model
can draw from the final outputs of the Go bot compared to what it can draw from the
Go bot’s internal representation. It achieves good accuracy on the favorable exhibition
set, but it cannot match the binary reference system in the long term.

Our full model from Section 4.6 fulfills our expectations in that it surpasses the baseline
models, matches the reference system, beats it under favorable conditions, and remains
below the upper bound set by the precognoscious Future model.

The complete raw results are listed in Table 5.2.

Figure 5.6 compares the rating predictions of Glicko-2 and our labels. Figure 5.7 compares
the score predictions of Glicko-2 with the actual outcome. The equivalent displays for
our best full model are shown in Figure 5.8 and in Figure 5.9.
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Figure 5.5: This is the training progress of the best-performing model out of the
hyperparameter search. Despite the maximum of 100 epochs, the model reached peak
performance on the validation set after 19 epochs and training subsequently stopped
early. The three components of the training error are sampled at every training step and
are stacked in three different shades of blue.
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Figure 5.6: In this figure, we compare the rating determined by Glicko-2 before every
game with the associated label. It shows that Glicko-2 tends to slightly err towards the
mean. Because the labels are the Glicko-2 ratings of the same players from the future,
we interpret the off marks as instances where the players’ rating has not yet settled in
the system.
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Figure 5.7: This is the distribution of estimated scores by Glicko-2. The left side shows
games where the score was 0, i.e. the game outcome was a white win. The right side
shows games with score 1. The minority cases in red are those where Glicko-2 was
catastrophically wrong.
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Figure 5.8: In this figure, we compare the rating determined by our full model before
every game with the associated label. It shows that the model tends to err towards the
mean, just like Glicko-2 does.

57



5. Results

0.0

0.2

0.4

0.6

0.8

E
st

.
S

co
re

White Wins

0.0

0.2

0.4

0.6

0.8

1.0

E
st

.
S

co
re

Black Wins

Full Model vs Outcomes in Test Set

Figure 5.9: This is the distribution of estimated scores by the full model. The left side
shows games where the score was 0, i.e. the game outcome was a white win. The right
side shows games with score 1. The minority cases in red are those where the model was
catastrophically wrong.
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CHAPTER 6
Conclusions

We have examined a large pool of Go games and trained a neural network model to
recognize the strength of a player from move data. We have drawn on an existing
implementation of the Glicko-2 rating system as our reference and established several
baseline models to compare their accuracy with our approach in the context of a rating
system.

We have shown that our strength model produces estimates on par with Glicko-2 given
a set of 500 recent moves, or about 4 average games’ worth. When both contestants
have short match histories of 4 games or fewer, our model can exploit the information
advantage and achieve greater accuracy than the reference system.

The source code and weights for our strength model and for its training algorithms
are available online1. Using the included scripts and the supplemental forks of both
KataGo2 and the OGS rating system with its Glicko-2 implementation3, all the results
and materials in this thesis can be replicated.

6.1 Performance Details
Our performance evaluation holds yet more noteworthy results. The selection criteria for
the training set games dictate that the stronger-labeled player be the winner, and that
both players have at least 10 games of future history to ensure an accurate label. This
makes predictions easier to such a degree that Glicko-2 outperforms our full strength
model, even after it has had the opportunity to overfit on the training data. Perhaps
this indicates that the strength model is properly regularized, or that the labels are so
inaccurate that the best way to match them is to imitate their methodology.

1https://github.com/Animiral/go-strength-model
2https://github.com/Animiral/KataGo
3https://github.com/Animiral/goratings
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6. Conclusions

Although the points loss per move correlates with playing strength, our stochastic model
illustrates that this feature alone is far from sufficient to make qualified predictions. Even
our basic model with the same architecture as the full model does not quite live up to our
reference. We have built our contribution on the hypothesis that KataGo’s trunk output
contains more extensive strength-relevant information than its distilled head output. Our
results confirm this hypothesis.

6.2 Divergence from Labels

Having achieved satisfactory predictive accuracy with our strength model, we reflect on
the extent of similarity between its rating outputs and our test set labels produced by
Glicko-2, as shown in Figure 5.8. There are clearly visible divergences. Experimenting
users of our public web application, to be introduced in Chapter 7, quickly encountered
severe cases of outputs far from expectations. In low ratings, the model’s predictions
are more scattered. On the other end, the model appears to completely shy away from
awarding the highest ratings.

