
Morphing Polygonal Lines:
A Step Towards Continuous Generalization

D. Merrick1, M. Nöllenburg2, A. Wolff3, M. Benkert2

1 School of Information Technologies, University of Sydney, NSW 2006, Australia
and National ICT Australia, Alexandria, NSW 1435, Australia

dmerrick@it.usyd.edu.au, www.it.usyd.edu.au/∼dmerrick

2 Faculty of Informatics, Karlsruhe University, P.O. Box 6980, 76128 Karlsruhe, Germany
{noellenburg, mbenkert}@iti.uka.de, i11www.iti.uni-karlsruhe.de/group

3 Department of Mathematics and Computing Science, Technische Universiteit
Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

www.win.tue.nl/∼awolff

1 Introduction

Visualization of geographic information in the form of maps has been established for cen-
turies. Depending on the scale of the map the level of detail of displayed objects must be
adapted in a generalization process. Be it done manually or (semi-)automatically, general-
ization methods usually produce a map at a single target scale. This is a well-studied field,
surveyed, for example, by Weibel and Dutton (1999).

In current, often web-based (Jones and Ware, 2005), geographic information systems users
can interactively zoom in and out of the map, ideally at arbitrary scales and with smooth,
continuous changes. However, current approaches are often characterized by a fixed set
of scales or by simply zooming graphically without modifying map objects. To overcome
these deficiencies continuous generalization methods are needed.

This paper studies an algorithm for continuously generalizing linear features like rivers or
roads between their representations at two scales. Instead of line-simplification methods
with a single target scale, we consider interpolating between a source and a target scale in a
way that keeps the maps at intermediate scales meaningful. In computer graphics and com-
putational geometry this interpolation process is known as morphing (Gomes et al., 1999).
Of specific interest are morphings that can deal with a certain amount of exaggeration and
schematization such as reducing the number but increasing the size of road serpentines at
the smaller scale. Our method first partitions the input polygonal line (polyline, for short)
into characteristic segments and then defines distances between these segments. Based on
those distances we compute an optimum morphing of the polyline segments at the two in-
put scales using dynamic programming. We have implemented a prototype of the algorithm
and compare its output with that of a simple linear morph.

2 Related work

Cecconi and Galanda (2002) study adaptive zooming for web applications with a focus on
the technical implementation. They use the standard Douglas-Peucker line-simplification
method to generalize linear features. While maps can be produced at arbitrary scales there
is no smooth animation of the zooming. A set of continuous generalization operators is
presented by van Kreveld (2001), including two simple algorithms for morphing a poly-
line to a straight-line segment. Continuous generalization for building ground plans and
typification of buildings is described by Sester and Brenner (2004).

Existing algorithms for the geometric problem of finding an optimal intersection-free geo-
desic morphing between two simple, non-intersecting polylines (Efrat et al., 2001; Be-
spamyatnikh, 2002) cannot be applied here because the two input polylines intersect in
general. Surazhsky and Gotsman (2001a,b) compute trajectories for intersection-free mor-
phings of plane polygonal networks using compatible triangulations. Similarly, Erten et al.
(2004) give an algorithm for intersection-free morphing of plane networks using a combi-
nation of rigid motion and compatible triangulations. However, those approaches require
a given correspondence between network nodes. In the field of computer graphics, Cohen
et al. (1997) match point pairs sampled uniformly along two (or more) parametric freeform
curves. They compute an optimal correspondence of the points w.r.t. a similarity measure
based on the tangents of the curves. The algorithm is similar to ours in that it also uses
dynamic programming to optimize the matching, but it does not take into account the char-
acteristic points of geographic polylines. Samoilov and Elber (1998) extend the method of
Cohen et al. (1997) by eliminating possible self-intersections during the morphing.

3 Model and algorithm

In this paper, we consider the problem of morphing between two given polylines, each
generalized at a different scale. Our algorithms to solve the problem can be extended in a
straightforward manner to finding a series of morphs across many scales, by solving each
pair of polylines in the problem independently. The same approach can be applied to two
networks with identical topology.

