
Minimierung der
Produktionsdauer in Fabriken

durch maschinelles Lernen
A Learning Beam Search for the No-Wait Flow
Shop Scheduling Problem with Release Times

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Jonas Mayerhofer, BSc
Matrikelnummer 01633065

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Mitwirkung: Projektass. Marc Huber, MSc

Wien, 20. April 2022
Jonas Mayerhofer Günther Raidl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Minimizing Makespan in Flow
Shops with a Reinforcement

Learning like Approach
A Learning Beam Search for the No-Wait Flow
Shop Scheduling Problem with Release Times

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Jonas Mayerhofer, BSc
Registration Number 01633065

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Assistance: Projektass. Marc Huber, MSc

Vienna, 20th April, 2022
Jonas Mayerhofer Günther Raidl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Jonas Mayerhofer, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 20. April 2022
Jonas Mayerhofer

v

Danksagung

Ich möchte mich bei allen Personen bedanken, welche mir beim Erstellen dieser Arbeit
geholfen haben, die mir mit Rat und Tat zur Seite gestanden sind und welche mich über
die Jahre hinweg in meiner universitären Laufbahn unterstützt haben.

Zuerst gilt mein Dank Herrn Prof. Günther Raidl, welcher meine Masterarbeit betreut
und begutachtet hat. Danke für die hilfreichen Anmerkungen, die konstruktive Kritik
und die investierte Zeit. Ebenso möchte ich mich bei Marc Huber, MSc bedanken. Danke
für deine Mitwirkung bei der Betreuung dieser Arbeit und unsere Diskussionen.

Ich danke auch meiner Familie, meinen Studienkollegen und Freunden, die mich während
der letzten Jahre begleitet und unterstützt haben. Danke, dass ihr mir ermöglicht und
geholfen habt da zu sein, wo ich jetzt bin. Abschließend danke ich auch meiner Freundin.
Danke für deine Geduld während des Schreibens an dieser Arbeit und deine Unterstützung
durch deine LaTeX Kenntnisse, welche mir mehrmals Stunden mühsamen Suchens erspart
haben.

vii

Kurzfassung

Maschinenbelgungsplanungsprobleme (FSP) existieren in unterschiedlichen Varianten.
Eine dieser Varianten ist das no-wait FSP with release times (NWFSP-RT). Es besteht aus
einer Menge an Aufgaben und einer Menge an Maschinen. Beim NWFSP-RT müssen alle
Aufgaben in derselben vordefinierten Reihenfolge auf allen Maschinen abgearbeitet werden.
Zusätzlich dürfen Aufgaben auf der ersten Maschine erst nach einer gegebenen Release-
Zeit beginnen. Anwendungen finden sich in der Stahl- und Lebensmittelproduktion zu
finden. Hier können Wartezeiten zu einer Verschlechterung der Qualität führen.

Wir verwenden eine Beam Search (BS), d.h. eine Breitensuche mit beschränkter Breite,
zum Lösen des NWFSP-RT. Auf jeder Suchebene behält BS nur die besten Knoten. Um
zu entscheiden, welche Knoten behalten werden, verwendet BS eine heuristische Funktion
(GF). In dieser Arbeit verwenden wir das Learning Beamsearch (LBS) Framework
von Huber und Raidl [HR21] um GFs zu lernen. Bei der LBS werden in jeder Iteration
Trainingsdaten unter Verwendung der aktuell gelernten GF erzeugt und diese anschließend
verwendet um das neuronale Netzwerk (NN) zu trainieren.

Wir präsentieren zwei neuartige graphbasierte NN Typen inklusive Feature-Vektoren.
Die NN Typen aggregieren Daten aller Aufgaben einer Instanz und der nähesten be-
nachbarten Aufgaben jeder Aufgabe. Unter den Features ist eine neuartige Methode zur
Berechnung unterer Schranken (ITLB) für das NWFSP-RT enthalten. Die beschriebenen
Algorithmen und NN Typen wurden von uns implementiert und auf Vergleichsinstanzen,
sowie zufälligen Instanzen evaluiert. Im Zuge der Evaluierung wurden auch statistische
Signifikanztests durchgeführt. Die Ergebnisse zeigen, dass BS in Kombination mit den
zwei neuartigen NN Typen in neun und zehn von 16 Konfigurationen signifikant bessere
Ergebnisse erzielt als BS in Kombination mit ITLB verglichen auf Testinstanzen gleicher
Größe, auf welcher die NN Typen trainiert wurden. Des Weitern generalisiert mindestens
eine Konfiguration jedes der vier NN Typen gut über die Anzahl an Aufgaben, verglichen
mit den besten bekannten Ergebnissen aus [Pou+20]. Während unserer Tests liefern die
NN Typen für einzelne Instanzen bessere Ergebnisse als die besten bekannten Ergebnisse
trotz der Einschränkung, dass die Tests mit einer kleineren maximalen Breite und ohne
lokaler Suche durchgeführt wurden. Insgesamt war einer unserer Ansätze, evaluiert mit
einer kleineren Breite als in [Pou+20], auf 11 von 46 getesteten Instanzklassen im Durch-
schnitt besser als die besten bekannten Ergebnisse und auf 43 von 46 Instanzklassen
besser als BS ohne lokale Suche von [Pou+20].

ix

Abstract

The flow shop problem (FSP) is a scheduling problem with many variants. One variant
is the no-wait FSP with release times (NWFSP-RT). It consists of a set of jobs and a set
of machines. It further imposes the constraints that jobs must pass all machines in a
predefined order, the jobs are not allowed to wait on a machine until being processed, and
jobs may only start processing on the first machine when their release time is exceeded.
The goal is to find a schedule optimizing the desired objective, i.e., the makespan. The
NWFSP-RT has applications in steel or food production where the product is not allowed
to wait before being further processed to avoid degradation.

Beam search (BS), a limited width breadth-first search technique, has shown to be an
effective heuristic in finding proper solutions to optimization problems within a limited
time. Only the best nodes are kept and further branched on at every layer when the
number of nodes exceeds a specific limit. To decide which nodes to keep, BS uses a
guidance function (GF). We build upon the learning beam search (LBS) framework
proposed by Huber and Raidl [HR21] to learn GFs. The LBS framework uses an iterative
approach. In every iteration, training data is generated with a BS guided by the currently
learned GF, and the neural network (NN) is trained to approximate the training data.

We propose two novel NN types, inspired by graph neural networks, that aggregate data
over all individual jobs in a problem instance and their nearest neighbors. Further, we
present feature sets for the NN types, including a novel lower bound, called ITLB, for
the NWFSP-RT. We implement the algorithms, evaluate them over benchmark sets
and random test instances, and perform statistical tests. The results show that a BS
guided by two of our NN types produces significantly better results in nine and ten out
of 16 configurations, respectively, than a BS guided by ITLB alone when run on similar
instance sizes as the NNs were trained. The evaluation of the generalization abilities of
the NNs shows that for each of the four NN types, at least one configuration generalizes
well over the number of jobs compared with the best-known results. Our approaches
frequently improve the state-of-the-art on even though running with a smaller beam
width and without local search compared to the BS from Pourhejazy et al. [Pou+20] that
represented the state-of-the-art so far. Overall, one of our approaches, evaluated with
smaller beam width than in [Pou+20], was able to outperform the state-of-the-art on 11
out of 46 tested instance classes and to outperform the BS from [Pou+20] without local
search on 43 out of 46 tested instance classes on average.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1

2 Considered Problem 5
2.1 Scheduling Problem . 5
2.2 The No-Wait Flow Shop Scheduling Problem with Release Times . . . 6

3 Related Work 11
3.1 The Flow Shop Scheduling Problem and its Variants 11
3.2 The Beam Search Framework . 14
3.3 Machine Learning for Optimization Problems 18
3.4 The Learning Beam Search Framework 21

4 Solving the NWFSP-RT with Beam Search 23
4.1 Beam Search for the NWFSP-RT . 23
4.2 Lower Bounds for a Beam Search Node 25

5 Learning Beam Search for the NWFSP-RT 33
5.1 General Details . 33
5.2 Training Instance Generation . 33
5.3 Neural Networks . 34
5.4 Feature Sets . 37
5.5 Observations . 41

6 Results 43
6.1 Test Setup and Benchmark Instances 43
6.2 Comparison on Same Instance Sizes as Trained 44
6.3 Generalization over m . 45
6.4 Generalization over n and m . 53

xiii

6.5 Approximation Errors over Layers . 54
6.6 Comparison with State-of-the-Art . 58

7 Conclusion 73

8 Future Work and Open Questions 75

List of Algorithms 77

Glossary 79

Acronyms 81

Bibliography 83

CHAPTER 1
Introduction

Flow shops exist everywhere in today’s world. Just think of a wooden furniture factory.
To produce the furniture, first, the wood needs to be cut. After this, it needs to be ground
and probably also painted before it is finally assembled. In a factory, not only one product
is produced. Many kinds and variants of wooden furniture are created on-demand when
ordered by the customer. Every product takes a different amount of time in each of
the mentioned production steps. This yields idle times when the machines wait for the
next product to be ready for processing. Nevertheless, most factory owners would like
to increase the efficiency of the factory and lower the production costs. Therefore, their
goal is to finish processing all products as early as possible. This problem maps directly
to the Flow Shop Schedueling Problem (FSP). The FSPs’ goal is to schedule a set of
jobs on a set of machines. All machines must be passed in the same predefined order
by each job. Furthermore, the jobs should be ordered in a way that minimizes some
objective, like, e.g., the makespan. A variant of the FSP is the no-wait FSP with release
times (NWFSP-RT), where jobs, i.e., products, are not allowed to wait before being
processed on the next machine and only become available after a job-specific release time.
An example for the NWFSP-RT would be a steel production factory, which produces
different types of steel. First, the ore must be melted. Then it is processed in many
intermediate steps until it is finally cast into a beam. During those steps, the melted
product is not allowed to wait until the next machine is ready to process it, as this would
mean that it cools down and degrades until it can not be processed further anymore.
Now additionally assume that components needed during production are only available
after a particular time, i.e., the release time, as they still need to be delivered to the
factory.

The FSP as well as the NWFSP-RT are NP-hard for more than two machines [GJS76]. A
non-deterministic Turing machine can solve problems in NP in polynomial time. Equiva-
lently, a deterministic Turing machine can verify this class of problems in polynomial time.

1

1. Introduction

NP-hard implies that all other problems which are in NP can be reduced to NP-hard
problems in polynomial time [KV18, Def. 15.40].
A heuristic approach to solve the NWFSP-RT is beam search (BS). Beam search is an
incomplete breadth-first search technique where only a certain number of best nodes on
every level are kept and branched further on while the others are discarded. A guidance
function, also called a heuristic function, is used to decide which nodes on a level should
be kept. In our setting, the guidance function should approximate the cost additionally
introduced when completing the solution. Its result is added to the current objective
value of the node’s partial solution, and the best nodes according to this calculation are
selected. However, finding proper guidance functions is a highly problem-specific task
requiring expertise and testing.
To overcome the issue of finding proper guidance functions, Huber and Raidl [HR21]
propose the learning beam search (LBS) framework for learning proper guidance functions
for optimization problems in a reinforcement learning like setting. The framework
iteratively generates random training samples. It labels them by using a BS run with
the current learned guidance function and trains the used machine learning model on
the generated training samples as well as training samples from previous iterations. In
[HR21], it is shown that it is possible to use LBS to learn a proper guidance function for
the Longest Common Subsequence Problem (LCSP). The LCSP asks to find the longest
subsequence that occurs in all strings of the input set.
The LBS framework is inspired by the work of Silver et al. in 2017 [Sil+17]. The authors
aimed to master the game of Go and reach super-human performance by letting the
algorithm play games against itself [Sil+17]. In LBS the algorithm does not play against
itself. However, it uses its acquired knowledge from the last iteration to compute better,
w.l.o.g. smaller, labels than before and thus pushing itself to continue improving the
learned guidance function.
In this work we aim to adapt LBS such that it can be applied to the NWFSP-RT. This
is described in Chapter 5. In Chapter 4, we introduce a novel lower bound for the
NWFSP-RT which can be computed in O(n2m) and call it improved Taillard lower
bound (ITLB). It is inspired by the lower bound presented in [Tai93] and the asymmetric
Traveling Salesperson Problem (ATSP) lower bound that takes the sum of the minimum
incoming or outgoing arcs of every city [Chr72]. This lower bound is used as a feature in
our machine learning models as well as a reference guidance function. A set of features
for a single BS node is derived from the instance and the state of the search. This set
of features is used in combination with a multilayer perceptron (MLP). Further, we
present two novel machine learning models: aggregated jobs neural network (AJNNadd)
and nearest neighbors neural network (NNnearest). The models are based on the idea of
graph neural networks (GNNs). Both AJNNadd and NNnearest aim to use information
about the structure of the instance and not only a global view of it. Thus, information
about the structure is already incorporated into the feature set on a job-specific basis,
considering information about close neighboring jobs. The distance measure used is
defined later. In the AJNNadd a MLP is applied to each job’s specific features, combined

2

with some global features, and the results are aggregated using a sum. The NNnearest
uses a more elaborate structure that then the AJNNadd. Similarly, it applies to each
job’s specific features some learnable weights. Additionally, it contains links that pass
aggregate information about the nearest neighbors of a job. The structure of the NNnearest
also contains skip-connections and finally aggregates the results using the sum of all
job-specific results. One can think of the AJNNadd and the NNnearest in a way that they
sum up the “contribution” of each job to the makespan increase.

We evaluate several configurations of the presented models on the same instance sizes
they were trained on and perform significance tests. The results show that our novel
neural network (NN) models trained with the LBS framework perform significantly better
than a BS guided by ITLB for many configurations. Further, we evaluate how well the
trained models generalize when evaluating instances with a different number of machines
and/or jobs as they were trained. The evaluation shows that generalizing over the number
of jobs works well, whereas generalizing over the number of machines does not. Finally,
we compare the best configurations with the state-of-the-art results in [Pou+20]. Overall,
one of our approaches, evaluated with smaller beam width than in [Pou+20], was able to
outperform the state-of-the-art on 11 out of 46 tested instance classes and to outperform
the BS from [Pou+20] without local search on 43 out of 46 tested instance classes on
average.

3

CHAPTER 2
Considered Problem

This chapter describes and defines the necessary preliminaries and notations used in the
following chapters. Section 2.1 defines the general concept of optimization for scheduling
problems. A detailed description of the NWFSP-RT and its notation as well as an
example follows in Section 2.2.

2.1 Scheduling Problem
In this work, we define an Scheduling Problem (SP) as the task of scheduling a set of
jobs J on a set of resources M to optimize (i.e., minimizing or maximizing) an objective
function f in a vast but finite search space S. Function f maps every solution v ∈ S to a
numerical value f : S → R. How a solution is represented in detail needs to be defined
for the concrete scheduling problem at hand. In S we search for an optimal solution
v∗ ∈ S with z∗ := f(v∗) for which ∀v ∈ S : f(v∗) ◦ f(v) (with ◦ one of {≥,≤}) holds. We
assume w.l.o.g. for the whole work that a minimization problem is given and ◦ ≡ ≤ and
therefore:

z∗ = min
v∈S

f(v) (2.1)

v∗ ∈ arg min
v∈S

f(v) (2.2)

Note that an SP may have multiple optimal solutions v∗. Throughout the work if it is
stated that solution u is better than solution v, this refers to f(u) < f(v).

Further, a partial solution v to an SP is a solution where not all jobs j ∈ J are scheduled
on all resources M . If f is applied to a partial solution, it returns the current objective
value of the partial solution. We define the set F (v) to contain all complete solutions
which can be constructed out of the partial solution v. Finally, we define f ′ to take a set
of (partial) solutions W ⊆ S and output the best objective value when applying f to all
v ∈W .

5

2. Considered Problem

We describe states of an (partial) solution in general for an SP. A state o(v) of the
solution v is a mapping from a (partial) solution v to a value defined for the specific
problem at hand. The representation of states is independent of f(v). Thus, it is possible
that two solutions u, v with u 6= v map to the same state o(u) = o(v) and still have
different objective values f(u) 6= f(v). The state o(v) needs to define all relevant parts of
the problem such that o(v) can be used as starting point for constructing a solution. If
w = v||u is the concatenation of solution v and a solution u for the instance defined by
o(v), and || being the concatenation of vectors, then it must hold that f(w) = f(v)+f(u).

Finally, we define the concept of dominance between solutions, which is later used to
filter out partial solutions which definitely do not yield better solutions than others.

Definition 1. (Dominance) A (partial) solution v dominates another (partial) solution
u iff f

′(F (v)) ≤ f ′(F (u)), and v 6= u.

2.2 The No-Wait Flow Shop Scheduling Problem with
Release Times

The NWFSP-RT consists of n jobs contained in the set J = {1, . . . , n} and m machines
contained in the set M = {1, . . . ,m}. Every job must pass all m machines in order from
1 to m. For each job j and every machine i the processing time is denoted by pi,j ≥ 0.
The time when a job j is available on the first machine is denoted by rj . It is prohibited
to start with the processing of j before time rj is exceeded. Jobs are not allowed to wait
before being further processed after the processing on machine one is finished. Thus, if
waiting is required, the job needs to be delayed as a whole and start its processing on
machine one later, such that it can pass all machines without waiting. An early work
that introduces the no-wait FSP (NWFSP) without release times is [Pie60]. A solution s
to the NWFSP-RT is a permutation of all jobs in J , i.e., s = (3, 2, 1, 5, 4) for an instance
with n = 5. Its length is denoted by |s|. The job on position k ∈ {1, . . . , |s|} of solution
s is denoted by sk. To compute the makespan of a solution, we compute its completion
time matrix C ∈ Rn×m, which can be done in time O(nm). The indices of the C matrix
start at one. An entry in the matrix denotes when the according job in the solution
s is finished on the respective machine, i.e., Ck,i(s) is the finishing time of job sk on
machine i. Note that the parenthesis and the denotation of the solution are omitted
when clear from the context. If a solution v does not contain all jobs J , i.e. |J | > |v|, we
call it a partial solution and denote the set of all unscheduled jobs by U = J \ v. The last
scheduled job in a solution is denoted by a(v) and if v is empty, a(v) = 0. The makespan
of a (partial) solution v is denoted by Cmax(v) = Cn,m(v), which is the time when the
last job of s finishes on the last machine m. Thus, the function f(·) as defined for SP
yields for solution v: f(v) = Cmax(v). To simplify the computation of the C matrix we
define that all accesses to C0,i = 0 for i ∈M , as all machines are empty when starting
the first job. The computation is done row-wise from top to bottom. To compute row
k of the matrix for the (partial) solution v, a forward sweep and a backward sweep are

6

2.2. The No-Wait Flow Shop Scheduling Problem with Release Times

used. We treat the leftmost column separately:

Ck,1 := max(Ck,1, rsk) + psk,1 (2.3)

For the forward sweep we do for all 2 ≤ i ≤ m:

Ck,i := max(Ck,i−1, Ck−1,i) + psk,i (2.4)

As we did not propagate the idle times introduced by taking the maximum back, only
Ck,m is computed correctly. To finish the computation, a backward sweep is needed,
iterating over m− 1 ≥ i ≥ 1:

Ck,i := Ck,i+1 − psk,i+1 (2.5)

Now the calculation of the completion times for the kth row is finished and the k + 1th

row can be computed, until all |v| rows are computed.

We define the start time of a job j on a machine i for a solution s analogous to the C
matrix as Tj,i(s), and compute it by:

Tk,i = Ck,i − psk,i (2.6)

At any time during processing, before a machine has processed all jobs but is currently
not processing any job, it incurs idle time. For a solution s the sum of all idle times on
all machines is the idle time I(s). The idle time for solution s can be computed by:

I =
∑

k∈{1..|s|}

∑
i∈M

Tk,i − Ck−1,i (2.7)

In the following, we will provide an example solution for an instance with m = 4 and
n = 5. The p-Matrix is:

p =

16 31 54 54
44 7 52 66
26 19 65 34
74 83 94 76
19 41 31 50

 ,
and thus, e.g., for job j = 5 and machine i = 2 p5,2 = 41. The release times are:

r =
[
60 180 33 17 95

]
.

Thus, one optimal solution to this problem is s = (3, 5, 1, 4, 2) with Cmax = 548. The
resulting matrix C(s) is:

C(s) =

59 78 143 177
114 155 186 236
155 186 240 294
229 312 406 482
423 430 482 548

 .

7

2. Considered Problem

Solutions of an NWFSP-RT instance can be visualized as Gantt charts. A Gantt chart
for s is provided in Figure 2.1. There, jobs are displayed as bars with different colors,
and the release times are included as dotted vertical lines. It can be seen that between
jobs three and five, idle time exists on every machine. This is since job five needs to start
later than the minimum delay time between these jobs due to its release time of r5 = 95.
The total delay on machine one is d(s) = 244 and is, due to the release times, greater
than if the sum of the according dj,k entries, described in Section 2.2.1, are taken, which
yields 202.

0 50 100 150 200 250 300 350 400 450 500 550
Time

1

2

3

4

M
a
ch
in
e
s 1

2
3
4
5

Jobs

Figure 2.1: Gantt chart of solution s = (3, 5, 1, 4, 2) of example sequence. Machines are
on the vertical axis and jobs are displayed horizontally. Release times are included as
vertical dotted lines in the color of the job they belong to.

2.2.1 Auxiliary Instance Data

During the search, when expanding partial solution v by appending some j ∈ U(v),
calculating the new row for j in the C matrix takes time O(m). We define auxiliary
instance data to reduce the time needed when appending one job. The proposed alternative
way to compute f(·) is provided in Chapter 4.1.2.

For each job j ∈ J , let ptot
j = ∑

i∈M pi,j be its total processing time over all machines.
Moreover, let qi,j = ∑i

i′=1 pi′,j be the aggregated processing time of job j over the first
i′ ≤ i machines. Note that qm,j = ptot

j holds, and the job’s processing on a machine i
starts by qi,j − pi,j after the job’s overall start on the first machine. The q-matrix is
stored within the instance as auxiliary data.

When a job j′ ∈ J is scheduled directly after a job j ∈ J , j 6= j′, and we disregard release
times, their starting times (on the first machine) always differ by the (minimum) starting
time differences:

δ1
j,j′ = max

i∈M
(qi,j − qi,j′ + pi,j′), ∀j ∈ J, ∀j′ ∈ J \ {j}. (2.8)

Further, we define this difference in the starting times also on all other machines:

δi
j,j′ = δ1

j,j′ + qi−1,j′ − qi−1,j , i ∈ {2, . . . ,m},∀j ∈ J, ∀j′ ∈ J \ {j}. (2.9)

8

2.2. The No-Wait Flow Shop Scheduling Problem with Release Times

We further define that when speaking of delay on machine i we refer to di
j,j′ = δi

j,j′ − pi,j

and when speaking of delay in general of the delay on machine one.

Due to the property of the minimum starting time differences it follows that:

Lemma 1. For three different jobs j, k, l ∈ J the triangle inequality δi
j,k ≤ δi

j,l + δi
l,k holds

for all i ∈M .

I.e., it is impossible to reduce the minimum starting time differences between any two jobs
j, k by scheduling some other job l in between. This yields for delays di

j,k ≤ di
j,l +di

l,k +pl,i.

Moreover, we define the total idle time over all machines arising when scheduling job j′
as successor of job j in-between these jobs as

ωj,j′ =
∑
i∈M

(δi
j,j′ − pi,j), (2.10)

where we again disregard release times.

Finally, we define how much job j′ must end later on the last machine than job j such
that j ends at an earlier or equal time on all machines:

ψj,j′ = max
i∈M

(qi,j − qi,j′) + ptot
j′ − ptot

j . (2.11)

The above definition is needed to perform a dominance check in Section 4.1.3 efficiently.

