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Short Abstract

In this thesis we present a method to solve the Steiner Tree Problem as
well as the prize collecting Steiner Tree Problem to provable optimality.
Although those problems have been shown to be in the class of NP hard
problems there exist important practical applications thus algorithms that
produce good solutions are needed.

The approach presented in this thesis solves those problems using Integer
Linear Programming. We propose the addition of {0, 1

2}-Cuts and Local
Branching to the solving process for the Integer Linear Program which dras-
tically improve the quality of the obtained bounds compared to the standard
branch and cut methods used to solve Integer Linear Programs.

We apply our new approach to the set of most difficult Steiner Tree in-
stances and on a set of easily solvable instances for the prize collecting
Steiner Tree problem available from literature and show that within short
time our method is able to find very good bounds for most of those instances
and better upper bounds than the currently best known ones for some of
them.
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Deutsche Zusammenfassung

In diese Diplomarbeit präsentieren wir eine Methode zur optimalen Lösung
des “Steiner Tree Problems” und des “Prize Collecting Steiner Tree Prob-
lems”. Es ist bekannt, dass diese zwei Probleme in der Klasse der NP schw-
eren Probleme liegen. Trotzdem werden in der Praxis Algorithmen benötigt,
die gute Lösungen liefern können, da wichtige praktische Anwendungsgebiete
bestehen.

Die Ansätze die wir in dieser Arbeit präsentieren, lösen die genannten Prob-
leme mittels Ganzzahliger Linearer Programmierung. Wir zeigen, wie man
durch Hinzufügen von sogenannten {0, 1

2}-Cuts und “Local Branching” den
Lösungsprozess für Ganzzahlig Lineare Programme so verändern kann, dass
die Qualität der erhaltenen Grenzen signifikant besser ist als die, die man bei
Verwendung des “branch and cut” Standardlösungsansatzes für Ganzzahlige
Programmierung erhält.

Wir verwenden unseren Lösungsansatz um eine Menge der schwierigsten
Instanzen für das Steiner Tree Problem und eine Menge von einfacheren
Instanzen für das prize collecting Steiner Tree Problem aus der Literatur
zu lösen. Wir zeigen, dass unser Ansatz innerhalb kurzer Zeit sehr gute
Lösungen für alle diese Instanzen liefert und für manche der schwierigen
Instanzen sogar die besten bekannten Grenzen verbessern kann.
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Chapter 1

Introduction

In the last few years as more and more companies are trying to provide
services that aim at a large number of customers various network planning
problems have gained a lot of importance. Planning well designed distribu-
tion networks is a very challenging task but the quality of those networks
affects directly the profit a company can make by providing services to their
customers. One interesting subset of these problems arises in the field of
energy companies namely the design and planning of district heating net-
works.

Since companies are forced to reduce their greenhouse emissions and also
for plain economic reasons the use of biomass for heat generation is a very
attractive possibility. This area of energy distribution is characterized by
extremely high investment costs but also by an unusually loyal customer base
and limited competition. Therefore constructing district heating networks
is a business that pays well. However, the design phase is very crucial for
building a high profit network.

In a typical planning scenario the input is a set of potential customers
with known or estimated heat demands, which can be represented as future
profits, and a potential network for laying the pipelines. This network is
usually determined by the underlying street network of the district or town.
Costs of the network are dominated by labor and right-of-way charges for
laying the pipes and the costs for building the heating plant.

The planning process now consists of two main parts. On one hand a
subset of profitable customers has to be selected from the set of all potential
customers. This subset will be the customers who will be provided with
district heating. On the other hand, a network has to be designed to connect
all the selected customers to the heating plant. Clearly the cost of this
network should be as low as possible.

This process can be described as an optimization problem in the following
way. Given is an undirected graph G = (V,E), where some vertices S ⊆ V
are considered customer nodes and the edges E with costs, c : E 7→ R+.

1



2 Chapter 1. Introduction

This graph represents the map of a district where a district heating network
has to be built. The cost function c represents the costs that have to be
paid for laying a pipe along the corresponding street segment. The goal of
a profit orientated company is to maximize the total revenue which can be
estimated by the sum of the gains for the connected customers minus the
costs for building the network.

A formal definition of the problem can be given as follows:

Definition 1 The Steiner Tree Problem, ST Given is a weighted undi-
rected graph G = (V,E, c) and a set S ⊆ V , the so called terminal nodes.
The Steiner Tree Problem (ST) consists in finding a connected subgraph
T = (VT , ET ) of G, VT ⊆ V,ET ⊆ E that spans all the nodes in S, S ⊆ VT ,
and minimizes the cost function

costs(T ) =
∑

e∈ET

c(e) (1.1)

It is easy to see that every optimal solution T will be a tree. Otherwise
T would contain a cycle and removing any edge from the cycle would reduce
costs(T ) without violating the connectivity of T .

Of course when such district heating networks are designed in most cases
a slightly more complex version of this problem has to be solved. As the goal
of energy providing companies is mainly to improve their profit it often does
not make sense for them to connect customers with very little demand or
which are quite hard to reach to their network. In those cases the problem
solving procedure consists of another part, namely in selecting a profitable
subset of the potential customers which will be taken into consideration
when actually constructing the network. Normally the demand for each
customer is known to the company or can at least be estimated but as the
steps of selecting customers and designing the actual network have to be
done at the same time, the complexity of the problem clearly increases.

In the corresponding optimization problem an undirected graph G =
(V,E) is given, where the vertices V are associated with profits, p : V 7→
R+, and the edges E with costs, c : E 7→ R+. The profit function p now
represents the estimated gains for connecting this customer to the network
while, as before, the graph G represents the map of a district and function c
represents the costs that have to be paid for laying a pipe. The total revenue,
which has to be maximized, is now defined as the sum of the estimated gains
for the connected customers minus the costs for building the network.

A formal definition which is similar to the definition of the Steiner Tree
Problem is given as follows:

Definition 2 The prize collecting Steiner Tree Problem, PCST Let
G = (V,E, c, p) be an undirected weighted graph. The Linear prize collecting
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Steiner Tree problem (PCST) consists of finding a connected subgraph T =
(VT , ET ) of G, VT ⊆ V , ET ⊆ E that maximizes

profit(T ) =
∑
v∈VT

p(v)−
∑

e∈ET

c(e) . (1.2)

Throughout this paper we will distinguish between customer vertices,
defined as

R = {v ∈ V | p(v) > 0} ,

and non-customer vertices, corresponding to street intersections, and we
assume that R 6= ∅. For the ST, we will use the same naming and refer to
the set of terminal nodes S ⊆ V as customer nodes or potential customer
nodes. p(v) and c(e) will often be referred to as pv and ce, respectively.



Chapter 2

Known Variants of the
Steiner Tree Problem

In practice often additional side constraints have to be considered when
solving instances of those problems. The planning problem of the heating
network for example clearly requires that the heating plant is connected to
the network. This can be modeled as a ST or a PCST by introducing a
special vertex for the plant which has to be present in every solution. This
can be achieved by various means like for instance by giving the heating
plant a very high profit.

In general, the rooted prize-collecting Steiner tree problem (RPCST),
is defined as a variant of PCST with an additional source vertex vs ∈ V
representing a depot or repository which must be a part of every feasible
solution T . The rooted Steiner Tree Problem (RST) is defined analogous.

Another interesting variant of PCST arises if the energy company in
our application chooses not to maximize the absolute gain of a project but
rather the return on investment (RoI). In this case we want to maximize the
ratio of profits to costs. This problem is called the fractional prize-collecting
Steiner tree problem (FPCST). The objective function for this problem is:

max

∑
v∈VT

p(v)
c0 +

∑
e∈ET

c(e)
(2.1)

over all subtrees T of G, where c0 > 0 represents the fixed cost of the project
which could be the setup costs of the heating plant in our application. Note
that without the inclusion of c0 in the definition, the empty set, which is
a trivial feasible solution, would produce an undefined objective function
value.

As with the PCST, the rooted version of FPCST is a relevant special
case to consider. However solving instances of the rooted FPCST is not as
easy as solving the rooted PCST as a node with artificially high profit would
distort the ratio in (2.1).

4
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It is obvious that we cannot directly apply an integer linear programming
procedure to solve this problem. Nevertheless, since both numerator and de-
nominator are linear functions, the problem belongs to the broader group
of so-called linear fractional combinatorial optimization problems (LFCOs).
In the paper [23] the authors describe the solving of the FPCST using New-
ton’s iterative method (cf. Radzik [29]) where several linear rooted PCST
instances have to be solved to optimality for obtaining one solution for the
FPCST.

In the special case where the given graph G is a tree, PCST can indeed
be solved in O(|V |) time which can be further exploited to construct an
O(|V | log |V |) algorithm for FPCST in this special case.

Another interesting variation of the ST as well as of the PCST which
arises in the field of distance heating networks is the so called piecewise linear
Steiner tree problem. This variant tries to model the fact that normally the
costs for laying district heating pipes do not only correspond to the length
of the pipe and the area where the pipe has to be laid but also to the size
of the pipe. Obviously burying a small pipe for connecting a few houses is
a lot cheaper than burying the very large connection to the heating plant.
Therefore now the penalty for constructing each part of the network consists
of fixed and variable costs. For laying the pipe the company has to pay the
fixed costs which are higher for larger pipes and depend on the surface and
on the length. For transporting energy along these pipes, the variable costs
have to be paid which depend on the amount of flow along the pipe. In
exchange for the higher fixed investment, larger pipes have lower transport
expenses.

This leads to an objective function that contains piecewise linear vari-
ables. Clearly every solution also has to state, which types of pipes have to
be used to build the network.



Chapter 3

Previous Work

In 1972, Karp [22] showed the NP-completeness of the Steiner tree problem
(ST) which also implies that the prize collecting Steiner tree problem, a
more general case of the ST, is NP-complete.

In 1987, Segev [31] considered for the first time the so-called Node
Weighted Steiner Tree Problem (NWST) – the Steiner tree problem with
node weights. In addition to regular edge weights, nodes have weights and
the goal is to minimize the sum of edge-costs and node-weights. The differ-
ence between NWST and PCST is that the former requires a set of terminal
vertices to be included in the solution which is quite similar to the classical
Steiner tree problem. Segev also noted that NWST can be turned into a
directed Steiner tree problem, if the node weights are non-negative and the
root of a solution tree is given.

He also contributed observations on a special case of NWST, called the
single point weighted Steiner tree problem (SPWST). In this problem a spe-
cial vertex is given that has to be included in the solution. The weights
on the remaining vertices are non-positive profit values, while non-negative
weights on the edges reflect the costs in obtaining or collecting these profits.

Negating the node weights to make them positive and subtracting them
from the edge costs in the objective function, immediately yields the ob-
jective function of the rooted PCST. Therefore, as long as optimization is
concerned, SPWST is equivalent to our definition of RPCST.

Many algorithms have been proposed for solving the ST. An exhaustive
list of related publications can be found at [17]. In 1985 and 1987, Winter
presented algorithms on the ST ([32] and [33]).

Another algorithm was presented by Beasley in 1989 ([4]). Definitions
and algorithms on the ST can for example be found in [20].

An article on preprocessing techniques for the ST that may also be mod-
ified for the PCST was published by Duin in 1989 ([12]). Polzin and Vahdati
applied a partitioning approach to the ST in [28].

The term “prize-collecting” was introduced in 1989 by Balas [3] in the

6



3.1. Approximation Algorithms 7

context of the traveling salesman problem. The node weights in his model
are non-negative and can be seen as penalties for not including nodes in a
solution.

3.1 Approximation Algorithms

The first approximation algorithm for both the PCST and the prize-collecting
traveling salesman problem has been proposed by Bienstock et al. [5]. Those
algorithms bear approximation guarantees of 3 and 5/2, respectively.

Goemans and Williamson presented in [19] a purely combinatorial gen-
eral approximation technique for a large class of constrained forest problems.
Their algorithm is based on a primal-dual schema, runs in O(n2 log n) time
(n := |V |), and yields solutions within a factor of 2− 1

n−1 of optimality for
most of the considered problems: the generalized Steiner tree problem, the
T -join problem, the minimum-weight perfect matching problem, etc.

The authors also provided an extension of the basic algorithm and pro-
posed, in particular, algorithms for the prize-collecting Steiner tree and
prize-collecting TSP problems. To solve the unrooted PCST, the Goemans-
Williamson algorithm is performed for each vertex as a possible root. Thus,
the total running time of the algorithm is O(n3 log n). Recently, John-
son et al. [21] improved the Goemans-Williamson algorithm by enhanc-
ing the second phase, the so-called pruning phase. The new algorithm is
slightly faster and provides solutions that are provably at least as good and
in practice significantly better. The authors also provided a modification
to the growth phase to make the algorithm independent of the choice of
the root vertex, thus giving a (2 − 1

n−1)–approximation algorithm for the
general unrooted PCST which runs in O(n2 log n) time. In exhaustive tests
by Minkoff [26] the performance of the original Goemans-Williamson algo-
rithm and the proposed improvement are compared on benchmark instances
obtained from county street maps and randomly generated instances.

Feofiloff et al. [14] present a revised proof for the (2− 1
n−1)–approximation

algorithm by Johnson et al. and give an example showing that this ratio is
tight. The authors also proposed a modification of the Goemans-Williamson
algorithm based on a slightly different linear programming formulation. The
new algorithm achieves a ratio of 2− 2

n and runs in O(n2 log n) time.

3.2 Lower Bounds and Polyhedral Studies

In [31], Segev presented single- and multi-commodity flow formulations for
SPWST. Furthermore, the author developed two bounding procedures based
on Lagrangian relaxations of the corresponding flow formulations which were
embedded in a branch-and-bound procedure. In addition, heuristics to com-
pute feasible solutions were also included. The proposed algorithm was
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tested on a set of benchmark instances with up to 40 vertices.

Fischetti [15] studied the facial structure of a generalization of the prob-
lem, the so-called Steiner arborescence (or directed Steiner tree) problem
and pointed out that the NWST can be transformed into it. The author
considered several classes of valid inequalities and introduced a new inequal-
ity class with arbitrarily large coefficients, showing that all of them define
distinct facets of the underlying polyhedron. More details on the transfor-
mation of the PCST into the Steiner arborescence problem are shown in
Section 5.3.

Goemans provided in [18] a theoretical study on the polyhedral structure
of the node-weighted Steiner tree problem.

Chopra presented formulations for the Steiner Tree Problem in 1994
([9]). A comparison of Steiner Tree Relaxations is given by Polzin and
Daneshmand in [27]. The authors also introduced a new formulation based
on the standard multicomodity flow formulation and proved that the new
approach provides the best lower bounds.

Engevall et al. [13] proposed another ILP formulation for the NWST,
based on the shortest spanning tree problem formulation, introduced orig-
inally by Beasley [4] for the Steiner tree problem. In their formulation,
besides the given root vertex r, an artificial root vertex 0 is introduced,
and an edge between vertex 0 and r is set. They searched for a tree with
additional constraints: each vertex v connected to vertex 0 must have de-
gree one. The solution is interpreted so that the vertices adjacent to vertex
0 are not taken as a part of the final solution. For the description of the
tree, the authors use a modification of the generalized subtour elimination
constraints. For finding good lower bounds, the authors use a Lagrangian
heuristic and subgradient procedure based on the shortest spanning tree
formulation. Experimental results presented for instances with up to 100
vertices indicated that the new approach outperformed Segev’s algorithm.

