
A Beam Search for the Shortest Common
Supersequence Problem Guided by an

Approximate Expected Length Calculation

Jonas Mayerhofer1, Markus Kirchweger2,
Marc Huber3, and Günther Raidl4

TU Wien, Vienna
e01633065@student.tuwien.ac.at1,

{mk2, mhuber3, raidl4}@ac.tuwien.ac.at

Abstract. The shortest common supersequence problem (SCSP) is a
well-known NP-hard problem with many applications, in particular in
data compression, computational molecular biology, and text editing. It
aims at finding for a given set of input strings a shortest string such that
every string from the set is a subsequence of the computed string. Due
to its NP-hardness, many approaches have been proposed to tackle the
SCSP heuristically. The currently best-performing one is based on beam
search (BS). In this paper, we present a novel heuristic (AEL) for guiding
a BS, which approximates the expected length of an SCSP of random
strings, and embed the proposed heuristic into a multilevel probabilistic
beam search (MPBS). To overcome the arising scalability issue of the
guidance heuristic, a cut-off approach is presented that reduces large
instances to smaller ones. The proposed approaches are tested on two
established sets of benchmark instances. MPBS guided by AEL outper-
forms the so far leading method on average on a set of real instances.
For many instances new best solutions could be obtained.

Keywords: Shortest Common Supersequence Problem · Beam Search.

1 Introduction

We define a string s as a finite sequence of letters from a finite alphabet Σ. A
subsequence of a string s is a sequence derived by deleting zero or more letters
from that string without changing the order of the remaining letters. If s is a
subsequence of another string x, then x is a supersequence of s. A common
supersequence of a set of n non-empty strings S = {s1, . . . , sn} is a string x
consisting of letters from Σ, which is a supersequence of each s ∈ S.

The shortest common supersequence problem (SCSP) asks for a shortest pos-
sible string that is a common supersequence of a given set of strings S. For exam-
ple, a shortest common supersequence of the strings GAATG, AATGG, and TAATG is
GTAATGG. The problem is not only of theoretical interest but has important ap-
plications in many areas, including data compression [21], query optimization in
databases [20], AI planning [8], and bioinformatics [14,15]. Hence, there is a vast

2 Mayerhofer J., Kirchweger M., Huber M., Raidl G.

benefit when finding more effective algorithms for solving the SCSP effectively.
For a fixed number of strings n, the SCSP can be solved in time O(mn) by dy-
namic programming, where m is the length of the longest string [12]. As typical
values for real instances go up to n = 500 and m = 1000 [10], this approach is
not feasible in practice. For general n, the problem is known to be NP-hard [11],
even under a binary alphabet [19] or strings with length two [23]. Although there
exists an exact algorithm based on dynamic programming by Irving et al. [12],
approximation and heuristic algorithms seem to be unavoidable tackling larger
instances in practice. The currently best-performing one amongst them relies on
beam search (BS) [10].

Beam search is a well-known incomplete tree search that explores a state
graph by only expanding and further pursuing the most promising successor
nodes of each level. Besides the SCSP, BS is also able to shine on similar problems
like the Longest Common Subsequence Problem [6] and the Longest Common
Palindromic Subsequence Problem [7]. For these problems, a BS guided by a
theoretically derived function EX that approximates the expected length of the
result of random strings from a partial solution achieved exceptional performance
and outperformed other approaches on many instances.

Inspired by these approaches, we present a novel function that approximates
the expected length of an SCSP of random strings and utilize it as guidance
heuristic in the multilevel probabilistic beam search (MPBS) from Gallardo et
al. [10]. While our guidance heuristic performs well on smaller instances, nu-
merical issues arise during its calculation on larger instances. To deal with this
scalability issue, we present a cut-off approach that effectively reduces large in-
stances to smaller ones. In our experimental evaluation, we consider a standard
BS as well as the MPBS, both guided by the new expected value heuristic with
and without the cut-off approach, and evaluate them on established benchmark
instances. The experimental results show that our approaches can be highly
effective and, in many cases, yield better solutions than the so far leading ap-
proach. On average, we are able to outperform the leading approach on a test set
of large real instances and are competitive on a set of small random instances.