2.2.2 Reduction of the NWFSP to the Asymmetric Traveling
Salesperson Problem

Augmenting the jobs J with an artificial job 0 with pi,0 = 0, i ∈ M , we can reduce an
NWFSP instance to an ATSP instance with the distance matrix δ1. A solution to this
ATSP instance in the form of a permutation of the jobs J ∪ {0} is then transformed back
to the respective NWFSP instance by rotating the solution, so that job 0 comes last and
finally removing this job. Note that, in general, the minimum starting time differences
on any machine δi could be used for the reduction. A reduction that uses the d1 matrix,
i.e., δ1 without the processing times on the first machine, and instead uses two artificial
jobs is presented in [Wis72].

Considering this, we also define δ1
j,0, δ1

0,j , ω0,j , and ωj,0, j ∈ J , respectively, in order to
deal with the beginning and the end of a schedule. The remaining auxiliary data like δi

and di is calculated accordingly. To simplify future computations we define r0 = 0.

9

CHAPTER 3
Related Work

In this chapter, we present related work relevant to this work. First, we present the
relevant history up to the state-of-the-art for the FSP and its relevant variants in Section
3.1. Section 3.2 explains how the BS framework works and Section 34 describes the BS
how it was used in [Pou+20] to solve the NWFSP-RT. Further, Section 3.3 presents
relevant work for Machine Learning (ML) methods in the context of combinatorial
optimization and the FSP. Finally, the LBS framework is described in Section 3.4.

3.1 The Flow Shop Scheduling Problem and its Variants
The problem of scheduling a fixed set of n jobs J on a fixed set of m machines M , with
a different execution time pi,j ≥ 0 for every job j ∈ J on every machine i ∈M , without
preemption, and where each machine can only process one job at a time, is called the Job
Shop Scheduling Problem (JSP). In the JSP, the order of machines a job is processed on
is given by precedence constraints and may vary for each job. Therefore, the jobs can be
ordered differently on every machine, and jobs can start on different machines. An early
work analyzing the JSP and its anomalies is [Gra66]. There are different objectives for the
JSP in the literature, such as minimizing the total tardiness or makespan. Nevertheless,
in this work, for all scheduling problems, we aim to minimize the time needed until all
jobs are finished on all machines, i.e., the makespan. Therefore, if not stated otherwise,
we always refer to this objective.

If the same machine order for all jobs is fixed upfront, we get the Flow Shop Scheduling
Problem (FSP). Still, the order on every machine can be different as jobs may overtake
each other. The FSP was first introduced by [Joh54] in 1954, together with algorithms for
solving the FSP with two machines and a special case with three machines. The Campbell-
Dudek-Smith (CDS) algorithm [CDS70] extends the algorithm of [Joh54] to apply to m
machines by clustering the machines into two virtual machines and solving the generated
two-machine problem by repeatedly using the algorithm of [Joh54]. Furthermore, [DJ64]

11

3. Related Work

summarizes all assumptions implicitly used in the FSP and suggests to solve the FSP
with an exact approach. Later, in 1976 [GJS76] showed that the FSP is NP-complete
when minimizing the makespan for m ≥ 3. For m = 2 there exist efficient algorithms
[Joh54]. In the later years, many other variants of the FSP were introduced, and many
solution heuristics for FSP and its variants were suggested. In the survey [Gra+79] the
variants were first put in a common notation. Later, in [NEH83] the Nawaz-Enscore-Ham
(NEH) algorithm is proposed to greedily construct a solution for the FSP. It iteratively
tries to insert a job at the best position in a partial solution, starting with the jobs with
higher total processing time. In [Tai90] NEH is refined to run in time O(n2m). Taillard et
al. generated a random benchmark set for the FSP [Tai93]. They used different heuristic
methods to generate upper bounds together with a self-developed lower bound to select
the random instances with the biggest gap between the two bounds. The first part of
the lower bound consists of multiple components. It computes for every machine the
minimum time any job needs from the start up to this specific machine and similarly
the minimum time any job needs from this machine up to finishing on all machines.
Further, for every machine, the operations of all jobs on this machine are summed up.
To compute the first part of the lower bound, these three components are summed up for
every machine, and the maximum value over all machines is taken. The idea behind this
computation is that a machine has to process all jobs operations for it and that by taking
the minimum time until the computation can start on this machine and until it ends, a
lower bound (LB) is derived. For the second part, the total processing time for every
job is calculated by summing up the times for all its operations on every machine and
taking the maximum of those. This yields a lower bound as every job must be executed
until it is complete. Now the maximum of both parts is computed, which again yields a
lower bound for the FSP. Since the paper of Johnson [Joh54], the FSP was intensively
studied and became one of the most extensively investigated topics in literature [LH05].
Nevertheless, the FSP remained hard to solve, as up to the mid of the 1990s the best
Branch and Bound (B&B) algorithms had problems solving instances with 15 jobs and 4
machines [And+97][p. 393]. Due to its NP-hard nature, the FSP was also tackled with
many heuristic approaches like Genetic Algorithm (GA), Tabu Search (TS), B&B, and
others.

A variant of the FSP is the Permutation Flow Shop Schedueling Problem (PFSP), which is
similar but enforces the same processing order on every machine, and this order is subject
to optimization. Starting with m ≥ 4 there might exist non-permutation schedules (i.e.
for the FSP, with a specific job order for every machine) which dominate permutation
schedules for the PFSP [PSW91]. A comparison over seven lower bounds used by B&B
approaches to solve the PFSP while minimizing the makespan is given in [LH05]. The
summarized lower bounds reduce the PFSP to a one or two-machine problem, i.e. the
constraint that a machine can only process one job at a time is relaxed for all machines
except one or two. Release dates, time lags, and delivery dates are computed out of the
other jobs’ operations to yield good lower bounds. Most of the summarized lower bounds
can be computed in polynomial time. Nevertheless, two of the proposed lower bounds
can not be computed in polynomial time, as they use a B&B approach or an optimal

12

3.1. The Flow Shop Scheduling Problem and its Variants

algorithm to compute a lower bound for the PFSP by solving a relaxed problem.
Another variant of the FSP, where jobs are not allowed to wait before being processed on
the next machine, is called the no-wait FSP (NWFSP), or in the notation of [Gra+79]:
Fm|no-wait|Cmax. This definition results in jobs not overtaking each other, i.e., the
execution order of the jobs is the same on all machines as for the PFSP. Thus, every
solution for the NWFSP is also a valid solution for the PFSP, with a different objective
value though [HS96]. The NWFSP can be reduced to the ATSP [Pie60; RR72; Wis72] as
already discussed in Section 2.2.2. The reduction, according to [Wis72], is to compute
delays on the first machine between all job pairs and use them as distances in the ATSP
together with two artificial jobs used as the first and the last job. As a reduction to
the ATSP exists, all lower bounds designed for the ATSP might be used as well for the
NWFSP. An example is the lower bound, where in the ATSP the sum of every city’s
cheapest in- and outgoing arc divided by two is taken, which is similar to the assignment
problem described in [Chr72]. A lower bound for the NWFSP which can be calculated
in time O(max(m,n2 logn)n) is provided in [KK07]. There the NWFSP is for every
pair of machines h and i with 1 ≤ h ≤ i ≤ m, reduced to a two machine problem,
which is optimally solved with the Gilmore and Gomory algorithm (GG) [GG64], see
also [Vai03]. If h = 1 or i = m then O(max(m,n logn)n) and if h = 1 and i = m then
O(max(m, logn)n) time is needed. Due to the solving with the GG algorithm, also a
solution sequence is returned, which might provide a good initial solution for the m
machine NWFSP to be further improved by metaheuristics. The authors of [KK07]
present also a network representation for the NWFSP where the critical (longest) path
of the network yields the minimum makespan of the instance.
An extensive survey about the FSP and its variants is provided in [All16], where the
NWFSP is discussed in chapter 4.1. The NWFSP was tackled by greedy algorithms, TS
and GA [All16] in the last years.
When jobs are only available for processing on the first machine after a job-specific release
time rj , fixed upfront, the problem is called NWFSP with release times (NWFSP-RT), or
in the notation of [Gra+79]: (Fm|no-wait, rj |Cmax). This work focuses on the NWFSP-
RT minimizing the makespan without preemption, i.e., processing can not be paused, and
jobs must be immediately scheduled on the next machine after finishing on one machine.
Setup times are included in the jobs processing time, and sequence-dependent setup
times of machines are not used. The NWFSP-RT is a special case of the NWFSP. When
adding release dates equal to 0, any NWFSP instance yields an NWFSP-RT instance.
Two lower bounds for the NWFSP-RT with sequence-dependent setup time are provided
in [BDG99]. Note that when setting all setup times equal to zero, this problem is
equivalent to the NWFSP-RT. The authors first provide a reduction to the ATSP with
additional visiting time constraints (ATSP-RT) and a linear programming formulation to
solve it. They then relax the formulation and iteratively compute a Lagrangian relaxation
by adapting the input vector to the relaxation by a small factor towards the ascending
direction until no further improvement happens. To calculate the second lower bound
the ATSP-RT is taken again. First, the outgoing arcs of all jobs j are altered such that

13

3. Related Work

their weights are equal to the weight of the minimum outgoing arc of job j to any other
job except itself. Then all jobs are sorted by increasing release dates, and the objective
value of the solution is calculated and returned. This lower bound can be computed in
time O(n logn).

We remark that we assume the jobs to be heterogeneous in the sense that typically they
all have different processing times on the machines. The case that jobs are from a small
set of different types and jobs of the same type have the same processing times on the
machines is, for example, considered in [LS00], where a dynamic variant of the problem is
approached in which jobs of predefined types become available only over time. Moreover,
job types are considered in [EM95], where a reduction to the TSP is described.

3.2 The Beam Search Framework
The BS framework was originally proposed in the context of speech recognition [Low76].
Basically, BS is an incomplete breath first search utilizing a heuristic function for selecting
promising nodes. It is frequently used to generate solutions for combinatorial optimization
problems in a short time.

Some variants of the FSP were tackled with BS. The authors of [Pou+20] noticed the
research gap for the NWFSP-RT and tackled it with a BS combined with a LS. The FSP
with constraints on shared resources was solved by a combination of A* and BS, where
only a fraction of all successor nodes is used for the A* search [Pas00]. A hybridization
of Ant Colony Optimization (ACO) and BS was used in [Blu05] to tackle the open shop
job problem. In [FVVF18] a BS approach was used to generate initial solutions for the
PFSP with the objective to minimize the total tardiness. It is guided by a sophisticated
heuristic function that weights the total tardiness, earliness, and idle time depending on
the number of already scheduled jobs.

In BS a heuristic function h(·) is used to determine which partial solutions are promising
and should be kept. In the context of our work, we aim to approximate the cost for
completing the partial solution with h(·). The pseudo-code of the basic BS framework is
given in Algorithm 3.1. In general, the heuristic function h(·) yields for every possible node
a numerical value. During the search, nodes are used to keep track of the current partial
solutions. A node v always has a parent node parent(v) and an action a(v) which, when
applied to parent(v), results in node v. The beam B is a central element of the search,
containing at most β nodes. The parameter β is a strategy parameter that determines
how many partial solutions should be kept at most in every layer. Increasing β normally
leads to an increase in solution quality but also a higher time and memory consumption.
The search proceeds in layers and starts at the initial layer zero, whereas every layer
L has its own beam BL. The search starts from a root node r with parent(r) = ⊥ and
a(v) = ⊥, representing an empty solution, which is added to the initial layer B0 = {r}.
At every layer L all solutions in v ∈ BL−1 are branched over all possible actions U(v)
and added to the set Vext. Further, Vext is sorted by h(·) and the β-best nodes according
to f(·) + h(·) are added to BL. The search ends when a terminal node t is reached. A

14

3.2. The Beam Search Framework

r

215

349

2

260

3

403

4

265

5

1

349

2

177

251

349

2

439

4

301

369

571

4

2

501

4

5

1

349

2

386

4

236

294

360

562

4

2

482

4

1

349

2

441

4

5

3

344

4

236

5

Figure 3.1: A beam search run with β = 2 for the example given in Section 2.2 with
n = 5. The search starts at the root node r denoting the empty solution. It branches
over all unscheduled jobs of every node in the beam. The arc labels denote the job which
is added to the parents partial solution, i.e. scheduled next. The nodes values in the
figure are the f(·) values of the partial solution represented by this node. We assume
that h(·) = 0 and thus the search greedily selects the two nodes with the best objective
value in every layer. They are added to the beam and further branched on. The resulting
solution is v = (3, 5, 1, 2, 4) with an objective value f(v) = 562. Note that the best
solution for this example has an objective value of 548.

15

3. Related Work

criterion for determining terminal nodes is problem specific and needs to be defined
at hand. In the context of this work, we define similarly to [SB99] that all nodes at
layer Ln = |U(r)| = n are terminal nodes, as all actions are taken and U(v) is empty.
Every path πrt leading from r to t corresponds to a feasible solution. To obtain the
concrete solution sequence, one needs to iterate from t over the parent links up to r
and concatenate all actions accordingly. As we only store one parent pointer in every
node, a path πrv of node v represents exactly one (partial) solution, and therefore, we
use the term node also to denote a (partial) solution. Further, we define all functions
defined for partial solutions equally for nodes. Algorithm 3.1 contains two optional parts
marked with //optional. These parts are only applicable if a dominance definition for the
problem at hand exists, which can be controlled by the parameter dominance_enabled.
Line 9 to 14 check if a certain state o(u) was already reached by any other node in
Vext or if the node u is dominated by any already added node. It follows directly from
Definition 1 that no partial solution w which might yield a better overall solution is
removed from W = Vext ∪ u, i.e. f

′(F (W)) = f
′(F (W \ w)) for any partial solution w

removed, or not added, in lines 9 to 17. Note for clarity that the case that u dominates
some node w1 ∈ Vext and is itself dominated by some node w2 ∈ Vext can not happen
because Definition 1 is transitive. Thus w1 would have already been removed earlier.

Line 23 defines a dominance check, which only adds v if it is not dominated by any
w ∈ Bi and in this case removes all dominated nodes from Bi. It follows again from
Definition 1 that f ′(F (Bi ∪ v)) does not get worse by removing dominated solutions. The
dominance check is not used in our implementation of BS for the NWFSP-RT, as we
only define that nodes can dominate each other if they are in the same state, and thus
dominance is already checked in lines 9 to 17.

Assuming that the reached and dominance check are disabled and that creation of one
node takes the problem-specific time tnode, the BS takes time O(nβtnode). Further, we
assume that checking the dominance between two nodes takes tdom time. In theory with a
naive implementation the reached check may take up to O((β|U |)2tdom) = O((βn)2tdom)
time with |U | ≤ n and |Vext| ≤ β|U | at most. When implemented with a hash map using
the state as a key and a list of all nodes leading to this state as a value, finding duplicate
states can be done in a much lower time in the average case, as only a few dominance
checks need to be done per node. This is because, at the beginning of the search, many
different states exist, and thus the number of nodes the dominance is checked with is
small. Towards the end of the search, where the number of different states gets less, also
the number of possible actions |U | gets less; thus, fewer than βn nodes are created, and
again only some collisions of states happen. Therefore, we argue that the reached check
needs significantly less time than O((βn)2tdom) in the average case.

The dominance check checks, in the worst case, the dominance of all nodes in Vext with
all nodes in B. As |Vext| ≤ β|U | and |B| ≤ β, time O(β2|U |) is needed.

16

3.2. The Beam Search Framework

Algorithm 3.1: General BS Algorithm
Data: β (max. number of nodes in a layer), instance I, number of layers n,

heuristic function h, dominance_enabled denotes if dominance check is
enabled

Result: best terminal node
1 initialize root r
2 add r to B0
3 for l ∈ {1, . . . , n} do
4 Vext ← ∅
5 foreach node v ∈ Bl−1 do
6 foreach valid action a ∈ U(v) do
7 create node u from v and a
8 dominated = ⊥
9 if dominance_enabled; // optional

10 then
11 remove all nodes w ∈ Vext with o(u) = o(w) or where u dominates

w
12 if ∀w ∈ Vext with o(u) = o(w) : ¬(w dominates u) ∧w 6= u then
13 add u to Vext

14 end
15 else
16 add u to Vext

17 end
18 end
19 end
20 sort Vext according to f(·) + h(·)
21 while |Bi| < β do
22 remove first node v of Vext

23 if dominance_enabled and ∀w ∈ Bi : ¬(w dominates v) ; // optional
24 then
25 remove all w ∈ Bi dominated by v
26 add v to Bi

27 end
28 if ¬dominance_enabled then
29 add v to Bi

30 end
31 end
3232 /* do postprocessing for LBS */

33 end
34 return best node from Bn (according to f(·))

17

3. Related Work

Reference Method from Pourhejazy et al. [Pou+20]

We take the work of Pourhejazy et al. [Pou+20] as a reference method. To the best
of our knowledge, it is the first work aiming to solve the NWFSP-RT. It provides a
mathematical formulation of the NWFSP-RT for solving it via MILP (mixed-integer
linear programming) based on the completion time of each job in the solution sequence
on each machine, i.e., the C matrix. Further, to solve the NWFSP-RT, it suggests a
BS approach, which selects the ξ successors with the lowest idle time of each node of
the beam and improves them via random local search (LS). The idle time for a partial
solution s is calculated by the sum of the completion times of job sk−1 on machine i
minus the starting times of job sk on machine i, for all i ∈M . Thus, the idle time after
the last job in s is finished on machine i is not respected. However, idle time incurred
before the first job starts on some machine i is respected.

These ξ nodes are improved by LS and then added to Vext. They are sorted by a lower
bound Fpour of the completion time. The β best nodes are then added to the beam. The
lower bound Fpour(v) of partial solution v is calculated by

Fpour(v) = max
(
f(v),min

j∈U
rj

)
+
∑
j∈U

pm,j . (3.1)

First, the maximum of the current objective value and the minimum release time of
all unscheduled jobs is taken. Then, the processing time of all unscheduled jobs on
the last machine is added (later in this work denoted as PU

m). Clearly this is a LB as
PU

m = ∑
j∈U

pm,j time is taken in any completion of solution s additionally to f(v). Also,

the minimum release time of all unscheduled jobs must be awaited before starting the
next job. In Section 4.2 we present tighter LBs than this. The two LS procedures
proposed are one that exchanges two jobs in a partial solution sequence and another
which randomly removes one job and inserts it into all possible positions. They are
randomly applied. It is not described in which order these LS procedures are used or
how they are selected. The maximum number of LS executions is limited by nmk where
k is a strategy parameter balancing between solution quality and time needed, which was
set to k = 0.1 for n ≤ 400 and k = 0.01 for n ≥ 500. The number of successors per node
in the beam ξ, in their work denoted by α, was evaluated and set to ξ = 2 by them.

3.3 Machine Learning for Optimization Problems

Scheduling problems, including the FSP, were also tackled with machine learning. An early
work using NNs for solving scheduling problems is [PKL00], which uses a neural network
to learn input parameters for some solution algorithm depending on the characteristics
of an instance.

A learned weight matrix is used in [LS00] to solve a variant of the real-time FSP, where
fixed types of jobs arrive over time. The weight matrix indicates the desirability of one

18

3.3. Machine Learning for Optimization Problems

job type following the other. The weight matrix is trained for a specific set of job types
on training instances labeled with their optimal sequences.

In [ACE06] an adaptive learning strategy is used to solve the FSP. In every iteration of
the algorithm, the jobs operation times are multiplied by a learned weight per operation,
and a constructive heuristic, like, NEH or CDS, is executed with the product of each
operations time with its corresponding weight. If the results on the test instances improve
during training, the weights are reinforced else the weights are altered randomly. If no
improvement happens after several rounds, backtracking to the best weights is done.

The authors of [Ram+11] used a back-propagation NN with two hidden layers to generate
an initial solution for a Genetic Algorithm (GA) and a heuristic proposed by [Sul00]
to solve the FSP to minimize the makespan. The NNs were trained on completely
enumerated small instances (the number of jobs n ∈ {5, 6, 7}, the number of machines
m = 5). The trained model is dependent on the number of machines but independent of
the number of jobs. The input features for the NN contain the jobs processing times,
the average processing times, and the standard deviation of the job lengths per machine,
all of them on each machine. To solve an instance, the jobs are sequentially provided to
the NN and sorted by the output values of the NN. Their approach outperformed two
other established heuristics for generating the initial solution, namely: NEH [NEH83],
and Suliman Heuristic [Sul00] initialized with CDS [CDS70].

The work of [GML20] compared different training algorithms for NNs for solving the
FSP with the objective to minimize the makespan. The training setup was the same as
in [Ram+11]. The learned networks were applied to instances with up to 100 jobs. The
NNs trained with the Levenberg-Marquardt (L-M) algorithm approximated the objective
best.

Nevertheless, having optimal results for the training data at hand is not always possible.
Therefore, AlphaGo Zero, which is an agent excelling in the games of Go, chess, and
shogi, [Sil+17] uses reinforcement learning via self-play to train the NN. It is based on a
Monte Carlo tree search in which a deep NN is used to evaluate game states. Training
data is continuously generated by simulating games against itself. The approach was
able to achieve superhuman performance in the sense that it beat a previous approach,
which was able to beat the best human Go players in numerous simulated games.

In recent works, the FSP has been solved via RL approaches. In [RYY21] the FSP is
tackled by an RL approach in which a NN is trained, which should output for every
machine the best next action given a state. In total, ten actions are designed, which use
different heuristic rules for selecting the next job, such as shortest/longest processing time
first, or a function computing a critical ratio. The actions even include a neighborhood
search, i.e., an action which swaps two neighboring jobs if this reduces the idle time.
Input features consist of the maximum, minimum, and mean of the makespan, remaining
operations, and the load of machines. To provide immediate reward during training, idle
time is used, as increased idle time leads to a worse solution, according to the authors.
Their NN was trained for m = 5 and used 24 nodes, three hidden layers, and a logistic

19

3. Related Work

activation function. The input layer has 45 nodes, nine nodes per machine, and the
output layer has 50 nodes, ten nodes per machine, representing the probability of a
specific action chosen on one machine. The NN was trained using training samples
from instances with n ∈ {5, 10, 20, 30} to increase adaptability, labeled with Branch and
Bound or GA. It was applied to instances with m = 5 and n ∈ {5, 10, . . . , 80}. One paper
that uses machine learning also for bigger instances with hundreds of jobs and twenty
machines is [Ni+21], which tackles the Hybrid Flow Shop Scheduling Problem (HFSP), in
which the sequential machines of the FSP are replaced by sets (called stages) of parallel
machines. The goal is still minimizing the total makespan. First, an initial solution is
generated by some heuristic. The proposed framework then uses RL, i.e., a Markov-
Decision-Process with search operators as actions, to train the model. It reformulates the
problem state into a multi-graph data structure, in which the job to machine assignment
of every stage is modeled as a graph. Therefore, a node for every job is created. All
jobs assigned to the same machine in the respective layer are connected via directed
edges in the executed order. Node features include idle time, waiting time, arriving time,
starting time, completion time, and processing time. These graphs are then processed
by a graph NN. To overcome the issue that stages might have different dimensions, an
Attention-based Weighted Pooling approach is used, which uses a Multi-layer perceptron.
The problem is then solved by unsupervised training of the framework, which should map
graphs to specific actions by classifying them. Tests were performed on large real-world
datasets, and, according to the authors, good-quality solutions were obtained within a
limited time.