Lucena and Resende [25] presented a cutting plane algorithm for the
PCST also based on Beasley’s shortest spanning tree formulation and the
generalized subtour elimination constraints. Their algorithm contains basic
reduction steps similar to those already given by Duin and Volgenant [11],
and was tested on two groups of benchmark instances: the first group con-
tains instances adopted from Johnson et al. [21], ranging from 100 vertices
and 284 edges to 400 vertices and 1507 edges. The second group is derived
from the Steiner problem instances (series C and D) of the OR-library, with
sizes ranging from 500 vertices and 625 edges to 1000 vertices and 25000
edges. The proposed algorithm solved many of the considered instances to
optimality, but not all of them.
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3.3 Heuristic Algorithms

Canuto et al. [6] developed a multi-start local-search-based algorithm with
perturbations. Perturbations are done by changing the parameters of the
input graph, either by setting profits of potential customers to zero, or by
modifying the profits of non-zero vertices. Feasible solutions are obtained by
the Goemans-Williamson algorithm, followed by a local search procedure.
Within local search, the complete 1-flip neighborhood is examined, and the
best solution found so far is selected and inserted in a pool of high-quality
elite solutions. Between a randomly selected solution from the pool, and
the solution found in the current iteration, path relinking is applied, explor-
ing trajectories that connect these two solutions. A variable neighborhood
search method is finally applied as a post-optimization step. The algorithm
found optimal solutions on nearly all test instances for which the optimum
is known.



Chapter 4

Preliminaries

In this thesis a method for finding provably optimal solutions for the PCST
and the ST is presented that uses integer linear programming. Unlike the
flow based formulations for the PCST (see Section 3.2), this formulation
uses a different approach that is based on minimum s, t - cuts.

Section 4.1 gives a very short overview of (integer) linear programming.
In Section 5.1 the idea behind cut based method is explained.

4.1 Integer Linear Programming

Linear Program A Linear Program (LP) is a mathematical optimization
problem that consists of an objective function and of constraints formulated
as inequalities. As the name states, every single constraint as well as the
objective function is a linear combination of the available variables. The
goal is to find a variable assignment that does not violate any of the given
constraints and optimizes the value of the objective function.

The standard notation of a LP is

max cT x (4.1)

subject to Ax ≤ b (4.2)

where the abbreviations have the following meaning:

x ∈ Rn variables
A ∈ Rm×n coefficients of the variables in the constraints
b ∈ Rm constant right hand side values
c ∈ Rn coefficients of the variables in the objective function

(4.1) is the objective function that has to be maximized and (4.2) are
the constraints that have to be considered. Although the standard form
for LPs presented here seems very restricted, it can easily be enhanced by
introducing other constraints like equalities or greater or equal - inequalities.

10
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A constraint aT x ≥ b can be rewritten as −aT x ≤ −b and is therefore usable
in the standard form of the LP. A equality aT x = b can be modeled by adding
two constraints to the LP. The appropriate inequalities are

aT x ≤ b

and
−aT x ≤ −b.

By applying similar methods, the standard form may also be used to solve
minimization problems. The objective function min cT x can be rewritten in
the form max−cT x which satisfies the criteria of the standard formulation.

The widely known methods for solving LPs like the Ellipsoid method or
Interior Point methods are able to solve this class of optimization problems
in polynomial time which makes linear programs very useful for practical
applications.

Integer Linear Program An Integer Linear Program is an extension of
a Linear Program. If a nonempty real subset of the variables x is demanded
to be integer in the solution, we call this a Mixed Integer Program (MIP). If
all variables have to be integer we have a so called Integer Linear Program
(ILP). Unfortunately, in the general case solving instances of Integer Linear
Programs is NP hard and can only be solved using time consuming methods
like Branch-and-Cut or Branch-and-Cut-and-Prize.

{0, 1}-Integer Programming A special case of an ILP arises, if all integer
variables are decision variables which means that for every integer variable
x, x ∈ {0, 1}. This special case is called {0, 1}-Integer Programming.

Branch-and-Cut A widely applied approach to solve ILPs is the Branch-
and-Cut method. This is a simple divide and conquer method that starts
by solving the linear program relaxation of an ILP. If the solution to this
problem is integer, the problem is already solved. In most cases there are
variables that have fractional values assigned in the LP solution. In this
case, the problem is split up by rounding one of the fractional variables.
In the case of {0, 1}-Integer Programming two new problems are generated.
For one of them the branching variable xb is set to 0 and in the other to
1. Those problems are then solved recursively until no problems are left to
process.

In this thesis we will present an ILP formulation for solving ST and PCST
instances and we will also show how Local Branching, an improvement to the
normal Branch-and-Cut method, can be applied to those problems (Section
8).

For solving the integer linear programs presented in this thesis we used
the widely used commercial MIP solver ILOG Cplex 8.1.
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4.2 Flow Networks

This section gives some important definitions of graphs and problems on
graphs that are used throughout this thesis.

Definition 3 (Directed) Graph A Graph is a tuple G = (V,E) of a finite
set of nodes V and a finite set of edges E. An edge e is a tuple (v, w) of two
nodes v, w ∈ V . If all the edges of a graph are ordered, which means they
are a ordered tuple of nodes, we call the graph directed.

For every node v the number of edges incident to it is called the degree
of v. If we consider only incoming arcs, we call it the indegree. Analogous
we define the outdegree as the number of arcs going out from v.

For every edge (u, v), u is called the source of e and v the target of e. A
path in a graph G is a sequence of vertices such that for every vertex in the
sequence there exists an edge to its successor.

Definition 4 Flow Network A Flow Network is a directed connected graph
with some special properties. There exists a supply function sup : V 7→ Z
that determines for every node v ∈ V how many units of flow it produces or
consumes and a capacity function cap that maps edges to positive numbers,
cap : E 7→ Z+. Additionally every edge may get costs assigned by a cost
function cost : E 7→ Z.

There are two types of nodes that are determined by the supply function.

• If a node s has a value sup(s) > 0 we call this node a source.

• If a node t has a value sup(t) < 0 we call this node a sink.

Throughout this thesis we will deal with flow networks that have exactly
one source s with sup(s) = C and exactly one sink t with sup(t) = −C.

Definition 5 Maximum Flow Problem The Maximum Flow Problem
consists in finding the maximum flow between any two vertices s and t of a
flow network considering the capacity function cap : E 7→ Z+ and the supply
function sup : V 7→ Z.

Definition 6 Minimum weight s,t - Cut The set of edges S with min-
imal

∑
e∈S cap(e) in a flow network which separates the distinct vertices s

and t when removed is called a minimum weight s,t - Cut.

Theorem 1 Max-Flow-Min-Cut Theorem The maximum flow through
a single commodity capacitated network from a source node s to a sink node
t equals the value of the minimum s,t - cut.
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Figure 4.1: A flow network, a maximum flow and a minimum weight cut

The example in figure 4.1 shows a flow network with exactly one source
s and sink t. On the left graph, the numbers denote the capacities of the
corresponding edges. The flow on the right is a Maximum Flow through the
network. Also a minimum cut C is given in the example with

∑
e∈C cap(e) =

3. Applying the Max-Flow-Min-Cut Theorem we know that the maximum
flow from s to t equals 3.



Chapter 5

The Min - Cut - ILP -
Formulation

5.1 Cut - Based - Methods

Nowadays many combinatorial problems have been formulated as (integer)
linear programs which led to great results. However, the transformation of
a given problem into inequalities is not always easily done and often various
possibilities exist for achieving the same results which makes finding the
best formulations often quite hard.

The idea behind solving combinatorial problems using LP solvers is to
enforce the solver to produce only valid solutions using various constraints.
The optimality of a given solution is then implied by the fact that the LP
solver only produces optimal solutions under the given constraints.

For the PCST as well as for the ST, there exist various types of con-
straints that define valid solutions. Many different variants of ILP formula-
tions for the PCST as well as a comparison among them can be found for
example in [27].

Figure 5.1 shows an example of an invalid solution to a small ST instance.
As one can see, nodes 5 and 6 are not connected to the tree which clearly
invalidates the solution. One approach to formulating the ST as an ILP
is to model the connectivity between nodes as a continuous flow going out
of one specified root node r. In those flow based approaches every other
customer node has to be connected to the root node. This induces a tree
on the original graph that is always a valid solution for the ST. In those
approaches the capacity of every edge e is defined as 0 if e is not part of the
solution and C > 0 otherwise. If a flow f > 0 from r to s exists for every
node s in that tree, a valid solution to the problem has been found.

For the PCST, the approach is somewhat similar. The only difference is,
that the set of nodes in the solution is determined by the actual solution to
the LP relaxation. For ever node s in the set S′ ⊆ S of potential customers

14
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Figure 5.1: An example for an invalid solution for the ST. Bold nodes denote
nonterminal vertices, circles represent customer nodes. A violated cut c is
given.

that is part of the actual solution, a flow outgoing from r has to be found
using only edges that are part of the solution too. If this condition is met,
a valid solution tree has been found.

In linear programs representing valid solution using network flows nor-
mally there exist flow conservation constraints. Those constraints state, that
for every node the outgoing flow has to be less than or equal to the incoming
flow. In Figure 5.1, node 5 would violate this inequality because the ingoing
flow is zero while there is a unit of flow going out to node 6.

There exist a lot of well known variants of flow based ILP formulations,
the method presented in this thesis however uses a different approach. Ac-
cording to the Max-Flow-Min-Cut theorem (see Section 4.2), the maximum
flow through a single commodity capacitated network from a source node s
to a sink node t equals the value of the minimum s,t - cut. This means,
that instead of ensuring that a maximal flow greater than some value exists
from the root node r to every customer node, we can also enforce that the
minimal s, t - cut between r and the customer node is not lower than that
value. An example cut (c) is also given in figure 5.1. Note that the minimal
cut is not uniquely defined, another valid minimal cut would cross the edge
between nodes 4 and 5. The sum of flow along the edges crossed by this
cut is zero (as expected because of the Max-Flow-Min-Cut theorem and the
fact that there is no flow from r to node 6). The constraint that would have
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to be inserted to invalidate the given solution should state, that the sum of
the edges, crossed by the cut has to be greater or equal to one if node 6 is
in the solution tree.

The problem using this approach is, that there exists an exponential
number of possible s, t - cuts. Therefore a clever cut separation procedure
has to be used to iteratively find possible solutions. In the presented method,
the LP solver starts without any cut constraints which may of course lead to
invalid solutions. Therefore every solution is checked for violated cuts and
if such cuts are found, the appropriate constraints are generated, added to
the problem and the process starts over from re-optimizing the problem. If
no such cuts can be found, the solution is optimal and feasible for the LP
relaxation and is therefore accepted.

Note that in this section it is assumed, that there exists a root node r
that is always part of every solution. In Section 5.2 we show, how this can
always be achieved by transforming the problem. In Section 5.3 we show
how through further transformations of the problem we can resolve some
problems that arise when solving LP relaxations of the problem.

In the following sections the exact formulation of the PCST and the ST
as an ILP is described. Details on the cut separation procedure are given in
Section 6 and the iterative algorithm is then presented in Section 6.4.

5.2 Transformation to the Rooted Steiner Tree Prob-
lem

As the presented formulation assumes that there exists a root node s which
will always be part of any solution we have to ensure, that this node actually
exists. For the Steiner Tree Problem this assumption always holds as every
customer node has to be part of every solution. We can easily define any
customer node as the root node r. For the prize collecting Steiner Tree
Problem this assumption is not true. Therefore we apply the following
transformation to introduce an artificial root node.

Suppose we are given a graph G = (V,E) which does not contain a root
node r. We define the auxiliary graph G∗ by adding an artificial root node
r as follows:

G∗ = (V ∗, E∗)
V ∗ = V ∪ {r}
E∗ = E ∪ {(r, v) : v ∈ R}

We define the new cost function c∗ : E∗ → N0 as

c∗(e) =
{

c(e) if e ∈ E
0 if e = (r, v) and v ∈ R
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By adding one edge from the artificial root node to every customer node
any customer node may now be the root node of the original graph G by
connecting the artificial root node r to it. We have to ensure however, that
for every solution at most one customer node is connected to r.

An alternative solution Clearly, the method presented above is not the
only way of making sure that one vertex is definitely part of every solution
tree. Actually some minor problems arise when the solution presented above
is applied to solve instances of the PCST. Therefore we tried another algo-
rithm, that exploits the fact, that all solutions which only differ by choosing
another customer node as the root node are identical. The main idea is,
that if we solve the problem setting one customer node i as root, we can be
sure that, if we select every other customer that is present in the solution
as root, we will get the same result. Therefore we can eliminate all the cus-
tomer nodes present in the obtained solution from the set of possible roots
and start over with solving the reduced problem until the set of possible
roots is empty.

Note also that there can not be another globally optimal solution con-
taining the actual root node i because we would have found the equivalent
solution with root node i. Therefore we can remove node i from the set of
nodes V . We now give an algorithm that describes this procedure.

1. Roots = R

2. Select i from the set of possible roots Roots

3. Roots = Roots \ {i}.

4. Solve the rooted PCSTP to optimality, where i is the root, obtaining
solution S.

5. Roots = Roots \ {j} for all j ∈ S ∩R.

6. Remove i from V .

7. Goto 2 until Roots = ∅.

8. Return the best found solution S.

Although for every instance several PCSTs have to be solved when apply-
ing this method, it works generally quite well. In our experiments, however,
we mainly used the method of inserting an artificial root. The problems
that arise and a solution to them are discussed in Section 5.8.
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5.3 Transformation to the Steiner Arborescence
Problem

While solving LP relaxations of the ST and PCST we encountered serious
problems with so called 0.5 flow circles. The problem is that when we tried
to apply our formulation to undirected graphs, the formulation allows circles
of 0.5 flow to be contained in valid solutions. This makes the CPLEX solver
branch on those variables to enforce the integrality of the corresponding
variables what slows down the running time of the algorithm significantly.
An example of an 0.5 flow circle is given in Figure 5.2. It is easy to see that
every possible s, t - cut, like the given example cut C, has a value of one.
This would mean, that node t is connected to r in a valid way. As we can see,
some edges in the example get a value of 0.5 assigned. This means that the
given solution can never be a valid solution to the underlying integer linear
program. When the ILP solver starts the branching process, this solution
would be marked as illegal. This process however is very time consuming
which is the reason why we introduced another transformation.

0.5

0.5

1

1

r

C

0.5

0.5

t

Figure 5.2: Example for an 0.5 flow circle

To overcome this problem we have chosen to transform our instances
into the (prize collecting) Steiner Arborescence problem (SA), which is the
directed version of the ST. The difference to the ST is that in the Steiner
Arborescence problem the prize from every node w is transferred to the
edges (v, w) ∀(v, w) ∈ E. If we enforce that every possible solution is a tree,
every node has an indegree of at most 1. This means that the prize for every
node is collected at most once and therefore the problem is equivalent to
the ST. Note that this transformation allows edge costs to be negative. If
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no negative edge costs exist, the solution to an SA instance is only the root
node r.
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(a) An ST instance, nodes
have their corresponding prizes,
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(b) The transformed instance,
the edges are now directed and
the prizes have been subtracted
from the costs of the incoming
edges

Figure 5.3: An example for the transformation to a Steiner Arborescence

The transformation We transform the input graph G = (V,E) into a
bidirected graph G = (V ′, A) by introducing (v, w) and (w, v) into A for
every edge (v, w) ∈ E. Additionally, if we solve an instance of the PCST
and have not done this before, we introduce an artificial root node r and
connect it to every customer node v ∈ R.