Since we used the rating loss function only as a training loss component and not for
validation, the final strength model is not fully optimized towards predicting the labels.
Even among the epoch results of its training run, shown in Figure 5.5, there seems to
have been an exchange of higher ratings loss for lower score loss in the peak epoch 19.

This general tradeoff does not justify the specific divergences in low and high rating
ranges. One possible explanation is that the strength model is always limited by the
information content handed down by the domain model. Even if KataGo can play at
above-human strength with this information and its search algorithm, there may not be
enough information to distinguish between the strongest ranks. Likewise, KataGo is not
optimized towards discriminating bad moves.

Another probable factor is imbalance in the training data. We sample our training
batches at random from a rating distribution that is representative of our pool. This
distribution is dense in the center, as Figure 4.1 shows. Sampling the training data
uniformly from the widest range of ratings is a potential future improvement outside the
scope of this thesis.

Among the highest-rated players, the strength model shows a clear bias towards the
specific playing style of KataGo. Our model judges even other powerful bots as lower-
ranked when they prefer different moves than KataGo even though this should be
considered a matter of taste.4 The strength model inherits this bias from the domain
model.

4Credit is due to the members of the Online Go Forum community, who experimented
with various inputs, including games of other bots. See https://forums.online-go.com/t/
how-deep-is-your-go/53060, visited: 2024-10-01.
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6.3. Dataset Bias

6.3 Dataset Bias
One potential bias in our data is that our reference system Glicko-2 was also used for
matchmaking in the construction of this same data. Players on the OGS platform may
choose their opponents freely, with their rating number on public display. The platform
also offers an “automatch” facility which aims to pair comparable opponents with close
ratings.

If the matches in the dataset are consistently biased towards indecisiveness under a
particular rating system, this system may be disadvantaged in comparison to other
systems on the same data as its accuracy tends towards 50%. This caveat should be kept
in mind regarding our results.

We must similarly consider mitigating effects on this matchmaking bias. First, we have
not actually examined the particular preferences of any player. Some may deliberately
seek out stronger or weaker matches. We merely conjecture that most want a fair fight
and that opponent-seeking behaviors are clustered and not random, contributing to the
bias.

Second, OGS has changed its rating system over time, applying the new system retroac-
tively to the entire match history. The system used to be an Elo system variant until
a 2017 switch to Glicko-25. In 2021, the window size of games in a rating update was
dropped to one and a bug was fixed that kept players’ rating volatility too high6. These
changes might disturb biases that occurred under the old ratings.

Third, as described in Section 4.1.1, we filter out some games that would originally have
been part of the rating calculation, such as handicap games, further diluting the bias.

Fourth, all accurate systems must necessarily produce similar results, given the same
pool. One system’s matchmaking bias is every system’s matchmaking bias, to a degree.

6.4 Domain Network Accuracy
Due to our design choice of preprocessing every move through a separate domain expert
model, it naturally follows that our own model inherits all the noise and uncertainty from
its dependency. Bots with neural networks may have achieved super-human Go-playing
ability, but this characterization applies to a full engine with a search component. The
primary training objective for the domain network is to guide the search algorithm
effectively, not necessarily to be a strong player by itself. The raw KataGo network has a
reputation for being as strong as a professional player, perhaps barely super-human. As
a caveat, this is a general statement and does not necessarily apply to a specific game or
a specific board situation.

5https://forums.online-go.com/t/ogs-has-a-new-glicko-2-based-rating-system-2017/
13058, visited: 2024-10-01

6https://forums.online-go.com/t/2021-rating-and-rank-adjustments/33389,
visited: 2024-10-01
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6. Conclusions

All these things considered, it is less surprising that a competent strength estimate takes
hundreds of moves, accounting for the non-informative chaff.

One promising way to lighten this inherited burden is to include the weights of the
truncated domain expert network in the training of the strength model, a common
transfer learning technique. This allows the whole network, including the domain
component, to readjust to the new objective. This method was not available to us due to
computational limitations. It remains an avenue for further research.
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CHAPTER 7
Applications

We showcase our strength model in two applications. It has a straightforward use case
as a supplement to—or even as a drop-in replacement for—a rating system. We have
shown this viable in Chapter 5. Besides that, we make the model accessible to the
public through a custom website and evaluate the strength of moves given in a book
of Go problems. As with the strength model itself, the software associated with these
applications is available online1,2.