As the NWFSP can be reduced to ATSP, some machine learning approaches for the
ATSP shall also be referred to here. The authors of [KHW19] propose an encoder/decoder
approach to solve the TSP and related problems like the Vehicle Routing Problem (VRP).
In this approach, an encoder produces an embedding of all input nodes of a single instance.
These embeddings are then used by the decoder together with an input mask, masking
cities that were already visited and context information, providing information about the
first and the last city in the solution sequence. The decoder outputs probabilities about
which city should be visited next. These probabilities are used to greedily construct
a solution sequence by always visiting the city with the highest probability next. The
decoder contains certain considerations for efficiency. The model is trained via self-
critical training using a greedy rollout as a baseline for estimating the total cost. This
is similar to the self-play improvement of [Sil+17]. Also the authors of [Jos+21] use a
encoder/decoder approach. Nevertheless, to speed up the computation, they explicitly
sparsify the graph by considering only the k-nearest neighbors of each node. Further,
beam search with different widths is compared with greedy search as well as supervised
learning and reinforcement learning approaches. The ability of the models and approaches
to generalize larger unseen instances than they have been trained on, is evaluated on TSP
instances with up to 200 cities. The euclidean version of the TSP is tackled in [JLB19] by
using a graph convolutional network. The authors propose to use the k-nearest neighbors
graph during computation to reduce the computational complexity.

20

3.4. The Learning Beam Search Framework

3.4 The Learning Beam Search Framework

The LBS framework was introduced by [HR21] and the description in this section follows
their work. LBS is a general framework for learning a heuristic function to guide a BS.
The framework uses a reinforcement learning (RL)-like approach where a BS with the
currently learned heuristic function is used to label training data during self-learning.
Further, it suggests an ML model and defines the interactions needed during training
between the ML model, the BS and its other components like the instance generation and
the replay buffer. The authors showed for the Longest Common Subsequence Problem
(LCS), where the goal is to find the longest common supersequence of a set of strings,
and related problems that the approach is highly competitive with the state-of-the-art
of manually designed beam search heuristics. They could find several new best-known
solutions so far. For solving the LCS, the NN gets the sorted remaining string lengths
and the minimum number of remaining letters as input features.

The detailed description of the LBS Framework follows [HR21]. The pseudo-code of the
algorithm for learning the heuristic function is provided in Algorithm 3.2. The training
happens in iterations, whereas in each iteration, first, a random representative problem
instance is generated, a BS with training data generation is performed, and finally the
(re-)training of the ML model is performed. The total number of iterations z performed is
given and used as a stopping criterion. Generating training instances is problem specific
and needs to be defined for the problem at hand. Nevertheless, the generated instances
should represent the problem instances that should be solved later. The BS calls generate
in every iteration α training samples on average. To do so, nodes are selected as training
data at an adaptive probability α/nnodes. The number of training samples α, which
should be generated in each iteration, is therefore divided by the number of generated
non-dominated nodes nnodes during one whole BS run. Initially, for the first BS run
nnodes = 0 and thus, no training data is generated, but the number of produced nodes
is counted, and nnodes is updated for successive iterations. In every following iteration,
nnodes is again updated to reflect the average number of all nodes produced over all so
far performed LBS iterations. The nodes selected as training samples are labeled by a
nested BS (NBS) call, again using the currently learned heuristic function as guidance,
starting at the given node, i.e., using it as root node r. The NBS is performed with the
beam width β′ . The pseudo-code for data generation is shown in Algorithm 3.3. This
algorithm is included into the general BS (Algorithm 3.1) at Line 32 when called with
data generation. It is assumed that all additionally needed arguments are passed to
the BS algorithm and are thus available and that Inst(v) creates an instance starting at
node v. All labeled training samples are added to a replay buffer R, which can hold a
given number of samples ρ. It is realized as a ring buffer. Thus if the number of training
samples exceeds ρ, the oldest samples are overwritten. The training of the ML model
starts when the buffer contains a minimum number of samples γ. As an ML model, we
propose to use a NN, which we train by randomly selected mini-batches from R. In every
iteration, one training step is performed, and all samples of R are included in randomly
selected mini-batches. In general, any appropriate ML model can be used within the

21

3. Related Work

Algorithm 3.2: General LBS Algorithm [HR21]
Data: beam width β, beam width for NBS β′ , number of layers n, number of

training iterations z, size of the replay buffer ρ, buffer size with which
training starts γ

Result: learned guidance function for BS
1 h← initialize guidance function
2 R← ∅ // replay buffer: size ρ ring buffer
3 for z iterations do
4 I ← randomly generated problem instance
5 BS with training data generation on instance I
6 if |R| ≥ γ then
7 (re-)train h with data from R
8 end
9 end

10 return h

Algorithm 3.3: Data generation for LBS [HR21]. This piece of code is included
in Algorithm 3.1 at line 32, if BS is called with data generation. For simplicity,
it is assumed that all arguments additionally needed are passed to the BS
algorithm.
Data: beam width for NBS β′ , replay buffer R, number of samples to generate α,

number of expected nodes nnodes, guidance function for the BS h
1 N = Vext ∪Bi

2 for v ∈ N do
3 if BS with data generation ∧ rand() < α/nnodes then
4 t← BS without data generation (β′

, Inst(v), n− |v|, h) // NBS call
5 add training sample (v, f(t)) to R
6 end
7 end

framework. The training approach must, of course, be adapted appropriately.

The computational complexity of one NBS call depends on the numbers of nodes that are
expanded, which are at most β′ , the problem-specific time for expanding and evaluating
one node tnode and the height of the search tree, which is n. Thus, one NBS call requires
time O(β′

ntnode). The overall time complexity for one LBS run is dependent on the
number of iterations z, their beam width β, and the number of NBS calls performed
per iteration, which is equal to α on average. This yields an average time complexity of
O(z(β + αβ

′)ntnode).

22

CHAPTER 4
Solving the NWFSP-RT with

Beam Search

In this section we provide the missing parts to solve NWFSP-RT with the general BS
algorithm from Section 3.2. Therefore, in Section 4.1 we describe states and nodes for
the NWFSP-RT, the branching scheme, and give a dominance definition for the case
when two solutions have an equal state. We present our novel lower bound together with
three other lower bounds for the NWFSP-RT in Section 4.2.

4.1 Beam Search for the NWFSP-RT

To solve the NWFSP-RT with BS, we define all parts needed for the general BS framework
presented in Section 3.2.

State: As state for a partial solution v of the NWFSP-RT we take the set of unscheduled
jobs U(v) and the last scheduled job a(v), which yields o(v) = (a(v), U(v)). Thus, the
state is independent of the concrete permutation of the jobs in v. Further, multiple
solutions map to the same state if they already scheduled the same jobs and have the
same time on all machines relative to the start time at the first machine, which is ensured
by having a(v) in the state. Note that as we only use a(v) and not the completion times
of a(v) relative to the completion time of a(v) on the first machine, it might happen
that two jobs theoretically end in the same state, but are mapped to different ones in
our framework. Nevertheless, this is unlikely, and our dominance filters such nodes.
Therefore, we take the performance advantage of storing only a single value.

Node: A node v contains following necessary parts:

• The state o(v) of the current solution:

23

4. Solving the NWFSP-RT with Beam Search

– a(v) ∈ J ∪ 0 . . . action leading from the parent to node v, i.e., the job actually
scheduled last. Job 0 is only used in the root node.

– U(v) ⊆ J . . . set of still unscheduled jobs. In the implementation stored as a
bit vector.

• parent(v) . . . a pointer to its parent node or ⊥ if it is the root node.

• g(v) = f(v) . . . the costs of the respective partial solution so far, which is the
makespan of the partial solution.

• h(v) . . . a heuristic value that should estimate the cost-to-go, i.e., the expected
further increase of the makespan for scheduling the remaining jobs in U(v) in an
optimal fashion.

If it is clear from the context to which node we refer, we only write a, U , g, and h.

If two nodes are in an equal state, we keep the one with the smaller objective value g(·).
This selection does not degrade the overall solution quality, as only the best node in each
state is needed to reach the optimal solution. If both have an equal makespan g(·), an
arbitrary one is kept.

For the root node r we set U(r) = J , parent(r) = ⊥, a(v) = 0, g(r) = 0, and h(r)
calculated respectively.

A node is denoted a terminal node or terminal, if |U(v)| = 0, i.e., all jobs are scheduled.
Terminal nodes only exist at layer n, where all jobs are scheduled. Layer n might have
multiple terminal nodes, as not all nodes map to the same state due to the state containing
the last scheduled job a(·).

An efficient method to calculate f(·) is provided in Section 4.1.2. The definition of the
heuristic function h(·) remains open as we want to learn it with the LBS framework.
Nevertheless, an example would be using a lower bound as done in [Pou+20].

4.1.1 Branching

In our implementation, we branch every node over its unscheduled jobs and append
them to the end. Note that an alternative branching scheme suggested in [JSW06] would
be to insert the next job out of an ordered list of unscheduled jobs into every possible
position of the current partial solution sequence. Nevertheless, we argue that BS does
not benefit from this alternative branching. This is because during a search, two jobs
yielding a good objective value might reside next to each other, which might not occur in
any optimal sequence next to each other. It would be even worse if two jobs are in the
correct order for an optimal solution, but that are missing some other jobs in between
them, are yielding a bad objective value. Thus, the BS heuristic function might have
a hard time filtering out partial solutions which are locally optimal but yield a worse
objective value when completed than other partial solutions. When branching over all

24

4.2. Lower Bounds for a Beam Search Node

unscheduled jobs and appending at the end, locally optimal solutions might also happen.
However, it is at least guaranteed that these locally optimal parts must be included in
the final solution of these nodes. An example, were we branch over all unscheduled jobs
of every node in the beam is provided in Figure 3.1.

4.1.2 State Transition

To branch from node u to node v by scheduling job j ∈ U(u) we set parent(v) = u and
a(v) = j. In theory, these operations are enough to build up the search tree for the BS.
Nevertheless, our nodes also store auxiliary data, so we need to update it depending on
the parent node’s values. Thus, we set U(v) = U(u) \ j. For calculating the objective
value g(v) we use the following equation:

g(v) = g(u)− ptot
a(u) + max(δ1

a(u),a(v), ra(v) − g(u) + ptot
a(u)) + ptot

a(v). (4.1)

Note that this calculation can be performed in constant time O(1), other than calculating
a new row for the C matrix that needs time O(m). The used heuristic function calculates
the value for h(v).

If disregarding the calculation of h(v), the state transition is performed in time O(n), as
U must be copied and has |U | ≤ n entries.

4.1.3 Dominance Definition for the NWFSP-RT

The dominance check needs to cover cases where nodes are on the same layer, i.e., the
partial solutions have the same length. We define dominance for two nodes u and v of
the NWFSP-RT only for the case where they have equal U(·).

Definition 2 (Dominance for partial solutions of the NWFSP-RT). Partial solution u
dominates partial solution v iff u 6= v ∧ U(u) = U(v) ∧ g(v)− g(u) ≥ ψa(u),a(v).

This check can be done in O(1) time except for the comparison of U(u) and U(v). As we
use bit vectors to represent the unscheduled jobs, we may assume that also the latter
can be done efficiently in practice, although the time complexity is in O(n).

To perform the dominance check on a whole set of solutions Vext obtained as extensions
of the current beam, we store the nodes in a hash map with U(·) as keys. In this way, all
groups of nodes with the same unscheduled nodes are determined efficiently, and O(n)
time pairwise dominance checks must be done only within each group.

4.2 Lower Bounds for a Beam Search Node
This section describes lower bounds for the NWFSP-RT used in our implementation. In
general, it needs to be said that every lower bound for the NWFSP and the FSP is also
a lower bound for the NWFSP-RT, as those problems generally yield smaller objective

25

4. Solving the NWFSP-RT with Beam Search

values for the same p-Matrix than the NWFSP-RT [LH05; PSW91]. Nevertheless, such
LBs perform worse than bounds specifically designed for the NWFSP-RT as the second
can use all constraints of the problem.

We will start with the LB used in [Pou+20] for the NWFSP-RT and continue by adapting
the LB from [Tai93] used for generating hard FSP instances. Then we present an LB
resulting from the idea of reducing the NWFSP to the ATSP, and finally, we combine
the ideas of the former LBs into a new LB denoted as ITLB.

4.2.1 LB from Pourhejazy et al. [Pou+20] (PLB)

This section refers to the LB on the completion time presented in [Pou+20] formula 12.
The provided formula is translated into our notation. The idea of this LB is to take the
minimum release time and add up the time all unscheduled jobs take on the last machine.
The formula is presented in Equation 3.1. It can be calculated in time O(|U |) ≤ O(n).

4.2.2 LB from Taillard (TLB) [Tai93]

The LB proposed in [Tai93] was used for generating random test instances for the PFSP
which have large gaps between this LB and the best-known solution determined with
different approaches. In this section, we adapt it to the NWFSP-RT and refine it by
incorporating release times and, to a small extent, also delays, but do not consider the
no-wait aspect yet. The bound consists of two parts that both yield valid LBs, from
which we take the maximum. The first part calculates a bound for a shortest possible
schedule. More specifically, let ηi be the minimum time needed before machine i starts
to work relative to g − ptot

a + p1,a, i.e., from the time when a finished on machine one,
and λi the minimum amount of time that machine i remains inactive after it finished all
jobs. Note that q1,j = p1,j ,∀j ∈ J ∪ {0}. Before we start describing the bound we define
how to calculate the job-specific release time relative to the starting time of job a(v) of
solution v:

rrel
j (v) = max(0, rj − (g(v)− ptot

a(v))) (4.2)

To calculate ηi for node v we use:

ηi = max(min
j∈U

(qi,j − pi,j + max(0, rrel
j − p1,a)), qi,a − p1,a) (4.3)

The above formula’s maximum consists of two parts. In the first part, we aim to find the
shortest possible time any job j ∈ U needs until it starts on machine i. If release times
are ignored, this is qi,j − pi,j . To incorporate release times we use max(0, rrel

j − p1,a). In
this formula the release time has to be shifted such that it is also relative to g−ptot

a +p1,a,
i.e., does not include p1,a. The maximum with zero is taken for the cases where the
release time has already passed. The second part calculates the time when machine i
becomes available in the current state, i.e., when job a finishes on machine i. As we
defined to calculate the lower bound from the time where a finishes on machine one, we

26

4.2. Lower Bounds for a Beam Search Node

have to subtract the time a takes on the first machine p1,a from qi,a as it is included
there.

The minimum amount of time that machine i remains inactive after it finished all jobs is
calculated for partial solution v according to the following formula:

λi = min
j∈U

ptot
j − qi,j (4.4)

The calculation of λi uses the pre-computed values of ptot
j − qi,j which denote the time

machine i is idle after executing job j if job j is the last job in the solution sequence.

To get the first part of the TLB we take the maximum of the per machine sum of ηi + λi

together with the total processing time PU
i = ∑

j∈U pi,j on machine i for all unscheduled
jobs. We further need to correct LB1 by −(ptot

a − p1,a) such that it can be directly added
to g(v) for solution v:

LB1 = max(0,max
i∈M

(ηi + PU
i + λi)− (ptot

a − p1,a)) (4.5)

This is a valid LB as all jobs need to be processed on any machine i. Further, also the
minimum times to start computation on machine i and minimum idle time afterward,
and the minimum release time are always implied. The correction by −(ptot

a − p1,a) is
necessary as we need to account for the fact that ηi starts after the finishing of a on
machine one. Through this correction, LB1 can be directly added to g. Lower bounds
are generally defined to yield values ≥ 0, so we take the maximum with zero.

The second part of the LB calculates the sum of the total processing times, and release
times and takes the maximum over all unscheduled jobs:

LB2 = max(0, max
j∈U

(ptot
j + max(0, rrel

j − p1,a))− (ptot
a − p1,a)) (4.6)

Again, this is a valid LB as every job’s operations need to be processed sequentially. One
operation cannot start before the preceding one is finished, and every job can only be
scheduled when its release time is exceeded. As above, the relative release time needs to
be corrected, and the result corrected such that we can directly add it to g.

An improvement of LB2 follows from Lemma 1. We can take the maximum of rrel
j and

δ1
a,j , as any job j ∈ U must always follow job a somewhere later in the sequence:

LB′
2 = max(0,max

j∈U
(ptot

j + max(rrel
j , δ1

a,j)− p1,a)− (ptot
a − p1,a)) (4.7)

Because δ1
a,j always includes p1,a, which we defined not to be contained in the bound, we

have to subtract p1,a from the dominating factor of release time and delay.

Finally, by combining these two bounds we get

TLB = max(LB1,LB
′
2). (4.8)

27

4. Solving the NWFSP-RT with Beam Search

Note that for the root node r, all ptot
a and ptot

a − q1,a are zero as we defined a(r) = 0 and
0 denotes the artificial job. Further, note that all processing times of the artificial job 0
are zero. For improvements upon this LB, see ITLB in Section 4.2.4

Runtime Analysis: Calculating ηi and λi is in O(|U |) ≤ O(n) as the minimum of all
j ∈ U is taken. Thus calculating LB1 takes time O(nm) as it iterates over all machines.
Calculating LB′

2 takes O(|U |) ≤ O(n) as iterating over all jobs is necessary. Note that
calculating PU takes time O(nm), which could be reduced by storing it in the node and
calculating it in the state transition incrementally in time O(m). Thus, the total time
needed is O(nm).

4.2.3 Delay-Based LB (DLB)

The idea for DLB stems from the reduction of NWFSP to the TSP [Chr72]. The delays
and the artificial job play a central role in this reduction. Looking at the reduction to
the ATSP designed by us earlier, we aim to sum up the minimum cost of all incoming
arcs for every j ∈ U ∪ {0} and all outgoing arcs j ∈ U ∪ {a}. When adding release times
to this bound, one must consider carefully that if the minimum starting time difference
δ1

a,j is ≥ rj , no additional idle time is introduced by scheduling job j next. In theory, any
machine’s minimum starting time differences could be taken, and the calculation altered
accordingly. More specifically, for the NWFSP the makespan of solution s represented

by node v is calculated as
|s(v)|−1∑

k=1
δ1

s(v)k,s(v)k+1
+ δ1

a,0.

Regarding the case when v = r, we highlight that a(r) = 0. We define the temporary
distance matrix δ′ to use release times when they exceed the delays and subtract p1,j as
we want to consider the operation times separately by adding PU

i later:

δ′j,k =
{

max(δ1
j,k, r

rel
k)− p1,j if a = j

δ1
j,k − p1,j otherwise

,∀j, k ∈ J ∪ {0} (4.9)

A bound for the NWFSP-RT considering incoming arcs which can be directly added to g
would be:

LBin = max(0,
∑

j∈U∪{0}
min

k∈U∪{a}\{j}
δ′k,j + PU

1 − (ptot
a − q1,a)) (4.10)

Subtracting ptot
a − q1,a in the above formula is necessary as δ′j,k is calculated on machine

one and starts at the time when a finishes on machine one. If doing this calculation
e.g. on machine m the subtraction is not needed as it would result in −ptot

a + qm,a with
qm,a = ptot

a .

Further, we define a second bound based on the outgoing arcs when thinking in terms of
an ATSP:

DLB = max(0,
∑

j∈U∪{a}
min

k∈U∪{0}\{j}
δ′j,k + PU

1 − ptot
a + p1,a) (4.11)

28

4.2. Lower Bounds for a Beam Search Node

This time, all j ∈ U ∪ {a} have outgoing arcs which need to be considered and which
might lead to unscheduled jobs, including the artificial job but excluding self-loops
k ∈ U ∪ {0} \ {j}.

To compute the final bound we take the maximum of the above parts:

LBdelay = max(LBin,LBout) (4.12)

The lower bound LBdelay can be directly added to g.

Note that this bound can be further improved by calculating it on all machines i ∈M .
Additional considerations for the release times must be taken. Further, qi,a must be
substracted instead of q1,a or p1,a, and the maximum over the resulting bounds on all
machines must be taken.

Runtime Analysis: To calculate LBin and LBout we iterate over all combinations of
unscheduled jobs including the artificial job. Therefore, calculating LBdelay takes time
O(|U |2) ≤ O(n2).

4.2.4 Improved Taillard Lower Bound (ITLB)

This section aims to improve TLB by incorporating a bound on the minimum delays
on each machine. The ITLB can be seen as using DLB (with adaptions) within the
calculation of TLB once for every machine. The bound is calculated from the end of job a
on machine one until the end of all jobs on machine m. Thus, we correct it by subtracting
(ptot

a − q1,a) such that it can be directly added to g. Note that the artificial job 0 is not
used in calculating this bound, as we consider the processing times for finishing the last
job by λi.

We adapt the calculation of the TLB for ηi accordingly for partial solution v to not add
up the whole release time but only the part of the release time that exceeds the necessary
delay. Further, we add the minimum delay on this machine calculated by d(v, i, j) stated
later. In the second part of the maximum function, we calculate the minimum delay over
all jobs, as it is not given which job will be the next one scheduled. All other parts of
the formula remain the same as for the TLB.

ηi = max(min
j∈U

(qi,j − pi,j + max(δ1
a,j , r

rel
j)− p1,a + d(v, i, j)),

qi,a − p1,a + min
j∈U

d(v, i, j)) (4.13)

The calculation of λi is not altered, i.e.,

λi = min
j∈U

ptot
j − qi,j . (4.14)

To calculate d(v, i, j) we use the following formula to first calculate a delay bound
din(v, i, j) on the incoming arcs. This bound only considers the additional time needed
(delay) on the respective machine but ignores the processing times as they are added

29

4. Solving the NWFSP-RT with Beam Search

later. Thus, the processing times must always be subtracted from the minimum starting
time differences. We assume that every unscheduled job has an incoming arc, where we
consider job j separately as it must follow job a:

din(v, i, j) =
∑

j′∈U\{j}
min

k∈U\{j′}
δi

k,j′ − pi,k (4.15)

To calculate a bound considering only outgoing arcs dout(v, i, j), we assume that every
unscheduled job has one outgoing arc, except the last job in the sequence. To correct the
delay the last job in the sequence introduces, we subtract the maximum of the delays
summed up before. Again, the processing times are subtracted from the delays:

dout(v, i, j) =
∑
j′∈U

min
k∈U\{j,j′}

(δi
j′,k − pi,j′)−max

j′∈U
min

k∈U\{j,j′}
(δi

j′,k − pi,j′) (4.16)

In the above formula it is again clear that job j must follow job a and j is therefore
considered separately. The second part of the formula calculates the sum over all outgoing
arcs for all unscheduled jobs. Note that we now added one outgoing edge too much. To
correct this we remove the most expensive outgoing edge counted before by subtracting
it.

Our final delay bound is thus:

d(v, i, j) = max(din(v, i, j), dout(v, i, j)) (4.17)

To get the first part of the LB we proceed as for the TLB and derive a bound which can
be directly added to g:

LB1 = max(0,max
i∈M

ηi + PU
i + λi − ptot

a + p1,a) (4.18)

The second part of the TLB, LB′2, was already improved before and therefore stays the
same.

Finally, we get:
ITLB = max(LB1,LB′2) (4.19)

Note that in the case of the root node ptot
a(r) and q1,a evaluate to zero as the duration of

the artificial job which comes first is zero on all machines.

This bound clearly dominates TLB as it contains all its components. It also dominates
DLB, as it contains all delays. It was also tested on 100 randomly generated instances
(n=10, m=20) with a BS where TLB, DLB, and ITLB were calculated for every node
that ITLB outperforms the others.

To speed up the calculation of d(v, i, j) and calculate it for all j ∈ U in time O(n2)
together, we do the following:

30

4.2. Lower Bounds for a Beam Search Node

• For calculating din(v, i, j) for all j ∈ U at once: First, we compute the minimum
xk = δi

k,j′ − pi,k, ∀k ∈ U while discarding self loops (i.e. δi
j,j − pi,j) and then take

the sum of it which we denote here by sum. To compensate for counting job j
too much in the sum we now calculate sum− xj ,∀j ∈ U . The whole computation
happens in time O(n2) for all j ∈ U .