V ′ = V ∪ {r}

A = {(r, v) | v ∈ R} ∪ {(v, w), (w, v) | ∀(v, w) ∈ E}.

The cost of each arc (v, w) is now given by c′(v, w) = c(v, w) − p(w).
If a new root node has been inserted, the costs for the newly inserted arcs
going out from r are defined as c′(r, v) = −p(v). For simplicity we will
not refer to c′(v, w) in the following sections but rather redefine c(v, w) as
c(v, w) = c(v, w)− p(w).

For the ST there exists a set of target vertices T , that have to be part
of every valid solution. In this case the Steiner Arborescence is defined as
follows.

Definition 7 Steiner Arborescence for the ST Given a digraph G =
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(V,A) A Steiner Arborescence (SA) is a partial digraph T = (VT , AT ) of G
such that:

• R ⊆ VT

• all the vertices v ∈ VT have indegree equal to one, the root node r has
indegree 0.

• for each node v ∈ VT \ {r}, there exists a directed path from the root
to v.

•
∑

ij∈AT
c′ij is minimal

If we want to solve an instance of the PCST the set of customer nodes
in the solution is not defined. In this case we have to search for the partial
digraph T = (VT , AT ) of G such that:

Definition 8 Steiner Arborescence for the PCST Given a digraph
G = (V,A) A Steiner Arborescence (SA) for the PCST is a partial digraph
T = (VT , AT ) of G such that:

• all the vertices v ∈ VT have indegree equal to one, the root node r has
indegree 0.

• for each node v ∈ VT \ {r}, there exists a directed path from the root
to v.

•
∑

ij∈AT
c′ij is minimal
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Figure 5.4: An invalid solution before and after the transformation
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An example for a transformation is given in Figure 5.3. Note that after
this transformation the prize function p is not needed any more. The new
objective function for a transformed PCST is

minimize
∑

e∈ET

c(e)

As we can see in Figure 5.4, the problems with the given 0.5 circles have
disappeared. In Figure 5.4(a), there is no way to tell, that the solution is
invalid. The given example cut has a value of 1 and is therefore valid for
the instance. In Figure 5.4(b), our algorithm can detect, that one of the
edges of cut C goes backwards and therefore the value of this edge has to
be subtracted. The overall value of this cut is 0 and this determines that
the solution is definitely infeasible.

In [27] the authors show, that the directed formulation dominates the
undirected one. We can prove, that a large class of 0.5 circles can not be part
of an optimal solution any more so by using this extension to the problem we
were able to solve many of the benchmark instances of our test set without
the need of branching.

5.4 The Formulation

After applying all necessary transformations, our goal is to construct an
ILP formulation that corresponds to the instance we want to solve. For
simplifying this task, we introduce for every node v a virtual self loop (v, v)
with c(v, v) = 0. When we look at a solution to this newly generated
problem, we can see that every single vertex v except the root node r has
an indegree of exactly 1 which makes constructing inequalities a bit easier.
Figure 5.5 shows a solution with added self loops. Note that with this
extension every node has exactly one incoming edge in the solution graph.

For setting up an integer linear program we introduce for every edge
(v, w) a corresponding integer variable xvw ∈ {0, 1}. We interpret a solution
to the integer linear program in the following way. If xvw = 1, the edge
(v, w) is taken into the solution tree. If the self loop of a node is in the
solution, this node cannot be connected to the solution tree. Therefore a
node v is only part of the solution if the corresponding xvv has a value of 0
in the ILP solution. The root node r is part of every solution.

The Min Cut ILP formulation for the PCST is given in the following
section.
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Figure 5.5: A solution to a small PCST instance with self loops added

5.5 Applying the Min Cut formulation to the prize
collecting Steiner Tree Problem

As seen in Section 5.3 the objective function of the transformed problem is

min
∑

e∈AT

c(e)

Because e ∈ AT corresponds to xe = 1 in our ILP formulation, the objective
function for the ILP is

min
∑
e∈A

c(e)xe . (5.1)

The following set of constraints describes the problem completely:∑
e∈δ(W )

xe ≥ 1− xvv, ∀W ⊆ V \ {r}, ∀v ∈W ∩R (5.2)

∑
(v,w)∈A

xvw = 1− xww,∀w ∈ V,w 6= r (5.3)

∑
(r,v)∈A

xrv ≤ 1 (5.4)

∑
(v,r)∈A

xvr = 0 (5.5)

xvw ∈ {0, 1},∀(v, w) ∈ A (5.6)
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where δ(W ) = {e = (u, v) ∈ E | u ∈ W ∧ v ∈ V \W} represents an cut
defined by the set W .

The so called min-cut inequalities (5.2) describe that for every subset of
vertices that includes a vertex from R but not r there must be an edge that
leads inside the set. Every node has to have an indegree of 1 in the solution.
This is modeled by inequalities (5.3), which state that from all incoming
edges to a node v and the virtual self loop (v, v) only one may be used for
the solution.
Constraint (5.4) states that only one edge outgoing from the root node
can be part of the solution. Note that this equality is only applied if an
artificial root node has been introduced, otherwise we introduce constraint
(5.5) which states, that in the solution no edges should be going into r.
The remaining constraints determine the domain of the integer variables xe.

In our approach we used additional constraints that are not necessary
for the definition of the problem but that tighten the formulation. The
inequalities we used are:∑

(v,w)∈A

xvw ≤
∑

(w,v)∈A

xwv,∀v ∈ V \R, v 6= r (5.7)

and
xvw + xwv ≤ 1− xvv,∀v ∈ V,∀(v, w) ∈ A, v 6= r (5.8)

Inequalities (5.7) are called flow balance constraints. Those constraints
guarantee that the number of edges going into one non customer node v is
less than or equal the number of edges going out of it.
Inequalities (5.8) state, that every edge (v, w) can only be part of a solution
when the adjacent node v is part of the solution too.

5.6 Applying the Min Cut Formulation to the Steiner
Tree Problem

The formulation given above can be used to solve the prize collecting Steiner
Tree problem. If we want to apply this formulation to the Steiner Tree
problem too, we have to change it slightly. One easy method would be to
introduce the following set of inequalities that demand that every terminal
node is part of the solution.

xvv = 0,∀v ∈ R

Applying this approach would result in a even bigger linear program than
the one needed for solving the PCST because of the additional constraints.
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Therefore the approach we took is to eliminate all xvv variables from the
formulation above for customer nodes. This leads to the following ILP:

min
∑
e∈A

c(e)xe . (5.9)

subject to ∑
e∈δ(W )

xe ≥ 1, ∀W ⊆ V \ {r}, W ∩R 6= ∅ (5.10)

∑
(v,w)∈A

xvw = 1− xww,∀w ∈ V \R,w 6= r (5.11)

∑
(v,w)∈A

xvw = 1,∀w ∈ R, w 6= r (5.12)

∑
(v,r)∈A

xvr = 0 (5.13)

xvw ∈ {0, 1},∀(v, w) ∈ A (5.14)

As before we insert additional constraints to strengthen the formulation.
For solving the PCST we have to split up inequalities (5.8) because for nodes
v ∈ R, there does not exists a corresponding xvv. The resulting constraints
are: ∑

(v,w)∈A

xvw ≤
∑

(w,v)∈A

xwv,∀v ∈ V \R (5.15)

xvw + xwv ≤ 1− xvv,∀v ∈ V \R,∀(v, w) ∈ A, v 6= r (5.16)

xvw + xwv ≤ 1,∀v ∈ R,∀(v, w) ∈ A, v 6= r (5.17)

5.7 Analysis

The presented formulations have both a polynomial number of variables
(O(|E|+ |V |) for the PCST, O(|E|+ |R|) for the ST). However the number
of constraints, especially the number of min-cut inequalities (5.2) and (5.10),
is exponential. Entering all those constraints at once would let the number
of non-zeros in the ILP matrix grow exponentially which would make the
problem practically unsolvable. With a clever cut separation strategy where
constraints are added during the solving process, the number of constraints
needed to actually solve the problem to optimality may be much smaller.
The strategy we used is presented in Section 6. In the next section we will
present another class of inequalities that help to overcome some problems
introduced by adding an artificial root node.
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5.8 Asymmetry Constraints for the PCST

As stated before, introducing an artificial root node also poses some new
problems. An artificial root node makes it possible to construct identical
solutions that only differ by the customer node that is connected to r. Those
solutions have equal objective values but as they all have to be found by
the LP solver, the existence of those solutions can slow down the solving
procedure significantly. An example for this problem is given in Figure 5.6.
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Figure 5.6: An example for equivalent solutions with different root nodes

To avoid this problem we introduced an arbitrary order on the customer
nodes. We demand that in every solution tree the customer node with
the highest index is connected to the artificial root node. The following
inequalities guarantee this asymmetry and are therefore called asymmetry
constraints.

xvv ≥ xrw, ∀v, w ∈ R, v < w, v, w 6= r (5.18)

In most cases inserting those constraints brings a big speedup in solving the
problem. Note that this class of inequalities has to be used only for solving
the PCST because when applying the formulation to an ST instance, a
customer node can be declared as root and no identical solutions can be
found.
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Cut Separation

As stated before the number of min cut inequalities is too high to deal with
all of them right from the start of the optimization process. Therefore the
method presented here starts with a reduced ILP formulation. When the
linear problem is set up, all the presented inequalities get added except
constraints (5.2) or (5.10) depending on the type of the problem that has to
be solved. An iterative process is started that consists in solving this reduced
linear program, separating violated min cut constraints, adding them to the
problem and restarting with solving the enhanced problem. The separation
of violated inequalities is done by calculating a maximum flow from the root
node r to one node v, that is considered part of the solution, on a flow
network which is generated from the solution of a LP relaxation. If an ST
instance has to be solved, all nodes v ∈ R are considered part of the solution.
For the PCST, all nodes v where the value of the corresponding variable xvv

is lower than 1 are considered part of the solution. We now construct a flow
network by using all nodes and arcs from G and giving each arc a capacity
equal to the value of the corresponding variable in the LP solution. This
flow network is called the support graph. From the obtained maximum flow
a corresponding minimum r, v cut can be found quite easily using depth first
search. Based on the calculated minimum cut various violated constraints
may be derived.

Section 6.1 describes this process in more detail. The set of constraints
that is actually added to the problem can be selected using various strategies.
Some of them are presented in the following sections.

6.1 Calculating a Minimum s,t Cut

The first step for calculating a minimum s,t cut is to convert the solution
obtained from the LP solver into a flow network. This can be done by
defining a flow network G∗ = (V,E). The sets of vertices and arcs can be
taken directly from the problem graph G. The supply function sup : V 7→ Z

26
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can be defined as

sup(v) =


1 v = r
−1 v = t

0 otherwise

and the capacity function cap : E 7→ R as cap(e) = lpval(xe).

This flow network represents the actual solution to the LP relaxation
of the problem. If the solution represents a valid solution tree for the LP
relaxation of the ST or PCST, there exists a sufficient amount of flow from
the root node r to every node v considered part of the solution. Note that
this criteria does not imply that the solution is a valid solution to the original
problem as some variables in the solution may still have fractional values.

For the ST, the amount of flow from r to every node v ∈ R has to be
equal to 1. In the case of the PCST, the sufficient amount of flow to the
node v is defined as 1 − xvv. If the corresponding xvv is 1, the node is not
part of the solution so no flow has to be found.

If we can find a node v, that is part of the solution, for which no flow of
sufficient quantity exists, we have found one ore more violated inequalities.
So the first step in separating new constraints is calculating a maximum
flow in this network.

Calculating a Maximum Flow The algorithm we chose for calculating
the maximum flow is a push relabel implementation from Cherkassky and
Goldberg [8]. The authors provide highly optimized c code which we slightly
adapted to handle non integer capacity values. The push relabel algorithm
with the combination of global relabeling and gap relabeling calculates a
maximum flow which can then be converted in an s, t cut by applying a
depth first search procedure.

Calculating a Minimum s,t Cut For transforming the maximum flow
obtained into a minimum s, t cut we have to run a depth first search al-
gorithm on the residual network of F . We define the residual capacity of
each edge e in the residual network as cap(e)− f(e) where f(e) denotes the
amount of flow that passes through edge e. We call an edge saturated if its
residual capacity is 0. From the max flow min cut theorem we know, that a
s, t cut containing only saturated edges in the residual network is always a
minimum s, t cut.

Finding a cut in the residual network is quite easy. All we have to do is
to start a depth first search procedure from the root node using only edges,
that have a residual capacity > 0. While searching we mark all nodes that
remain in the same component as the root node. Finally we scan through
all edges and if the source node of this edge is marked but the target node
is not, this edge is part of the resulting s, t cut.
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Figure 6.1 gives an example for how this process works. Figure 6.1(a)
sketches a flow network that is based on a solution for an LP relaxation.
In Figure 6.1(b) a maximum flow of 0.5 has been calculated from the root
node S to a vertex T . The following figure shows the residual network that
we obtain by subtracting the flow over each edge from the capacity of the
corresponding edge. Finally, the last figure shows which nodes have been
marked by the depth first search procedure and also gives the obtained cut
through saturated edges with marked source and unmarked target nodes.
The value of this cut has to be 0.5 too.

Using this method exactly one cut will be found for every node. This
allows us to add only at most one additional constraint for every node to the
linear program. There exist strategies that are able to find many different
violated inequalities without having to re-optimize the linear program which
leads to many violated min cut constraints at once. Some of those strategies
are presented in Section 6.3.

6.2 Deriving inequalities from minimum cuts

If we have constructed a minimum cut C from a maximum flow from the
root node to node v we can quickly derive a violated constrained from it.
As stated in Section 5.5 we have to insert inequalities of the following form
if we want to solve the prize collecting Steiner Tree problem.∑

e∈C

xe ≥ 1− xvv

This constraint states, that if node v is part of the solution, there must not
be a minimum cut lower than 1 between the root node and v. For instances
of the Steiner Tree problem, the xvv values have been eliminated (See Section
5.6) and the constraint we have to add to the problem is∑

e∈C

xe ≥ 1

6.3 Cut Generating Strategies

As outlined in the previous section, normally adding one violated inequality
to a linear program is simply not sufficient. Although the quality of the
obtained solution increases with every added cut the re-optimization time
between the separation steps may just be to long to give appealing results.
In the following sections three strategies are presented that can be used to
generate more cuts in every iteration. However, the blind adding of cuts
does not yield very good results either. When too many cuts are inserted in
an linear program, the optimization time may increase very quickly. Finding
a suitable number of cuts to be added turns out to be quite difficult.
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Figure 6.1: The process of finding a violated cut

6.3.1 Orthogonal Cuts

The idea of using Orthogonal Cuts is to increase the diversity of the added
constraints. With the basic separation strategy presented above, in the
graph in 6.2(a) the same cut C1 will be found for every node n1 to n3. As
those cuts are very similar only the variable of one edge has to be set to
one from the LP solver to satisfy all of them. To overcome this problem the
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residual capacities of the edges that are already part of one cut are changed.
If the algorithm sets the residual capacity of an edge to any value ≥ 1 there
will never be a minimum cut going through this edge. This means that this
edge will not be part of any other cut before the problem is re-optimized
and the residual capacities are recalculated. As a consequence when the LP
solver sets the corresponding variable of this edge to 1, it satisfies at most
one cut. This leads to a faster improvement of the solution quality. There
are various ways to chose edges from a cut that get their residual capacity
adjusted. Our approach uses two alternatives:

• Set the residual capacities of all edges of the cut to 1

• Set the residual capacities of one random edge of the cut to 1

The results are shown in Figure 6.2 and Figure 6.3. If we applied the
basic strategy, the generated cuts for all nodes would look like C1 from
Figure 6.2(a). The improvement presented in this section gives cuts with
more diversity. When using the first strategy the results are given in Figure
6.2. The three cuts found still share one edge so the amount of diversity is
not optimal. The results for the second strategy are given in Figure 6.3.