Section 2 reviews related work. In Section 3, we introduce some definitions
and notations to describe the SCSP formally. The general BS framework for the
SCSP with dominance check and the derivation of the new guidance heuristic
as well as the cut-off approach are presented in Section 4. Experimental results
of the methods on two established sets of benchmark instances, including some
real-world instances, are compared to each other and the best-known results
from the literature in Section 5. Finally, we conclude in Section 6, where we also
outline promising future work.

2 Related Work

A first definition of the SCSP and an NP-hardness proof for an arbitrary number
of sequences over an alphabet of size five were given by Maier in 1976 [16].

A New Beam Search for the Shortest Common Supersequence Problem 3

Later, in 1994, Irving et al. [12] solved the SCSP for a fixed number of strings
in polynomial time by dynamic programming.

In addition to this exact algorithm, many approaches have been proposed
to tackle the SCSP heuristically for large instances. A simple greedy heuristic
called Majority Merge by Jiang et al. [13] constructs a supersequence by incre-
mentally adding the symbol that occurs most frequently at the beginning of the
strings in S and then deleting these symbols from the front of the corresponding
strings. However, if the strings in S have different lengths, symbols at the begin-
ning of shorter strings are as likely to be deleted. Therefore, Branke et al. [4,5]
suggested a Weighted Majority Merge (WMM) that uses the string lengths as
weights. A simple |Σ|-approximation algorithm called Alphabet was presented
by Barone et al. [1]. For an alphabet Σ = {a1, . . . , aσ}, this algorithm returns
as trivial solution (a1 · a2 · . . . · aσ)m. A Deposition and Reduction algorithm
was introduced by Ning et al. [18]. It first generates a small set of common su-
persequences and then tries to shorten these by deleting one or more symbols
while preserving the common supersequence property. For generating a small
set of common supersequences, a Look Ahead Sum Height (LA-SH) [14] and the
Alphabet algorithm [1] are used. The LA-SH algorithm [14] extends the Major-
ity Merge algorithm by a look-ahead strategy: Instead of considering only one
step for choosing the best letter to add, the LA-SH algorithm looks several steps
ahead before a letter is added.

In the context of BS, Gallardo et al. [9] presented a hybrid of a Memetic
Algorithm with a BS, and Blum et al. [3] suggested a BS with a probabilistic
approach for including elements in the beam, called Probabilistic Beam Search
(PBS). More specifically, PBS calculates heuristic values using a look-ahead
version of the WMM from [4,5] and computes the probability of a partial solution
to be chosen based on these values. However, instead of always selecting a partial
solution probabilistically, they employ a mixed strategy in which, at random,
either the partial solution with the highest probability value is taken or a solution
is chosen by a roulette-wheel selection. Furthermore, for reducing runtime, lower
bounds are calculated by adding up the length of the partial solution x and
the maximum number of occurrences of each symbol in any of the remaining
strings. Later, Mousavi et al. [17] introduced a highly successful Improved BS
(IBS) which outperformed all previous algorithms for solving the SCSP in all
experiments they performed. This algorithm uses some basic laws of probability
theory to calculate the probability that a uniform random string of a certain
length is a supersequence of a set of strings S under the assumption that all
strings in S are independent and some further simplifying assumptions. This
probability is then used as heuristic value to guide the BS.

A multilevel PBS algorithm (MPBS) presented by Gallardo et al. [10] could
achieve even better results than IBS and thus constitutes so far the state-of-
the-art for the SCSP. The MPBS follows a destroy and repair paradigm. First,
an initial solution is generated by the PBS framework from Blum et al. [2] but
using the guidance heuristic from the IBS. Afterwards, two processes called PBS-
Perturbation and PBS-Reduction, are executed on the current solution until the