The problem of morphing between two polylines is two-fold. Firstly, a correspondence
must be found between points on the two lines. Secondly, trajectories that connect pairs
of corresponding points must be specified. Here we focus on the correspondence problem
and assume straight-line trajectories.

In addressing the correspondence problem, our goal is to match parts of each polyline that
have the same semantics, e.g., represent the same series of hairpin bends in a road at two
levels of detail. We wish to do this in a way that allows the mental map to be retained
as much as possible. The mental map is the mental image a person builds of a diagram.
Retention of the mental map is believed to be important in continuous understanding of

animated diagrams; see for example Misue et al. (1995). One important aspect of retaining
the mental map is to ensure that points that are initially close together do not move too far
apart. We therefore wish to minimize the movement of points from one polyline to another.
To create a morph with these desired properties, we first detect characteristic points of a
polyline (Section 3.1) and use these to find an optimum correspondence (Section 3.2).

Formally, we are given two polylines f and g in the plane R
2. In the correspondence

problem we need to find two continuous, monotone parameterizations α : [0, 1] → f and
β : [0, 1] → g, such that α(0) and β(0) map to the first points of f and g and α(1) and β(1)
map to the last points, respectively. These two parameterizations induce the correspondence
between f and g: for each u ∈ [0, 1] the point α(u) is matched with β(u).

3.1 Detection of characteristic points

In order to solve the correspondence problem, we first need to divide each polyline into
subpolylines to be matched up. We do this by locating points on each line that are consid-
ered to be characteristic of the line; each of these characteristic points then defines the end
of one subpolyline and the start of another.

Previous work on generalization notes the importance of inflection points, bend points, and
start and end points in defining the character of a line (Plazanet et al., 1995). To find such
points, we process each of the vertices in a polyline in order, checking at each if the sign
of curvature has changed (an inflection point) or if the vertex is a point of locally maximal
curvature (a bend point). We also apply thresholding and Gaussian filtering techniques to
minimize error on noisy or poorly sampled polylines, as detailed in Algorithm 1. Gaussian
filtering is a method of smoothing curves often used to assist in analyzing noisy curves;
Lowe (1989) gives further details and an efficient algorithm.

Algorithm 1: Characteristic point detection
Input: Polyline f , number of sample points n′, Gaussian smoothing factor σ,

threshold angles θi, θb and θc.
Output: Set of characteristic points C.
Resample f using n′ equally-spaced points to create a new polyline f ′.1

Apply an in-place Gaussian filter with factor σ to smooth f ′.2

Mark inflection vertices with inflection angle ≥ θi.3

Mark bend vertices with bend angle between adjacent edges ≥ θb and change in4

curvature ≥ θc from last point of locally minimal curvature.
Mark first and last vertices.5

Proceed through the smoothed polyline f ′ and store the distance of each marked6

vertex from the start of f ′ as a percentage of the length of f ′.
Return the set C of points at the stored percentage distances along the original7

polyline f .

Algorithm 1 requires O(|f |+n′) time and space, where |f | is the number of vertices on the
polyline f and n′ is the number of sample points. All input parameters are user-defined.
Their values influence the number of characteristic points that will be detected. See the
results in Section 4 for sample values.

3.2 Finding an optimum correspondence

We detect the characteristic points of f and g independently of each other. Assume that
there are n + 1 such points on f and m + 1 points on g, which divide the polylines into
two sequences of subpolylines (f1, . . . , fn) and (g1, . . . , gm). Next, we approach the corre-
spondence problem. Basically, there are five possibilities to match a subpolyline fi:

(a) fi is mapped to the last characteristic point glast
j of a subpolyline gj (i.e., fi disappears),

(b) a subpolyline gj is mapped to the last point f last
i of fi (i.e., gj disappears),

(c) fi is mapped to a subpolyline gj,

(d) fi is mapped to a merged polyline gj...(j+k), and

(e) fi is part of a merged polyline f�...i...(�+k) that is mapped to a subpolyline gj.