Note that the results depend heavily on the order of the processed nodes.
We tried to exploit this fact by presorting the nodes according to the value
of their corresponding xvv values or to the difference between the maximum
flow going into a node and their xvv values. It turned out that processing the
nodes in a random order gives the best overall results. Note that processing
the nodes every time in the same order slows down the solving procedure
significantly and should therefore not be used.

6.3.2 Nested Cuts

Is this section we will discuss another two extensions to the cut generating
procedure that can be exploited when using orthogonal cuts. The idea be-
hind this strategies is to generate more than one cut for every node or to
use one cut for more than one customer node.

Generating more than one cut for every node can be done by apply-
ing a similar strategy to the one presented for generating orthogonal cuts in
Section 6.3.1. This time however, the process is repeated for one node until
there exists a maximum flow from the root node to this node of amount 1.
The generation of more than one cut for every node may only be combined
with the methods of Section 6.3.1. Every iteration of this process the resid-
ual capacity of at least one edge has to be adjusted or unlimited identical
cuts will be generated and the process will not terminate. As before, various
strategies for adjusting the residual capacities are possible. Note that we
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Figure 6.2: Orthogonal Cuts found when using the first adjusting strategy

do not have to recalculate the maximum flow to the target node when we
adjust the capacity of the edges. We may simply mark the target nodes of
the adjusted edges as part of the root component and continue with finding
the edges that form the next minimum cut.

Figure 6.4 shows, how nested cuts are generated. The difference to the
cuts generated in Figure 6.2 is that this time the discovered cuts are turned
into constraints that state that the cuts have to be satisfied if node n1 is
part of the solution. Opposed to that, plain orthogonal cuts generate one
cut Cn for every node nn.
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Figure 6.4: Nested Cuts

Generating one cut for more than one customer node Another
approach to finding more cuts is to reuse a discovered cut for more than
one terminal node. After a cut minimum cut C has been found by the
algorithm, this cut divides the graph into two components. The max flow
min cut theorem states that for all customer nodes that are in the opposite
component of the root node r there cannot exist a flow from r to this node
which is greater than the value of the minimum cut. Therefore we may
look at all customer nodes that are unmarked after the depth first search
procedure and verify if 1− xvv ≤ f . For every node where this condition is
not met, we may introduce the inequality as described in Section 6.2.
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If we want to find a solution to an instance of the ST, we simply have to
scan through the set of customer nodes and add for all unmarked vertices
the according constraint to the linear program.

6.3.3 Generating back-cuts by calculating an inverse flow

The last approach we used in our algorithm to generate more cuts works by
calculating inverse flows in the residual network. The strategy presented in
the previous sections splits up the set of nodes into two parts by applying
a depth first search algorithm to the residual network after the maximum
flow algorithm terminates. This approach works quite well as long as the
minimum cut is uniquely defined. In this case we end up with the root
component, which is the connected component containing the root node, the
minimum cut and the target component, which is the connected component
containing the target node. In many cases, there exist several additional
saturated edges in the residual network to the ones building the cut. In this
case, the target component contains also nodes that are not connected to
the target node. Figure 6.5 shows an example for a remaining component
that contains saturated edges as well.

S T
1

1

1

1

1

1

0 0

00

0 00

0

0

C

Figure 6.5: A not unique minimum cut

All the unmarked nodes are in the “remaining” component. Because the
minimum cut is not uniquely defined the target component consists of too
many nodes. Only the four rightmost nodes form a connected component
but this is not detected by the algorithm. To effectively distinguish the tar-
get component from non reachable nodes, we use a second call to the depth
first search procedure. This time however the residual edges are turned
around before the invocation of the algorithm. This way the algorithm finds
all nodes, where a flow to the target node would be possible. The result of
this procedure can be seen in Figure 6.6.

The components are now correctly defined although there exist several
possible minimum cuts. The additional back-cut C2 which is found along
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Figure 6.6: A correct partitioning

the border between the target component and the unmarked nodes usually
gives constraints that improve the quality of a solution a lot. Of course this
approach can be combined with the ideas of orthogonal cuts and nested cuts.

6.4 The algorithm

In this section we will give an overview of the algorithm that is used to
generate violated constraints for the LP relaxation of the problem. Two
variants of the algorithm are shown. Algorithm 1 shows the cut generation
procedure when nested cuts are disabled. If both approaches presented in
Section 6.3.2 are used, the procedure works as shown in Algorithm 2.
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Algorithm 1 The algorithm without using nested cuts
repeat

Solve the LP relaxation of the problem
Construct a flow network using the solution obtained
if ST then

nodes ← list of nodes v ∈ R
else

nodes ← list of nodes v ∈ R with xvv < 1
end if
Permute nodes
for all v ∈ nodes do

Calculate a maximum flow f from r to v
if f < 1− xvv then

Mark root component using DFS
Generate a minimum cut and derive the appropriate constraint
Add the inequality to the problem
if BACKCUTS then

Mark target component using inverse DFS
Generate a minimum cut and derive the appropriate constraint
Add the inequality to the problem

end if
if ORTHOGONALCUTS then

Update capacities of the flow network
end if

end if
end for

until No new cuts were found
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Algorithm 2 The algorithm when nested cuts are used
repeat

Solve the LP relaxation of the problem
Construct a flow network using the solution obtained
if ST then

nodes ← list of nodes v ∈ R
else

nodes ← list of nodes v ∈ R with xvv < 1
end if
Permute nodes
for all v ∈ nodes do

Calculate a maximum flow f from r to v
while f < 1− xvv do

Mark root component using DFS
Generate a minimum cut
for all w ∈ nodes do

if w is not marked then
Derive the appropriate constraint for node w
Add the inequality to the problem
Update capacities of the flow network

end if
end for
if BACKCUTS then

Mark target component using inverse DFS
Generate a minimum cut and derive the appropriate constraint
Add the inequality to the problem
Update capacities of the flow network

end if
Recalculate f

end while
end for

until No new cuts were found
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{0, 1
2}-Chvátal-Gomory Cuts

In this section we will show how we improved our solving procedure by
introducing a second class of cuts, so called {0, 1

2}-Chvátal-Gomory Cuts
to the proposed linear programs, which were introduced by Caprara and
Fischetti ([7]). As opposed to the cuts presented in the previous sections,
this class of inequalities is not needed to model the ST or PCST instance
as an integer linear program. The only purpose of those cuts is to reduce
the solving time needed by the CPLEX optimizer by cutting the polyhedron
which is already defined by the inequalities generated before.

The basic idea behind Chvátal-Gomory Cuts is to combine multiple con-
straints to generate a new one and applying a rounding procedure to the
right hand side of this inequality. Under some circumstances the newly gen-
erated inequality is still a valid constraint for the integer linear program but
cuts away some fractional solutions from the polyhedron of the LP relaxation
of the problem. In our solving procedure we added {0, 1

2}-Chvátal-Gomory
Cuts, a special case of Chvátal-Gomory Cuts, to the LP relaxation by using
a framework provided by Andreello, Caprara and Fischetti ([2]). The used
LP solver, CPLEX 8.1, is capable of separating Chvátal-Gomory Cuts when
solving integer linear programs. As the separation of those cuts is not trivial
and the overhead by introducing too many cuts of this form would be enor-
mous, the optimizer will never find and insert too many Chvátal-Gomory
Cuts. This and the fact that the cuts generated by the framework generally
seem to be of higher quality than the ones generated by CPLEX lead us to
the strategy to combine both families of cuts to get better results.

The next section give a short overview on Chvátal-Gomory Cuts and
the special case of {0, 1

2}-Chvátal-Gomory Cuts. How those cuts can be
separated is outlined in Section 7.2. Information on the framework and on
parameter settings we used are given in Section 7.5.

37



38 Chapter 7. {0, 1
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7.1 Definition of {0, 1
2}-Chvátal-Gomory Cuts

Given an integer linear program Ax ≤ b where A = (aij) is an m×n integer
matrix and b an m-dimensional integer vector we let P = {x ∈ Rn : Ax ≤ b}
and PI = conv{x ∈ Zn : Ax ≤ b}. A Chvátal-Gomory Cut (CG cut) is a
valid inequality for PI of the form

λT Ax ≤ bλT bc

where λ ∈ Rm
+ is such that λT A ∈ Zn. We define a {0, 1

2}-Chvátal-Gomory
Cut as a CG cut where λ ∈ {0, 1

2}
m.

The rank-1 closure of P is defined as

P1 = {x ∈ P : λT Ax ≤ bλT bc, for λ ∈ [0, 1)m such that λT A ∈ Zn}

The corresponding polyhedron obtained by intersecting P with the half-
spaces induced by all possible {0, 1

2}-cuts is defined as

P 1
2

= {x ∈ P : λT Ax ≤ bλT bc, for λ ∈ {0,
1
2
}m such that λT A ∈ Zn}

It is easy to see that PI ⊆ P1 ⊆ P1/2 ⊆ P . This states that if all possible CG
cuts were used by the optimizer, the class of {0, 1

2}-Chvátal-Gomory Cuts
would already be included. Practically the separation of those cuts is quite
hard and therefore concentrating on {0, 1

2}-cuts gives better results in some
cases.

7.2 The separation of {0, 1
2}-Chvátal-Gomory Cuts

In [7] the authors showed that CG cuts can be obtained in the following way.
Let µ ∈ Zm

+ and q ∈ Z+ be such that µT A ≡ 0 mod q and µT b = kq + r
with k ∈ Z and r ∈ {1, ..., q − 1}. Then µT Ax ≤ kq is a valid inequality for
PI .

This inequality can be written as µT (b − Ax) ≥ r, hence a given x∗

violates µT Ax ≤ kq if and only if µT (b−Ax∗) < r. Further they state that
it is sufficient to consider only multipliers µi ∈ {0, ..., q − 1} as a larger µi

leaves the mod q arithmetic unchanged but decreases the violation. This
is also the reason why for a given slack vector s∗ = b − Ax∗ the violation
only depends on (A, b) mod q.

The special case of {0, 1
2}-cuts arises for q = 2 which implies r = 1. If

we define the binary support matrix Q of an integer matrix Q = (qij) as

Q = (qij) = Q mod 2

i.e., qij = 1 if qij is odd and qij = 0 otherwise, the problem of separating
{0, 1

2}-cuts ({0, 1
2}-SEP) can be written as
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Definition 9 {0, 1
2}-SEP: Given x∗ ∈ P , solve min{s∗T µ : µ ∈ F (A, b)},

where
s∗ = b−Ax∗ ≥ 0

and

F (A, b) = {µ ∈ {0, 1}m : b
T
µ ≡ 1 mod 2, A

T
µ ≡ 0 mod 2}.

It is clear that there exists a {0, 1
2}-cut violated by a given point x∗ if and

only if
min{s∗T µ : µ ∈ F (A, b)} < 1.

Caprara and Fischetti show further that the problem {0, 1
2}-SEP is equiv-

alent to finding a minimum weight binary clutter by giving an algorithm
to convert every instance of {0, 1

2}-SEP into a corresponding instance of
the minimum weight binary clutter problem (MW-BCP). This leads to the
following corollary.

Corollary 1 The recognition version of {0, 1
2}-SEP is NP-complete

There exist however important special cases where the {0, 1
2}-SEP can

be solved in polynomial time. The authors proved that if the matrix A has
certain properties, the problem can be reduced to finding a minimum weight
odd circle in an undirected multigraph. This problem is well known and can
be solved in O(n3) time.

Among the various properties of the matrix A that allow the solving of
{0, 1

2}-SEP in polynomial time, the one that appears to be most important
is that this conversion is possible if A has at most 2 odd entries in every
row. If we define M = {1, ...,m} and N = {1, ..., n} the row and column
indices of the matrix A and

Oi = {j ∈ N : aij = 1} for all i ∈M

the following theorem can be derived.

Theorem 2 {0, 1
2}-SEP can be solved in polynomial time if |Oi| ≤ 2 for all

i ∈ I.

Practically it will seldom be the case that a matrix has the properties
demanded by Theorem 2. It is possible though to obtain a relaxation P ′ =
{x ∈ R : A′x ≤ b′} ⊇ P by weakening the system Ax ≤ b into A′x ≤ b′ such
that the {0, 1

2}-SEP associated with A′x ≤ b′ can be solved in polynomial
time. The cuts obtained can then be used to optimize the original problem.
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7.3 Weakening the system to obtain {0, 1
2}-cuts

In [7] three methods of weakening constraints are proposed. For the ap-
plication of those methods to the formulations presented in this thesis it is
sufficient to consider the so called L-weakening. This is the simplest weak-
ening that arises if the variables considered for the weakening have a lower
bound of 0. In our formulations every single variable x has the same bounds

−x ≤ 0

and
x ≤ 1.

This means that the L-weakening can be applied to every variable and there-
fore this weakening is the only one needed.

L-weakening The relaxation of the system Ax ≤ b to A′x ≤ b is done
to obtain a matrix A′ which has the properties demanded by Theorem 2.
Therefore the aim of the weakening is to replace the number of rows of the
matrix A with more than 2 odd coefficients. This is done by replacing each
constraint

∑
j aijxj ≤ bi with |Oi| ≥ 3 by the constraints

aihxh + aikxk +
∑
j 6∈Oi

aijxj +
∑

j∈Oi\{h,k}

(aij − 1)xj ≤ bi

for all {h, k} ∈ Oi, h < k. This introduces
(|Oi|

2

)
inequalities for each row

i which leads to an increase of the number of rows in the reduced system
A′x ≤ b to O(mn2). To keep the overhead of having many rows in the
system small, size reductions can be applied after the conversion.

Size reduction If a system is reduced by replacing rows with more than
3 odd coefficients by their corresponding L-weakenings, the resulting binary
support matrix A′ contains many identical rows. This leads to the fact that
various vectors µ ∈ {0, 1}m such that b′

T
µ ≡ 1 mod 2 and A′T µ ≡ 0 mod 2

can be found by selecting a different identical row. But as the problem of
separating {0, 1

2}-cuts tries to minimize s∗µ it is sufficient to keep only the
row i with minimal slack s∗ = b′−A′x∗ and removing all rows from A whose
corresponding rows in the binary support matrix A′ are identical.