• For calculating dout(v, i, j) for all j ∈ U at once: We compute the two minimum
delays xj′ = δi

j′,k − pi,j′ , ∀k ∈ U and store them together with their indices denoted
by indexj′ . The minimum is denoted by xj′,1 and the second smallest value by xj′,2,
similarly for indices. We then take the sum sum = ∑

j∈U
xk,1 and store it in a repeated

way as vector sumj ,∀j ∈ U . We further copy y = x:,1. Now we have to account for
the cases where the job j is also the minimum object and thus contained in sumj .
Therefore, we do sumindexj,1 = sumindexj,1 − xj,1 + xj,2 for all j ∈ U . To account for
the subtraction of the maximum values we compute yindexj,1 = max yindexj,1 , xj,2.
This calculation happens in time O(n2) for all j ∈ U .

Note that due to performance reasons and to stay within reasonable time limits, we
will only compute din during evaluation. Even though the theoretical time complexity
of din and dout is the same, it takes a significantly higher time to compute dout in our
implementation.

Runtime Analysis: Calculating λi is in O(|U |) ≤ O(n) as the minimum of all j ∈ U is
taken as for the TLB. Calculating d(v, i, j) for all j ∈ U at once is in O(|U |2) ≤ O(n2)
and thus calculating ηi takes time O(|U |2). Further, all computations must be done for
every machine. This finally yields that calculating ITLB takes time O(m|U |2) ≤ O(mn2).

31

CHAPTER 5
Learning Beam Search for the

NWFSP-RT

To apply the LBS framework to the NWFSP-RT, we define and describe all missing parts
of the general LBS framework as described in Section 3.4. We aim to learn a heuristic
function h(·), approximating the minimum makespan increase when completing a partial
solution. Therefore, we first describe some general details in Section 5.1. Then, the
training data generation is described in Section 5.2. Section 5.3 proposes three NN types
used, and Section 5.4 presents the used features and states the idea behind each. Those
features are combined to observations in Sections 5.5.

5.1 General Details

The description of the time complexity of one LBS run in Section 3.4 leaves the description
of the time expanding and evaluating one node takes tnode open as it is problem specific.
This time is dependent on the time the state transition described in Section 4.1.2 takes
which is O(n) as well as the time needed for evaluating it teval. Further, each node
might have up to n children and thus tnode = O(n2) + teval. The evaluation time teval
is dependent on the time needed to evaluate h(·), and the time needed to compute the
used features which are further described in Sections 5.3, and 5.4.

5.2 Training Instance Generation

We generate the training instances to match the characteristics of the benchmark instances
of [VRF15]. We note again that we assume the jobs to be different from each other such
that they can not be clustered into types of jobs. This assumption was experimentally
verified by giving a tolerance area around each processing time on each machine and

33

5. Learning Beam Search for the NWFSP-RT

trying to find jobs for which all their processing times on all machines fit into the tolerance
area. It was found that the assumption also holds if the criterion is ignored for up to two
machines using a tolerance area of 40. Thus, we assume that the times of all operations
of all jobs pi,j are equally distributed over [0, 99] and independently chosen. Further,
the release times rj for an randomly created instance are calculated by the formula of
[ZLC15]:

rj = 0.05
∑
j∈J

pj,1. (5.1)

Note, that Formula 5.1 was also used to adapt the benchmark sets we use from the FSP
to the NWFSP-RT in [Pou+20].

5.3 Neural Networks
We propose different types of NNs to be used within the LBS framework. The inputs
used for these NNs are described in Section 5.4 and combined to observations that are
later used during evaluation in Section 5.5.

5.3.1 Multi-Layer Perceptron

The use of a MLP within LBS for approximating the costs for completing a partial
solution is proposed in [HR21]. We use a dense network of neurons with two hidden
layers and ReLu activation functions in our work. The output layer consists of a single
neuron without an activation function. The number of nodes in the hidden layers is
set to 20 as it was done in [HR21] and as preliminary tests with {10, 20, 30} showed no
significant difference. Preliminary tests showed no significant difference in the results
when adapting this value. When ignoring the weights between the input layer and the
first hidden layer, this network has 420 learnable weights. It is trained using the mean
squared error (MSE) as a loss function.

5.3.2 Aggregated Job Neural Network (AJNNadd)

The AJNNadd consists of an internal MLP, further denoted as M1. An overview of its
structure is given in Figure 5.1. The observation vector consists of a global part xglob

and job j ∈ U specific features xjob
j . The job specific part xjob

j is then split further into
xjob

j = (xjob,glob
j , xjob,in

j , xjob,out
j). The first part xjob,glob

j contains specific features for job
j. The other parts xjob,in

j , xjob,out
j each contain κ features dependent on the nearest pre-

and succeeding jobs of j.

The nearest jobs are determined by the ω matrix, containing idle time. For every job
j in |U | the κ nearest jobs must be selected, which takes time O(|U |min(κ, log |U |) for
one job. Note that when κ gets big enough, it is more efficient to sort all jobs in U
instead of iteratively selecting the nearest one. Thus selecting the κ nearest pre- and
succeeding jobs for all j ∈ U takes time O(|U |2 min(κ, log |U |)) ≤ O(n2 logn). These 2κ
nearest jobs are stored in vectors of sorted lists N red,in

j and N red,out
j for each job j. In

34

5.3. Neural Networks

the implementation, the values in N red,in and N red,out refer to the jobs’ indices when
taking only jobs from U , sorting them by their id, and numbering them with 1 to |U |.

If there are too few jobs left to fill up xjob,in
j and xjob,out

j , they are filled up with the last
job’s values. We do similarly for N red,in

j and N red,out
j by filling the values up with the

last job. When only one job remains, we use it in the feature vectors xjob,in
j , and xjob,out

j

and fill N red,in
j , and N red,out

j with ones as the index of the job left is one.

Take a sample instance with n = 5, U = {1, 2, 4}, κ = 1 and four job specific features
|xjob|. Further, assume that N red,in

1 = [2], N red,out
1 = [2], N red,in

2 = [4], N red,out
2 = [1],

N red,in
4 = [2] and N red,out

4 = [1]. We also assume that xglob = (10, 20, 30). Further, we
assume xjob,in

1,2 = (8), xjob,out
1,2 = (9), xjob,in

2,4 = (10), xjob,out
2,1 = (11), xjob,in

4,3 = (12), and
xjob,out

4,1 = (13). Finally, assume xjob,glob
1 = (22, 33), xjob,glob

2 = (44, 55), and xjob,glob
4 =

(66, 77). Then xjob = (22, 33, 8, 9)||(44, 55, 10, 11)||(66, 77, 12, 13), where || denotes the
concatenation of vectors. The nearest job vectors are N red,in = (2, 4, 2) and N red,out =
(2, 1, 1). In our implementation, we map those vectors to (2, 3, 2) and (2, 1, 1) respectively,
representing the jobs’ indices in U when sorted by their ids. These values can be used as
indices in the feature vector xjob in the NNnearest in Section 5.3.3.

If the AJNNadd needs to generalize to an instance with more jobs than it was trained on,
M1 is called more often but always with the same number of input features, and all its
results are summed up.

The AJNNadd aims to approximate the increase of the makespan when completing the
solution. The AJNNadd is trained the same way as the MLP in Section 5.3.1 is, using the
mean squared error (MSE) as a loss function. The loss is calculated between the result
value of the AJNNadd and the label. We use for M1 the same setup as in Section 5.3.1, a
dense network of neurons with two hidden layers and ReLu activation functions. The
output layer consists of a single neuron without an activation function.

Figure 5.1: Structure Diagram of the AJNNadd. The shared MLP is denoted as M1 and
can itself have multiple layers like a NN.

35

5. Learning Beam Search for the NWFSP-RT

5.3.3 Nearest Neighbors Neural Network

In this section, we describe the NNnearest. This network takes a similar observation vector
as AJNNadd. The parameter κ used by the NNnearest denotes how many preceding and
succeeding neighbors should be included in the observation, similar as for the AJNNadd.
The structure of the features passed to the NN is the same as for the AJNNadd. Therefore
the description is omitted here.

For our NN model we consider the input vectors xglob, xjob
j , N red,in

j and N red,out
j for j ∈ U .

A graphical representation giving an overview is provided in Figure 5.2. Parameters are
denoted by W and are learnable weight matrices. The learnable bias vectors are denoted
by b, the internal states by h, and the final output value by o. The job specific features
xjob

j are first preprocessed by following formula:

h0
j = ReLu(W 0xjob

j + b0),∀j ∈ U. (5.2)

The internal node state h0
j is a vector of dimension dh.

The feature vectors of the κ nearest jobs are combined in the next layer. The κ nearest
pre- and succeeding jobs for job j are denoted by N red,in

j and N red,out
j , and thus we get

as input vector:

h0′
j = h0

N red,in
j,1
|| . . . ||h0

N red,in
j,κ

||h0
j ||h0

N red,out
j,1

|| . . . ||h0
N red,out
j,κ

, ∀j ∈ U. (5.3)

The combined internal state vectors h0′
j are then processed by a layer containing a ReLu

activation function, biases and skip connections:

h1
j = ReLu(W 1h0′

j + b1) + h0
j ,∀j ∈ U. (5.4)

The skip connection is implemented by adding h0
j at the end of the formula. Formula 5.4

yields an output of dimension dh.

The global features are preprocessed by a feed-forward network with one hidden layer,
including ReLu activation functions, biases, and dh output nodes. The number of internal
nodes is 20. The output vector of this network is denoted as hglob.

Next, we combine the job specific features with the global features, by using a dense
layer with ReLu activation functions, biases, and a skip connection and another layer
with biases reducing the results to dimension one:

h1′
j =

[
hglob||h1

j

]
h3

j = W 3
(
ReLu

(
W 2h1′

j + b2
)

+ h1′
j

)
+ b3,∀j ∈ U. (5.5)

Note that the addition of h1′
j results from using a skip connection The output h3

j is
defined as a single value. To achieve this, we use an additional weight matrix W 3. In the
above equation, W 3 is designed to be a learnable weight matrix. Nevertheless, it might
be enough if W 3 is designed as a static matrix with all entries equal to 1 only used for
reducing dimensionality.

36

5.4. Feature Sets

These single per job values are finally combined with each other and the result is a single
value which is the output of the NNnearest:

o =
∑
j∈U

h3
j (5.6)

We do not use weights when summing up the results of all job-individual features, as the
jobs do not have an intrinsic order and thus, using weights is not applicable.

The size of the mentioned dimensions dh and the number of internal nodes for prepro-
cessing the global features is a parameter that influences the number of overall weights
in the network and is subject to optimization. In our experiments we use dh = 10
and 20 internal nodes in the hidden layers as done for the MLP in Section 5.3.1. The
selection of dh = 10 follows preliminary tests where dh ∈ {10, 20, 30} were compared on
the VRF-small test instance set, see Section 6.1, and dh = 10 showed to work best.

5.4 Feature Sets
This section describes the features used later in the observations. Each feature is
motivated, and the time complexity for calculating it is provided. All features are
calculated depending on the state and the instance. In Section 5.4.1 global features are
presented. These are features that represent the whole instance. The features presented
in Section 5.4.2 are dependent on a individual unscheduled job j.

5.4.1 Global Features

The global features of a partial solution v are denoted by xglob(v). Note that we omit
the explicit mentioning of v if it is clear from the context. Following global features are
used within the work:

1. number of unscheduled jobs |U |.
Motivation: This feature should provide the NN with information about how
many jobs are unscheduled such that the output can be adapted accordingly. Time
complexity: O(n) (Can be reduced to O(1) when storing the current layer in the
state.)

2. minimum sum delay incoming δin,m
min : ∑

j∈U
min

k∈U∪{a}\{j}
δm

k,j − pm,k.

Motivation: This feature should provide the NN with the minimum delay expected
when scheduling any job j ∈ U and might be used to calculate a (bad) lower bound.
Nevertheless, as one delay matrix is enough to make a reduction to the ATSP, we
take the delays on machine m here. Time complexity: O(n2)

3. minimum sum delay outgoing δout,m
min : ∑

j∈U∪{a}
min

k∈U\{j}∪{0}
δm

j,k − pm,j .

Motivation: See the motivation for the incoming delay. Time complexity O(n2)

37

5. Learning Beam Search for the NWFSP-RT

Figure 5.2: Graphical representation of the internal structure of the NNnearest. Arrows
denote data flow, and boxes denote components like layers and aggregation functions.
Details about the structure are provided in Section 5.3.3.

38

5.4. Feature Sets

4. maximum total job time: max
j∈U

ptot
j

Motivation: The maximum total job time is part of a lower bound to the resulting
solution. Even if it can not be added directly to g, it might be used to identify
solutions still missing long jobs to be scheduled. Time complexity: O(n) when
precomputing ptot.

5. minimum release time left: min
j∈U

max(0, rrel
j − p1,a)

Motivation: This feature should provide the NN with information about the
release time relative to the earliest scheduling time on machine one. The minimum
is provided as guidance if there are jobs that can be scheduled soon. The maximum
to provide a lower bound about how much additional time is at least needed. Time
complexity: O(n)

6. maximum release time left: max
j∈U

max(0, rrel
j − p1,a)

Motivation: See the motivation for the minimum release time left.

7. minimum sum idle time incoming per machine ωin
min:

∑
j∈U

min
k∈U∪{a}\{j}

ωk,j/m.

Motivation: This feature should provide the NN with the anyway minimum
incurred idle time per machine. The sum of the minimum idle times is divided
by m. This division makes the feature independent of a change in the number of
machines. Time complexity: O(n2)

8. minimum sum idle time outgoing ωout
min:

∑
j∈U∪a

min
k∈U\{j}∪{0}

ωj,k/m.

Motivation: See the motivation for the incoming idle times.

9. total job time on machine m: PU
m

Motivation: The total execution time of all unscheduled jobs on machine m yields
a lower bound and is always contained in the makespan. Time complexity: O(n)

10. Lower Bound: LB = ITLB (without the calculations for dout due to performance
reasons)
Motivation: A (tight) LB should help the NN to not underestimate the makespan.
If the lower bound is stable in the sense that all its results are off by the same
factor independent if a partial solution leading to a better or worse final state is
evaluated, it might give good guidance. Time complexity: O(mn2)

5.4.2 Job-Individual Features

The job-individual features of a partial solution are denoted by xjob(v), whereas the
specific features for each job j ∈ U are denoted by xjob

j (v). Note that we do not mention
partial solution v if it is clear from the context. The job-individual features for job j
consist of a global part xjob,glob

j only dependent on job j and features dependent on the
nearest neighbors xjob,in

j and xjob,out
j . The features xjob,in

j and xjob,out
j are only provided

when κ > 0. Following global job-individual features xjob,glob
j are used:

39

5. Learning Beam Search for the NWFSP-RT

1. minimum delay incoming min
k∈U∪{a}\{j}

δm
k,j − pm,k

Motivation: This feature should provide the NN with information how much
additional time is at least needed in scheduling this job. Time complexity: O(n)

2. minimum delay outgoing min
k∈U∪{0}\{j}

δm
j,k − pm,j

Motivation: This feature should provide the NN with information how much
additional time is at least needed in scheduling this job. Time complexity: O(n)

3. minimum idle time incoming per machine: min
k∈U∪{a}\{j}

ωk,j/m.
Motivation: The minimum idle time for incoming nodes gives a measure how
well job j fits after the other unscheduled jobs and the last scheduled job a. Time
complexity: O(n)

4. minimum idle time outgoing per machine: min
k∈U∪{0}\{j}

ωj,k/m.
Motivation: The minimum idle time for outgoing nodes gives a measure how well
job j fits before the other unscheduled jobs. Time complexity: O(n)

5. release time left: max(0, rrel
j − p1,a)

Motivation: When scheduling job j next the release time must be respected, thus
it is also provided to the NN. Time complexity: O(1)

6. the job duration on machine m: pm,j

Motivation: We use the time on machine m, as it can be directly added to the
total makespan, yielding a LB. This does not hold for processing times on the other
machines. Time complexity: O(1)

Following job-individual features depending on the nearest preceding and succeeding jobs
xjob,in

j , xjob,out
j are included if κ > 0:

1. for each k = 1, . . . , κ features xjob,in
j,k in respect to N red,in

j [k]:

• Delay: δm
k,j − pm,k

Motivation: This feature gives the delay when job k is scheduled directly
before job j, which is reasonable as k is one of the nearest preceding jobs of j.
Time complexity: O(1)

• Idle Time: ωk,j/m
Motivation: This feature gives the idle time introduced when job k is
scheduled directly before job j, which is reasonable as k is one of the nearest
preceding jobs of j. The idle time is divided by m to be independent of the
number of machines m. Time complexity: O(1)

If |N red,in
j | < κ, we fill the features up to size κ by copying the last ones. Thus, we

always have the same number of features for each job j independent of the layer of
the BS the observation is made at.

40

5.5. Observations

2. for each k = 1, . . . , κ features xjob,out
j,k in respect to N red,out

j [k]:

• Delay: δm
j,k − pm,j

Motivation: This feature gives the delay when job k is scheduled directly
after job j, which is reasonable as k is one of the nearest succeeding jobs of j.
Time complexity: O(1)

• Idle Time: ωj,k/m
Motivation: This feature gives the idle time introduced when job k is
scheduled directly after job j, which is reasonable as k is one of the nearest
succeeding jobs of j. The idle time is divided by m to be independent of the
number of machines m. Time complexity: O(1)

If |N red,out
j | < κ, we fill the list up to size κ by copying the last job. Thus, we

always have the same number of jobs and features for each job j independent of
the layer of the BS the observation is made at.

5.5 Observations

In the following sections, the observations evaluated later are described. We provide
one observation for the AJNNadd and the NNnearest and two similar observations for the
MLP.

5.5.1 Observation Oglob

This observation is designed for use with the MLP. It uses the global features described in
Section 5.4.1 with the exception that ITLB is omitted. The observation can be computed
in time O(n2).

5.5.2 Observation Oglob,itlb

Similar as Oglob, observation Oglob,itlb uses the global features described in Section 5.4.1
and is designed for the MLP. Nevertheless, this time also ITLB is included in the features.
Thus calculating this observation takes time O(mn2).

5.5.3 Observation OAJNN,add

This observation is designed for the AJNNadd. It consists of all mentioned global
features presented in Section 5.4.1 and all job-individual features presented in Section
5.4.2. Note that when setting κ = 0, the feature sets xjob,in

j and xjob,out
j would not be

included. Nevertheless, as it is mentioned in Section 6.1, we set κ = 3 for all of our
tests. Thus xjob,in

j and xjob,out
j are always included. The observation can be computed in

time O(n2 max(m, logn)), where the additional time compared to Oglob,itlb results from
calculating N red,in and N red,out.

41

5. Learning Beam Search for the NWFSP-RT

5.5.4 Observation Onearest

The observation Onearest is designed for the NNnearest and is similar to OAJNN,add as it
contains all global features of Section 5.4.1 and all job-individual features presented in
Section 5.4.2. Due to the specific structure of the AJNNadd, we require this observation
to have κ > 0 and thus always include the feature sets xjob,in

j and xjob,out
j . Further, this

observation includes N red,in
j and N red,out

j itself for all j ∈ U as a feature. Note that due
to simplicity during the evaluation of the AJNNadd the job IDs in N red,in

j and N red,out
j

refer to the positions in the unscheduled jobs, i.e., the unscheduled jobs are sorted by
their original IDs and then their indices in the resulting sequence starting at one to |U |
are used. This observation can be computed in time O(n2 max(m, logn)).

42

CHAPTER 6
Results

In this chapter, we present the results of our computational study. Before doing so, we
describe the test setup and the benchmark instances used in Section 6.1. After that,
in Section 6.2, we conduct tests on the same instance classes the NNs are trained, and
perform statistical tests to check whether the NNs perform better than the reference
approach ITLB as heuristic function (hitlb). Section 6.3 experimentally evaluates how
well the NNs generalize over m and Section 6.4 evaluates the generalization over n alone
and both n and m. In Section 6.5 the approximation errors of the NNs over the layers of
a BS are evaluated. Finally, we compare the best approaches with the state-of-the-art
method from Pourhejazy et al. [Pou+20] in Section 6.6.

6.1 Test Setup and Benchmark Instances

All benchmark tests are run with Julia 1.7.0 on a computing cluster on Intel Xeon E5540,
2.53 GHz Quad-Core nodes in single-threaded mode. Each neural network is trained ten
times independently of the others but with the same settings. The tests are performed
with all these ten trained models, and results are reported as boxplots if not described
differently. Deterministic methods like when using ITLB as guidance function for the
BS are only run once. In our work, we use four different benchmark sets, all adapted
for the NWFSP-RT in [Pou+20]. The first benchmark set is denoted by VFR and can
be split into small and large instances. The set of small instances VFR-small consists
of instance-classes of all combinations of n ∈ {10, 20, . . . , 60} and m ∈ {5, 10, 15, 20}
and VFR-large of n ∈ {100, 200, . . . , 800} and m ∈ {20, 40, 60}. Each instance class
consists of ten individual instances. Thus, there are 240 VFR-small and 240 VFR-big
instances. Note that when evaluating a NN on a per instance-class basis, the boxplots
contain 100 values as we perform ten runs per instance. A smaller test set called REC
consists of three instances of sizes (n = 20,m ∈ {5, 10, 15}), (n = 30,m ∈ {10, 15}),
(n = 50,m ∈ {10}), and (n = 75,m ∈ {20}), thus, in total 21 instances. The TA-small

43

6. Results

instance set consists of ten instances of n ∈ {20, 50, 100} and m ∈ {5, 10, 20} and bigger
instances of (n = 200,m ∈ {10, 20}) and (n = 500,m = 20). Thus, it has 120 instances.
We describe the instance set TA-large for completeness even if we did not test on it
due to its big instance sizes. The set TA-large consists out of ten instances of sizes
n ∈ {1000, 1500, 2000} and m = 20, thus, in total 30 instances.

As baseline we use the results provided in [Pou+20] for their BS with local search from
[Pou+20] (BSLS,pour) approach which are also the so far best known results per instance.
If not mentioned differently, we report the relative percentage difference (RPD) to the
currently best known results BSLS,pour. The RPD is calculated by the following formula,
in which x denotes the length of solution u on a specific instance and xbest the result of
BSLS,pour on the same instance:

RPD = (x− xbest) ∗ 100/xbest (6.1)

We experimentally evaluate four configurations in the later sections. These are one
configuration per observation presented in Section 5.5:

• MLPbasic: The MLP as described in Section 5.3.1 together with Observation Oglob.

• MLPITLB: The MLP as described in Section 5.3.1 together with Observation
Oglob,itlb.

• AJNNadd: The aggregated job neural network as presented in Section 5.3.2 with
κ = 3 and Observation OAJNN,add.

• NNnearest: The nearest Neighbors network as presented in Section 5.3.3 with κ = 3
and Observation Onearest.

All NNs are trained on instances n ∈ {10, 20} and m ∈ {10, 20}, in total on four different
instance sizes. The LBS was performed with the following settings: number of iterations
z = 3000, minimum number of observation to start learning γ = 3000, size of the replay
buffer ρ = 5000, beam width of the NBS calls β′ = 50, expected number of samples
α = 60. Resulting from the settings approximately 180 · 103 training samples are created
and the loss function is called approximately 14.5 · 106 times. This is far more than the
number of weights contained in our proposed networks.

6.2 Comparison on Same Instance Sizes as Trained
In this section we compare all trained NNs on separate test instance with the same size
m and n as the NNs were trained on. This is done to evaluate whether the NNs are
able to improve the results compared with hitlb (using ITLB as guidance function). As
beam width we use β ∈ {1, 10, 20, 50}. Due to the lack of being able to reproduce the
results of [Pou+20] we can not run their BS with smaller beam widths and thus only

44

6.3. Generalization over m

have results for β = 600. Therefore, we use hitlb as reference method here. Figures
6.1,6.2, 6.3, and 6.4 show the results as boxplots for the instances n ∈ {10, 20} and
m = {10, 20}. To check whether the results provided by the NNs are significantly better
than hitlb we perform a Wilcoxon rank-sum test with a significance level of α = 0.05 and
the alternative hypotheses that the compared method is better, i.e. yields smaller results,
than hitlb. The results of the statistical tests are provided in Table 6.1.