4 Mayerhofer J., Kirchweger M., Huber M., Raidl G.

allowed execution time is reached. PBS-Perturbation replaces a randomly chosen
symbol of the current solution by a different one. This replacement can lead to
an infeasible solution. Therefore, a repairing mechanism using PBS is employed,
where PBS is run for the (now) uncovered part on the right side, and it is tried
to find a shorter solution. PBS-Reduction first splits the current solution x into a
prefix (xL) and a suffix (xR) and computes the longest suffix for each string in S
that is a subsequence of xR. The parts (prefixes) of all strings s ∈ S that do not
belong to the longest suffixes yield a new instance of the problem. Solving this
instance using PBS yields a supersequence (x′L) for the prefixes. If |x′L| < |xL|,
then xL is substituted by x′L, i.e., x = x′L · xR. This process is executed for all
possible splits of the current solution and restarted with the enhanced solution
as soon as an improvement is made.

3 Preliminaries

We denote the length of a string s by |s|, and the empty string by ε. If s is a
string of length m, then s[j] denotes the j-th letter of s for 1 ≤ j ≤ m, and
s[j, j′] refers to the substring s[j]s[j + 1] . . . s[j′] for 1 ≤ j ≤ j′ ≤ m and the
empty string else. Let s1, s2 be two strings, then s1 ·s2 denotes the concatenation
of these. Furthermore, we denote by s1 � s2 that s1 is a subsequence of s2 and
s2 a supersequence of s1. Let S = {s1, . . . , sn} be a set of n strings and x
another string. Then, by pi(x) we denote the largest integer such that si ∈ S,
and si[1, pi(x)] � x. We call p = (pi)i=1,...,n position vector of a (partial) solution
x as it indicates the already covered parts of the input strings. It further follows
that x is a common supersequence of S if |si| = pi(x) for all i ∈ {1, . . . , n}.
Additionally, we define ri(x) = si[pi(x) + 1, |si|] as the remaining part of the
string si not covered by x. We call a string x a partial solution of the problem,
if it is not (yet) a common supersequence.

4 Beam Search Framework

We now present the general BS framework with dominance check on which we
build and utilize the basic ideas of IBS [17] and EX [6] to calculate the approx-
imate expected length of an SCSP on random strings. Moreover, we describe a
cut-off approach to make larger instances tractable without running into numer-
ical issues.

Beam search is a prominent graph search algorithm that expands nodes in
a breadth-first search manner to find a best path from a root node to a target
node. To keep the computational effort within limits, BS evaluates the reached
nodes at each level and selects a subset of only up to β most promising nodes
to pursue further. The selected subset of nodes is called beam B, and parameter
β beam width. In the context of the SCSP, the state graph is a directed acyclic
graph G = (V,A), where a state (node) v ∈ V contains a position vector pv,
which represents the SCSP sub-instance with input strings {rv1 , . . . , rvn} with
rvi = si[p

v
i + 1, |si|], i = 1, . . . , n. The root node r ∈ V has position vector

A New Beam Search for the Shortest Common Supersequence Problem 5

pr = (1, . . . , 1) and corresponds to the original SCSP instance. The terminal
node t ∈ V with pt = (|si|)i=1,...,n represents the instance with all strings being
empty, i.e., all letters of the original instance have already been covered. An
arc (u, v) ∈ A refers to transitioning from state u to state v by appending a
letter a ∈ Σ to a partial solution, and thus, arc (u, v) is labeled by this letter
denoted by `(u, v) = a. Appending a letter a ∈ Σ is only considered feasible if
this letter corresponds with the first letter of at least one remaining string rui ,
i = 1, . . . , n. Nodes are expanded until the terminal node t ∈ V is reached. Then,
the BS returns a shortest path from the root node to the terminal node, which
represents the final valid solution. In general, there may exist several different
paths from the root to some node, corresponding to different (partial) solutions
yielding the same position vector. From these, we always only have to keep
one shortest path. Thus, it is enough to actually store with each node a single
reference to the parent node in order to finally derive the solution in a backward
manner. For deciding which nodes are selected into the beam, a heuristic function
is needed that expresses how promising each state is. We use for this purpose
a new approximation of the expected length an optimal solution to the SCSP
sub-instance induced by a state has, for short the Approximate Expected Length
(AEL); it will be described in Section 4.3.