7.4 Measuring the quality of {0, 1
2}-cuts

Depending on the problem that has to be solved, the generating procedure
presented above may generate a huge amount of {0, 1

2}-cuts. This is a prob-
lem as inserting them all into the problem would lead to a big slowdown
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in the solving procedure. It is essential to find a method that is capable to
select from the vast amount of cuts a number of cuts that promise the best
improvement to the actual LP solution when added to the problem. This
measurement of the quality of cuts is however not that trivial.

Given a cut α i.e. αx ≤ α0 and an LP solution x∗, we can calculate the
Euclidian Distance between x∗ and the hyperplane induced by α (αx∗ = α0)
as

dist(x∗, α, α0) =
|αT x∗ − α0|
‖α‖

This measurement is indeed a valid and quite reliable indicator for the qual-
ity of the cut α. The bigger the Euclidian Distance between the hyperplane
and the point denoted by the solution is, the better we can assume the qual-
ity of the cut. Nevertheless this measurement has some drawbacks. If we
have an αi > 0 and a corresponding x∗i = 0, the numerator of dist(x∗, α, α0)
is not affected in any way by αi. Therefore we could set αi = 0 and produce
a still valid and violated cut that has a greater Euclidian Distance. This
newly generated cut is however strictly dominated by the original one and
should therefore get a worse quality index.

Those drawbacks are not a big issue and therefore we define our mea-
surement of efficacy of a cut as

eff(x∗, α, α0) =
αT x∗ − α0

‖α‖

Note that this value is negative if the cut is not violated and positive other-
wise. We set up the rule that only cuts α are considered for adding whose
eff(x∗, α, α0) ≥ mineff. This parameter is adapted during the solving process
and is described in Section7.5.

Similar Cuts Another problem that arises is that often very similar cuts
are found. Adding more than one of those cuts does not improve the quality
of the solution very much. We define that two cuts αx∗ ≤ α0 and βx∗ ≤ β0

are similar if they have almost the same efficacy and their hyperplanes are
almost parallel. A measurement of the parallelity of two cuts can be given
as

par(α, β) =
|αT β|
‖α‖‖β‖

and so we can chose to only insert two cuts if par(α, β) ≤ maxpar. Note
that setting this parameter to 0 would introduce only orthogonal cuts. In
our implementation we used a setting for this parameter that is close to one.
This means that we insert very similar cuts too but we omit identical ones.
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7.5 The algorithmical Framework

In this section we will describe the algorithmical framework we used for
generating {0, 1

2}-cuts. This framework was proposed by Andreello, Caprara
and Fischetti in [2]. There are two reasons why we had use an additional
framework to the ILP solver. One is that when cut generation methods are
used, nearly always there is the problem of generating a lot of overhead by
inserting too many cuts into the problem. In our case this problem arose
too so we needed a clever way to handle cuts that were not yet inserted into
the formulation. Secondly ILOG CPLEX does not provide any methods
to efficiently handle constraints. For example it is not possible to remove
constraints once they are added to a problem. All this makes the usage of a
framework that extends the abilities of the solver a more than paying task.
The various details as well as parameter settings we used are described in
the following paragraphs.

The pool of cuts As we stated before, ILOG CPLEX as well as the
concert technology do not provide methods to handle cuts efficiently. There
exist data structures that may hold constraints in concert technology but
when dealing with a large number of those cuts, this method is by far too
slow. The used framework provides a buffer of cuts whose size is limited
to 8000 cuts. For efficiency cuts are stored in this pool ordered by not
increasing efficacy. If at any moment there are more than 8000 cuts queued
in the pool, the buffer is truncated by removing the cuts with the least
efficacy.

Number of cut generation attempts The number of attempts to gen-
erate {0, 1

2}-cuts is also a very sensitive parameter. A too high number of
tries would use a lot of calculating time without finding new cuts whereas
a too low number would not find all the possible {0, 1

2}-cuts and therefore
increase the time spent in the LP solving process. The strategy proposed in
this framework is to allow 5 attempts to generate cuts in the root node of
the branch-and-cut tree. After that the {0, 1

2}-separation procedure is only
called at every 4th backtracking step. For our implementation we changed
this parameter to try to generate cuts at the end of processing any node.

Maximum number of cuts As the used LP solver does not provide
methods to remove cuts from an LP once they are inserted, we have to
chose a rather conservative cut insertion strategy. There is a workaround
to this problem by declaring cuts as local for the node of the branch-and-
cut tree which are eventually removed when the whole subtree has been
processed. In our implementation this workaround has not been used so we
imposed a limit on the number of cuts added at every step of the procedure.
The limits are
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• Do not add more than 1000 cuts per cut generation process

• Do not invoke the cut generation procedure more than once per node

• Do not add more than 0.3 times the number of rows cuts in every node
of the B&C tree except in the root node

This effectively limits the number of overall cuts added.

Adapting the mineff parameter As mentioned before, the mineff pa-
rameter is adapted during the solving process. This is due to the fact, that
at the beginning it is quite easy to find violated cuts with a high efficacy.
Later in the process as the LP relaxation gets tighter, the finding of cuts
with high efficacy gets more difficult. We start with a mineff of 0.7. This
means that a cut is considered candidate for adding if its efficacy is not less
than 70% of the efficacy of the best cut generated. During the separation
process we count the number of unsuccessful generation attempts and every
20 failures we reduce the mineff criteria.

Recombination A last parameter of the process is the selection of rows
that are candidate for the combination for the generation of {0, 1

2}-cuts.
There are two possibilities.

• Select candidate rows from the inital LP

• Select candidate rows from the actual LP including {0, 1
2}-cuts

In our approach we selected the first method. Additionally we have the
choice to include cuts generated by the separation procedure in Section 6
into the set of candidate rows. We obtained better results when we excluded
those cuts so in our approach {0, 1

2}-cuts are only derived from the initial
LP.

7.6 Conclusion

For some of the tested instances the addition of {0, 1
2}-cuts was of crucial

importance when optimizing the root node of the branch-and-cut tree. The
second improvement presented in this thesis, Local Branching, is a method
that optimizes the B&C process. This means that this method can only
be applied after the root node. Secondly for applying the Local Branching
method, an integer solution has to be found early in the solving process. This
can be done by using a primal heuristic (See Section 8.3) but also {0, 1

2}-cuts
improve the probability that fractional solutions in the root node are rejected
because they violate a {0, 1

2}-cut. This leads to an improvement of the lower
bounds obtained in the root node and therefore to a better overall running
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time. Note that the separation of {0, 1
2}-cuts works as a black box approach.

No knowledge about the problem has to be input into the {0, 1
2}-separation

procedure. The only thing to consider is the form of the inequalities that are
selected as candidates for the cut separation procedure. As the constraints
in our formulations are suitable for the L-weakening procedure and normally
combinations can be found that produce {0, 1

2}-cuts, this framework provides
an easy way to strengthen our formulations.



Chapter 8

Local Branching

Additionally to the method of {0, 1
2}-cuts we implemented another improve-

ment to speed up the process of solving the given integer linear programs.
The so called local branching procedure we used is an extension to the basic
branch and cut method which was presented in [16].

The goal of state of the art MIP solvers is to efficiently solve the given
problem to provable optimality. Only for the most easy instances of MIPs
this can be achieved without the usage of branch and cut methods which
means that the overall solving process for integer linear programs is NP
hard. This makes many medium to large sized instances unsolvable in short
periods of time. Nevertheless the goal of the solvers remains unchanged.
Still they look for a provably optimal solution that often cannot be found
before the given time limit is reached. The basic idea behind the presented
method is to change this goal to find a good integer solution quickly in
the solving process. Later on the search space that is partitioned and the
neighbourhood of the actual incumbent solution is searched first. This is
done because there may exist better incumbent solutions that do not differ
that much from the actual best integer solution vector. The next section
shows more in detail how this process is done. Because the presented method
needs a starting solution we give in Section 8.3 a heuristic method that can
be used as a primal heuristic and as well as a integer rounding heuristic to
obtain integer solutions from fractional solution vectors during the solving
process.

8.1 k-neighbourhoods

As stated before, this method applies to the branching process directly after
the relaxation of the root node has been solved by the ILP solver. At this
point it is of crucial importance that there is already a valid integer solution
known to the optimizer. Using the method presented in the next section this
is no problem as only in rare cases the given heuristic terminates without
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giving a new incumbent solution. What we want to do now is to add new
constraints to effectively restrict the search space PI to the neighbourhood
of the given solution vector x. The first idea would be to fixate some of the
given variables {x1, ..., xn} to the corresponding values of the solution vector
{x1, ..., xn}. This is called a hard variable fixing heuristic. The drawback is
that it is very hard to select the right subset of variables that should remain
unchanged. This fact makes hard variable fixing practically unusable.

There exists however another approach that is called soft variable fix-
ing which avoids the problems given above. The idea is to define a maxi-
mum distance from the actual incumbent solution x where the search space
is explored and not the actual subset of fixated variables. In the defined
neighbourhood the ILP solver may decide itself which subset of variables
should be fixated. This can easily be achieved by adding a inequality of the
following type that restricts the distance from the actual incumbent vector
x. If we define S = {xi ∈ B : xi = 1} where B denotes the set of variables,
we can define a constraint that gives us a k-neighbourhood as follows.

∆(x, x) =
∑
j∈S

(1− xj) +
∑

j∈B\S

xj ≤ k (8.1)

This constraint states that the number of variables that flip their value
compared to the incumbent vector has to be less than k in any newly found
solution. Note that this constraint applies only if the used variables xi are
boolean integer variables, i.e., x ∈ {0, 1}n. For the formulations presented
in this thesis all variables are of the type demanded therefore we only give
the appropriate constraint.

If we only added constraint (8.1) to the problem, we would cut many
valid solutions from the search space PI . Therefore we have to use a branch-
ing process similar to branch-and-cut that starts with searching the direct
neighbourhood of the solution but nevertheless continues with exploring the
remaining space if no new solution could be found. How this is done is
explained in the next section.

8.2 The branching process

Normally when the ILP solver cannot find an optimal integer solution for a
given LP relaxation it starts a branching procedure that works as follows. It
selects one of the variables xi whose value in the current solution vector x is
fractional, e.g., 0 < xi < 1 and splits up the problem P into two subproblems
P0 and P1. For those subproblems the constraints

xi = 0

and
xi = 1
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are added respectively. Those two problems can then be solved indepen-
dently by the ILP solver and the best overall solution found denotes the
solution for the original problem P . Figure 8.1 shows a simple branch and
bound tree where 3 subproblems have to be optimized for solving the original
problem to provable optimality.

P1

P2 P3

P4 P5

x1=0 x1=1

x2=1x2=0

Figure 8.1: A simple branch-and-bound tree

Note that this strategy splits the solution space into two parts of equal
size so solving the various subproblems may still be a very hard task to
accomplish.

This is different in the method we present here. If we are given an
incumbent solution x we can generate two subproblems as in the process
outlined above. For one subproblem we add the constraint

∆(x, x) ≤ k

and we force the solver to explore this branch of the tree first. The second
subproblem is generated by adding a constraint that defines the remaining
search space. The constraint

∆(x, x) ≥ k + 1

accomplishes this task.
For a appropriate value of k the left branch defines only a small part

of the search space and can therefore be explored quickly. Nevertheless the
optimization of this subproblem often leads to new best integer solutions.
If during the exploration of the left branch a new best integer solution x2 is
found, the local branching procedure can be applied iteratively by searching
the k-neighbourhood of x2 first. Figure 8.2 which is taken from [16] shows a
local branching tree where 2 new best integer solutions could be found while
exploring left branches of the tree. The local branching process is iteratively
restarted at the nodes 3 and 5 with the discovered solutions. In node 7 the
normal branch-and-cut process is continued.
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∆(x, x1) ≤ k ∆(x, x1) ≥ k + 1

∆(x, x2) ≤ k ∆(x, x2) ≥ k + 1

∆(x, x3) ≤ k ∆(x, x3) ≥ k + 1

Figure 8.2: A local branching tree

For starting the local branching method a valid integer solution is neces-
sary. How such a starting solution can be found is described in the following
section.

8.3 Obtaining an incumbent solution

As we mentioned before, it is of crucial importance to obtain feasible integer
solutions as early as possible in the solving process for two reasons. The
first reason is that if no valid solution is known to the optimizer, the local
branching process cannot be started. For obtaining good results, this process
has to be initiated right after processing the root node of the branch-and-cut
tree. Otherwise, if the local branching process starts in a node deeper in the
tree, the search space cannot be parted correctly which makes the optimizer
process it more than once. This clearly leads to an increase of the solving
time which makes the availability of an incumbent solution right after the
root node a necessity.

The second reason why we should spent some effort on finding incumbent
solutions early is that many of the instances we tried to solve are too difficult
to find optimal solutions in a reasonable amount of time. Often the imposed
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time limit stops the optimizer after processing only a few nodes after the
root node. In those cases the aim of the optimizing process is to find good
upper bounds on the optimal solution which have to be found within the
time limit.

For obtaining integer solutions we implemented a heuristical procedure
that can be used as a Primal Heuristic to find a start solution before the
optimization process starts and as a MIP Heuristic that tries to convert
a fractional solution of an LP relaxation to a valid integer solution of the
original problem during the solving process. The following section will show
how this can be done for solving instances of the ST.

8.3.1 The ST Heuristic

For converting a fractional solution for an ST instance into an incumbent
solution, we start by obtaining the values LP (xi) of the variables xi that
correspond to the edges ei.

Now we construct a graph G′ = (V ′, E′) that contains

• all customer nodes from V

• all edges ei with LP (xi) ≥ 0.5

• all noncustomer nodes with at least one incident edge ei with LP (xi) ≥
0.5

Furthermore we redefine the length of each edge by multiplying the orig-
inal length c(e) with the corresponding fractional solution value LP (xi).

Note that in some rare cases, the graph G′ might not be connected. In
those cases, the LP solver would reject the obtained heuristical solution so
we did not check for this property.

We stated before that we may also use this heuristic before the solv-
ing process. In this case we do not have a fractional solution and assume
LP (xi) = 1 for all xi.

On this graph we calculate a distance network. This is done by selecting
all the customer nodes of V ′ and calculate the shortest path path(u, v) for
all possible pairs u, v ∈ V ′, u 6= v. Then we construct a complete graph
G∗ = (V ∗, E∗) with V ∗ = R and E∗ = {(u∗, v∗) : u∗, v∗ ∈ V ∗} and define a
length function l : E∗ 7→ R on the edges as l(e) = path(u, v) for e = (u, v).

The next step in the heuristic is to calculate a minimum spanning tree
on the constructed distance network. As the network is a complete graph
this is always possible. Finally the obtained tree is converted back into a
tree in G in the following way:

For every edge e∗ = (u∗, v∗) of the minimum spanning tree we calculate
the shortest path from u to v in G. All edges that are contained in the
corresponding shortest path are marked as part of the solution.
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Finally we have to note that after the transformation to the Steiner
Arborescence Problem we have to deal with a directed biconnected graph.
Therefore the paths path(u, v) and path(v, u) contain different edges. This
does not have an impact on the objective value of the solution but the given
constraints demand that every solution is a tree. If we want the optimizer
to accept a newly found solution, we have to ensure that it satisfies the
given constraints. We implemented a simple depth first search procedure
that turns around all edges that point to the root node. This problem is
demonstrated in Figure 8.3. If the paths p(R, 2) and p(1, 2) are used to
obtain the final solution, the resulting set of edges does not denote a tree
(Figure 8.3(a)). After the repair procedure, one edge is turned around,
giving a valid solution (Figure 8.3(b)).