The Figures and the significance tests show that the MLPbasic does not outperform hitlb.
For the MLPITLB the results are mostly quite similar to hitlb and only the configuration
trained on n = 20 and m = 10 was able to significantly outperform hitlb when run with
β ≥ 10. The AJNNadd and NNnearest are able to outperform hitlb significantly on ten
and nine of sixteen tested configurations and performed best overall. Also note that
some of the tested methods yield results better than the best known results on individual
instances even if run with small beam widths of at most β = 50 compared to β = 600
which was used for BSLS,pour. Especially for the instance class n = 10,m = 10 the tested
methods outperformed BSLS,pour on average. When visually comparing the results of BS
from [Pou+20] (BSpour) shown as dashed lines in the figures that were evaluated with
β = 600 with the trained models and hitlb on β = 50 it shows that all methods outperform
BSpour on average. Thus, we conclude that LBS is highly effective for learning guidance
functions for BS as some models outperformed the well working guidance function hitlb
and MLPbasic which does not contain ITLB is comparably or better on all instances than
BSpour. For a comparison of the average runtimes see Figure 6.11 in Section 6.4.

6.3 Generalization over m

This section evaluates whether the trained NNs generalize well over the number of
machines m. Therefore, all NNs are evaluated on instance classes with the same number
of jobs as they are trained on and m ∈ {5, 10, 15, 20} of the VFR-small set. The results
are shown in Figures 6.5, and 6.6. It shows that the AJNNadd and the NNnearest generalize
poorly over m. Especially the NNs trained on m = 20 perform worse than the NNs
m = 10 on instances with m = 5. For instances with n = 20 and m = 15 the AJNNadd
and the NNnearest trained on m = 20 yield better results when visually compared. For
instances with n = 10 and m = 15 this does not hold when visually compared. The
average RPD of the MLPbasic gets worse when needing to generalize. Nevertheless,
much less than the NNnearest gets worse when generalizing. The MLPITLB has a good
generalization performance as the average RPD does not change much. The Wilcoxon
rank-sum test performed to check whether the method trained with m = 10 or m = 20
is better than the other is given in Table 6.1 and shows that there are no significant
differences on a level of α = 0.05.

45

6. Results

AJ
NN

ad
d,

=
1

AJ
NN

ad
d,

=
10

AJ
NN

ad
d,

=
20

AJ
NN

ad
d,

=
50

M
LP

,
=

1

M
LP

,
=

10

M
LP

,
=

20

M
LP

,
=

50

M
LP

IT
LB

,
=

1

M
LP

IT
LB

,
=

10

M
LP

IT
LB

,
=

20

M
LP

IT
LB

,
=

50

NN
ne

ar
es

t,
=

1

NN
ne

ar
es

t,
=

10

NN
ne

ar
es

t,
=

20

NN
ne

ar
es

t,
=

50

IT
LB

,
=

1

IT
LB

,
=

10

IT
LB

,
=

20

IT
LB

,
=

50
NN Configurations

0

5

10

15

20

25

30

RP
D

re
la

tiv
e

to
 B

S L
S,

po
ur

Instance n = 10, m = 10

Figure 6.1: The figure shows the results of the NNs on the same instance sizes for n
and m as they were trained on and the results for ITLB relative to BSLS,pour for n = 10
and m = 10. Each boxplot of the NNs represents results over ten runs with individually
trained networks over ten instances. The horizontal lines in the boxplots indicate the
median and the triangles the mean results. Instances from the VFR-small set are used.
The dashed line shows the average RPD of BSpour.

46

6.3. Generalization over m

AJ
NN

ad
d,

=
1

AJ
NN

ad
d,

=
10

AJ
NN

ad
d,

=
20

AJ
NN

ad
d,

=
50

M
LP

,
=

1

M
LP

,
=

10

M
LP

,
=

20

M
LP

,
=

50

M
LP

IT
LB

,
=

1

M
LP

IT
LB

,
=

10

M
LP

IT
LB

,
=

20

M
LP

IT
LB

,
=

50

NN
ne

ar
es

t,
=

1

NN
ne

ar
es

t,
=

10

NN
ne

ar
es

t,
=

20

NN
ne

ar
es

t,
=

50

IT
LB

,
=

1

IT
LB

,
=

10

IT
LB

,
=

20

IT
LB

,
=

50

NN Configurations

0

10

20

30

40

RP
D

re
la

tiv
e

to
 B

S L
S,

po
ur

Instance n = 10, m = 20

Figure 6.2: The figure shows the results of the NNs on the same instance sizes for n
and m as they were trained on and the results for ITLB relative to BSLS,pour for n = 10
and m = 20. Each boxplot of the NNs represents results over ten runs with individually
trained networks over ten instances. The horizontal lines in the boxplots indicate the
median and the triangles the mean results. Instances from the VFR-small set are used.
The dashed line shows the average RPD of BSpour.

47

6. Results

AJ
NN

ad
d,

=
1

AJ
NN

ad
d,

=
10

AJ
NN

ad
d,

=
20

AJ
NN

ad
d,

=
50

M
LP

,
=

1

M
LP

,
=

10

M
LP

,
=

20

M
LP

,
=

50

M
LP

IT
LB

,
=

1

M
LP

IT
LB

,
=

10

M
LP

IT
LB

,
=

20

M
LP

IT
LB

,
=

50

NN
ne

ar
es

t,
=

1

NN
ne

ar
es

t,
=

10

NN
ne

ar
es

t,
=

20

NN
ne

ar
es

t,
=

50

IT
LB

,
=

1

IT
LB

,
=

10

IT
LB

,
=

20

IT
LB

,
=

50
NN Configurations

0

5

10

15

20

25

RP
D

re
la

tiv
e

to
 B

S L
S,

po
ur

Instance n = 20, m = 10

Figure 6.3: The figure shows the results of the NNs on the same instance sizes for n
and m as they were trained on and the results for ITLB relative to BSLS,pour for n = 20
and m = 10. Each boxplot of the NNs represents results over ten runs with individually
trained networks over ten instances. The horizontal lines in the boxplots indicate the
median and the triangles the mean results. Instances from the VFR-small set are used.
The dashed line shows the average RPD of BSpour.

48

6.3. Generalization over m

AJ
NN

ad
d,

=
1

AJ
NN

ad
d,

=
10

AJ
NN

ad
d,

=
20

AJ
NN

ad
d,

=
50

M
LP

,
=

1

M
LP

,
=

10

M
LP

,
=

20

M
LP

,
=

50

M
LP

IT
LB

,
=

1

M
LP

IT
LB

,
=

10

M
LP

IT
LB

,
=

20

M
LP

IT
LB

,
=

50

NN
ne

ar
es

t,
=

1

NN
ne

ar
es

t,
=

10

NN
ne

ar
es

t,
=

20

NN
ne

ar
es

t,
=

50

IT
LB

,
=

1

IT
LB

,
=

10

IT
LB

,
=

20

IT
LB

,
=

50

NN Configurations

0

5

10

15

20

RP
D

re
la

tiv
e

to
 B

S L
S,

po
ur

Instance n = 20, m = 20

Figure 6.4: The figure shows the results of the NNs on the same instance sizes for n
and m as they were trained on and the results for ITLB relative to BSLS,pour for n = 20
and m = 20. Each boxplot of the NNs represents results over ten runs with individually
trained networks over ten instances. The horizontal lines in the boxplots indicate the
median and the triangles the mean results. Instances from the VFR-small set are used.
The dashed line shows the average RPD of BSpour.

49

6. Results

Table 6.1: The table shows the results of Wilcoxon rank-sum tests when testing whether
hitlb is worse in terms of the resulting objective value than the NNs when run on the same
instances as trained. As an alternative hypothesis, we use that the compared method is
better than hitlb. Further, α = 0.05 is used. The tests are performed on runs with the
same β values. Note that the results for hitlb are ten times the same per instance as it is
a deterministic method. Significant results where H0 can be rejected are written in bold
and marked with a *.

Methods β = 1 β = 10 β = 20 β = 50
MLP 1.00 1.00 1.00 1.00
MLP , n = 10, m = 20 1.00 1.00 0.96 0.86
MLP , n = 20, m = 10 1.00 1.00 1.00 1.00
MLP , n = 20, m = 20 1.00 0.99 0.95 0.99
MLPITLB , n = 10, m = 10 0.28 0.08 0.20 0.75
MLPITLB , n = 10, m = 20 0.21 0.42 0.62 0.32
MLPITLB , n = 20, m = 10 0.90 *0.02 *0.00 *0.01
MLPITLB , n = 20, m = 20 *0.01 0.12 0.17 0.24
AJNNadd , n = 10, m = 10 *0.00 *0.00 0.13 0.32
AJNNadd , n = 10, m = 20 *0.00 0.28 *0.04 0.57
AJNNadd , n = 20, m = 10 0.79 *0.01 *0.00 *0.02
AJNNadd , n = 20, m = 20 *0.00 *0.03 *0.03 0.07
NNnearest , n = 10, m = 10 *0.00 *0.02 *0.03 0.77
NNnearest , n = 10, m = 20 *0.00 0.30 *0.02 0.24
NNnearest , n = 20, m = 10 0.76 *0.00 *0.00 *0.00
NNnearest , n = 20, m = 20 *0.01 0.17 0.13 0.10

Table 6.2: The table shows the results of Wilcoxon rank sum tests, when testing for two
models trained on the same n but different m the one is yields better results than the
other. In the table e.g. m = 10 < m = 20 denotes the results when testing whether the
model trained with m = 10 is better than the model trained with m = 20. The table
shows that there are no significant differences on a level of α = 0.05.

n = 10 n = 20
Methods m = 10 < m = 20 m = 20 < m = 10 m = 10 < m = 20 m = 20 < m = 10
MLP 0.11 0.89 0.72 0.28
MLPITLB 0.58 0.42 0.47 0.53
AJNNadd 0.16 0.84 0.89 0.11
NNnearest 0.40 0.60 0.65 0.35

50

6.3. Generalization over m

n
=

10
,m

=
5

n
=

10
,m

=
10

n
=

10
,m

=
15

n
=

10
,m

=
20

Instances

0

5

10

15

20

RP
D

re
la

tiv
e

to
 B

S L
S,

po
ur

Generalize over m for n = 10, = 10
AJNNadd, m = 10
AJNNadd, m = 20
MLP, m = 10
MLP, m = 20
MLPITLB, m = 10
MLPITLB, m = 20
NNnearest, m = 10
NNnearest, m = 20
ITLB

Figure 6.5: The figure shows the results of the NNs on instances with the same number
of jobs as they were trained on n = 10 and m ∈ {5, 10, 15, 20}. The results for ITLB
are included as reference. For evaluation β = 10 is used. All results are relative to
BSpour. Each boxplot of the NNs contains results for ten runs with individually trained
networks over ten instances. The horizontal lines in the boxplots show the median and
the triangles the mean results. Instances from the VFR-small set are used. The dashed
line shows the average RPD of BSpour.

51

6. Results

n
=

20
,m

=
5

n
=

20
,m

=
10

n
=

20
,m

=
15

n
=

20
,m

=
20

Instances

5

0

5

10

15

20

25

RP
D

re
la

tiv
e

to
 B

S L
S,

po
ur

Generalize over m for n = 20, = 10
AJNNadd, m = 10
AJNNadd, m = 20
MLP, m = 10
MLP, m = 20
MLPITLB, m = 10
MLPITLB, m = 20
NNnearest, m = 10
NNnearest, m = 20
ITLB

Figure 6.6: The figure shows the results of the NNs on instances with the same number
of jobs as they were trained on n = 20 and m ∈ {5, 10, 15, 20}. The results for ITLB
are included as reference. For evaluation β = 10 is used. All results are relative to
BSpour. Each boxplot of the NNs contains results for ten runs with individually trained
networks over ten instances. The horizontal lines in the boxplots show the median and
the triangles the mean results. Instances from the VFR-small set are used. The dashed
line shows the average RPD of BSpour.

52

6.4. Generalization over n and m

6.4 Generalization over n and m

In this section we evaluate whether the NNs generalize well over n and also over n and
m at the same time. We evaluate all trained NNs on all instances in VFR-small with
β = 100. The results for instances with m ∈ {5, 10, 15, 20} are reported in Figures 6.7,
6.8, 6.9, and 6.10.

Generalization over n with m = 5:
The results in Figure 6.7 show that MLPITLB and hitlb generalize well and are able to
constantly improve the best known results for some instances, even if only run with
β = 100. The MLPbasic performs second best on average and shows only a moderate
growth of its average RPD with increasing n

Generalization over n with m = 10:
The results in Figure 6.8 show that MLPITLB generalizes again well over increasing n
and looks slightly better than hitlb. Nevertheless, the statistical test results in Table 6.3
show that this difference is not significant. Further, AJNNadd and NNnearest trained on
n = 20,m = 10 generalize well over increasing n as they only have a moderate growth of
their average RPD. Surprisingly this does not hold for their configurations trained on
n = 10.

Generalization over n with m = 15:
The results in Figure 6.9 show that MLPITLB and hitlb again perform well and also the
results of MLPbasic have a moderate RPD growth.

Generalization over n with m = 20:
The results in Figure 6.10 show that again MLPITLB and hitlb perform best. Further,
MLPbasic performs good. For this instances AJNNadd and NNnearest trained on n =
20,m = 20 generalize well.

Overall Results:
Overall MLPITLB and hitlb show excellent performance in generalization over n and also
good performance when generalizing over n and m at the same time. We observe that
training on bigger instances regarding n yields better results in generalizing to bigger
instances. Further, MLPbasic shows well but not excellent performance. Nevertheless,
we want to highlight that this method is the fastest and thus could in theory use a
higher β and terminate in the same time as the methods containing ITLB. The average
runtimes over instances of increasing n and m = 20 are shown in Figure 6.11. Figures
for m ∈ {5, 10, 15} are omitted as they show the same trend with smaller runtimes. The
figure shows that AJNNadd has the highest average runtime, followed by NNnearest. Both
have a steep increase in runtime. The average runtimes of MLPITLB and hitlb are similar,
and also have a steep increase. The average runtimes of MLPbasic increase only slowly and
are the lowest. For AJNNadd and NNnearest we observed that they benefit from training
on bigger instances, i.e., n = 20. As already observed in Section 6.3 these network types
do not perform well in generalizing over m. The AJNNadd and NNnearest trained with
n = 20 show a well generalization behavior when evaluated on instances with the same

53

6. Results

n
=

10
,m

=
5

n
=

20
,m

=
5

n
=

30
,m

=
5

n
=

40
,m

=
5

n
=

50
,m

=
5

n
=

60
,m

=
5

Instances

0

5

10

15

20

RP
D

re
la

tiv
e

to
 B

S L
S,

po
ur

Generalize over n for m = 5, = 100
AJNNadd, n = 10, m = 10
AJNNadd, n = 10, m = 20
AJNNadd, n = 20, m = 10
AJNNadd, n = 20, m = 20
MLP, n = 10, m = 10
MLP, n = 10, m = 20
MLP, n = 20, m = 10
MLP, n = 20, m = 20
MLPITLB, n = 10, m = 10
MLPITLB, n = 10, m = 20
MLPITLB, n = 20, m = 10
MLPITLB, n = 20, m = 20
NNnearest, n = 10, m = 10
NNnearest, n = 10, m = 20
NNnearest, n = 20, m = 10
NNnearest, n = 20, m = 20
ITLB, = 100

Figure 6.7: The figure shows the results of the NNs when generalizing over m and n.
The results for ITLB are included as a reference. For evaluation β = 100 is used. All
results are relative to BSpour. Instances from the VFR-small set with m = 5 are used.
The dashed line shows the average RPD of BSpour.

number of machines m they were trained with. Nevertheless, neither configuration is
statistically significantly better than hitlb, when compared over all instances or instances
with the same m used for training. The results of the statistical test are provided in
Tables 6.4, and 6.3.

6.5 Approximation Errors over Layers

This section evaluates how well the NNs approximate the remaining cost on the different
layers in the BS. The evaluation is done for all four NNs types trained on n = 20,m = 20
as these configurations scaled well over the number of jobs n.

Results are shown in Figures 6.12, 6.13, 6.14, 6.15, and 6.16 for n ∈ {10, 20, . . . , 50}.

54

6.5. Approximation Errors over Layers

n
=

10
,m

=
10

n
=

20
,m

=
10

n
=

30
,m

=
10

n
=

40
,m

=
10

n
=

50
,m

=
10

n
=

60
,m

=
10

Instances

5

0

5

10

15

20

25

RP
D

re
la

tiv
e

to
 B

S L
S,

po
ur

Generalize over n for m = 10, = 100
AJNNadd, n = 10, m = 10
AJNNadd, n = 10, m = 20
AJNNadd, n = 20, m = 10
AJNNadd, n = 20, m = 20
MLP, n = 10, m = 10
MLP, n = 10, m = 20
MLP, n = 20, m = 10
MLP, n = 20, m = 20
MLPITLB, n = 10, m = 10
MLPITLB, n = 10, m = 20
MLPITLB, n = 20, m = 10
MLPITLB, n = 20, m = 20
NNnearest, n = 10, m = 10
NNnearest, n = 10, m = 20
NNnearest, n = 20, m = 10
NNnearest, n = 20, m = 20
ITLB, = 100

Figure 6.8: The figure shows the results of the NNs when generalizing over m and n.
The results for ITLB are included as a reference. For evaluation β = 100 is used. All
results are relative to BSpour. Instances from the VFR-small set with m = 10 are used.
The dashed line shows the average RPD of BSpour.

Table 6.3: The table shows the results of the Wilcoxon rank-sum test when testing
whether hitlb is worse in terms of the resulting objective value than the NNs when
evaluated over all instances of the VFR-small set which have the same m as the model
was trained with and n ∈ {10, 20, . . . , 60}. As an alternative hypothesis, we use that the
compared method is better than hitlb. In the table, one row represents the statistical test
results for one NN type, and each column represents the instance class it was trained.
The table shows that none of the NNs is significantly better than hitlb.

Methods n = 10,m = 10 n = 10,m = 20 n = 20,m = 10 n = 20,m = 20
MLP 0.96 0.98 0.62 0.55
MLPITLB 0.36 0.52 0.46 0.16
AJNNadd 1.00 0.95 0.69 0.60
NNnearest 1.00 0.92 0.71 0.52

55

6. Results

n
=

10
,m

=
15

n
=

20
,m

=
15

n
=

30
,m

=
15

n
=

40
,m

=
15

n
=

50
,m

=
15

n
=

60
,m

=
15

Instances

5

0

5

10

15

20

RP
D

re
la

tiv
e

to
 B

S L
S,

po
ur

Generalize over n for m = 15, = 100
AJNNadd, n = 10, m = 10
AJNNadd, n = 10, m = 20
AJNNadd, n = 20, m = 10
AJNNadd, n = 20, m = 20
MLP, n = 10, m = 10
MLP, n = 10, m = 20
MLP, n = 20, m = 10
MLP, n = 20, m = 20
MLPITLB, n = 10, m = 10
MLPITLB, n = 10, m = 20
MLPITLB, n = 20, m = 10
MLPITLB, n = 20, m = 20
NNnearest, n = 10, m = 10
NNnearest, n = 10, m = 20
NNnearest, n = 20, m = 10
NNnearest, n = 20, m = 20
ITLB, = 100

Figure 6.9: The figure shows the results of the NNs when generalizing over m and n.
The results for ITLB are included as a reference. For evaluation β = 100 is used. All
results are relative to BSpour. Instances from the VFR-small set with m = 15 are used.
The dashed line shows the average RPD of BSpour.

Table 6.4: The table shows the results of the Wilcoxon rank-sum test when testing
whether hitlb is worse in terms of the resulting objective value than the NNs when
evaluated over all instances of the VFR-small set. As an alternative hypothesis, we use
that the compared method is better than hitlb. In the table, one row represents the
statistical test results for one NN type, and each column represents the instance class it
was trained. The table shows that none of the NNs is significantly better than hitlb.

Methods n = 10,m = 10 n = 10,m = 20 n = 20,m = 10 n = 20,m = 20
MLP 0.79 0.94 0.78 0.95
MLPITLB 0.36 0.37 0.23 0.67
AJNNadd 1.00 1.00 1.00 1.00
NNnearest 1.00 1.00 0.99 0.98

56

6.5. Approximation Errors over Layers

n
=

10
,m

=
20

n
=

20
,m

=
20

n
=

30
,m

=
20

n
=

40
,m

=
20

n
=

50
,m

=
20

n
=

60
,m

=
20

Instances

0

5

10

15

20

25

RP
D

re
la

tiv
e

to
 B

S L
S,

po
ur

Generalize over n for m = 20, = 100
AJNNadd, n = 10, m = 10
AJNNadd, n = 10, m = 20
AJNNadd, n = 20, m = 10
AJNNadd, n = 20, m = 20
MLP, n = 10, m = 10
MLP, n = 10, m = 20
MLP, n = 20, m = 10
MLP, n = 20, m = 20
MLPITLB, n = 10, m = 10
MLPITLB, n = 10, m = 20
MLPITLB, n = 20, m = 10
MLPITLB, n = 20, m = 20
NNnearest, n = 10, m = 10
NNnearest, n = 10, m = 20
NNnearest, n = 20, m = 10
NNnearest, n = 20, m = 20
ITLB, = 100

Figure 6.10: The figure shows the results of the NNs when generalizing over m and n.
The results for ITLB are included as a reference. For evaluation β = 100 is used. All
results are relative to BSpour. Instances from the VFR-small set with m = 20 are used.
The dashed line shows the average RPD of BSpour.

Note that layer c yields instances of size n − c, which the NNs must approximate. A
NN trained on n = 20 therefore must generalize if instances of sizes n − c ≥ 20 are
inputted. For AJNNadd and NNnearest it shows that for n ∈ {10, 20, , 30} the boxplots
without outliers stay into a +/− 25%RPD range and also most outliers stay within this
range. For n = 40, still, most of the boxplots stay within the +/ − 25%RPD range.
However, the layers one to ten outliers are approximately within a +/− 50%RPD. The
observed behavior seems reasonable, as the models were not trained on sizes of instances
of n ∈ {31, 32, . . . , 40}. Starting from layer 11, the figure is similar to the figure of n = 30.
For n = 40 AJNNadd seems to underestimate the results, while NNnearest is closer at zero.
For n = 50 the trend of the evaluation on n = 40 continues. Again, the approximation
results for layers where the size of the instances is bigger than the models are trained,
i.e., layers one to 20, have a higher approximation error than on the sizes where they

57

6. Results

n1
0_

m
20

n2
0_

m
20

n3
0_

m
20

n4
0_

m
20

n5
0_

m
20

n6
0_

m
20

Instances

0

50

100

150

200

250

Av
er

ag
e

Ru
nt

im
e

in
 S

ec
on

ds

Runtimes for variable n and m = 20, = 100
AJNNadd, n = 10, m = 10
AJNNadd, n = 10, m = 20
AJNNadd, n = 20, m = 10
AJNNadd, n = 20, m = 20
MLP, n = 10, m = 10
MLP, n = 10, m = 20
MLP, n = 20, m = 10
MLP, n = 20, m = 20
MLPITLB, n = 10, m = 10
MLPITLB, n = 10, m = 20
MLPITLB, n = 20, m = 10
MLPITLB, n = 20, m = 20
NNnearest, n = 10, m = 10
NNnearest, n = 10, m = 20
NNnearest, n = 20, m = 10
NNnearest, n = 20, m = 20
ITLB, = 100

Figure 6.11: The figure shows average runtime in seconds over instances with increasing
n and m = 20. Even though the data is not continuous, we connect the data points of
the instance classes to visualize the trend.

were trained. The range of the boxplots and outliers is approximately within [−75, 100].
On average, the AJNNadd again underestimates the results.