7.1 How Deep Is Your Go

We provide a small web application for the public to use the strength model3. Figure 7.1
shows the page design.

Users can upload one or multiple SGF files, the most widespread format for Go game
records. The specification of the player name is only necessary for disambiguation if it
cannot be automatically inferred from multiple game records as the unique omnipresent
player. As described in Section 4.6, the application preprocesses the game records through
KataGo for its trunk outputs and sends them through our strongest full strength model
from Section 5.2. The page then shows the estimated rating number and corresponding
traditional rank for the player on the OGS platform.

In model training, we chose to transform the network output by the mean and standard
deviation of the rating labels in our dataset, estimated from the training set as described
in Section 4.7.1. Even though we used the same Glicko-2 implementation as OGS, the
resulting distribution of ratings may differ from the corresponding player ratings on

1https://github.com/Animiral/go-strength-model
2https://github.com/Animiral/KataGo
3http://howdeepisyourgo.org
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7. Applications

How deep is your Go?

Durchsuchen… 5 Dateien ausgewählt.

Player name (optional): Peter Neubauer

Upload SGFs

Peter Neubauer rating: 2038.43 (2.4-dan)

Figure 7.1: The design of our web application is a simple HTML form. Users can upload
game records, optionally specify the player name, and submit them to the website. In
response, the line at the bottom shows the player’s estimated rating and the corresponding
traditional rank.

OGS proper. To better match users’ expectations, the web application transforms model
outputs closer to the true OGS scale.
We estimate the coefficients for this transformation from 100 randomly selected training
set games. The strength model produces 200 raw (unscaled) outputs x for these sample
games. We also sample the historical ratings y of these players in these games from the
public API of OGS. Then we fit the model

f(x | a, b) = ax + b

to minimize ∑
i

(f(xi | a, b)− yi)2 ,

where xi and yi denote the i-th element of x and y, respectively. The result is

a ≈ 334.03, b ≈ 1595.1.

The web application determines the rating r̂ from raw model output x by r̂ ← ax + b.
These slightly lower, but more scattered rating numbers can be assumed to slightly degrade
our strength model’s predictions of match outcomes with a bias towards overconfidence.
The size of a query is limited to 100 kilobytes of data and 1000 moves. This is plenty,
considering that our results in Section 5.3 show that our model using just 500 moves is
generally on par with OGS’s own rating system.
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7.2. Tricks In Joseki

The appplication is written in Python using the flask library. A Dockerfile is
included in the repository for creating an easy-to-deploy container image with all depen-
dencies.

After the release announcement on the Online Go Forums, the website sparked curiosity,
experimentation and discussion from the community. It received about 1000 visits in the
first week.

7.2 Tricks In Joseki

Joseki are established patterns of moves with a reputation for giving both players an
even result in a local board area. A trick play is a suboptimal move or combination
which requires the opponent to find a refutation, i.e., a move or sequence of moves which
preserves the good value of the position. Ideally, the refutation is hard to see for a weaker
player, or one who shortsightedly plays by instinct and rules of thumb without a grasp
on the key of the position created by the trick play.

Go enthusiasts use collections of problems to practice their skills. One such collection that
this thesis’s author happens to have at hand is the book “Tricks in Joseki” [Yan01]. Each
of its 80 trick-play-themed problems is presented in the form of a local board position.
It challenges the reader to find the correct next move for black. On the next page, it
reveals two move sequences: the correct solution and an example of failure. We pose the
question: At what level of skill can players be expected to fall for, and at what level to
refute, the trick play?

In the eyes of our model, the answer is the estimated strength based on the failure
variation. The refutation should in expectation be assessed as ideal and should receive
the maximum rating, or a higher rating than the failure variation in any case. In this
section, we present the strength model evaluation of every solution and every failure
variation. Rating numbers are again scaled to OGS proportions using the coefficients
a ≈ 334.03, b ≈ 1595.1 from Section 7.1.

7.2.1 Preparation

The book problems are given in a local context, like in Figure 7.2. Before we run our
evaluations on the book sequences, we set each problem into a plausible whole-board
context. We perform a linear search through all the ≈7 million games in our local dataset
for positions that match the problem patterns, including board symmetries and color
inversion. The full board of the game position then replaces the starting problem position.
We add the continuing moves from the refutation and failure example respectively to the
completed position, creating very short game records.