1

2

r

(a) A solution obtained
by adding the paths
(r, 2) and (1, 2)

1

2

r

(b) The same solution
after the repairing pro-
cess

Figure 8.3: An example for an invalid resulting solution

The last problem is that under certain circumstances the resulting solu-
tion may be invalid. If three or more paths cross each other unfavourably,
a circle may emerge as shown in Figure 8.4. This problem arises seldom
therefore we chose not to correct it. Instead if such a circle is detected, the
heuristic is stopped. The next iteration of the heuristic that is invoked after
optimizing the problem a bit further yields valid solutions in most cases so
we decided not to address this issue.

An example for the heuristic is shown in Figure 8.5. Figure 8.5(a) shows
an easy instance of an ST. For simplicity we only show an undirected graph.
We assume that the variables corresponding to the dotted edges have a
value in the fractional solution that is below the threshold and are therefore
excluded in the first step of the heuristic. Figure 8.5(b) shows the distance
network we obtain by calculating the shortest paths between all pairs of
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2

1

r

Figure 8.4: An invalid heuristic solution containing a circle

customer nodes and constructing a complete graph as described above. In
Figure 8.5(c) a minimum spanning tree of the distance network is given.
Figures 8.5(d) to 8.5(f) each show a path that corresponds to one of the
edges in Figure 8.5(c). Finally we select all edges that were part of any path
given in Figures 8.5(d) to 8.5(f) and obtain the valid incumbent solution in
Figure 8.5(g).

Note that if the dotted edges would not have been excluded, the obtained
incumbent solution would have been much worse.

8.3.2 The PCST Heuristic

The heuristic used for calculating PCST incumbent solution is very similar
to the algorithm used for ST instances. The changes are presented in the
following paragraph.

In the first step we have to define the graph G′ a bit differently. For the
PCST it is not determined that all customer nodes are taken into considera-
tion for the further steps. Therefore we look at the corresponding variables
xhh and only take those customer nodes into the graph whose LP (xhh) < 0.5.
If no fractional solution is given, we simply take all customer nodes as can-
didates. The artificial root node as well as all its incident edges are excluded
from G′.

The graph G′ = (V ′, E′) is now constructed by selecting from G

• all customer nodes v ∈ V with their corresponding LP (xvv) < 0.5 and
v 6= r

• all edges ei not incident to r with LP (xi) > 0.5

• all noncustomer nodes with at least one incident edge ei with LP (xi) >
0.5
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3
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Figure 8.5: An easy example for the ST heuristic

The following steps are applied as in the ST heuristic until the edges
have been marked for building the solution. The repair procedure can only
be applied if the root node is part of the solution. Therefore we extend the
solution by adding the root node r as well as the edge from r to the customer
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node with the lowest index that is part of the solution. Note that we have
to select the node with the lowest index because otherwise we would violate
the asymmetry constraints. The rest of the heuristic for the PCST functions
is as the heuristic presented before.

8.3.3 Analysis

For determining the asymptotic running time for the presented heuristics
we have to look at the algorithms that are used in the various steps.

• The algorithm for calculating the all pairs shortest path matrix runs
in O(nm + n2 log n).

• The minimum spanning tree can be calculated in O(m log n).

The distance network contains |R| nodes so the minimum spanning tree
contains |R|−1 edges. For every edge, one shortest path has to be traversed
for marking the edges which can take a time of O(m) for every single path,
giving |R|O(m).

The overall asymptotic running time for the heuristic can be given as

O(nm + n2 log n) + O(m log |R|) + |R|O(m) = O(nm + n2 log n)

Summarized we can say that the running time of the heuristics is quite high
compared to the time spent in the LP solving procedure. In Section 9 we
will see however, that the big advantages in most cases outweigh the high
running time.
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Computational Results

In this section we present results we obtained when we applied our method
to various instances for the ST as well as for the PCST. First we will give
some results on very hard instances for the ST in Section 9.1, results for the
PCST instances are given in Section 9.2.

For solving the integer linear programs presented in this thesis we used
the widely used commercial MIP solver ILOG Cplex 8.110. Further infor-
mation on the solver can be found at [1].

The results given in this section have been calculated using the following
machines:

• A Pentium IV with 2.8 GHz and 2 GB of RAM
On this machine we calculated the results for the I640 test set as well
as the results for the hc test set for the PCST.

• An Athlon XP 2100+ with 512 MB
On this machine we only obtained the results give in table 9.3

• A Dual Pentium IV with 2x2.6 GHz and 1 GB RAM
Our CPLEX license only allows us to use one CPU so the results
should be comparable to using a single CPU Pentium IV, 2.6 GHz.
On this machine we calculated the remaining results.

General Parameter Settings When we obtained our benchmark results,
we applied our approach with the standard parameter settings as it is de-
scribed in this thesis. We used the Nested Cuts approach and generated more
than one cut for all the nodes in the target component (See Section 6.3.2)
and we also generated backcuts at the same time (See Section 6.3.3). We in-
cluded the flow balance constraints and added asymmetry constraints for the
PCST instances (See Section 5.4). All the default settings for the generation
of {0, 1

2}-Cuts is described in Section 7.5. For our runs we left the default pa-
rameters of the CPLEX solver unchanged with one exception: We changed

54
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the variable selection strategy (CPLEX parameter CPX PARAM VARSEL)
to “branch based on pseudo reduced costs” (4) which gives slightly better
results in most cases. For most runs we set a time limit of 5400 seconds
except for testing the impact of the ILP heuristic, where we used a time
limit of 1 hour.

Randomness As stated in Section 6.3.1 we process the candidate nodes
with xvv < 1 in a random order when we separate cuts. For our benchmark
runs we used a fixed seed so the results are reproduceable. However we want
to sketch out, that using a different seed may influence the quality of the
obtained solutions heavily. We noticed that it is not uncommon that the
running times differ for more than 10% if other seeds are used.

9.1 Results for the ST

For testing our approach on ST instances we have chosen two very hard
benchmark sets from the library of Steiner Tree Problem instances available
at http://elib.zib.de/steinlib ([24]). Details on the results are given in the
next section.

9.1.1 The test sets

PUC The first set of instances we tried to solve is called the PUC test set.
It was introduced by Rosetti et al. in 2001 ([30]). This test set contains a
series of hypercube graphs as well as bipartite ones and is the hardest test
set in the Steiner Tree Library. Some of the instances of this test set were
so hard that our approach was not able to process the root node during the
5400 seconds we set as a time limit. Therefore we excluded those instances
and present only results for the remaining ones whose overview is given in
Table 9.1.

I640 The second set of instances is called the I640 test set. This set was
introduced by Duin in 1993 ([10]). These instances are randomly generated
sparse graphs whose edge weights are chosen in a way to defy preprocessing.
Details on the instances are given in Table 9.2.
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Name |V| |E| |R|
bip42p 1200 3982 200
bip42u 1200 3982 200
bip52p 2200 7997 200
bip52u 2200 7997 200
bip62p 1200 10002 200
bip62u 1200 10002 200
bipa2p 3300 18073 300
bipa2u 3300 18073 300
bipe2p 550 5013 50
bipe2u 550 5013 50
cc3-4p 64 288 8
cc3-4u 64 288 8
cc3-5p 125 750 13
cc3-5u 125 750 13
cc5-3p 243 1215 27
cc5-3u 243 1215 27
cc6-2p 64 192 12
cc6-2u 64 192 12
hc6p 64 192 32
hc6u 64 192 32
hc7p 128 448 64
hc7u 128 448 64
hc8p 256 1024 128
hc8u 256 1024 128
hc9p 512 2304 256
hc9u 512 2304 256
hc10p 1024 5120 512
hc10u 1024 5120 512

Table 9.1: The PUC test set
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9.1.2 Results for adding the ILP Heuristic

In this section we briefly want to show the impact of using the ILP Heuris-
tic presented on the results (See Section 8.3). Table 9.3 shows the upper
bounds we obtained on the PUC test set when we used the heuristic (column
Heuristic) compared to the process without using the heuristic (column Ba-
sic Optimization). We set a time limit of 3600 seconds for obtaining those
results which is very tight for those instances and we used the rather slow
Athlon machine that in our experiments performed much worse than the
Pentiums. It seems like the CPLEX solver is highly optimized for the Intel
architecture so the bounds are not that good. We can see however, that only
for one instance, the bound without using the heuristic is better. In most
cases, using the heuristic yields better results, so for obtaining the results
in the next sections we chose to use the Heuristic for all the runs.

9.1.3 Results for adding {0, 1
2
}- Cuts

This section will show how the adding of {0, 1
2}-Cuts can improve the quality

of the obtained bounds. In general we can say that the solution quality
improves compared to the basic optimization but that the improvement
depends heavily on the instance we apply the procedure to.

As we stated before, generating {0, 1
2}-Cuts is a time consuming process.

If such cuts can be found, often the quality of the bounds improves drasti-
cally so that the overall results are still better than the ones obtained by the
basic optimization. The problem that arises is that not for all instances such
cuts can be found. There exist some instances that are too easily solvable
so that a lot of time is spent looking for good {0, 1

2}-Cuts but no cuts are
actually inserted into the LP. Clearly, this leads to greater running times
compared to the original process.

Upper Bounds In Figure 9.1 we show how the optimization process works
when {0, 1

2}-Cuts are inserted. In those figures we compare the upper bounds
of the basic process (See Section 6, labeled C0) to the ones of the same
process augmented with the separation of {0, 1

2}-Cuts (See Section 7, labeled
C1). As we can see, for all instances the first integer solution is found later in
the run with {0, 1

2}-Cuts. This is expected behaviour as some time is needed
especially at the root node for generating the cuts. Later on, the quality
of the obtained bounds improves quickly for the run including {0, 1

2}-Cuts,
giving better results at the end.

Local Branching In Figure 9.2 we give an example of the solving process
when Local Branching and {0, 1

2}-Cuts are combined. Results for Local
Branching are given in the next section but here we want to show, that
adding {0, 1

2}-Cuts can be used effectively to improve the quality of the
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Instance Basic Optimization Heuristic
bip42p 24881 24705
bip42u 237 238
bip52p no 25182
bip52u 237 237
bip62p no 23020
bip62u 227 227
bipa2p no 36759
bipa2u no 379
bipe2p 5626 5620
bipe2u 54 54
cc3-4p 2338 2338
cc3-4u 23 23
cc3-5p 3699 3699
cc3-5u 36 36
cc6-2p 3271 3271
cc6-2u 32 32
hc6p 4003 4003
hc6u 39 39
hc7p 7925 7921
hc7u 77 77
hc8p 15416 15375
hc8u 151 149
hc9p no 30491
hc9u 298 297
hc10p no 62445

Table 9.3: Upper Bounds compared for using the ILP Heuristic on the PUC
test set

obtained upper bounds even if Local Branching is used. The graphic shows
the upper bounds found for two runs with a Local Branching neighbourhood
of 25. In one run (C0L25) we have not applied {0, 1

2}-Cuts, in the other
(C1L25) we did. As we can see, the results are quite similar to the runs
in Figure 9.1. The basic optimization process yields the first incumbent
solution faster, but the quality of the bounds found by the process with
{0, 1

2}-Cuts improves quicker giving better overall results.

Lower Bounds Basically {0, 1
2}-Cuts are a method to invalidate fractional

solution. So the main goal is to improve the lower bound of a given LP
relaxation. In most cases better upper bounds are found too but the main
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Figure 9.2: Comparing optimization with {0, 1
2}-Cuts (C1) to the basic op-

timization (C0) with local branching

effect {0, 1
2}-Cuts have on the solving process are better lower bounds. We

show an example of this effect in Figure 9.3. The graph shows the lower
bounds at the times when new best incumbent solutions are found. As we
can see, in the run with {0, 1

2}-Cuts (labeled C1) the first integer solution
is found later but the lower bound is already a bit better than in the run
without the {0, 1

2}-Cuts (labeled C0). Later in the optimization process the
difference between the bounds gets even bigger so the positive effect of the
{0, 1

2}-Cuts inserted is noticeable.

Overall Results Table 9.4 gives an overview on the improvement intro-
duced by {0, 1

2}-Cuts. The table compares upper and lower bounds for the
basic optimization process (Columns C0) to the augmented one (Columns
C1) and marks better values as bold. As we can see, {0, 1

2}-Cuts improve
the bounds in many cases but not for every single instance. The rightmost
column gives the number of {0, 1

2}-Cuts that could be found. Note that for
some of the instances no cuts could be generated. For the especially diffi-
cult hypercube instances of this test set (hc*) the most {0, 1

2}-Cuts could
be found which is not surprising. As we will see in the next sections, it is
harder to apply {0, 1

2}-Cuts if the instances are easily solvable.
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C0 C1
Instance UB LB UB LB # cuts
bip42p 24801 24404.7 24802 24408.6 55
bip42u 238 232.391 241 232.197 48
bip52p 24723 24203.4 24718 24207.8 21
bip52u 236 229.332 236 229.345 55
bip62p 22963 22467.1 22986 22467.1 9
bip62u 243 213.557 243 213.557 0
bipa2p 37457 34697 37284 34697.1 9
bipa2u 351 329.511 377 329.511 1
bipe2p 5626 5545.21 5626 5545.21 0
bipe2u 54 opt 54 opt 0
cc3-4p 2338 2247.17 2339 2240.08 11
cc3-4u 23 22 23 22 7
cc3-5p 3779 3384.67 3691 3384.89 1
cc3-5u 36 32.869 36 32.8688 0
cc5-3p 8262 7161.08 8262 7161.22 0
cc5-3u 90 69.231 90 69.2324 0
hc6p 4003 opt 4003 opt 120
hc6u 39 37.7143 39 37.8235 84
hc7p 7953 7715.13 7937 7715.31 7
hc7u 77 73.5 77 73.7 67
hc8p 15459 15131.7 15426 15129.5 34
hc8u 149 145.143 149 145.143 6
hc9p 30577 29884.1 30630 29884.1 3
hc9u 299 286.875 345 286.875 9

Table 9.4: Overall results for applying {0, 1
2}-Cuts to the PUC test set
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9.1.4 Results when using Local Branching

In this section we want to show the effect of adding the Local Branching
method to the optimization process. As we stated before, the idea behind
this process is to find integer solutions quickly by dividing the search space
and preferably searching the neighbourhood of the actual best incumbent
solution. Note that this process aims at finding good solutions to very
hard instances. Usually the running time does not improve if the whole
search space is processed during the optimization. In most cases, the only
improvement arises, if a time limit is set within which the instance cannot
be solved to optimality.

Incumbent Solution Quality Figure 9.4 shows how the quality of the
incumbent solutions improves when Local Branching is applied. We tested
this approach using two parameter settings for the size of the neighbourhood.
In the graphic, N10 and N25 denote the parameter settings of N=10 and
N=25 for the maximal distance between a newly found solution and the
actual best incumbent solution. L0 shows the solutions found by the basic
optimization process. As we can see for all selected instances in the figure,
after the first integer solution is found, the solution quality quickly improves
for the Local Branching variants. For the three instances hc8p, hc10p and
bipa2p, Local Branching yields better results than the basic optimization
process because the time limit we used (5400 s) is quite tight for those hard
instances. In the next paragraph we will show that this does not have to be
the case all the time.