Clearly, the linear order of the subpolylines along f and g has to be respected by the as-
signment.

Now assume that there is a morphing cost δ associated with the morph between two poly-
lines. We suggest a morphing distance in the next section, but Algorithm 2 is independent
of the concrete distance. It is based on dynamic programming and computes a minimum-
cost correspondence. Algorithm 2 recursively fills an n × m table T , where the entry
T [i, j] stores the minimal cost of morphing f1...i to g1...j . Consequently, we can obtain the
optimum correspondence from T [n, m].

The required storage space and running time of Algorithm 2 is O(nm) provided that the
look-back parameter K is constant. Otherwise the running time increases to O(nm(n +
m)). The parameter K determines the maximum number of subpolyline segments that can
be merged in order to match them with another segment in cases (d) and (e).

Distance measure. Algorithm 2 relies on a distance function δ that represents the mor-
phing cost of a pair of polylines. Distance functions for polylines can be defined in many
ways, e.g., morphing width (Efrat et al., 2001) and Fréchet distance (Alt and Godau, 1995).

We define a new distance measure that takes into account how far all points move during
the morphing by integrating over the trajectory lengths. Assume that two subpolylines fi

and gj with uniform parameterizations α and β are given. Each point α(u) on fi will move

Algorithm 2: Optimum correspondence
Input: polylines f = (f1, . . . , fn) and g = (g1, . . . , gm), distance matrix δ.
Output: optimum correspondence for f and g.
Initialize T [0, ·] and T [·, 0]1

for i = 1 to n do2

for j = 1 to m do3

T [i, j] = min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T [i − 1, j] + δ(fi, g
last
j) case (a)

T [i, j − 1] + δ(f last
i , gj) case (b)

T [i − 1, j − 1] + δ(fi, gj) case (c)

T [i − 1, j − k] + δ(fi, g(j−k+1)...j), k = 2, . . . , K case (d)

T [i − k, j − 1] + δ(f(i−k+1)...i, gj), k = 2, . . . , K case (e)4

Store pointer to predecessor, i.e., to the table entry that yielded the minimum.5

end6

end7

Generate optimum correspondence from T [n, m] using backtracking along pointers.8

to β(u) on gj along the connecting segment of length ||α(u) − β(u)||. Then the morphing
distance is defined as

δ(fi, gj) =

∫ 1

0

||α(u) − β(u)||du (1)

and can be computed in time linear in the complexity of fi and gj.

Optionally, we can add further terms to the base distance δ. Adding the length difference
of fi and gj, or alternatively the length of the polyline γ(u) := α(u) − β(u) favors pairs
of polylines that are roughly the same length or orientation. We can also multiply δ by the
ratio of the subpolylines’ length with the total length of the containing polylines f and g,
to account for their relative visual importance.

Finally, we wish to avoid self-intersections in the morph. We do this locally by set-
ting the effective morphing distance to ∞ if matching two subpolylines causes a self-
intersection in the morph between them. However, in rare cases intersections between
two non-corresponding subpolylines may still occur.

4 Results

We ran our implementations on a small set of French roads from the BD Carto� and
the TOP100 series maps produced by the IGN Carto2001 project (Lecordix et al., 2005).
For each road, we used a polyline from BD Carto� at scale 1:50,000, and a generalized
version at scale 1:100,000 from the Carto2001 TOP100 maps. Figures 1(a) and 1(b) show
two examples of the roads in the dataset, at the two respective scales. The characteristic

(a) Road 1 (1:50,000) (b) Road 1 (1:100,000) (c) Road 2 (1:50,000) (d) Road 2 (1:100,000)

Figure 1: Example roads at two scales with detected characteristic points marked.