The figures show for the MLPbasic and MLPITLB that they approximate the results well
for layers yielding instance sizes where they are not trained. Nevertheless, starting with
n = 40, they tend to underestimate the results for lower layers. For higher layers, the
approximation errors get higher for both MLPbasic and MLPITLB. For MLPbasic the
approximation errors on the last layers in every figure become almost infinitely high,
which is not shown in the figures.

6.6 Comparison with State-of-the-Art
In this section we compare the NNs with BSLS,pour and BSpour. The comparison with
BSLS,pour is important as BSLS,pour represents the current state-of-the-art. However,
BSpour uses the same guidance function as BSLS,pour but without local search and will
therefore be our primary reference when evaluating the quality of the learned functions.

58

6.6. Comparison with State-of-the-Art

1 2 3 4 5 6 7 8 9

Layers of BS
100

75

50

25

0

25

50

75

100

RP
D

fro
m

 se
lf

la
be

le
d

in
st

an
ce

s w
ith

=

50

Approximation of cost increase for random Instances n = 10, m = 20
AJNNadd, n = 20, m = 20
NNnearest, n = 20, m = 20
MLPITLB, n = 20, m = 20
MLP, n = 20, m = 20

Figure 6.12: The figure shows the resulting approximation errors made by the machine
learning models for n = 10 and m = 20. In total, 1000 random samples on different layers
of the BS were created for each method independently by using the implementation of
our replay buffer together with a fully trained NN. The beam width during the generation
used for the NBS calls is β′ = 50, samples are taken from BS runs with β = 100. For each
configuration, the training samples and labels were generated once using the configuration
itself for labeling and then evaluated once with every trained model, i.e., ten times. Each
boxplot consists of a different number of samples due to the randomness of the generation.
In total, there are 10 · 103 samples per configuration. On the vertical axis, the charts
show the RPD to the labels. Thus, if values greater than zero are reported, the NN
reported a higher objective value than it was, i.e., it overestimated the result. Values
smaller than zero denote that the values reported by the NN are lower than the labels.
The horizontal axes are fixed to a range from 100 to −100 and thus might not show all
data.

Note that we frequently compare our models evaluated with β = 100 with BSLS,pour
and BSpour that were evaluated with β = 600. This is done to limit the runtime our
approaches need.

The comparison on the VFR-small test instances in Table 6.5 and 6.6 show that all NNs
could outperform BSpour on at least eight out of 24 instance classes on average with
β = 100. The best performance is shown by MLPITLB m ∈ 10, 20 which outperformed
BSpour on all instance classes on average and BSLS,pour on seven and five instance classes.
Equally well performance is also shown by hitlb which also outperformed BSpour on
average on all instance classes. Observe that AJNNadd and NNnearest outperform BSpour
on nine and ten instance classes on average and are able to outperform BSLS,pour on
two to five instance classes. This behavior seems reasonable, as there are in total 12
instances with n ≤ 30 and thus in a range where the AJNNadd and NNnearest trained on

59

6. Results

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Layers of BS

100

75

50

25

0

25

50

75

100
RP

D
fro

m
 se

lf
la

be
le

d
in

st
an

ce
s w

ith

=
50

Approximation of cost increase for random Instances n = 20, m = 20
AJNNadd, n = 20, m = 20
NNnearest, n = 20, m = 20
MLPITLB, n = 20, m = 20
MLP, n = 20, m = 20

Figure 6.13: The figure shows the resulting approximation errors made by the machine
learning models for n = 20 and m = 20. In total, 1000 random samples on different layers
of the BS were created for each method independently by using the implementation of
our replay buffer together with a fully trained NN. The beam width during the generation
used for the NBS calls is β′ = 50, samples are taken from BS runs with β = 100. For each
configuration, the training samples and labels were generated once using the configuration
itself for labeling and then evaluated once with every trained model, i.e., ten times. Each
boxplot consists of a different number of samples due to the randomness of the generation.
In total, there are 10 · 103 samples per configuration. On the vertical axis, the charts
show the RPD to the labels. Thus, if values greater than zero are reported, the NN
reported a higher objective value than it was, i.e., it overestimated the result. Values
smaller than zero denote that the values reported by the NN are lower than the labels.
The horizontal axes are fixed to a range from 100 to −100 and thus might not show all
data.

n = 20 perform well. Even though MLPbasic is not among the top performers in this
comparison, it yields staple results by outperforming BSpour on eight and 12 instance
classes on average while having the lowest runtime with less than 23 seconds on average
for n = 60 m = 20.

The results for TA-small in Table 6.7 and Figure 6.17 and the results for REC in Table
6.8 and Figure 6.18 show similar results as already observed for the VFR-small data set.
The MLPITLB trained on n = 20 and m = 20 outperformed BSpour on nine out of 12
tested TA-small instance classes and on all REC instance classes. The same holds for
hitlb.

Results for selected instance classes of the VFR-large instance set are shown in Figure
6.19, and Table 6.9. Due to the size of the instances and the resulting runtime, we

60

6.6. Comparison with State-of-the-Art

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Layers of BS

100

75

50

25

0

25

50

75

100

RP
D

fro
m

 se
lf

la
be

le
d

in
st

an
ce

s w
ith

=

50

Approximation of cost increase for random Instances n = 30, m = 20
AJNNadd, n = 20, m = 20
NNnearest, n = 20, m = 20
MLPITLB, n = 20, m = 20
MLP, n = 20, m = 20

Figure 6.14: The figure shows the resulting approximation errors made by the machine
learning models for n = 30 and m = 20. In total, 1000 random samples on different layers
of the BS were created for each method independently by using the implementation of
our replay buffer together with a fully trained NN. The beam width during the generation
used for the NBS calls is β′ = 50, samples are taken from BS runs with β = 100. For each
configuration, the training samples and labels were generated once using the configuration
itself for labeling and then evaluated once with every trained model, i.e., ten times. Each
boxplot consists of a different number of samples due to the randomness of the generation.
In total, there are 10 · 103 samples per configuration. On the vertical axis, the charts
show the RPD to the labels. Thus, if values greater than zero are reported, the NN
reported a higher objective value than it was, i.e., it overestimated the result. Values
smaller than zero denote that the values reported by the NN are lower than the labels.
The horizontal axes are fixed to a range from 100 to −100 and thus might not show all
data.

performed tests only on instances up to n = 400 and m ∈ {20, 40, 60}. The MLPbasic was
only tested on instances with n = 100. On these instances MLPITLB could on average
outperform BSpour. Further, MLPITLB also performs better than hitlb with β = 100 on
average. However, MLPbasic could not outperform BSpour on average. This might be
due to the difference in beam widths, that might have a bigger impact the bigger the
instances get.

Overall we could outperform BSLS,pour on average on 10 out of 24 VFR-small instance
classes, six out of 12 TA-small instance classes, four out of seven REC instance classes,
and on zero out of 12 tested VFR-large instance classes. Further, we outperformed BSpour
on all instances of VFR-small, TA-small and REC, except for two TA-small instances
with n =∈ {100, 500} with β = 100.

61

6. Results

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Layers of BS

100 75 50 25 0 25 50 75

100

RPD from self labeled instances with = 50

Approxim
ation of cost increase for random

 Instances n=
40,m

=
20

AJNN
add ,

n=
20,

m
=

20
NN

nearest ,
n=

20,
m

=
20

M
LP

ITLB ,
n=

20,
m

=
20

M
LP,

n=
20,

m
=

20

Figure
6.15:

T
he

figure
show

s
the

resulting
approxim

ation
errors

m
ade

by
the

m
achine

learning
m
odels

for
n

=
40

and
m

=
20.

In
total,1000

random
sam

pleson
differentlayersofthe

BS
were

created
foreach

m
ethod

independently
by

using
the

im
plem

entation
ofour

replay
buffer

together
w
ith

a
fully

trained
N
N
.T

he
beam

w
idth

during
the

generation
used

for
the

N
BS

calls
is
β

′=
50,sam

ples
are

taken
from

BS
runs

w
ith

β
=

100.
For

each
configuration,the

training
sam

ples
and

labels
w
ere

generated
once

using
the

configuration
itselffor

labeling
and

then
evaluated

once
w
ith

every
trained

m
odel,i.e.,ten

tim
es.

Each
boxplot

consists
ofa

different
num

ber
ofsam

ples
due

to
the

random
ness

ofthe
generation.

In
total,there

are
10
·10 3

sam
ples

per
configuration.

O
n
the

verticalaxis,the
charts

show
the

R
PD

to
the

labels.
T
hus,ifvalues

greater
than

zero
are

reported,the
N
N

reported
a
higher

objective
value

than
it

was,i.e.,it
overestim

ated
the

result.
Values

sm
aller

than
zero

denote
that

the
values

reported
by

the
N
N

are
lower

than
the

labels.
T
he

horizontalaxes
are

fixed
to

a
range

from
100

to
−

100
and

thus
m
ight

not
show

alldata.

62

6.6. Comparison with State-of-the-Art

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

La
ye

rs
 o

f B
S

10
0755025025507510
0

RPD from self labeled instances with =50

Ap
pr

ox
im

at
io

n
of

 c
os

t i
nc

re
as

e
fo

r r
an

do
m

 In
st

an
ce

s n
=

50
,m

=
20 AJ

NN
ad

d,
n

=
20

,m
=

20
NN

ne
ar

es
t,

n
=

20
,m

=
20

M
LP

IT
LB

,n
=

20
,m

=
20

M
LP

,n
=

20
,m

=
20

Fi
gu

re
6.
16

:
T
he

fig
ur
e
sh
ow

s
th
e
re
su
lti
ng

ap
pr
ox

im
at
io
n
er
ro
rs

m
ad

e
by

th
e
m
ac
hi
ne

le
ar
ni
ng

m
od

el
s
fo
r
n

=
50

an
d

m
=

20
.
In

to
ta
l,
10
00

ra
nd

om
sa
m
pl
es

on
di
ffe

re
nt

la
ye
rs

of
th
e
BS

we
re

cr
ea
te
d
fo
re

ac
h
m
et
ho

d
in
de
pe

nd
en
tly

by
us
in
g
th
e

im
pl
em

en
ta
tio

n
of

ou
r
re
pl
ay

bu
ffe

r
to
ge
th
er

w
ith

a
fu
lly

tr
ai
ne
d
N
N
.T

he
be

am
w
id
th

du
rin

g
th
e
ge
ne
ra
tio

n
us
ed

fo
r
th
e

N
BS

ca
lls

is
β

′
=

50
,s

am
pl
es

ar
e
ta
ke
n
fro

m
BS

ru
ns

w
ith

β
=

10
0.

Fo
r
ea
ch

co
nfi

gu
ra
tio

n,
th
e
tr
ai
ni
ng

sa
m
pl
es

an
d
la
be

ls
w
er
e
ge
ne

ra
te
d
on

ce
us
in
g
th
e
co
nfi

gu
ra
tio

n
its

el
ff
or

la
be

lin
g
an

d
th
en

ev
al
ua

te
d
on

ce
w
ith

ev
er
y
tr
ai
ne

d
m
od

el
,i
.e
.,
te
n

tim
es
.
Ea

ch
bo

xp
lo
t
co
ns
ist

s
of

a
di
ffe

re
nt

nu
m
be

r
of

sa
m
pl
es

du
e
to

th
e
ra
nd

om
ne

ss
of

th
e
ge
ne

ra
tio

n.
In

to
ta
l,
th
er
e
ar
e

10
·1

03
sa
m
pl
es

pe
r
co
nfi

gu
ra
tio

n.
O
n
th
e
ve
rt
ic
al

ax
is,

th
e
ch
ar
ts

sh
ow

th
e
R
PD

to
th
e
la
be

ls.
T
hu

s,
if
va
lu
es

gr
ea
te
r
th
an

ze
ro

ar
e
re
po

rt
ed

,t
he

N
N

re
po

rt
ed

a
hi
gh

er
ob

je
ct
iv
e
va
lu
e
th
an

it
wa

s,
i.e

.,
it

ov
er
es
tim

at
ed

th
e
re
su
lt.

Va
lu
es

sm
al
le
r
th
an

ze
ro

de
no

te
th
at

th
e
va
lu
es

re
po

rt
ed

by
th
e
N
N

ar
e
lo
we

r
th
an

th
e
la
be

ls.
T
he

ho
riz

on
ta
la

xe
s
ar
e
fix

ed
to

a
ra
ng

e
fro

m
10

0
to
−

10
0
an

d
th
us

m
ig
ht

no
t
sh
ow

al
ld

at
a.

63

6. Results

n
=

20
,m

=
5

n
=

20
,m

=
10

n
=

20
,m

=
20

n
=

50
,m

=
5

n
=

50
,m

=
10

n
=

50
,m

=
20

n
=

10
0,

m
=

5

n
=

10
0,

m
=

10

n
=

10
0,

m
=

20

n
=

20
0,

m
=

10

n
=

20
0,

m
=

20

n
=

50
0,

m
=

20

Instances

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0
RP

D
re

la
tiv

e
to

 B
S L

S,
po

ur

Results for TA-small
MLP, n = 20, m = 10, = 100
MLP, n = 20, m = 20, = 100
MLPITLB, n = 20, m = 10, = 100
MLPITLB, n = 20, m = 20, = 100
ITLB, = 100
ITLB, = 600

Figure 6.17: The figure visualizes the results from Table 6.7. Each boxplot of the NNs
represents results over ten runs with individually trained networks over ten instances.
The horizontal lines in the boxplots indicate the median and the triangles the mean
results. Instances from the TA-small set are used. The dashed line shows the average
RPD of BSpour.

We did not test our approach on VFR-large and TA-large instances because the runtimes
exceeded our time limits.

64

6.6. Comparison with State-of-the-Art
Ta

bl
e
6.
5:

T
hi
s
Ta

bl
e
sh
ow

s
th
e
fir
st

pa
rt

of
th
e
re
su
lts

sh
ow

n
in

Fi
gu

re
s
6.
7,

6.
8,

6.
9,

an
d
6.
10

.
It

co
nt
ai
ns

th
e
av
er
ag

e
ob

je
ct
iv
e
va
lu
es
,t

he
st
an

da
rd

de
vi
at
io
ns
,a

nd
th
e
ru
nt
im

es
.
O
nl
y
re
su
lts

fo
r
N
N
s
tr
ai
ne

d
on

in
st
an

ce
siz

es
n

=
20

an
d

m
∈
{1

0,
20
}
ar
e
sh
ow

n
as

th
ey

pe
rfo

rm
ed

in
ge
ne

ra
lb

et
te
r
th
an

th
e
N
N
s
tr
ai
ne

d
w
ith

n
=

10
.
T
he

re
su
lts

we
re

pr
od

uc
ed

w
ith

β
=

10
0.

T
he

in
st
an

ce
s
ar
e
fro

m
th
e
V
FR

-s
m
al
li
ns
ta
nc
e
se
t.

Fo
r
ea
sie

r
co
m
pa

ris
on

we
ad

de
d
th
e
re
su
lts

of
h i

tl
b
as

we
ll

as
BS

po
ur

an
d
BS

LS
,p

ou
r.

T
he

be
st

re
su
lts

in
ea
ch

ro
w

ar
e
m
ar
ke
d
w
ith

**
w
he
re
as

we
m
ar
k
re
su
lts

th
at

ar
e
th
e
be

st
ex
ce
pt

fo
r
BS

LS
,p

ou
r
w
ith

*.
If
an

ap
pr
oa

ch
is

th
e
ov
er
al
lb

es
t
ap

pr
oa

ch
,i
t
is

on
ly

m
ar
ke
d
by

**
.
T
he

la
st

ro
w

of
th
e
ta
bl
e
sh
ow

s
ho

w
of
te
n
th
e
in
di
vi
du

al
ap

pr
oa

ch
w
as

ab
le

to
pe

rf
or
m

at
le
as
t
as

go
od

as
BS

LS
,p

ou
r
an

d
BS

po
ur
.
T
he

Ta
bl
e
co
nt
in
ue

s
in

Ta
bl
e
6.
6. In

st
an

ce
s

A
JN

N
ad

d,
m

=
10

A
JN

N
ad

d,
m

=
20

M
LP

,
m

=
10

M
LP

,
m

=
20

M
LP

IT
LB
,
m

=
10

n
m

x
σ

x
ru
nt
.

x
σ

x
ru
nt
.

x
σ

x
ru
nt
.

x
σ

x
ru
nt
.

x
σ

x
ru
nt
.

10
5

81
5.
9

45
.5

2.
6

82
5.
2

48
.2

2.
6

81
5.
5

46
.0

3.
1

81
7.
1

49
.1

3.
1

80
4.
1

47
.0

3.
6

10
10

12
54

.9
42

.3
2.
7

12
77

.3
53

.5
2.
7

12
74

.5
34

.6
3.
1

12
77

.6
45

.0
3.
1

12
55

.4
43

.2
3.
7

10
15

16
47

.2
69

.4
2.
8

16
48

.3
71

.1
2.
8

16
61

.6
69

.8
3.
1

16
55

.3
67

.8
3.
1

16
45

.6
67

.8
3.
8

10
20

19
76

.4
76

.8
2.
8

19
73

.8
74

.9
2.
8

20
05

.7
86

.4
3.
1

19
90

.4
83

.4
3.
1

19
73

.6
75

.0
3.
8

20
5

15
38

.4
10

2.
7

6.
7

15
69

.4
10

3.
9

6.
7

15
35

.8
92

.6
4.
4

15
36

.6
10

0.
5

4.
5

14
90

.8
93

.2
7.
0

20
10

**
20
53
.5

43
.5

7.
8

21
34

.5
74

.7
7.
8

21
20

.3
60

.9
4.
4

21
17

.5
61

.6
4.
4

20
61

.0
45

.7
8.
0

20
15

26
34

.4
10

9.
2

8.
5

26
14

.7
87

.9
8.
4

26
49

.3
91

.3
4.
4

26
33

.4
87

.3
4.
4

**
25
73
.0

85
.4

8.
5

20
20

31
29

.4
12

1.
2

9.
2

**
30
27
.8

12
5.
3

9.
2

31
18

.6
13

0.
9

4.
4

31
04

.5
12

4.
3

4.
3

30
38

.9
13

1.
1

9.
4

30
5

22
28

.8
75

.7
17

.0
22

56
.3

85
.5

17
.0

21
90

.5
70

.5
6.
7

21
98

.8
76

.4
7.
0

21
19

.1
60

.7
13

.8
30

10
28

24
.0

81
.9

19
.7

29
52

.2
11

8.
3

19
.6

28
98

.7
94

.9
6.
6

28
98

.9
10

0.
0

7.
2

28
16

.7
82

.2
16

.1
30

15
36

26
.3

10
5.
9

22
.0

35
81

.7
10

6.
0

22
.0

36
17

.8
92

.1
6.
8

35
90

.9
78

.3
7.
2

35
10

.4
82

.6
18

.5
30

20
43

19
.1

13
7.
0

24
.4

*4
08
5.
4

11
9.
7

24
.5

42
20

.4
14

4.
1

6.
7

41
56

.8
11

8.
5

7.
1

40
93

.7
11

7.
4

21
.0

40
5

30
36

.9
13

1.
9

37
.7

30
63

.1
13

9.
7

37
.6

29
24

.4
11

7.
2

10
.2

29
47

.3
11

7.
6

10
.1

28
49

.6
10

4.
4

24
.0

40
10

36
93

.8
10

7.
2

44
.4

38
50

.9
12

7.
7

44
.4

37
34

.2
80

.7
10

.1
37

38
.0

90
.2

10
.2

*3
64
4.
1

95
.0

30
.1

40
15

46
68

.1
17

3.
9

51
.3

46
07

.0
15

7.
1

51
.5

45
39

.8
13

1.
6

10
.1

45
30

.6
12

2.
7

10
.4

44
49

.3
10

2.
1

37
.5

40
20

55
48

.8
22

9.
7

58
.8

51
90

.1
15

7.
4

59
.0

52
90

.2
17

2.
2

9.
9

52
40

.1
14

7.
5

10
.6

51
41

.4
16

0.
5

44
.5

50
5

37
54

.7
17

3.
3

74
.3

37
91

.2
19

0.
0

74
.3

36
03

.2
16

6.
1

15
.0

36
22

.6
16

9.
3

15
.7

34
79

.0
15

1.
9

41
.0

50
10

45
86

.2
15

8.
2

88
.5

47
85

.2
18

7.
6

88
.3

45
64

.5
10

8.
4

15
.0

45
79

.2
12

7.
3

15
.3

*4
46
1.
7

96
.7

55
.5

50
15

57
63

.7
19

6.
2

10
6.
0

56
62

.1
19

6.
9

10
6.
2

54
85

.4
12

2.
9

14
.8

54
82

.1
11

8.
1

15
.3

53
80

.6
11

6.
3

72
.4

50
20

68
58

.0
24

6.
9

12
6.
7

64
35

.4
17

5.
9

12
6.
5

64
09

.2
18

1.
7

15
.3

63
33

.5
12

1.
7

14
.9

62
49

.1
13

7.
7

92
.7

60
5

44
98

.7
19

5.
6

13
6.
5

45
04

.7
20

4.
0

13
6.
3

42
54

.8
14

9.
2

22
.2

42
89

.7
17

5.
6

22
.3

41
39

.0
12

5.
7

66
.3

60
10

55
68

.8
19

3.
2

16
7.
0

57
86

.3
24

5.
2

16
5.
7

54
81

.4
12

4.
8

22
.2

55
19

.0
13

8.
1

22
.8

53
62

.0
11

3.
7

96
.8

60
15

68
29

.5
25

9.
3

20
3.
9

67
15

.4
25

3.
5

20
3.
0

64
49

.0
13

3.
3

21
.7

64
71

.1
14

7.
9

22
.7

63
41

.4
14

1.
8

13
3.
1

60
20

81
05

.6
30

5.
4

24
5.
1

76
01

.8
25

5.
8

24
5.
3

74
66

.7
23

1.
2

21
.5

74
19

.3
16

6.
4

22
.4

72
48

.8
19

0.
3

17
3.
6

O
ut
pe

rfo
rm

ed
:

BS
po

ur
=

9,
BS

LS
,p

ou
r

=
5

BS
po

ur
=

9,
BS

LS
,p

ou
r

=
3

BS
po

ur
=

8,
BS

LS
,p

ou
r

=
0

BS
po

ur
=

12
,B

S L
S,

po
ur

=
0

BS
po

ur
=

24
,B

S L
S,

po
ur

=
7

65

6. Results
Table

6.6:
T
his

Table
show

s
the

first
part

ofthe
results

show
n
in

Figures
6.7,6.8,6.9,and

6.10.
It

contains
the

average
objective

values,the
standard

deviations,and
the

runtim
es.

O
nly

results
for

N
N
s
trained

on
instance

sizes
n

=
20

and
m
∈
{10

,20}
are

show
n
as

they
perform

ed
in

generalbetter
than

the
N
N
s
trained

w
ith

n
=

10.
T
he

results
were

produced
w
ith

β
=

100.
T
he

instances
are

from
the

V
FR

-sm
allinstance

set.
For

easier
com

parison
we

added
the

results
ofh

itlb
as

well
as

BS
pour and

BS
LS,pour .

T
he

best
results

in
each

row
are

m
arked

w
ith

**
w
hereas

we
m
ark

results
that

are
the

best
except

for
BS

LS,pour w
ith

*.
Ifan

approach
is

the
overallbest

approach,it
is

only
m
arked

by
**.

T
he

last
row

ofthe
table

show
s

how
often

the
individualapproach

w
as

able
to

perform
at

least
as

good
as

BS
LS,pour and

BS
pour .

T
he

Tables
first

part
is

given
in

Table
6.5.