A handful of problems require our manual intervention. Our pattern search algorithm
is too simple to handle capture moves. This affects only Problem 21, where we replace
the captured stone location in the search pattern by a wildcard as shown in Figure 7.3.
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Figure 7.2: This is an example of a trick play problem. It is presented as a partial
board position. After white has played the unusual marked stone , black must respond
correctly. To solve the problem, it helps to know that white often plays this stone at A
instead, which aims at the right side and protects the corner too. Black deduces that
the white shape is now thinner in the corner. This enables an opportunity for black to
respond correctly at B.
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Figure 7.3: Before this position from Problem 21 emerges, black has captured a white
stone at A. This is the only such circumstance among the 80 book problems. We replace
this location with a wildcard character in our search pattern to make it compatible with
our search algorithm and find a complete board position.

Problems 24, 40, 43, and 47, on display in Figure 7.4, do not occur in our dataset
because these trick plays are too outrageous to be attempted even by weak amateurs. We
complete these boards by removing the last white move that produced the patterns (as
either indicated in the book or trivially inferred by the author’s Go intuition), searching
for the reduced pattern and re-adding the missing stone to the completed board. The
statement for Problem 61 includes a global positional feature outside the locally visible
part of the board, which we introduce to the completed position by judicious placement
of a black stone in a plausible location, marked in Figure 7.7.

7.2.2 Results

The black moves in the book’s refutation and failure example variations, set from our
prepared completed problem boards, constitute the move inputs to our strength model.

The evaluation of a sequence in our trick play collection works in the same way as the
strength evaluation of a player’s game. We preprocess all sequences through KataGo
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7.2. Tricks In Joseki

Problem Failure Solution
1 2269.02 (4.9-dan) 2262.26 (4.8-dan)
2 1383.36 (7.6-kyu) 2055.44 (2.6-dan)
3 2112.78 (3.2-dan) 2168.48 (3.8-dan)
4 1839.44 (1.0-kyu) 2412.53 (6.3-dan)
5 1832.10 (1.1-kyu) 2252.43 (4.7-dan)
6 1772.66 (1.8-kyu) 2234.58 (4.5-dan)
7 2498.12 (7.1-dan) 1280.68 (9.4-kyu)
8 2511.21 (7.2-dan) 2209.89 (4.3-dan)
9 2325.49 (5.5-dan) 2543.01 (7.5-dan)
10 2145.72 (3.6-dan) 1997.36 (1.9-dan)
11 1574.01 (4.6-kyu) 1860.14 (0.7-kyu)
12 1808.46 (1.4-kyu) 2245.66 (4.6-dan)
13 1822.72 (1.2-kyu) 2199.82 (4.2-dan)
14 2357.52 (5.8-dan) 1690.07 (2.9-kyu)
15 2195.50 (4.1-dan) 2284.98 (5.0-dan)
16 2016.54 (2.2-dan) 2398.20 (6.2-dan)
17 1942.29 (1.3-dan) 2015.86 (2.1-dan)
18 2269.35 (4.9-dan) 2457.20 (6.7-dan)
19 1589.32 (4.4-kyu) 2206.71 (4.2-dan)
20 2220.18 (4.4-dan) 2217.49 (4.4-dan)
21 2058.38 (2.6-dan) 1803.06 (1.4-kyu)
22 1888.77 (0.4-kyu) 2003.46 (2.0-dan)
23 1970.24 (1.6-dan) 1945.86 (1.3-dan)
24 1895.84 (0.3-kyu) 2405.52 (6.2-dan)
25 1572.03 (4.6-kyu) 2338.04 (5.6-dan)
26 2409.34 (6.3-dan) 1782.57 (1.7-kyu)
27 1821.21 (1.2-kyu) 2014.88 (2.1-dan)
28 2231.75 (4.5-dan) 2247.87 (4.7-dan)
29 1761.05 (2.0-kyu) 2288.19 (5.1-dan)
30 1789.37 (1.6-kyu) 1697.26 (2.8-kyu)
31 2168.54 (3.8-dan) 2027.85 (2.3-dan)
32 1772.84 (1.8-kyu) 1821.51 (1.2-kyu)
33 2337.18 (5.6-dan) 2186.19 (4.0-dan)
34 2555.07 (7.6-dan) 2299.80 (5.2-dan)
35 2398.89 (6.2-dan) 2354.95 (5.7-dan)
36 1555.68 (4.9-kyu) 2335.51 (5.6-dan)
37 1308.62 (8.9-kyu) 2216.98 (4.3-dan)
38 1957.07 (1.5-dan) 2340.25 (5.6-dan)
39 2058.11 (2.6-dan) 2439.00 (6.6-dan)
40 1887.76 (0.4-kyu) 2173.01 (3.9-dan)