Polyline n n
′ σ θi θb θc

Road 1 (1:50,000) 135 600 line length / 400 45◦ 8◦ 10◦

Road 1 (1:100,000) 118 600 line length / 400 45◦ 5◦ 6◦

Road 2 (1:50,000) 255 600 line length / 800 55◦ 10◦ 15◦

Road 2 (1:100,000) 202 600 line length / 800 55◦ 6◦ 11◦

Table 1: Number of vertices n in each polyline and parameter values used to detect charac-
teristic points.

points that Algorithm 1 detected are marked by little squares. The parameter values used
to obtain these results are listed in Table 1. Currently, these parameters must be set by
trial and error, starting from base values of zero for σ, θi, θb and θc and manually increasing
them until the number and placement of characteristic points is acceptable to the user.

A sequence of snapshots1 of the final morphs, after applying Algorithm 2, are shown in
Figures 2(b) and 2(d), for Road 1 and Road 2 respectively. A look-back parameter K

of 5 was used. For the purpose of comparison, Figures 2(a) and 2(c) show a simple linear
morphing between the same polylines, where both polylines were uniformly parameterized
to establish the correspondence between points. On a 3.0GHz Pentium 4 with 1GB RAM,
the entire processing time was under 3 seconds for each example.

The optimum-correspondence morphing (henceforth referred to as OPTCOR) shows some
clear improvements over the naïve linear morphing. The linear morphing in Figure 2(a)
shows one of the large serpentine sections on the right being flipped “inside-out” during
the morph. In contrast, the OPTCOR morphing in Figure 2(b) simply expands the bends. It
is evident that the total movement overall is much higher for the linear morphing than for
OPTCOR.

A similar situation occurs in the Road 2 example in Figures 2(c) and 2(d): the linear morph-
ing collapses two bends before reforming a single bend, whereas OPTCOR simply collapses
one of the bends and expands another to become the final bend. A close-up view of the cir-

1The full animations are available at http://i11www.iti.uni-karlsruhe.de/morphingmovies

(a) Road 1 (Linear) (b) Road 1 (OPTCOR) (c) Road 2 (Linear) (d) Road 2 (OPTCOR)

Figure 2: A comparison between simple linear morphing and the optimum-correspondence
morphing (OPTCOR) for the two example roads. In each snapshot, the previous two frames
are drawn in successively lighter shades of grey. Areas of particular interest are marked
with dashed circles.

cled region in Road 2 for the four central frames of the animation is shown in Figure 3.
Note that while the result produced by OPTCOR is clearly better than the linear morphing,
it is perhaps still not ideal. It is unclear whether collapsing one bend like this could be
considered the best way of morphing from two bends to one. Further research may con-
sider human factors in order to determine what type of morphing is perceptually optimal.
In addition, our results indicate that there is a trade-off to be considered. On the one hand,
we want to make an animation that is as smooth as possible and retains the mental map,
but on the other hand we may also want to ensure that each individual frame is optimal at
its scale if viewed without the temporal context of the animation.

(a) Linear

(b) OPTCOR

Figure 3: A close-up of collapsing bends in the Road 2 example.

5 Concluding remarks

The algorithms in this paper should be improved in two ways. Ensuring that self-inter-
sections do not occur during a morph could potentially be accomplished by utilizing the
algorithm of Surazhsky and Gotsman (2001b) to compute non-linear trajectories for points.
Additionally, the detection of appropriate characteristic points with little or no user inter-
action requires further investigation.

6 Acknowledgements

The authors would like to thank Sébastien Mustière for providing the Carto2001 data. Mar-
tin Nöllenburg and Marc Benkert are supported by grant WO 758/4-2 of the German Re-
search Foundation (DFG). National ICT Australia is funded through the Australian Gov-
ernment’s Backing Australia’s Ability initiative, in part through the Australian Research
Council.