Instances
M

LP
IT

LB
,
m

=
20

N
N

nearest ,
m

=
10

N
N

nearest ,
m

=
20

IT
LB

,
β

=
100

BS
LS

,pour
BS

pour

n
m

x
σ

x
runt.

x
σ

x
runt.

x
σ

x
runt.

x
σ

x
runt.

x
σ

x
x

σ
x

10
5

804.8
47.0

3.6
821.0

52.0
8.6

823.2
44.6

8.5
**802.6

45.2
25.4

806.2
43.4

823.1
40.3

10
10

1254.8
42.1

3.7
1255.3

42.9
8.6

1280.2
48.0

8.6
**1254.6

41.9
25.2

1261.5
45.5

1300.5
45.9

10
15

**1645.6
67.4

3.7
1650.2

71.4
8.6

1656.2
74.5

8.6
1645.7

66.8
25.7

1652.1
73.3

1671.2
77.0

10
20

1973.4
74.9

3.8
1982.4

79.8
8.6

1974.5
74.6

8.6
**1973.4

74.9
25.5

1977.9
76.8

1997.6
95.9

20
5

1495.6
95.1

7.1
1546.0

104.1
13.6

1559.6
103.5

13.6
*1489.8

96.3
27.7

**1484.1
89.7

1519.8
92.0

20
10

2066.4
50.7

7.9
2055.0

43.4
14.3

2125.3
61.1

14.2
2071.7

53.5
28.5

2061.1
51.8

2137.9
69.3

20
15

2579.2
85.7

8.6
2649.7

120.6
15.0

2642.0
86.7

15.0
2588.9

92.1
29.3

2573.2
87.4

2661.0
122.4

20
20

3039.7
132.8

9.3
3170.8

170.1
15.8

3028.2
126.1

15.9
3055.1

146.7
29.3

3035.6
130.1

3205.7
162.9

30
5

2127.0
65.8

13.7
2226.6

83.8
25.9

2261.3
76.0

25.9
**2112.3

59.7
20.9

2118.0
57.8

2167.4
69.6

30
10

2831.6
90.5

16.0
**2815.1

82.3
28.5

2931.7
104.7

28.3
2833.2

81.0
21.9

2825.2
81.4

2917.2
109.1

30
15

**3501.9
74.7

18.7
3633.8

120.1
31.1

3587.9
85.0

31.2
3554.8

77.9
23.5

3503.0
77.5

3600.4
107.2

30
20

4088.8
113.3

21.0
4329.0

186.9
33.8

4088.0
112.9

33.8
4120.6

106.9
24.8

**4076.0
96.3

4204.5
123.0

40
5

2866.0
108.6

24.0
3011.8

134.4
50.5

3077.8
128.4

50.6
*2847.6

107.7
22.8

**2827.6
94.9

2876.8
84.9

40
10

3658.4
77.1

30.3
3658.5

91.2
57.0

3802.2
111.0

56.7
3678.7

75.3
27.1

**3624.1
91.2

3729.1
96.7

40
15

*4446.3
98.5

37.4
4625.5

154.9
63.5

4564.2
121.6

63.7
4468.6

85.0
32.5

**4398.9
85.2

4543.5
93.8

40
20

*5130.5
159.5

44.5
5512.2

247.2
71.0

5225.7
165.4

71.9
5177.2

181.6
40.1

**5097.4
151.7

5231.0
193.1

50
5

3498.9
159.8

41.3
3722.1

172.4
92.8

3807.7
180.9

93.4
*3460.2

166.0
32.3

**3447.3
142.7

3520.3
141.1

50
10

4470.4
93.1

55.6
4535.4

125.0
107.1

4719.6
167.3

106.3
4476.1

106.6
59.1

**4436.4
113.7

4544.8
135.4

50
15

*5370.1
115.1

73.0
5684.5

185.0
123.7

5563.7
129.9

124.2
5444.3

97.6
66.9

**5311.7
101.7

5459.3
93.2

50
20

*6242.7
97.8

92.3
6743.1

270.0
143.7

6354.4
189.3

144.6
6327.7

168.6
84.6

**6157.8
96.2

6376.2
105.4

60
5

4147.2
138.5

66.0
4445.7

182.8
158.9

4528.9
196.8

161.0
*4123.0

131.4
68.2

**4072.9
120.6

4157.7
123.8

60
10

*5356.9
126.6

97.5
5486.6

154.0
189.4

5732.6
173.1

190.1
5393.5

138.6
85.1

**5304.5
81.6

5460.8
108.7

60
15

*6329.8
125.8

133.3
6713.6

210.6
224.8

6627.0
173.0

226.5
6396.6

126.6
110.2

**6247.3
136.2

6441.4
90.7

60
20

*7219.5
172.4

175.4
7892.7

343.3
268.4

7502.8
318.0

271.3
7363.1

205.1
143.5

**7152.9
135.3

7382.4
149.8

O
utperform

ed:
BS

pour =
24,BS

LS
,pour =

5
BS

pour =
10,BS

LS
,pour =

4
BS

pour =
10,BS

LS
,pour =

2
BS

pour =
24,BS

LS
,pour =

5
-

-

66

6.6. Comparison with State-of-the-Art

Ta
bl
e
6.
7:

Th
is
Ta

bl
e
sh
ow

st
he

re
su
lts

sh
ow

n
in

Fi
gu

re
6.
17
.I

tc
on

ta
in
st

he
av
er
ag
e
ob

je
ct
iv
e
va
lu
es
,t
he

st
an

da
rd

de
vi
at
io
ns
,

an
d
th
e
ru
nt
im

es
.
O
nl
y
re
su
lts

fo
r

M
LP

ba
si

c
an

d
M
LP

IT
LB

tr
ai
ne

d
on

in
st
an

ce
siz

es
n

=
20

an
d
m
∈
{1

0,
20
}
ar
e
sh
ow

n
be

ca
us
e
of

th
er
e
go

od
fo
rm

er
pe

rfo
rm

an
ce
.
T
he

re
su
lts

we
re

pr
od

uc
ed

w
ith

β
=

10
0.

T
he

in
st
an

ce
s
ar
e
fro

m
th
e
TA

-s
m
al
l

in
st
an

ce
se
t.

Fo
re

as
ier

co
m
pa

ris
on

we
ad

de
d
th
e
re
su
lts

of
h i

tl
b
as

we
ll
as

BS
po

ur
an

d
BS

LS
,p

ou
r.

Th
e
be

st
re
su
lts

in
ea
ch

ro
w

ar
e
m
ar
ke
d
w
ith

**
w
he
re
as

we
m
ar
k
re
su
lts

th
at

ar
e
th
e
be

st
ex
ce
pt

fo
r
BS

LS
,p

ou
r
w
ith

*.
If

an
ap

pr
oa
ch

is
th
e
ov
er
al
lb

es
t

ap
pr
oa
ch
,i
t
is

on
ly

m
ar
ke
d
by

**
.
T
he

la
st

ro
w

of
th
e
ta
bl
e
sh
ow

s
ho

w
of
te
n
th
e
in
di
vi
du

al
ap

pr
oa
ch

wa
s
ab

le
to

pe
rfo

rm
at

le
as
t
as

go
od

as
BS

LS
,p

ou
r
an

d
BS

po
ur
.
D
ue

to
th
e
hi
gh

ru
nt
im

es
du

rin
g
ev
al
ua

tio
n,

no
t
al
lN

N
s
ar
e
ev
al
ua

te
d
ov
er

al
l

in
st
an

ce
s.

In
st
an

ce
s

M
LP

,
m

=
10

M
LP

,
m

=
20

M
LP

IT
LB
,
m

=
10

M
LP

IT
LB
,
m

=
20

IT
LB

,
β

=
10

0
BS

LS
,p

ou
r

BS
po

ur

n
m

x
σ

x
ru
nt
.

x
σ

x
ru
nt
.

x
σ

x
ru
nt
.

x
σ

x
ru
nt
.

x
σ

x
ru
nt
.

x
σ

x
x

σ
x

20
5

15
46

.3
48

.3
5.
0

15
57

.6
52

.6
4.
9

**
15

20
.5

44
.5

7.
6

15
23

.3
43

.6
7.
6

15
22

.5
42

.7
22

.5
15

31
.9

54
.7

15
63

.5
61

.3
20

10
20

68
.4

11
1.
3

4.
9

20
82

.8
11

6.
5

4.
9

**
20

25
.8

98
.2

8.
4

20
26

.4
99

.7
8.
5

20
41

.6
10

7.
2

25
.9

20
45

.5
10

0.
6

20
72

.9
10

2.
0

20
20

31
15

.0
80

.6
4.
8

31
21

.0
62

.1
4.
8

30
34

.4
75

.2
9.
9

**
30

33
.5

68
.1

10
.1

30
44

.2
72

.6
27

.3
30

52
.7

61
.6

31
21

.4
66

.6
50

5
35

21
.8

13
8.
6

15
.4

35
47

.8
13

8.
1

14
.8

34
44

.0
11

9.
0

42
.9

34
39

.8
11

6.
4

43
.2

**
34

26
.7

98
.5

46
.9

34
33

.4
11

4.
3

34
86

.5
11

1.
6

50
10

45
31

.9
97

.4
15

.7
45

83
.0

11
4.
4

14
.9

**
44

73
.0

10
8.
3

58
.7

44
87

.4
11

1.
0

61
.3

45
23

.1
12

9.
1

58
.8

44
89

.5
89

.3
45

95
.9

11
4.
3

50
20

63
85

.0
17

0.
8

15
.6

62
97

.5
12

6.
3

14
.7

62
28

.9
13

1.
4

10
1.
3

*6
20

9.
0

13
9.
8

10
7.
3

63
02

.7
98

.4
89

.2
**

61
51

.3
10

5.
0

63
21

.3
11

1.
2

10
0

5
68

32
.9

24
4.
8

91
.7

68
86

.3
24

7.
7

92
.1

66
15

.0
18

0.
8

34
5.
4

66
24

.2
19

7.
3

37
0.
0

**
64

94
.7

15
3.
9

20
5.
1

65
28

.9
13

2.
6

66
12

.3
13

6.
7

10
0

10
86

46
.4

21
9.
0

91
.8

87
39

.0
21

9.
9

91
.6

85
06

.2
18

0.
8

61
4.
5

*8
49

1.
7

17
9.
5

68
6.
1

85
13

.5
15

5.
4

37
4.
1

**
84

25
.0

17
8.
2

85
87

.9
17

9.
9

10
0

20
11

63
5.
8

32
2.
6

91
.4

11
56

6.
1

28
6.
1

91
.8

11
36

1.
1

23
2.
4

13
60

.9
*1

13
36

.4
16

9.
4

15
65

.6
11

42
1.
4

17
7.
3

77
2.
4

**
11

20
9.
4

10
2.
6

11
54

6.
7

17
0.
3

20
0

10
16

71
1.
5

28
9.
2

10
26

.6
16

87
5.
0

32
8.
0

10
83

.0
-

-
-

16
32

1.
5

19
5.
9

13
26

6.
4

16
15

9.
7

15
9.
9

49
93

.4
**

15
97

1.
7

14
0.
3

*1
61

58
.8

16
2.
4

20
0

20
21

63
7.
8

48
0.
8

10
30

.4
21

84
9.
6

54
4.
7

10
76

.5
-

-
-

*2
12

72
.0

28
6.
2

47
01

8.
1

21
43

4.
3

15
8.
6

12
80

9.
4

**
20

89
6.
6

18
3.
5

21
28

1.
1

22
9.
0

50
0

20
-

-
-

52
01

4.
0

12
46

.1
48

10
0.
6

-
-

-
-

-
-

-
-

-
**

48
73

9.
4

22
8.
9

*4
94

05
.2

32
4.
2

O
ut
pe

rfo
rm

ed
:

BS
po

ur
=

4,
BS

LS
,p

ou
r

=
0

BS
po

ur
=

4,
BS

LS
,p

ou
r

=
0

BS
po

ur
=

8,
BS

LS
,p

ou
r

=
4

BS
po

ur
=

9,
BS

LS
,p

ou
r

=
4

BS
po

ur
=

9,
BS

LS
,p

ou
r

=
5

-
-

67

6. Results

n
=

20
,m

=
5

n
=

20
,m

=
10

n
=

20
,m

=
15

n
=

30
,m

=
10

n
=

30
,m

=
15

n
=

50
,m

=
10

n
=

75
,m

=
20

Instances

2

0

2

4

6

8

10

RP
D

re
la

tiv
e

to
 B

S L
S,

po
ur

Results for REC
MLP, n = 20, m = 20, = 100
MLPITLB, n = 20, m = 20, = 100
ITLB, = 100
ITLB, = 600

Figure 6.18: The figure visualizes the results from Table 6.8. Each boxplot of the NNs
represents results over ten runs with individually trained networks over ten instances.
The horizontal lines in the boxplots indicate the median and the triangles the mean
results. Instances from the TA-small set are used. The dashed line shows the average
RPD of BSpour.

68

6.6. Comparison with State-of-the-Art

Ta
bl
e
6.
8:

Th
is
Ta

bl
e
sh
ow

st
he

re
su
lts

sh
ow

n
in

Fi
gu

re
6.
18
.I

tc
on

ta
in
st

he
av
er
ag
e
ob

je
ct
iv
e
va
lu
es
,t
he

st
an

da
rd

de
vi
at
io
ns
,

an
d
th
e
ru
nt
im

es
.
O
nl
y
re
su
lts

fo
rM

LP
ba

si
c
an

d
M
LP

IT
LB

tr
ai
ne
d
on

in
st
an

ce
siz

es
n

=
20

an
d
m

=
20

ar
e
sh
ow

n
be

ca
us
e
of

th
er
e
go

od
fo
rm

er
pe

rfo
rm

an
ce
.
T
he

re
su
lts

we
re

pr
od

uc
ed

w
ith

β
=

10
0.

T
he

in
st
an

ce
s
ar
e
fro

m
th
e
TA

-s
m
al
li
ns
ta
nc
e
se
t.

Fo
r
ea
sie

r
co
m
pa

ris
on

we
ad

de
d
th
e
re
su
lts

of
h i

tl
b
as

we
ll
as

BS
po

ur
an

d
BS

LS
,p

ou
r.

T
he

be
st

re
su
lts

in
ea
ch

ro
w

ar
e
m
ar
ke
d

wi
th

**
wh

er
ea
s
we

m
ar
k
re
su
lts

th
at

ar
e
th
e
be

st
ex
ce
pt

fo
r
BS

LS
,p

ou
r
wi
th

*.
If
an

ap
pr
oa
ch

is
th
e
ov
er
al
lb

es
ta

pp
ro
ac
h,

it
is
on

ly
m
ar
ke
d
by

**
.
Th

e
la
st

ro
w

of
th
e
ta
bl
e
sh
ow

sh
ow

of
te
n
th
e
in
di
vi
du

al
ap

pr
oa
ch

wa
sa

bl
e
to

pe
rfo

rm
at

lea
st

as
go

od
as

BS
LS

,p
ou

r
an

d
BS

po
ur
.

In
st
an

ce
s

M
LP

,
m

=
20
,
β

=
10

0
M

LP
IT

LB
,
m

=
20
,
β

=
10

0
IT

LB
,
β

=
10

0
IT

LB
,
β

=
60

0
BS

LS
,p

ou
r

BS
po

ur

n
m

x
σ

x
ru
nt
.

x
σ

x
ru
nt
.

x
σ

x
ru
nt
.

x
σ

x
ru
nt
.

x
σ

x
x

σ
x

20
5

15
03

.3
64

.1
4.
5

14
70

.3
62

.7
7.
0

14
78

.3
52

.8
20

.9
*1
46
9.
7

53
.3

27
.6

**
14
60
.7

66
.7

14
80

.0
59

.4
20

10
20

41
.3

77
.5

4.
4

20
14

.7
79

.4
7.
8

20
24

.0
68

.2
21

.7
**
20
14
.0

60
.1

28
.6

20
28

.3
81

.1
20

48
.7

74
.1

20
15

26
42

.8
66

.2
4.
4

25
85

.7
52

.7
8.
5

25
89

.3
57

.1
18

.5
**
25
78
.0

41
.0

34
.0

26
06

.0
36

.4
26

67
.3

90
.8

30
10

29
84

.6
90

.3
6.
6

29
04

.4
72

.4
15

.8
28

81
.7

72
.9

18
.6

**
28
54
.0

62
.5

55
.7

28
88

.7
67

.9
30

07
.7

90
.8

30
15

36
65

.2
12

9.
8

6.
6

35
57

.4
17

0.
8

18
.0

35
71

.0
19

5.
8

26
.9

**
35
18
.3

15
2.
5

65
.0

35
37

.3
14

2.
6

37
20

.7
22

3.
7

50
10

47
01

.1
94

.0
13

.5
45

86
.4

65
.3

55
.3

45
81

.0
50

.6
49

.0
*4
56
0.
7

19
.7

16
5.
0

**
45
38
.3

32
.8

46
95

.3
46

.8
75

20
89

82
.5

32
6.
6

35
.5

*8
75
2.
8

28
0.
5

40
4.
3

88
98

.3
27

1.
2

17
4.
4

87
88

.0
25

4.
1

12
58

.6
**
86
58
.7

22
2.
0

88
95

.3
23

9.
1

O
ut
pe

rfo
rm

ed
:

BS
po

ur
=

4,
BS

LS
,p

ou
r

=
0

BS
po

ur
=

7,
BS

LS
,p

ou
r

=
2

BS
po

ur
=

6,
BS

LS
,p

ou
r

=
3

BS
po

ur
=

7,
BS

LS
,p

ou
r

=
4

-
-

69

6. Results

n
=

10
0,

m
=

20

n
=

10
0,

m
=

40

n
=

10
0,

m
=

60

n
=

20
0,

m
=

20

n
=

20
0,

m
=

40

n
=

20
0,

m
=

60

n
=

30
0,

m
=

20

n
=

30
0,

m
=

40

n
=

30
0,

m
=

60

n
=

40
0,

m
=

20

n
=

40
0,

m
=

40

n
=

40
0,

m
=

60

Instances

2

0

2

4

6

8

10

12

14

RP
D

re
la

tiv
e

to
 B

S L
S,

po
ur

Results for VFR large Instances

MLP, n = 20, m = 20, = 100
MLPITLB, n = 20, m = 20, = 100
ITLB, = 100

Figure 6.19: The figure visualizes the results from Table 6.9. Each boxplot of the NNs
represents results over ten runs with individually trained networks over ten instances.
The horizontal lines in the boxplots indicate the median and the triangles the mean
results. Selected Instances from the VFR-large set are used. The dashed line shows the
average RPD of BSpour.

70

6.6. Comparison with State-of-the-Art

Ta
bl
e
6.
9:

Th
is
Ta

bl
e
sh
ow

st
he

re
su
lts

sh
ow

n
in

Fi
gu

re
6.
19
.I

tc
on

ta
in
st

he
av
er
ag
e
ob

je
ct
iv
e
va
lu
es
,t
he

st
an

da
rd

de
vi
at
io
ns
,

an
d
th
e
ru
nt
im

es
.
O
nl
y
re
su
lts

fo
r

M
LP

ba
si

c
an

d
M
LP

IT
LB

tr
ai
ne

d
on

in
st
an

ce
siz

es
n

=
20

an
d
m
∈
{1

0,
20
}
ar
e
sh
ow

n
be

ca
us
e
of

th
er
e
go

od
fo
rm

er
pe

rfo
rm

an
ce
.
T
he

re
su
lts

we
re

pr
od

uc
ed

w
ith

β
=

10
0.

A
lso

h i
tl

b
is

sh
ow

n
w
ith

β
∈
{1

00
,6

00
}

on
se
le
ct
ed

in
st
an

ce
s.

Se
le
ct
ed

in
st
an

ce
s
fr
om

th
e
V
FR

-la
rg
e
in
st
an

ce
se
t
ar
e
us
ed

.
Fo

r
ea
sie

r
co
m
pa

ris
on

w
e
ad

de
d
th
e

re
su
lts

of
BS

po
ur

an
d
BS

LS
,p

ou
r.

T
he

be
st

re
su
lts

in
ea
ch

ro
w

ar
e
m
ar
ke
d
w
ith

**
w
he
re
as

we
m
ar
k
re
su
lts

th
at

ar
e
th
e
be

st
ex
ce
pt

fo
r
BS

LS
,p

ou
r
w
ith

*.
If
an

ap
pr
oa
ch

is
th
e
ov
er
al
lb

es
t
ap

pr
oa
ch
,i
t
is

on
ly

m
ar
ke
d
by

**
.
T
he

la
st

ro
w

of
th
e
ta
bl
e

sh
ow

s
ho

w
of
te
n
th
e
in
di
vi
du

al
ap

pr
oa

ch
w
as

ab
le

to
pe

rf
or
m

at
le
as
t
as

go
od

as
BS

LS
,p

ou
r
an

d
BS

po
ur
.
D
ue

to
th
e
hi
gh

ru
nt
im

es
du

rin
g
ev
al
ua

tio
n,

no
t
al
lN

N
s
ar
e
ev
al
ua

te
d
ov
er

al
li
ns
ta
nc

es
.

In
st
an

ce
s

M
LP

,
m

=
20

M
LP

IT
LB
,
m

=
20

IT
LB

,
β

=
10

0
BS

LS
,p

ou
r

BS
po

ur

n
m

x
σ

x
ru
nt
.

x
σ

x
ru
nt
.

x
σ

x
ru
nt
.

x
σ

x
x

σ
x

10
0

20
11

55
9.
7

28
9.
6

92
.6

*1
12

92
.4

17
3.
0

13
91

.4
11

39
4.
0

14
0.
2

76
9.
2

**
11

15
5.
9

11
3.
1

11
46

2.
2

19
6.
6

10
0

40
16

10
5.
8

51
3.
0

92
.5

*1
57

14
.5

25
9.
7

29
17

.4
15

77
6.
6

15
0.
0

14
69

.2
**

15
40

8.
3

17
6.
7

15
81

7.
7

23
6.
4

10
0

60
19

62
3.
3

53
2.
1

92
.9

*1
92

23
.8

33
6.
3

49
52

.6
19

43
2.
2

27
9.
3

23
20

.1
**

18
76

9.
2

19
2.
6

19
33

1.
2

27
2.
8

20
0

20
21

84
0.
2

52
2.
0

10
75

.0
-

-
-

21
27

7.
0

18
6.
2

11
20

3.
6

**
20

80
7.
3

18
0.
7

*2
12

36
.6

13
7.
9

20
0

40
29

48
7.
8

84
4.
2

10
70

.7
-

-
-

-
-

-
**

28
00

9.
3

16
1.
9

*2
87

34
.3

27
2.
8

20
0

60
35

48
5.
0

92
3.
7

10
56

.9
-

-
-

-
-

-
**

33
60

1.
8

19
0.
9

*3
43

90
.4

25
6.
1

30
0

20
32

06
5.
6

82
5.
9

53
76

.0
-

-
-

-
-

-
**

30
26

1.
0

22
2.
7

*3
07

71
.9

25
7.
7

30
0

40
42

58
6.
3

11
45

.5
54

42
.1

-
-

-
-

-
-

**
40

33
4.
4

17
2.
7

*4
11

74
.8

22
1.
1

30
0

60
51

30
6.
7

13
40

.4
53

76
.6

-
-

-
-

-
-

**
48

32
3.
4

44
3.
6

*4
93

66
.3

50
6.
0

40
0

20
42

04
5.
4

10
61

.7
17

79
4.
8

-
-

-
-

-
-

**
39

54
4.
8

18
0.
2

*4
01

71
.9

18
0.
3

40
0

40
55

51
1.
0

14
86

.2
17

54
4.
7

-
-

-
-

-
-

**
52

38
0.
8

16
1.
6

*5
33

46
.8

23
8.
4

40
0

60
66

50
0.
7

16
01

.3
17

54
6.
4

-
-

-
-

-
-

**
62

67
9.
5

36
1.
4

*6
37

18
.4

38
6.
9

O
ut
pe

rfo
rm

ed
:

BS
po

ur
=

0,
BS

LS
,p

ou
r

=
0

BS
po

ur
=

3,
BS

LS
,p

ou
r

=
0

BS
po

ur
=

2,
BS

LS
,p

ou
r

=
0

-
-

71

CHAPTER 7
Conclusion

In this work, we considered a variant of the FSP which is the NWFSP-RT. It was shown
how the NWFSP could be reduced to the ATSP, and we described which auxiliary data
is precomputed to speed up later the state transition in the BS and the dominance check.
Further, we explained BS and presented the LBS framework. We described how these
general methods can be effectively tailored towards the NWFSP-RT. More specifically
this included states for the NWFSP-RT, the branching in BS, how the state transitions
work, and we gave a dominance definition applicable to two BS nodes on the same layer.
Following that, several lower bounds for the NWFSP-RT including a novel lower bound
called ITLB were described. The novel bound combines the idea of Taillard [Tai93] and
a lower bound for the ATSP. To integrate the NWFSP-RT into the LBS framework, we
described how the training data is generated, and proposed NN types, including the two
novel NN types AJNNadd and NNnearest. The latter two aim to aggregate the individual
“contribution” of each job. They follow the idea of GNNs. The AJNNadd uses a MLP
and applies it to all job-specific and global features. The NNnearest extends this idea
further by passing internal states of the κ nearest neighbors to each job. As a third
option, we suggested using a MLP. For all three NN types, we constructed feature sets
and combined them to four observations. The observations for the AJNNadd and the
NNnearest consists of global parts derived from the instance and the state as a whole and
job-specific parts that provide further data about each unscheduled job.
We conducted tests on how well the NN types perform when used to guide a BS on the
same instance size as they were trained. The tests were performed for every NN types’
four trained configurations, and the results were compared to using ITLB as a guidance
function for a BS. The AJNNadd and the NNnearest performed significantly better on
several configurations tested with different beam widths than ITLB.
Further, we performed tests on how well the NNs generalize when run for a different
number of machines and number of jobs than there were trained. Results show that
MLPbasic and MLPITLB generalize well over the number of jobs and also over the number

73

7. Conclusion

of jobs and machines at the same time. The AJNNadd and the NNnearest do not perform
well when the number of machines they are trained on is changed. The configurations
trained on n = 20 generalize well over the number of jobs. Note, that no NN was able to
significantly outperform using ITLB as guidance function.