Table 7.1: This list contains evaluations of the strength model on the book problems
1-40. Failure ratings in bold indicate cases where the rating is lower than the rating for
the corresponding refutation.
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7. Applications

Problem Failure Solution
41 2055.24 (2.6-dan) 2291.06 (5.1-dan)
42 1769.17 (1.9-kyu) 2072.75 (2.8-dan)
43 1723.07 (2.5-kyu) 2438.43 (6.6-dan)
44 1928.47 (1.1-dan) 2058.03 (2.6-dan)
45 1898.33 (0.2-kyu) 2001.14 (2.0-dan)
46 2449.39 (6.7-dan) 2254.57 (4.7-dan)
47 1742.48 (2.2-kyu) 2274.59 (4.9-dan)
48 2010.70 (2.1-dan) 2260.98 (4.8-dan)
49 1744.91 (2.2-kyu) 2403.78 (6.2-dan)
50 2001.70 (2.0-dan) 2203.52 (4.2-dan)
51 1306.38 (8.9-kyu) 2330.86 (5.5-dan)
52 1965.85 (1.6-dan) 2394.92 (6.1-dan)
53 1267.09 (9.6-kyu) 2271.40 (4.9-dan)
54 2242.02 (4.6-dan) 2357.79 (5.8-dan)
55 935.02 (16.6-kyu) 1672.87 (3.2-kyu)
56 2038.25 (2.4-dan) 2102.21 (3.1-dan)
57 1649.59 (3.5-kyu) 2537.86 (7.5-dan)
58 1868.05 (0.6-kyu) 2302.54 (5.2-dan)
59 1897.73 (0.3-kyu) 2153.94 (3.7-dan)
60 2108.14 (3.2-dan) 2184.08 (4.0-dan)
61 2256.07 (4.8-dan) 2090.81 (3.0-dan)
62 2020.84 (2.2-dan) 2202.72 (4.2-dan)
63 1646.35 (3.5-kyu) 2054.23 (2.6-dan)
64 2058.06 (2.6-dan) 2551.25 (7.6-dan)
65 2331.87 (5.5-dan) 2202.29 (4.2-dan)
66 2313.89 (5.3-dan) 2508.54 (7.2-dan)
67 1719.86 (2.5-kyu) 2128.77 (3.4-dan)
68 1225.34 (10.4-kyu) 2517.07 (7.3-dan)
69 1962.06 (1.5-dan) 2531.57 (7.4-dan)
70 1316.62 (8.7-kyu) 2378.77 (6.0-dan)
71 1874.47 (0.5-kyu) 2471.16 (6.9-dan)
72 2206.36 (4.2-dan) 1970.31 (1.6-dan)
73 2081.70 (2.9-dan) 2218.04 (4.4-dan)
74 2117.88 (3.3-dan) 2196.50 (4.1-dan)
75 2406.97 (6.3-dan) 1906.27 (0.1-kyu)
76 1584.61 (4.4-kyu) 2372.97 (5.9-dan)
77 2104.60 (3.1-dan) 2293.44 (5.1-dan)
78 1560.95 (4.8-kyu) 1997.82 (1.9-dan)
79 1377.99 (7.7-kyu) 1967.48 (1.6-dan)
80 1772.01 (1.8-kyu) 2086.37 (2.9-dan)

Table 7.2: This list contains evaluations of the strength model on the book problems
41-80. Failure ratings in bold indicate cases where the rating is lower than the rating for
the corresponding refutation.
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Problem 24
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Problem 40
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Problem 43
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Problem 47

Figure 7.4: These problem positions do not occur in our dataset. We adjust our search
patterns by removing the last white move leading up to the position, marked in each
case.

to extract the trunk features at the next move coordinates of all board states in the
sequence with black to play. Then we apply the strength model to compute the estimated
rating of the sequences. Tables 7.1 and 7.2 show the raw outcome.