A pseudocode for the BS framework is shown in Algorithm 1. The algorithm
starts with the root node. Function ExtendAndEvaluate expands each node
of the current beam B by creating a new node for each feasible letter a ∈ Σ,
and an arc, labeled a, between the original node and the new node, and it
updates the p vector. Each new node is evaluated by calculating its AEL. In
line 5, an optional dominance check is performed, which may discard nodes that
are dominated by others; details follow in Section 4.1. Line 6 does the actual
selection of the up to β best nodes according to the heuristic values to obtain
the new beam.

Procedure ExtendAndEvaluate runs in time O(β |Σ|TAEL), where TAEL

is the time of one AEL calculation. The cardinality of the set of new nodes Vext
is at most β |Σ|. Sorting Vext for selecting the beam takes O(β |Σ| · log(β |Σ|))
time. The total runtime of the BS without dominance check is therefore

O (l β |Σ| · (TAEL + log(β |Σ|))) , (1)

where l is the length of the solution, i.e., levels of the BS. As we will argue, the
dominance check we apply also does not increase this asymptotic time.

4.1 Dominance Check

A dominance check is used to filter out certain nodes that cannot be part of
a shortest r–t path. We say a node u dominates node v at the current BS
level if pu 6= pv and pui ≥ pvi for all i = 1, . . . , n. Nodes that are dominated
by other nodes at the current level can be discarded as they cannot lead to
better solutions. More specifically, we apply the restricted κ-dominance check
in the spirit of [17] to avoid a quadratic effort in the number of nodes. Let

6 Mayerhofer J., Kirchweger M., Huber M., Raidl G.

Algorithm 1 BS for the SCSP

Input: instance (S,Σ)
Output: a common supersequence of S

1: B ← {pr} . beam
2: while true do
3: Vext ← ExtendAndEvaluate(B)
4: if t ∈ Vext then return solution corresponding to r–t path

5: Vext ← DominanceCheck(Vext) . optional
6: B ← select (up to) β best nodes from Vext

K ⊆ Vext be the subset of the (up to) κ best-ranked nodes according to the
heuristic evaluation; κ ≥ 0 is hereby a strategy parameter. We then do pairwise
domination checks only among Vext and K: First, the expanded set of nodes Vext
is sorted in non-decreasing order by the nodes’ heuristic values, and the leftmost
κ solutions K ⊆ Vext are selected. If v ∈ Vext is dominated by any u ∈ K, then
node v is discarded. Note that in contrast to [17], dominance within the leftmost
κ solutions is also checked according to their order. A single dominance check of
two nodes takes time O(n), and therefore, the whole κ-dominance check for one
level is done in time O(κβ |Σ|n). If we consider κ to be a constant, the BS’s
total asymptotic time complexity (1) does not change.

4.2 Heuristic Function from IBS

Before we introduce AEL, we review the heuristic function from Mousavi et
al. [17] as it provides a basis for our considerations. Its basic idea is to calculate
the probability of a random string of length k being a common supersequence
of an independent random string of length q.

Theorem 1. Let w, y be two uniform random strings with length q and k re-
spectively. The probability of y being a common supersequence of w is

P(q, k) =


1 if q = 0

0 if q > k
1
|Σ|P(q − 1, k − 1) + |Σ|−1

|Σ| P(q, k − 1) otherwise.

(2)

By using Theorem 1, the probability that a random string y is a common
supersequence of a set of strings S can be calculated by

∏
s∈S P(|s|, |y|). Hence,

for a partial solution x, the probability that y is a common supersequence of all
ri(x) is h(x) =

∏n
i=1 P(|ri(x)|, |y|). Mousavi et al. directly use this probability

as guidance function with the length of the string y calculated by

|y| = max
v∈Vext, i∈{1,...,n}

|rvi | · log(|Σ|), (3)

but also mention that selecting the “best” length would need further investiga-
tion.