To better understand why some NNs generalize well and others not, we evaluated the
approximation error rates when generalizing over the number of jobs. We observed that
the AJNNadd, the NNnearest, and the MLPITLB have error rates within +/− 25%RPD
for layers resulting in instance sizes they were trained. The MLPITLB and the MLPbasic
stay within the +/ − 25%RPD range. This even holds for BS layers yielding instance
sizes MLPITLB and the MLPbasic are not trained. However, the MLPbasic has increasing
error rates when the instance sizes yielded by the layers go below nine.

During our tests, we constantly outperformed the state-of-the-art results of Pourhejazy
et al. [Pou+20] on single instances even though our tests were performed with way
smaller beam widths than β = 600 and without a local search. Overall when running
with β = 100 our approach MLPITLB trained on instances of size n = 20 and m = 20
outperformed BSpour on 43 out of 46 tested instance classes on average and was able to
outperform the former state-of-the-art method BSLS,pour on 11 instance classes. Stable
performance and guidance behavior were also shown by MLPbasic which is also faster than
MLPITLB. Overall when running with β = 100, BSpour was on average outperformed on
20 out of 55 tested instance classes by MLPbasic.

74

CHAPTER 8
Future Work and Open Questions

It took up to multiple days to train the NNs with LBS on instances of size n = 20,m = 20.
Most of the time was spent creating and labeling new training samples. It might be
possible to parallelize the training sample generation to reduce the time needed. Further
options may be to perform the nested beam search calls only up to a certain depth
and then use a greedy method to complete the solution or use the trained model to
approximate the remaining solution cost.

The calculation of the features used as an input for the NNs has a high theoretical
computational time complexity and takes most of the time the overall beam search needs.
Finding additional promising features that can be computed faster or improving the
computation of the current features is important to apply the approach to instances
with hundreds of jobs and is left as an open question. Another suggestion is to use a
reduced graph to compute the features, i.e., a graph where only a maximum number of
neighbors or arcs for each job reside. Reducing the number of neighbors was already done
by Joshi, Laurent, and Bresson [JLB19] for the euclidean TSP. Reducing the time needed
for computing features would also enable the possibility to train the NNs on instances
with more than n = 20 jobs and to use them to solve instances of hundreds of jobs or
more.

To further improve the solution quality, one may also combine several NN types during
search and profit from their different strengths. For example, the good generalization
over the number of jobs of MLPITLB and the good guidance on instance sizes trained of
NNnearest and AJNNadd may be combined. This may happen based on the number of
unscheduled nodes, or within another NN. Through tighter approximations it might be
possible to improve the solution quality further.

A natural next step is the application of the presented approaches and features to other
FSP variants. It would be interesting how the presented setup performs for them and
if there is a feature set that can be used to learn guidance functions for many variants

75

8. Future Work and Open Questions

of the FSP. If successful this might on the long term eliminate the need to design and
evaluate guidance functions individually for every variant of a problem.

During our tests no GPU support was used for the evaluation and training of the NNs.
This could speed up the evaluation of the NNs possibly a lot, especially when evaluating
all nodes of one layer in batches. Testing the impact of batch evaluations on the GPU
should therefore be considered in future works.

76

List of Algorithms

3.1 General BS Algorithm . 17

3.2 General LBS Algorithm [HR21] . 22

3.3 Data generation for LBS [HR21]. This piece of code is included in Algorithm
3.1 at line 32, if BS is called with data generation. For simplicity, it is
assumed that all arguments additionally needed are passed to the BS
algorithm. 22

77

Glossary

MLPbasic Denotes a MLP that uses observation Oglob.. 44, 45, 53, 58, 60, 61, 67, 69, 71,
73, 74

MLPITLB Denotes a MLP that uses observation Oglob,itlb.. 44, 45, 53, 58–61, 67, 69,
71, 73–75

79

Acronyms

AJNNadd aggregated jobs neural network. 2, 3, 34–36, 41, 42, 44, 45, 53, 57–59, 73–75

BSLS,pour BS with local search from [Pou+20]. 44–49, 58, 59, 61, 65–67, 69, 71, 74

BSpour BS from [Pou+20]. 45–49, 51, 52, 54–61, 64–71, 74

hitlb ITLB as heuristic function. 43–45, 50, 53–56, 59–61, 65–67, 69, 71

NNnearest nearest neighbors neural network. 2, 3, 35–38, 41, 42, 44, 45, 53, 57, 59,
73–75

ACO Ant Colony Optimization. 14

ATSP asymmetric Traveling Salesperson Problem. 2, 9, 13, 20, 73

B&B Branch and Bound. 12

BS beam search. 2, 3, 11, 14, 21, 40, 41, 43–45, 54, 59–63, 73, 74

FSP Flow Shop Schedueling Problem. 1, 6, 11–14, 18, 19, 34, 73, 75, 76

GA Genetic Algorithm. 12, 13

GNN graph neural network. 2, 73

ITLB improved Taillard lower bound. 2, 3, 41, 43–49, 51–57, 73, 74

LB lower bound. 12, 18, 39, 40

LBS learning beam search. 2, 3, 11, 21, 22, 33, 34, 44, 45, 73, 75

LCS Longest Common Subsequence Problem. 21

ML Machine Learning. 11

MLP multilayer perceptron. 2, 34, 35, 37, 41, 44, 73

81

NBS nested BS. 21, 44, 59–63

NEH Nawaz-Enscore-Ham. 12

NN neural network. 3, 18, 19, 21, 33–35, 37, 40, 43–68, 70, 71, 73–76

NWFSP no-wait FSP. 6, 9, 13, 73

NWFSP-RT no-wait FSP with release times. 1, 2, 6, 11, 14, 23, 34, 43, 73

PFSP Permutation Flow Shop Schedueling Problem. 12–14, 26

RL reinforcement learning. 21

RPD relative percentage difference. 44–49, 51–57, 59–64, 68, 70

TS Tabu Search. 12, 13

VRP Vehicle Routing Problem. 20

82

Bibliography

[ACE06] A. Agarwal, S. Colak, and E. Eryarsoy. “Improvement heuristic for the
flow-shop scheduling problem: An adaptive-learning approach”. In: European
Journal of Operational Research 169.3 (2006), pp. 801–815. doi: 10.1016/
j.ejor.2004.06.039.

[All16] A. Allahverdi. “A survey of scheduling problems with no-wait in process”. In:
European Journal of Operational Research 255.3 (2016), pp. 665–686. doi:
10.1016/j.ejor.2016.05.036.

[And+97] E. J. Anderson et al. “Machine scheduling”. In: Local search in combinatorial
optimization 11 (1997). Publisher: Wiley Chichester, UK, pp. 361–414.

[BDG99] L. Bianco, P. Dell’Olmo, and S. Giordani. “Flow Shop No-Wait Scheduling
With Sequence Dependent Setup Times And Release Dates”. In: INFOR:
Information Systems and Operational Research 37.1 (1999). Publisher: Taylor
& Francis, pp. 3–19. doi: 10.1080/03155986.1999.11732365.

[Blu05] C. Blum. “Beam-ACO—hybridizing ant colony optimization with beam
search: an application to open shop scheduling”. In: Computers & Operations
Research 32.6 (2005), pp. 1565–1591. doi: 10.1016/j.cor.2003.11.
018.

[CDS70] H. G. Campbell, R. A. Dudek, and M. L. Smith. “A Heuristic Algorithm for
the n-Job, m-Machine Sequencing Problem”. In: Management Science 16.10
(1970), B–630–B–637. doi: 10.1287/mnsc.16.10.B630.

[Chr72] N. Christofides. “Technical Note—Bounds for the Travelling-Salesman Prob-
lem”. In: Operations Research 20.5 (1972). Publisher: INFORMS, pp. 1044–
1056. doi: 10.1287/opre.20.5.1044.

[DJ64] R. A. Dudek and O. F. T. Jr. “Development of M-Stage Decision Rule
for Scheduling n Jobs through M Machines”. In: Operations Research 12.3
(1964), pp. 471–497. doi: 10.1287/opre.12.3.471.

[EM95] H. Emmons and K. Mathur. “Lot sizing in a no-wait flow shop”. In: Operations
Research Letters 17.4 (1995), pp. 159–164. doi: 10.1016/0167-6377(95)
00008-8.

83

https://doi.org/10.1016/j.ejor.2004.06.039
https://doi.org/10.1016/j.ejor.2004.06.039
https://doi.org/10.1016/j.ejor.2016.05.036
https://doi.org/10.1080/03155986.1999.11732365
https://doi.org/10.1016/j.cor.2003.11.018
https://doi.org/10.1016/j.cor.2003.11.018
https://doi.org/10.1287/mnsc.16.10.B630
https://doi.org/10.1287/opre.20.5.1044
https://doi.org/10.1287/opre.12.3.471
https://doi.org/10.1016/0167-6377(95)00008-8
https://doi.org/10.1016/0167-6377(95)00008-8

[FVVF18] V. Fernandez-Viagas, J. M. S. Valente, and J. M. Framinan. “Iterated-
greedy-based algorithms with beam search initialization for the permutation
flowshop to minimise total tardiness”. In: Expert Systems with Applications
94 (2018), pp. 58–69. doi: 10.1016/j.eswa.2017.10.050.

[GG64] P. C. Gilmore and R. E. Gomory. “Sequencing a One State-Variable Machine:
A Solvable Case of the Traveling Salesman Problem”. In: Operations Research
12.5 (1964), pp. 655–679. doi: 10.1287/opre.12.5.655.

[GJS76] M. R. Garey, D. S. Johnson, and R. Sethi. “The Complexity of Flowshop and
Jobshop Scheduling”. In: Mathematics of Operations Research 1.2 (1976),
pp. 117–129. doi: 10.1287/moor.1.2.117.

[GML20] J. N. D. Gupta, A. Majumder, and D. Laha. “Flowshop scheduling with
artificial neural networks”. In: Journal of the Operational Research Society
71.10 (2020). Publisher: Taylor & Francis, pp. 1619–1637. doi: 10.1080/
01605682.2019.1621220.

[Gra66] R. L. Graham. “Bounds for certain multiprocessing anomalies”. In: The Bell
System Technical Journal 45.9 (1966). Conference Name: The Bell System
Technical Journal, pp. 1563–1581. doi: 10.1002/j.1538-7305.1966.
tb01709.x.

[Gra+79] R. L. Graham et al. “Optimization and Approximation in Deterministic
Sequencing and Scheduling: a Survey”. In: Annals of Discrete Mathemat-
ics. Ed. by P. L. Hammer, E. L. Johnson, and B. H. Korte. Vol. 5. Dis-
crete Optimization II. Elsevier, 1979, pp. 287–326. doi: 10.1016/S0167-
5060(08)70356-X.

[HR21] M. Huber and G. Raidl. “Learning Beam Search: Utilizing Machine Learning
to Guide Beam Search for Solving Combinatorial Optimization Problems”.
In: Machine Learning, Optimization, and Data Science – 7th International
Conference, LOD 2021. Vol. 11943. LNCS. to appear. Springer, 2021.

[HS96] N. G. Hall and C. Sriskandarajah. “A Survey of Machine Scheduling Problems
with Blocking and No-Wait in Process”. In: Operations Research 44.3 (1996).
Publisher: INFORMS, pp. 510–525. doi: 10.1287/opre.44.3.510.

[JLB19] C. K. Joshi, T. Laurent, and X. Bresson. “An Efficient Graph Convo-
lutional Network Technique for the Travelling Salesman Problem”. In:
arXiv:1906.01227 [cs, stat] (2019). doi: 10.48550/arXiv.1906.01227.

[Joh54] S. M. Johnson. “Optimal two- and three-stage production schedules with
setup times included”. In: Naval Research Logistics Quarterly 1.1 (1954),
pp. 61–68. doi: 10.1002/nav.3800010110.

[Jos+21] C. K. Joshi et al. “Learning TSP Requires Rethinking Generalization”. In:
arXiv:2006.07054 (2021). doi: 10.4230/LIPIcs.CP.2021.33.

84

https://doi.org/10.1016/j.eswa.2017.10.050
https://doi.org/10.1287/opre.12.5.655
https://doi.org/10.1287/moor.1.2.117
https://doi.org/10.1080/01605682.2019.1621220
https://doi.org/10.1080/01605682.2019.1621220
https://doi.org/10.1002/j.1538-7305.1966.tb01709.x
https://doi.org/10.1002/j.1538-7305.1966.tb01709.x
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1287/opre.44.3.510
https://doi.org/10.48550/arXiv.1906.01227
https://doi.org/10.1002/nav.3800010110
https://doi.org/10.4230/LIPIcs.CP.2021.33

[JSW06] F. Jin, S.-j. Song, and C. Wu. “A New Beam Search Algorithm for the Large-
Scale Permutation FSP”. In: 2006 International Conference on Machine
Learning and Cybernetics. 2006, pp. 1–6. doi: 10.1109/ICMLC.2006.
258806.

[KHW19] W. Kool, H. van Hoof, and M. Welling. “Attention, Learn to Solve Routing
Problems!” In: arXiv:1803.08475 (2019). doi: 10.48550/arXiv.1803.
08475.

[KK07] P. J. Kalczynski and J. Kamburowski. “On no-wait and no-idle flow shops
with makespan criterion”. In: European Journal of Operational Research
178.3 (2007), pp. 677–685. doi: 10.1016/j.ejor.2006.01.036.

[KV18] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms.
6th ed. Algorithms and Combinatorics. Berlin Heidelberg: Springer-Verlag,
2018. doi: 10.1007/978-3-662-56039-6.

[LH05] T. Ladhari and M. Haouari. “A computational study of the permutation flow
shop problem based on a tight lower bound”. In: Computers & Operations
Research 32.7 (2005), pp. 1831–1847. doi: 10.1016/j.cor.2003.12.
001.

[Low76] B. T. Lowerre. “The Harpy speech recognition system”. PhD thesis. Carnegie-
Mellon Univ., Pittsburgh, PA., 1976.

[LS00] I. Lee and M. J. Shaw. “A neural-net approach to real time flow-shop
sequencing”. In: Computers & Industrial Engineering 38.1 (2000), pp. 125–
147. doi: 10.1016/S0360-8352(00)00034-6.

[NEH83] M. Nawaz, E. E. Enscore, and I. Ham. “A heuristic algorithm for the m-
machine, n-job flow-shop sequencing problem”. In: Omega 11.1 (1983), pp. 91–
95. doi: 10.1016/0305-0483(83)90088-9.

[Ni+21] F. Ni et al. “A Multi-Graph Attributed Reinforcement Learning based Opti-
mization Algorithm for Large-scale Hybrid Flow Shop Scheduling Problem”.
In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discov-
ery & Data Mining. KDD ’21. New York, NY, USA: Association for Comput-
ing Machinery, 2021, pp. 3441–3451. doi: 10.1145/3447548.3467135.

[Pas00] C. A. S. Passos. “A Beam Search Based Algorithm to Solve Flowshop
Scheduling Problems with Constraints on Shared Resources”. In: IFAC
Proceedings Volumes 33.17 (2000), pp. 675–679. doi: 10.1016/S1474-
6670(17)39484-3.

[Pie60] J. Piehler. “Ein Beitrag zum Reihenfolgeproblem”. In: Unternehmensforschung
4.3 (1960), pp. 138–142. doi: 10.1007/BF01963410.

[PKL00] Y. Park, S. Kim, and Y.-H. Lee. “Scheduling jobs on parallel machines
applying neural network and heuristic rules”. In: Computers & Industrial
Engineering 38.1 (2000), pp. 189–202. doi: 10.1016/S0360-8352(00)
00038-3.

85

https://doi.org/10.1109/ICMLC.2006.258806
https://doi.org/10.1109/ICMLC.2006.258806
https://doi.org/10.48550/arXiv.1803.08475
https://doi.org/10.48550/arXiv.1803.08475
https://doi.org/10.1016/j.ejor.2006.01.036
https://doi.org/10.1007/978-3-662-56039-6
https://doi.org/10.1016/j.cor.2003.12.001
https://doi.org/10.1016/j.cor.2003.12.001
https://doi.org/10.1016/S0360-8352(00)00034-6
https://doi.org/10.1016/0305-0483(83)90088-9
https://doi.org/10.1145/3447548.3467135
https://doi.org/10.1016/S1474-6670(17)39484-3
https://doi.org/10.1016/S1474-6670(17)39484-3
https://doi.org/10.1007/BF01963410
https://doi.org/10.1016/S0360-8352(00)00038-3
https://doi.org/10.1016/S0360-8352(00)00038-3

[Pou+20] P. Pourhejazy et al. “Improved Beam Search for Optimizing No-Wait Flow-
shops With Release Times”. In: IEEE Access 8 (2020), pp. 148100–148124.
doi: 10.1109/ACCESS.2020.3015737.

[PSW91] C. N. Potts, D. B. Shmoys, and D. P. Williamson. “Permutation vs. non-
permutation flow shop schedules”. In: Operations Research Letters 10.5
(1991), pp. 281–284. doi: 10.1016/0167-6377(91)90014-G.

[Ram+11] T. R. Ramanan et al. “An artificial neural network based heuristic for flow
shop scheduling problems”. In: Journal of Intelligent Manufacturing 22.2
(2011), pp. 279–288. doi: 10.1007/s10845-009-0287-5.

[RR72] S. S. Reddi and C. V. Ramamoorthy. “On the Flow-Shop Sequencing Problem
with No Wait in Process†”. In: Journal of the Operational Research Society
23.3 (1972), pp. 323–331. doi: 10.1057/jors.1972.52.

[RYY21] J. Ren, C. Ye, and F. Yang. “Solving flow-shop scheduling problem with a
reinforcement learning algorithm that generalizes the value function with
neural network”. In: Alexandria Engineering Journal 60.3 (2021), pp. 2787–
2800. doi: 10.1016/j.aej.2021.01.030.

[SB99] I Sabuncuoglu and M Bayiz. “Job shop scheduling with beam search”. In:
European Journal of Operational Research 118.2 (1999), pp. 390–412. doi:
10.1016/S0377-2217(98)00319-1.

[Sil+17] D. Silver et al. “Mastering the game of Go without human knowledge”. In:
Nature 550.7676 (2017). Publisher: Nature Publishing Group, pp. 354–359.
doi: 10.1038/nature24270.

[Sul00] S. M. A. Suliman. “A two-phase heuristic approach to the permutation flow-
shop scheduling problem”. In: International Journal of Production Economics
64.1 (2000), pp. 143–152. doi: 10.1016/S0925-5273(99)00053-5.

[Tai90] E. Taillard. “Some efficient heuristic methods for the flow shop sequencing
problem”. In: European Journal of Operational Research 47.1 (1990), pp. 65–
74. doi: 10.1016/0377-2217(90)90090-X.

[Tai93] E. Taillard. “Benchmarks for basic scheduling problems”. In: European
Journal of Operational Research 64.2 (1993), pp. 278–285. doi: 10.1016/
0377-2217(93)90182-M.

[Vai03] G. L. Vairaktarakis. “Simple Algorithms for Gilmore–Gomory’s Traveling
Salesman and Related Problems”. In: Journal of Scheduling 6.6 (2003),
pp. 499–520. doi: 10.1023/A:1026200209386.

[VRF15] E. Vallada, R. Ruiz, and J. Framinan. “New hard benchmark for flowshop
scheduling problems minimising makespan”. In: European Journal of Oper-
ational Research 240 (2015), pp. 666–677. doi: 10.1016/j.ejor.2014.
07.033.

86

https://doi.org/10.1109/ACCESS.2020.3015737
https://doi.org/10.1016/0167-6377(91)90014-G
https://doi.org/10.1007/s10845-009-0287-5
https://doi.org/10.1057/jors.1972.52
https://doi.org/10.1016/j.aej.2021.01.030
https://doi.org/10.1016/S0377-2217(98)00319-1
https://doi.org/10.1038/nature24270
https://doi.org/10.1016/S0925-5273(99)00053-5
https://doi.org/10.1016/0377-2217(90)90090-X
https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.1023/A:1026200209386
https://doi.org/10.1016/j.ejor.2014.07.033
https://doi.org/10.1016/j.ejor.2014.07.033

[Wis72] D. A. Wismer. “Solution of the Flowshop-Scheduling Problem with No
Intermediate Queues”. In: Operations Research (1972). Publisher: INFORMS.
doi: 10.1287/opre.20.3.689.

[ZLC15] S. Zhou, X. Li, and H. Chen. “An Estimation of Distribution Algorithm for
Minimizing Makespan on a No-Wait Flow-Shop”. In: IIE Annual Conference.
Proceedings (2015), pp. 1070–1077. doi: 10.1080/00207543.2016.
1140920.

87

https://doi.org/10.1287/opre.20.3.689
https://doi.org/10.1080/00207543.2016.1140920
https://doi.org/10.1080/00207543.2016.1140920

	Kurzfassung
	Abstract
	Contents
	Introduction
	Considered Problem
	Scheduling Problem
	The No-Wait Flow Shop Scheduling Problem with Release Times

	Related Work
	The Flow Shop Scheduling Problem and its Variants
	The Beam Search Framework
	Machine Learning for Optimization Problems
	The Learning Beam Search Framework

	Solving the NWFSP-RT with Beam Search
	Beam Search for the NWFSP-RT
	Lower Bounds for a Beam Search Node

	Learning Beam Search for the NWFSP-RT
	General Details
	Training Instance Generation
	Neural Networks
	Feature Sets
	Observations

	Results
	Test Setup and Benchmark Instances
	Comparison on Same Instance Sizes as Trained
	Generalization over
	Generalization over and
	Approximation Errors over Layers
	Comparison with State-of-the-Art

	Conclusion
	Future Work and Open Questions
	List of Algorithms
	Glossary
	Acronyms
	Bibliography