Note that in the graphic for the bipa2p instance, the Local Branch-
ing with the smaller neighbourhood setting actually gives better results.
Although the optimizer with N=25 finds a quite good solution quickly, it
cannot improve that solution for quite a long time. Local Branching, like
other local search methods, directly depends on the neighbourhood struc-
ture of the underlying ST instance. Using Local Branching, the solver can
easily get stuck in a local optimum which explains why different settings
for the searched neighbourhood size influence the quality of the incumbent
solutions heavily. In the given example, the optimizer got stuck in a local
optimum. Luckily, another solution could be found within the given neigh-
bourhood so the Local Branching process was able to continue. The time
lost gives however a slightly worse overall result than the one from the Local
Branching process with N=10.

Drawbacks of Local Branching As we mentioned before, if the opti-
mizer gets enough time to search most of the search space for one given
instance, the application of Local Branching yields improvements to a lesser
extend. In Figure 9.5 this effect can be seen. At first, the runs with Local
Branching enabled find good solutions quickly. After a while however, the
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basic optimization process discovers solutions that are significantly better
than the ones found from the Local Branching process before. This is not
unexpected behaviour. The application of Local Branching does not violate
the optimality of the algorithm therefore it would find the optimal solution
after some time. In this case however we have the same problem of get-
ting stuck in a local optimum. Especially for the bip62p instance, where
many small improvements of the solution take place, we can assume, that
the optimizer searches the solution space around a local optimum. If we
set the time limit for example to 1000 or 2000 seconds for the instances
bip62p and bipa2u respectively, we would get significantly better results for
the optimization process with Local Branching enabled. But as the time
limit we used is sufficient to find good solutions without the help of Local
Branching, the basic optimizer outperforms the Local Branching procedure
in those cases.

Results for Local Branching In Table 9.5 we show a summary on the
results we obtained by applying Local Branching to the subset of the PUC
test suite we used. The columns L0, N10 and N25 represent the three param-
eter settings (No Local Branching, a neighbourhood of 10, a neighbourhood
of 25) respectively, bold values denote the best upper bound for a instance.
Note that for the easier instances (bip*) often the basic optimizer yields the
best bounds. For the hard ones however (hc8-11) the best bound is obtained
using Local Branching with N=25 for 7 out of 8 instances.

9.1.5 Overall Performance

In this section we show the overall results we obtained using our methods to
solve the PUC and the I640 test set. The following tables give the obtained
bounds, the running time and the best known bounds from the Steinlib
([24]).

In Table 9.6, known optima are denoted bold in the column Steinlib. For
three instances of the PUC test set (bip42p, bip52p and bipe2p) we found
better upper bounds using a time limit of only 1.5 hours. Those values are
denoted italic. For one instance (bipe2u) we were able to find the formerly
unknown optimum solution.

For many of the instance in the I640 test set, the optima are known.
In Tables 9.7 and 9.8, for instances marked with a ∗ no optimum is known
and the column Steinlib gives the best known upper bound. For all other
instances, the values given in the column Steinlib denote the optimum solu-
tion.

The values we give for our approach were achieved using neither Local
Branching nor {0, 1

2}-Cuts. We chose those settings because although the
instances from the I640 test set are quite hard we expected to solve many
of them to optimality. The fact that we were not interested in finding good
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no LB N=10 N=25
Instance UB LB Time [s] UB LB Time [s] UB LB Time [s]
bip42p 24801 24404.7 5576.5 24882 24395.9 5582.5 24781 24376.4 5545.3
bip42u 238 232.391 5517.9 239 232.262 5482.3 240 232.221 5493.3
bip52p 24723 24203.4 5522.2 24917 24187.7 5466.9 24954 24187.7 5479.9
bip52u 236 229.332 5470.8 237 229.401 5544.4 237 229.19 5520.0
bip62p 22963 22467.1 5535.8 23084 22445.2 5464.9 23174 22445.2 5442.3
bip62u 243 213.557 5434.6 235 213.557 5429.6 230 213.39 5446.5
bipa2p 37457 34697 5483.4 36140 34687.6 5455.8 36199 34687.6 5452.3
bipa2u 351 329.511 5437.3 365 329.325 5453.4 355 329.325 5431.6
bipe2p 5626 5545.21 5623.0 5677 5534.5 5626.0 5620 5535.94 5578.3
bipe2u 54 opt 543.4 54 opt 179.4 54 opt 344.3
cc3-4p 2338 2247.17 5435.8 2339 2209 5439.9 2343 2149 5427.5
cc3-4u 23 22 5440.6 23 22 5436.9 23 21 5436.5
cc3-5p 3779 3384.67 5468.6 3688 3384.67 5442.9 3690 3384.67 5432.6
cc3-5u 36 32.869 5414.9 36 32.869 5414.3 36 32.8688 5414.2
cc5-3p 8262 7161.08 5414.9 8262 7161.08 5414.8 8262 7160.98 5415.6
cc5-3u 90 69.231 5412.2 90 69.2324 5412.0 90 69.2324 5412.9
cc6-2p 3271 opt 1645.0 3271 opt 2805.7 3271 3184.34 5508.4
cc6-2u 32 opt 199.3 32 opt 214.2 32 opt 389.5
hc6p 4003 opt 681.1 4003 opt 691.6 4003 opt 659.5
hc6u 39 37.7143 5451.1 39 37.75 5438.6 39 37.5131 5445.0
hc7p 7953 7715.13 5544.4 7909 7717.48 5538.1 7909 7714.17 5544.5
hc7u 77 73.5 5494.1 77 73.5 5470.6 77 73.5 5493.8
hc8p 15459 15131.7 5506.8 15412 15115.8 5479.2 15336 15115.8 5454.3
hc8u 149 145.143 5467.1 149 145.143 5448.5 149 145.143 5490.0
hc9p 30577 29884.1 5435.6 30775 29878.1 5483.8 30574 29878.1 5470.6
hc9u 299 286.875 5417.6 299 286.875 5436.8 297 286.875 5426.9
hc10p 62015 59219.3 5418.4 61436 59214.3 5421.6 60963 59214.3 5425.7
hc10u 730 567.778 5408.3 649 567.778 5408.0 601 567.778 5408.4
hc11p 126418 117395 5417.8 126446 117395 5417.6 125748 117395 5440.1
hc11u 1499 1125.3 5414.9 1492 1125.3 5416.1 1477 1125.3 5416.1

Table 9.5: Upper Bounds for L0, N=10, N=25

upper bounds made the disabling of the improvements a good choice as we
know that the results only get significantly better, if the instances are very
hard.
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Name Steinlib UB LB Gap Time [s]
bip42p 24818 24705 24383.7 1.31 % 3653.4
bip42u 237 238 232.391 2.59 % 5517.9
bip52p 24936 24718 24207.8 2.11 % 5767.2
bip52u 235 236 229.345 3.06 % 5650.9
bip62p 22944 22963 22467.1 2.21 % 5535.8
bip62u 221 227 213.388 6.37 % 3614.2
bipa2p 35774 36140 34687.6 4.19 % 5455.8
bipa2u 342 351 329.511 6.69 % 5437.3
bipe2p 5660 5620 5534.5 1.55 % 5629.3
bipe2u 54 54 opt - 730.6
cc3-4p 2338 2338 2189.15 6.81 % 5433.8
cc3-4u 23 23 21 9.52 % 5437.2
cc3-5p 3661 3688 3384.67 8.98 % 5442.9
cc3-5u 36 36 32.8695 12.50 % 5414.9
cc5-3p 7299 8262 7161.11 15.37 % 5415.1
cc5-3u 71 90 69.231 30.43 % 5411.9
cc6-2p 3271 3271 opt - 1645.0
cc6-2u 32 32 opt - 386.1
hc6p 4003 4003 opt - 713.8
hc6u 39 39 37.7143 5.41 % 5438.4
hc7p 7905 7906 7715.13 2.48 % 5552.1
hc7u 77 77 73.5 5.48 % 5514.0
hc8p 15322 15336 15115.8 1.46 % 5454.3
hc8u 148 148 145.143 2.07 % 5423.0
hc9p 30258 30492 29878.1 2.06 % 5469.8
hc9u 292 297 286.875 3.85 % 5426.9
hc10p 60494 60963 59214.3 2.95 % 5425.7
hc10u 582 601 567.778 6.00 % 5408.4
hc11p 120096 125748 117395 7.12 % 5440.1
hc11u 1162 1477 1125.3 31.29 % 5416.1

Table 9.6: Results for the PUC test set



68 Chapter 9. Computational Results

 15300

 15350

 15400

 15450

 15500

 15550

 15600

 15650

 15700

 15750

 15800

 0  1000  2000  3000  4000  5000  6000

Up
pe

r B
ou

nd

Time[s]

hc8p

L0
N10
N25

 60500

 61000

 61500

 62000

 62500

 63000

 63500

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000  5500

Up
pe

r B
ou

nd

Time[s]

hc10p

L0
N10
N25

 36000

 36200

 36400

 36600

 36800

 37000

 37200

 37400

 37600

 37800

 38000

 500  1000  1500  2000  2500  3000  3500  4000  4500  5000  5500

Up
pe

r B
ou

nd

Time[s]

bipa2p

L0
N10
N25

Figure 9.4: Incumbent solutions compared for Local Branching with param-
eters N=10 (N10), N=25 (N25) and the standard Branch and Cut algorithm
(L0)
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Name Steinlib UB LB Gap Time [s]
i640-001 4033 4033 opt - 0.3
i640-002 3588 3588 opt - 0.2
i640-003 3438 3438 opt - 0.2
i640-004 4000 4000 opt - 0.4
i640-005 4006 4006 opt - 0.2
i640-011 2392 2392 opt - 11.6
i640-012 2465 2465 opt - 203.4
i640-013 2399 2399 opt - 54.3
i640-014 2171 2171 opt - 3.9
i640-015 2347 2347 opt - 29.5
i640-021 1749 1749 opt - 918.4
i640-022 1756 1756 opt - 607.6
i640-023 1754 1754 opt - 554.0
i640-024 1751 1751 opt - 596.5
i640-025 1745 1745 opt - 428.5
i640-031 3278 3278 opt - 1.1
i640-032 3187 3187 opt - 0.6
i640-033 3260 3260 opt - 1.7
i640-034 2953 2953 opt - 0.6
i640-035 3292 3292 opt - 2.1
i640-041 1897 1897 opt - 239.8
i640-042 1934 1951 1924 1.40 % 5457.3
i640-043 1931 1936 1906.5 1.57 % 5462.6
i640-044 1938 1947 1916.5 1.62 % 5478.2
i640-045 1866 1866 opt - 111.7
i640-101 8764 8764 opt - 1.2
i640-102 9109 9109 opt - 0.3
i640-103 8819 8819 opt - 0.3
i640-104 9040 9040 opt - 0.5
i640-105 9623 9623 opt - 14.2
i640-111 6167 6191 6090.1 1.66 % 5418.5
i640-112 6304 6304 6254.43 0.80 % 5420.3
i640-113 6249 7630 6170.49 23.66 % 5424.3
i640-114 6308 6308 6248.92 0.96 % 5425.1
i640-121 4906 4906 opt - 4426.8
i640-122 4911 4911 opt - 3996.7
i640-123 4913 5326 4910.31 8.47 % 5507.0
i640-124 4906 4906 opt - 4978.4

Table 9.7: Results for the I640 test set, part 1
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Name Steinlib UB LB Gap Time [s]
i640-131 8097 8097 opt - 5.5
i640-132 8154 8154 opt - 32.6
i640-133 8021 8021 opt - 5.2
i640-134 7754 7754 opt - 15.1
i640-135 7696 7696 opt - 6.4
i640-141 5199 5550 5152.28 7.73 % 5460.3
i640-142 5193 5572 5157.42 8.05 % 5445.7
i640-143 5194 5357 5162.28 3.78 % 5449.9
i640-144 5205 5416 5167.99 4.82 % 5447.9
i640-145 5218 5978 5174.6 15.54 % 5453.6
i640-201 16079 16079 opt - 0.3
i640-202 16324 16324 opt - 0.2
i640-203 16124 16124 opt - 0.5
i640-204 16239 16239 opt - 0.6
i640-205 16616 16616 opt - 1.3
i640-212∗ 11795 14763 11673.6 26.47 % 5419.2
i640-213∗ 11879 13743 11740.6 17.06 % 5418.2
i640-214∗ 11898 13895 11730.7 18.46 % 5430.4
i640-222 9798 10205 9772.63 4.43 % 5505.9
i640-225 9807 10660 9776.88 9.04 % 5504.3
i640-231 15014 15014 opt - 96.9
i640-232 14630 14630 opt - 20.7
i640-233 14797 14797 opt - 124.6
i640-234 15203 15203 opt - 1.6
i640-235 14803 14803 opt - 929.0
i640-242 10195 10916 10121.7 7.85 % 5441.6
i640-243 10215 10971 10150.2 8.09 % 5447.0
i640-244 10246 10827 10150.7 6.67 % 5451.8
i640-301 45005 45005 opt - 0.7
i640-302 45736 45736 opt - 2.1
i640-303 44922 44922 opt - 0.5
i640-304 46233 46233 opt - 0.9
i640-305 45902 45902 opt - 2.0
i640-311∗ 35766 36285 35258 2.91 % 5416.6
i640-312∗ 35829 40508 35245.9 14.93 % 5419.0
i640-313∗ 35535 40186 35143 14.35 % 5435.2
i640-314∗ 35538 39433 35051.6 12.50 % 5436.5
i640-315∗ 35741 39197 35268.1 11.14 % 5476.5
i640-331 42796 42796 opt - 117.8
i640-332 42548 42548 opt - 152.9
i640-333 42345 42345 opt - 658.9
i640-334 42768 42778 42750.5 0.07 % 5432.6
i640-335 43035 43035 opt - 2252.6

Table 9.8: Results for the I640 test set, part 2
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9.2 Results for the PCST

In this section we will give some computational results we got by applying
our approach to PCST instances. The test sets we used are a lot easier solv-
able than the ones available for the ST except for some instances we derived
directly from hard ST instances. Additionally we applied our methods to
instance files that have been preprocessed using methods similar to the ones
presented in [12].

9.2.1 The test sets

The K and P test sets The first test set of quite small instances was
introduced by Johnson, Minkoff and Phillips ([21]). This set consists of
generated instances ranging from 100 vertices and 284 edges to 400 vertices
and 1507 edges.

The Stein{c,d,e} test sets The second test suite we used are instances
that are derived from ST instances from the Steinlib. Without preprocess-
ing, the c series instance have 500 nodes and 625 to 12500 edges. The
slightly bigger d series instances have 1000 nodes and 1250 to 25000 edges.
The biggest set of instances, the e series, consist of 2500 nodes and 3125 to
62500 edges. The size of the preprocessed instances we actually solved is
given in Section 9.2.4.

The hc test set Additionally we applied our approach to 8 instances,
which we derived from the instances hc6-hc9 from the PUC test set. Those
instances are significantly harder to solve than the ones mentioned before.
Preprocessing could not be applied to those instances because they were
designed to defy preprocessing. For the size of the instances see Table 9.1.