7.2.3 Discussion

Among the 80 examined problems, we uncovered 18 surprising cases where the failure
variation is rated higher by our model than the book refutation. In this section, we
examine these cases, the most interesting among them in detail. We propose semi-formal
explanations for the discrepancies derived from manual examination of the positions in
question with the KataGo program combined with the author’s interpretation.

We visualize the results in Figure 7.5. Our general answer is that effective trick plays
exist even into the low dan-player range (2000-2200). Players ranked at least 4-dan
(≈2180) and above should be able to refute the trick plays in this set. We cannot interpret
too much into the outliers here due to prudent skepticism about the accuracy of the
individual data points. On top of the inherent uncertainty in assigning a rating to a
very small sample of moves, we introduced extra context by completing the boards in
preparation, imposing uneven disturbances across the cases.

In general, most surprising cases are not contradicted by further examination. This means
that the proposed failure variation is not really worse, and in some instances indeed
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Figure 7.5: This distribution of strength assessments for each of the 80 problems is
ordered by the failure rating. The dashed line indicates the mean rating of all refutation
sequences.

strictly preferable to the book refutation. The phenomenon illustrates the difference
between the judgment of humans, even professionals, at a time when quality computer
evaluation was not available or not trusted, and the present day, where free tools like
KataGo are available to everyone, widely used and trustworthy. In traditional judgement,
corner territory was generally undervalued, and small differences in move alternatives
during the opening were given undue weight. The book’s answers to 13 of the 18 surprising
problems fall in this category. They represented the state of the art in 2001, the time of
publication.

Problems 8 and 31 have the correct refutation, but later moves in the solution sequence
are inaccuracies that taint the strength rating of the whole sequence. This can be blamed
on the problem book format, where the black player resolves the local situation in proper
form, even when the player would realistically play somewhere else in a real game.

In Problem 23, shown in Figure 7.6, the difference between the two alternatives is
negligible. Despite the refutation being the better path, our strength model inexplicably
assigns a higher rank to the failure variation. The same happens in Problem 61, shown in
Figure 7.7. This time, the refutation is clearly the better choice afforded by the favorable
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Problem 23 (completed board)
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Failure

Figure 7.6: This problem causes our strength model to award 25 fewer rating points to
the correct refutation on the left than to the failure variation on the right.

ladder situation for black. One possible explanation might be a case of misplaced
expectations. We assume that the strength model judges the stronger move with a higher
rating. In reality, there is no law of nature that guarantees that overall stronger players
will pick the better move in these particular situations. Another possibility is simply
that, despite all its training on up to 500-move histories, our strength model produces
the wrong result when presented with these particular inputs and having so few moves
on which to base its estimate.

Problem 24 was initially in the suspicious set because our preparatory board completion
step yielded a whole-board situation that thwarted the book’s challenge. Figure 7.8
illustrates the point. Like Problem 61, the situation depends on a global positional
feature outside the local problem statement, this time without explicit mention in the
book. Like before, we changed the completed board to ensure that the local question
remained intact, then re-evaluated the problem. After this intervention, the evaluation
sharply changes in favor of the refutation.
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Problem 61 (completed board)
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Failure

Figure 7.7: Again, our strength model associates the failure variation with the higer
rating, this time by a wide margin of over 150 points. In this problem, it is a failure for
black to cover with the usual defensive move shown in the Failure diagram. Black must
take advantage of the stone marked with , which prevents the white attempt to capture
black by force, as shown in the Refutation diagram.
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7.2. Tricks In Joseki
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Problem 24 (completed board)
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Failure

Figure 7.8: We fixed an issue with the preparatory board completion in Problem 24. The
stone in the upper left must be white to ensure that the failure variation gives a bad
result to black. The lower diagram illustrates how, if black attempts to enclose three
white stones with 1 and 3, white can forcibly capture some black stones instead. Our
fixed completed board is modified from the original game sample by exchanging the two
stones marked with .
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Overview of Generative AI Tools
Used

Generative AI tools were used extensively in the development of the software accompany-
ing this thesis. The following contents were authored with influence from AI output:

• general layout and formatting of Python scripts,

• Python and C++ code samples for sub-tasks,

• Python code for specific script components, such as argument parsing, CSV file
handling, creating plots, usage of libraries, manipulating data structures, and
regular expressions,

• the project structure and the HTML template for the web application from Chap-
ter 7,

• templates for shell scripts.

The tool for these tasks was ChatGPT in versions available from October 2023 to October
2024.
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