A New Beam Search for the Shortest Common Supersequence Problem 7

4.3 Approximate Expected Length (AEL)

Now, we present our new guidance heuristic AEL, inspired by the earlier work
for the longest common subsequence problem from Djukanovic et al. [6] that
approximates the expected length of an SCS on uniform random strings. Let Y
be the random variable corresponding to the length of an SCSP of n uniformly
randomly generated strings S, and let Yk ∈ {0, 1} be a binary random variable
indicating if there is a supersequence of length k for S. The realizations of Y
cannot be larger than u = |Σ|m and smaller than m, where m = maxs∈S |s|.
The upper bound can be trivially shown by taking an arbitrary permutation
of the alphabet and repeating it m times, cf. [22]. These definitions enable us
to express E(Y) in terms of E(Yk) by using some basic laws from probability
theory:

E(Y) =

u∑
k=m

k P(Y = k)

=

u∑
k=m

k · (E(Yk)− E(Yk−1))

= uE(Yu)−
u−1∑
k=m

E(Yk)−mE(Ym−1)

= u−
u−1∑
k=m

E(Yk).

(4)

Assume that the probability of a sequence being a common supersequence of all
strings in S is independent for distinct sequences. The probability that a string
of length k is a common supersequence of S is then given by

∏n
i=1 P(|si|, k),

and the probability that this is not the case by 1 −
∏n
i=1 P(|si|, k)). Under the

assumption that these probabilities are independent for all |Σ|k possible strings
of length k, the probability that none of them is a common supersequence is

(1−
∏n
i=1 P(|si|, k))|Σ|

k

. Hence, E(Yk) = 1− (1−
∏n
i=1 P(|si|, k))|Σ|

k

holds under
these simplifying assumptions. This enables us to utilize the probability function
P(q, k) from the previous Section 4.2, yielding

E(Y) = u−
u−1∑
k=m

(
1− (1−

n∏
i=1

P(|si|, k))|Σ|
k

)
. (5)

To avoid numerical problems and speed up the computation, the expression is

not evaluated directly. In practice, most of the terms 1− (1−
∏n
i=1 P(|si|, k))|Σ|

k

are either quite close to zero or one. Moreover, it is easy to see that 1 − (1 −∏n
i=1 P(|si|, k1))|Σ|

k1 ≤ 1 − (1 −
∏n
i=1 P(|si|, k2))|Σ|

k2
holds for k1 < k2. Hence,

a divide-and-conquer approach is employed to calculate the sum in Equation 5.
More specifically, all values greater than 1−δ or smaller than δ are approximated
with 0 or 1, where we chose δ = 10−20 in our experiments.

8 Mayerhofer J., Kirchweger M., Huber M., Raidl G.

Since |Σ|k cannot be represented in a standard floating-point arithmetic for

large k, the expression (1−
∏n
i=1 P(|si| � k))|Σ|

k

is decomposed into

((
· · · (1−

n∏
i=1

P(|si|, k))|Σ|
p

· · ·
)|Σ|p

︸ ︷︷ ︸
bk/pc times

)|Σ|(k mod p)

(6)

for p = 10. Additionally, if the product over the probabilities is very small,
numerical issues occur. To tackle this problem, the expression in Equation 6 is
estimated by using a Taylor series approximation if the product is smaller than
a certain threshold. See [6] for more details on this.

Cut-Off. For larger instances, the heuristic values the above calculation yields
are nevertheless often integers due to numerical imprecisions, because either |Σ|k
is far too large or the product is far too small. This often results in many equal
heuristic values for the nodes, and thus a poor differentiation of how promising
the nodes are. To deal with this issue, we shorten the strings for the calculation
when they exceed a certain length. More specifically, at each iteration of the
while-loop in Algorithm 1, the length mext of the longest remaining string over
all nodes in Vext is taken, i.e., mext = maxv∈Vext, i=1,...,n |rvi |, and a cut-off C =
max (0,mext − γ) is determined, where γ is a strategy parameter. Instead of
calculating AEL for a node v ∈ Vext over the original remaining string lengths
|rvi |, it is now determined over the lengths max(0, |rvi | − C), i = 1, . . . , n.

Computational Complexity. In the worst case, for each k, the n probabilities
for all n input strings have to be multiplied and the stable power applied. Thus,
AEL can be performed in time O((q|Σ|)2n/p), where q = maxi=1,...,n(|rvi |). In
practice, due to the divide-and-conquer approach and approximation of values
close to zero and one, only a small fraction of the stable powers and multiplica-
tions is needed.