9.2.2 Results for adding {0, 1
2
}- Cuts

As we mentioned before, most of the instances we solved for the PCST are
quite easy. Some of them are big, so we need some time for solving them to
optimality but for example all but 2 instances may be solved to optimality
without the use of branching and even without the use of {0, 1

2}-Cuts. As
we have seen in the section before, the impact of {0, 1

2}-Cuts gets bigger, as
the instances get harder. This explains why for the quite easy test sets we
tried to solve, the addition of {0, 1

2}-Cuts does not reduce the computing
time. The times for solving the e series instances, which turned out to be
the hardest of our test set, are shown in Figure 9.6. As we can see, the
running time for C1, which denotes the process with using {0, 1

2}-Cuts, is
always higher.
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It turned out, that only for 4 instances of the easier test sets, a small
amount of {0, 1

2}-Cuts could be found. However, not even those instances
benefit from the additional cuts because they are too easily solved. Results
for those instances are given in Table 9.9. Columns C0 and C1 give the
running time in seconds for the different parameter settings. As we can see,
only a very small amount of cuts was separated and therefore the running
time is much worse than without using {0, 1

2}-Cuts.

Name OPT Time for C0 Time for C1 # cuts
d13-A 413 7.2 13.0 1
c18-B 77 3.4 11.7 8
e18-A 431 729.4 2938.7 4
e18-B 409 2670.8 3340.8 20

Table 9.9: Running times for the instances where {0, 1
2}-Cuts could be found

The hc test set For the small set of harder solvable hc instances, the
addition of {0, 1

2}-Cuts brings an impact on the solution quality. As for the
ST problem not all instances get the same benefit from adding {0, 1

2}-Cuts.
For some instances the results are significantly better which can be seen in
Table 9.10.

C0 C1
Instance UB LB Time[s] UB LB Time[s]
hc6p 3908 opt 42.1 3908 opt 48.0
hc6u 36 opt 0.9 36 opt 2.2
hc7p 7734 7649.02 5541.2 7726 7653.77 5541.4
hc7u 72 opt 4914.3 73 71 5506.4
hc8p 15239 15017.9 5516.7 15294 15012.5 5516.4
hc8u 145 141 5409.2 no 141 5409.6
hc9p 30774 29661.3 5469.0 30133 29661.5 5449.7
hc9u no 279.358 5411.0 no 279.358 5410.4

Table 9.10: Results for adding {0, 1
2}-Cuts to the converted PUC instances

9.2.3 Local Branching

For the Local Branching process applies the same problem we mentioned
before. As the Local Branching process starts after processing the root node
and all but 2 instances of the easier test sets can be solved to optimality
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at the root node, we can say that those instances are too easy to apply
Local Branching. The results for the two instances, where Local Branching
can be applied is given in table 9.11. As those instances can be solved
to optimality too, as expected, the running times are higher, when Local
Branching is applied.

Instance OPT no LB N=10 N=25
e18-A 431 729.4 845.6 855.6
e18-B 409 2670.8 2976.9 2960.2

Table 9.11: Comparing Local Branching parameters for the e18 instances

The hc test set From the hc test set, no instance could be solved to
optimality at the root node using our method. Therefore we applied the
Local Branching approach to those instances. We chose the neighbourhood
settings of N=10 and N=25 because they gave good results on the ST in-
stances we derived the test set from. As we can see in Table 9.12, the upper
bounds of 3 of the instances have improved and for one instance (hc7u) the
running time to solve the instance to optimality has been reduced using the
setting N=10.

no Local Branching Local Branching, N=10 Local Branching, N=25
Instance UB LB Time[s] UB LB Time[s] UB LB Time[s]
hc6p 3908 opt 42.1 3908 opt 57.6 3908 opt 98.8
hc6u 36 opt 0.9 36 opt 0.9 36 opt 0.9
hc7p 7734 7649.02 5541.2 7721 7654.19 5558.9 7729 7647.56 5548.3
hc7u 72 opt 4914.3 72 opt 3568.5 72 71 5454.6
hc8p 15239 15017.9 5516.7 15368 14985.4 5470.9 15232 14985.4 5498.9
hc8u 145 141 5409.2 145 141 5410.6 145 141 5416.9
hc9p 30774 29661.3 5469.0 31170 29643.9 5424.0 30329 29643.9 5429.0
hc9u no 279.358 5411.0 no 279.358 5417.2 no 279.358 5410.2

Table 9.12: Results for adding Local Branching to the converted PUC in-
stances

9.2.4 Overall Performance

In this section we give the overall results for all the easier test sets. As before,
the tables give the size of the preprocessed instances, the optima we found,
and the running time we used including the time spent on preprocessing the
instances.
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Instance |V| |E| OPT Tprep Tsolve T
K100 45 191 113132 0.08 0.1 0.18
K100.1 42 185 113744 0.12 0.1 0.22
K100.2 24 83 138871 0.14 0.1 0.24
K100.3 26 123 95138 0.10 0.1 0.2
K100.4 29 113 69653 0.11 0.0 0.11
K100.5 31 120 106799 0.10 0.1 0.2
K100.6 22 64 112140 0.13 0.0 0.13
K100.7 25 93 137713 0.13 0.1 0.23
K100.8 43 144 173394 0.12 0.1 0.22
K100.9 22 70 108306 0.11 0.1 0.21
K100.10 27 78 113771 0.13 0.0 0.13
K200 81 271 296935 0.51 1.3 1.81
K400 231 914 322470 2.98 64.3 67.28
K400.1 217 854 435701 2.72 150.7 153.42
K400.2 228 948 452422 3.00 169.0 172
K400.3 210 806 385629 3.79 35.0 38.79
K400.4 197 784 376275 2.93 45.7 48.63
K400.5 220 799 472936 2.84 156.9 159.74
K400.6 241 1035 351842 3.97 60.3 64.27
K400.7 225 867 452176 2.24 160.0 162.24
K400.8 235 987 359045 3.09 57.5 60.59
K400.9 211 862 343984 2.99 78.7 81.69
K400.10 221 923 350987 3.69 150.7 154.39
P100 66 163 564753 0.09 0.0 0.09
P100.1 84 196 833544 0.06 0.1 0.16
P100.2 75 187 346602 0.06 0.0 0.06
P100.3 91 237 575606 0.04 0.0 0.04
P100.4 69 186 705356 0.06 0.0 0.06
P200 166 438 1257107 0.24 0.1 0.34
P400 345 1002 2255191 1.96 0.4 2.36
P400.1 323 983 2504926 2.52 0.5 3.02
P400.2 341 997 2240337 2.14 0.3 2.44
P400.3 334 969 2611102 2.31 0.5 2.81
P400.4 344 949 2668758 1.71 0.5 2.21

Table 9.13: Results for the K and P test sets
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Instance |V| |E| OPT Tprep Tsolve T
c1-B 125 226 85 1.19 0.1 1.29
c1-A 116 214 10 1.24 0.1 1.34
c2-B 111 209 133 1.10 0.1 1.2
c2-A 109 207 42 1.08 0.0 1.08
c3-B 185 304 628 1.26 0.2 1.46
c3-A 160 277 276 1.10 0.1 1.2
c4-B 218 341 916 1.34 0.2 1.54
c4-A 178 300 373 1.17 0.2 1.37
c5-B 199 314 859 1.74 0.3 2.04
c5-A 163 274 553 1.17 0.2 1.37
c6-B 356 823 55 2.15 0.3 2.45
c6-A 355 822 13 2.11 0.1 2.21
c7-B 365 842 94 2.48 0.2 2.68
c7-A 365 842 47 2.56 0.1 2.66
c8-B 369 850 441 3.03 0.3 3.33
c8-A 367 849 306 2.74 0.2 2.94
c9-B 389 879 607 2.84 1.0 3.84
c9-A 387 877 462 2.38 1.3 3.68
c10-B 323 798 675 3.42 0.7 4.12
c10-A 359 841 647 3.26 0.9 4.16
c11-B 489 2143 32 9.46 4.4 13.86
c11-A 489 2143 18 9.45 0.3 9.75
c12-B 484 2186 45 6.85 0.7 7.55
c12-A 484 2186 37 6.78 0.4 7.18
c13-B 471 2112 235 9.78 3.1 12.88
c13-A 472 2113 215 9.85 0.7 10.55
c14-B 459 2048 259 7.54 0.6 8.14
c14-A 466 2081 250 7.46 0.6 8.06
c15-B 370 1753 337 6.00 0.7 6.7
c15-A 406 1871 366 6.52 1.2 7.72
c16-B 500 4740 11 2.35 1.6 3.95
c16-A 500 4740 11 2.39 1.6 3.99
c17-B 498 4694 16 2.31 1.9 4.21
c17-A 498 4694 16 2.37 2.6 4.97
c18-B 465 4538 77 2.94 3.4 6.34
c18-A 469 4569 79 2.59 1.7 4.29
c19-B 416 3867 61 2.84 0.7 3.54
c19-A 430 3982 75 2.85 0.8 3.65
c20-B 133 563 31 4.99 0.1 5.09
c20-A 241 1222 69 6.09 0.2 6.29

Table 9.14: Results for the C test set
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Instance |V| |E| OPT Tprep Tsolve T
d1-B 233 443 106 4.88 0.2 5.08
d1-A 231 440 13 4.87 0.1 4.97
d2-B 264 488 218 4.87 0.1 4.97
d2-A 257 481 30 4.86 0.1 4.96
d3-B 372 606 1330 6.34 0.5 6.84
d3-A 301 529 480 5.49 0.2 5.69
d4-B 387 621 1483 7.22 0.8 8.02
d4-A 311 541 725 5.63 0.5 6.13
d5-B 411 649 1778 11.48 1.6 13.08
d5-A 348 588 1025 7.56 1.2 8.76
d6-B 741 1708 67 14.73 1.3 16.03
d6-A 740 1707 15 14.37 0.2 14.57
d7-B 736 1707 103 11.39 0.3 11.69
d7-A 734 1705 42 11.28 0.2 11.48
d8-B 778 1757 954 12.34 1.0 13.34
d8-A 764 1738 649 11.74 3.7 15.44
d9-B 761 1724 1293 20.92 4.5 25.42
d9-A 752 1716 908 17.95 14.8 32.75
d10-B 629 1586 1346 18.52 2.6 21.12
d10-A 694 1661 1251 14.58 4.4 18.98
d11-B 986 4658 29 23.56 4.8 28.36
d11-A 986 4658 18 27.73 1.5 29.23
d12-B 991 4639 40 22.29 1.1 23.39
d12-A 991 4639 40 23.15 1.6 24.75
d13-B 961 4566 438 27.96 3.5 31.46
d13-A 966 4572 413 27.69 7.2 34.89
d14-B 931 4469 570 37.20 5.0 42.2
d14-A 946 4500 542 35.45 4.0 39.45
d15-B 747 3896 678 49.19 5.2 54.39
d15-A 832 4175 776 47.14 17.7 64.84
d16-B 1000 10595 13 10.83 4.8 15.63
d16-A 1000 10595 13 10.82 4.0 14.82
d17-B 999 10534 22 10.72 5.0 15.72
d17-A 999 10534 22 10.84 4.9 15.74
d18-B 929 9816 151 12.01 6.1 18.11
d18-A 944 9949 161 11.72 50.1 61.82
d19-B 862 9131 170 13.08 11.9 24.98
d19-A 897 9532 202 12.36 12.0 24.36
d20-B 307 1383 87 32.92 0.4 33.32
d20-A 488 2511 155 37.27 0.7 37.97

Table 9.15: Results for the D test set
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Instance |V| |E| OPT Tprep Tsolve T
e01-A 651 1246 3 21.51 0.1 21.61
e01-B 655 1250 109 21.84 1.0 22.84
e02-A 694 1304 19 20.70 0.2 20.9
e02-B 697 1307 156 20.67 0.4 21.07
e03-A 813 1414 1422 29.42 5.6 35.02
e03-B 962 1572 3340 30.88 4.4 35.28
e04-A 829 1425 1938 24.91 14.9 39.81
e04-B 980 1588 3846 26.18 7.7 33.88
e05-A 893 1502 2930 36.93 43.4 80.33
e05-B 1029 1644 4816 44.96 17.5 62.46
e06-A 1821 4283 19 37.87 0.5 38.37
e06-B 1821 4283 70 37.60 1.6 39.2
e07-A 1863 4339 35 39.30 0.6 39.9
e07-B 1865 4341 136 39.39 2.7 42.09
e08-A 1902 4379 1656 40.06 58.2 98.26
e08-B 1911 4387 2314 50.38 11.0 61.38
e09-A 1909 4388 2385 50.50 61.8 112.3
e09-B 1918 4397 3046 54.74 15.6 70.34
e10-A 1716 4181 3272 60.62 233.8 294.42
e10-B 1594 4045 3533 84.56 29.7 114.26
e11-A 2491 12063 21 145.10 2.7 147.8
e11-B 2491 12063 34 146.18 8.4 154.58
e12-A 2490 12090 49 82.49 4.6 87.09
e12-B 2490 12090 67 85.53 15.6 101.13
e13-A 2430 11949 1073 148.17 25.4 173.57
e13-B 2407 11915 1120 146.73 30.5 177.23
e14-A 2366 11872 1362 144.21 432.1 576.31
e14-B 2311 11737 1373 145.68 307.7 453.38
e15-A 2044 10845 1906 207.85 283.2 491.05
e15-B 1864 10264 1691 234.27 350.5 584.77
e16-A 2500 29332 15 82.21 29.7 111.91
e16-B 2500 29332 15 81.91 31.9 113.81
e17-A 2500 29090 25 81.61 83.1 164.71
e17-B 2500 29090 25 81.78 33.0 114.78
e18-A 2378 28454 431 85.66 729.4 815.06
e18-B 2347 28269 409 86.86 2670.8 2757.66
e19-A 2156 25011 401 92.15 237.5 329.65
e19-B 2085 23641 340 94.02 134.7 228.72
e20-A 1525 12770 352 107.28 22.1 129.38
e20-B 861 3881 202 231.50 1.3 232.8

Table 9.16: Results for the E test set
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Conclusion and Future Work

We propose the application of {0, 1
2}-Cuts and Local Branching to the ST

and PCST problems. We used the new approaches on the set of most difficult
ST instances and on a set of easily solvable instances for the PCST available
from literature. Our computational results show:

• For several of the harder instances {0, 1
2}-Cuts improve the perfor-

mance significantly and affect the quality of both the upper and the
lower bounds. For some instances we can see however, that the ex-
pense of separating {0, 1

2}-Cuts using our algorithm outweighs the ad-
vantages.

• Local Branching improves the quality of the upper bounds drastically
compared to the basic branch and cut algorithm in limited time. If the
available time is sufficient for solving the instance to optimality, the
optimizer often gets stuck in local optima and is outperformed slightly
by the basic optimization process.

• For three instances of the most difficult test set of ST instances we
could improve the best known upper bounds using our method. For
one instance of this test set we found a new optimum solution.

The next improvement we want to add to our approach is the so called
diversity which is an extension to the Local Branching procedure proposed
in [16]. The idea behind this improvement is to avoid the problem of getting
stuck in local optima. This is done by setting a time limit on the subprob-
lems defined by the Local Branching process. If the k-neighbourhood of an
incumbent solution is searched, and no better solution is found within a
certain time, we assume that the optimizer is stuck in a local optimum. In
this case we extend the neighbourhood to a maximal distance of 2k from the
incumbent solution and thus we increase the probability of finding a better
integer solution and leaving the local optimum.

80
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