References

Alt, H. and Godau, M. (1995). Computing the Fréchet distance between two polygonal
curves. Int. J. of Computational Geometry and Applications, 5(1–2), 75–91.

Bespamyatnikh, S. (2002). An optimal morphing between polylines. Int. J. of Computa-
tional Geometry & Applications, 12(3), 217–228.

Cecconi, A. and Galanda, M. (2002). Adaptive zooming in Web cartography. Computer
Graphics Forum, 21(4), 787–799.

Cohen, S., Elber, G., and Bar-Yehuda, R. (1997). Matching of freeform curves. Computer-
Aided Design, 29(5), 369–378.

Efrat, A., Har-Peled, S., Guibas, L. J., and Murali, T. M. (2001). Morphing between
polylines. In Proc. 12th ACM-SIAM Sympos. Discrete Algorithms (SODA’01), pages
680–689.

Erten, C., Kobourov, S. G., and Pitta, C. (2004). Intersection-free morphing of planar
graphs. In Proc. 11th Intern. Symp. Graph Drawing (GD’03), volume 2912 of Lecture
Notes in Computer Science, pages 320–331. Springer Verlag.

Gomes, J., Darsa, L., Costa, B., and Velho, L. (1999). Warping and Morphing of Graphical
Objects. Morgan Kaufmann.

Jones, C. B. and Ware, J. M. (2005). Map generalization in the web age. International
Journal of Geographical Information Science, 19(8–9), 859–870.

Lecordix, F., Jahard, Y., Lemarié, C., and Hauboin, E. (2005). The end of Carto 2001
project: Top100 based on bdcarto database. In Proc. 8th ICA Workshop on Generalisa-
tion and Multiple Representation, A Coruña, Spain.

Lowe, D. (1989). Organization of smooth image curves at multiple scales. International
Journal of Computer Vision, 3(2), 119–130.

Misue, K., Eades, P., Lai, W., and Sugiyama, K. (1995). Layout adjustment and the mental
map. Journal of Visual Languages and Computing, 6(2), 183–210.

Plazanet, C., Affholder, J.-G., and Fritsch, E. (1995). The importance of geometric model-
ing in linear feature generalization. Cartography and Geographic Information Systems,
22(4), 291–305.

Samoilov, T. and Elber, G. (1998). Self-intersection elimination in metamorphosis of two-
dimensional curves. The Visual Computer, 14, 415–428.

Sester, M. and Brenner, C. (2004). Continuous generalization for visualization on small
mobile devices. In P. Fisher, editor, Developments in Spatial Data Handling – 11th Int.
Symp. on Spatial Data Handling (SDH’04), pages 355–368. Springer Verlag.

Surazhsky, V. and Gotsman, C. (2001a). Controllable morphing of compatible planar tri-
angulations. ACM Transactions on Graphics, 20(4), 1–21.

Surazhsky, V. and Gotsman, C. (2001b). Morphing stick figures using optimized com-
patible triangulations. In Proc. Ninth Pacific Conference on Computer Graphics and
Applications (PG’01), pages 40–49.

van Kreveld, M. (2001). Smooth generalization for continuous zooming. In Proc. 20th
International Cartographic Conference (ICC’01), pages 2180–2185.

Weibel, R. and Dutton, G. (1999). Generalising spatial data and dealing with multiple
representations. In P. A. Longley, M. F. Goodchild, D. J. Maguire, and D. W. Rhind,
editors, Geographical Information Systems – Principles and Technical Issues, volume 1,
chapter 10, pages 125–155. John Wiley & Sons.

Biographies

Damian Merrick has been a PhD student with the University of Sydney and National ICT
Australia since March 2004. His research interests include graph drawing and computa-
tional geometry, with a focus on automatic generation of schematic diagrams and maps.

Martin Nöllenburg is a PhD student at Karlsruhe University since October 2005. His re-
search interests include computational geometry and geometric networks, in particular their
visualization such as generating schematic layouts of public-transport networks.