5 Experimental Evaluation

We implemented the BS as well as MPBS, both with AEL as guidance function,
in Julia 1.6.2. All tests were performed on an Intel Xeon E5-2640 processor with
2.40 GHz in single-threaded mode and a memory limit of 8GB. We compare
these two approaches among each other and to results from IBS and the original
MPBS as reported in [10].

5.1 Test Instances

Two benchmark sets already used in [10] are considered to evaluate the ap-
proaches. The first set denoted as Real consists of real-world instances, and the
second one, Rand, of random instances. Set Rand consists of five instances for

A New Beam Search for the Shortest Common Supersequence Problem 9

each |Σ| ∈ {2, 4, 8, 16, 24}, each instance having four random strings of length
40 plus four random strings of length 80, i.e., n = 8. Set Real consists of real
DNA and protein instances. There are ten DNA instances for each combina-
tion of n ∈ {100, 500} equally long strings of length m ∈ {100, 500, 1000}, and
|Σ| = 4, in total thus 60 instances. Moreover, there are 10 protein instances
for each (n,m) ∈ {(100, 100), (500, 100), (100, 500)}, where again all strings are
equally long, and |Σ| varies in {20, . . . , 24}; in total these are 30 instances.

For both instance sets Real and Rand, a collection of so far best-known
solution lengths lbest is provided in [10]. All instances are available online1.

5.2 Impact of Cut-Off and Comparison to IBS

In this Section, we investigate the impact of the cut-off parameter γ and compare
results to the IBS from [17]. Unfortunately, we could not reproduce the results
stated by Mousavi et al. in [17] due to some missing details in their paper. An
inquiry was without success. Also, we could not obtain the original source codes
of former approaches. Moreover, note that the results reported for IBS in the
newer publication [10] differ from those in [17]. For us, this does not matter
much since for the cases where our approaches performed better they do so for
the results reported in both papers. We use the newer values reported in [10]
for the comparison here. To enable comparability of our results the same beam
width of β = 100 and the dominance check with κ = 7 was applied as in [10].

Preliminary tests for the cut-off parameter γ indicated that results are not
particularly sensitive as long as 20 ≤ γ ≤ 40. Higher values lead frequently to
the numerical issues we want to avoid, while lower values often result in an over-
simplification and poor guidance. We were not able to find a clear relationship
of good values for γ, the number of input strings, and the alphabet size. We
therefore investigate these two border values as well as calculating AEL with-
out cut-off. The BS variants with these guidance heuristics are denoted in the
following by BSAEL, BSAEL,γ=20, BSAEL,γ=40, respectively.

Tables 1 and 2 summarize obtained results for Real and Rand and those
reported in [10] for IBS. Listed are for each instance group average solution
lengths l, the respective standard deviation σ and the average runtime t in
seconds. In each row, the best result w.r.t. solution length is printed bold.

The results show that BSAEL performs worse than IBS in most cases. This is
primarily caused by the many ties the numerical calculating of AEL yields. By
using the cut-off approach with γ ∈ {20, 40}, the performance of our BS with
AEL increases significantly, and we obtain better results than IBS on almost
all instances on Real. The approaches BSAEL,γ∈{20,40} each outperform IBS on
seven out of nine Real instance classes on average, where BSAEL,γ={40} outper-
forms IBS on all DNA instance classes, and BSAEL,γ={20} on two out of three
protein instance classes. On the Rand instances, BSAEL is almost on par with
IBS, but, the cut-off extension did worsen instead of improving the average so-
lution quality. The reason seems to be the strong differences in the lengths of

1 Excluded to not give away information about the authors.

10 Mayerhofer J., Kirchweger M., Huber M., Raidl G.

n m BSAEL BSAEL,γ=20 BSAEL,γ=40 IBS

l σl t[s] l σl t[s] l σl t[s] l

DNA 100 100 272.4 2.7 2.2 270.3 2.2 2.0 271.6 2.6 2.3 272.3
DNA 500 100 287.9 1.8 6.2 285.7 1.5 5.1 287.5 2.4 6.1 288.1
DNA 100 500 1290.9 9.7 6.9 1279.7 5.5 5.3 1279.2 5.7 7.2 1284.6
DNA 500 500 1362.4 8.9 26.0 1342.9 7.4 28.7 1341.2 7.2 27.1 1351.6
DNA 100 1000 2567.9 26.6 8.6 2545.4 10.9 13.2 2536.5 11.8 11.8 2540.1
DNA 500 1000 2682.8 25.2 48.9 2654.2 21.5 46.5 2641.6 18.5 52.5 2662.9

PROTEIN 100 100 920.9 16.0 16.7 896.0 12.5 21.5 912.9 8.9 16.5 910.6
PROTEIN 500 100 1122.5 26.6 99.9 1071.4 16.2 87.2 1092.3 10.7 102.2 1118.1
PROTEIN 100 500 4473.8 86.8 84.8 4405.7 47.5 98.6 4434.0 32.4 85.1 4374.9

Table 1: Real instances: average solution lengths and runtimes obtained by
BSAEL, BSAEL,γ∈{20,40}, and results of IBS from [10]; β = 100.

|Σ| BSAEL BSAEL,γ=20 BSAEL,,γ=40 IBS

l σl t[s] l σl t[s] l σl t[s] l

2 109.4 1.7 1.4 109.6 2.0 1.3 109.8 1.9 0.8 109.4
4 143.0 1.4 1.2 144.0 1.3 1.7 143.2 2.2 1.5 142.4
8 180.4 2.5 1.9 186.6 1.0 1.8 182.4 2.6 1.8 180.6

16 238.6 4.7 2.0 241.4 6.0 1.9 237.2 4.2 2.0 235.6
24 274.4 2.7 1.1 279.0 4.8 2.5 273.8 5.3 1.3 268.8

Table 2: Rand instances: average solution lengths and runtimes obtained by
BSAEL, BSAEL,γ∈{20,40} and results of IBS from [10]; β = 100.

the input strings – remember that in each instance, half of the strings only has
half the length of the others. Moreover, string lengths are generally smaller than
in the Real instances, and therefore fewer ties occur in BSAEL without cut-off.
We remark that the runtimes reported in [10] for IBS are in the same order
of magnitude, but generally smaller than the ones observed for our approaches.
However, these times can hardly be compared due to the different programming
languages and hardware used.

5.3 Integrating AEL into MPBS

As MPBS [10] is the approach yielding so far the best results on average, we
now equip it with AEL as guidance heuristic. We set the strategy parameters
as in [10]: βinit = 100 for generating the initial solutions, βpert = 700 for the
perturbation, and βredu = 200 for the reduction. The number of generated initial
solutions was set to ζinit = 3, the number of perturbations per iteration to
ζinit = 7, and λ = 0.6 giving the degree of randomness of PBS (i.e. 60% of all
nodes are selected randomly from Vext instead of taking the best node); these
values are not provided in [10] and therefore chosen by us following preliminary
tests to balance exploration and exploitation.

In conjunction with AEL as guidance heuristic, we found that in the PBS-
Reduction approach it seems to be better to not always increase the length of
the prefix xL of the current solution by one. Instead, we increase it by 5% of the
current solution length. In this way, we had never more than 21 reduction runs

A New Beam Search for the Shortest Common Supersequence Problem 11

0 100 200 300 400 500
Time in Seconds

0.25

0.50

0.75

1.00

1.25

1.50

RP
D

[%
]

DNA n = 100, m = 100
Median
Mean

0 100 200 300 400 500
Time in Seconds

0.2

0.0

0.2

0.4

0.6

0.8

1.0

RP
D

[%
]

DNA n = 500, m = 100
Median
Mean

0 250 500 750 1000 1250 1500 1750 2000
Time in Seconds

1.0

1.5

2.0

2.5

3.0

RP
D

[%
]

Protein n = 100, m = 100
Median
Mean

0 250 500 750 1000 1250 1500 1750 2000
Time in Seconds

2.0

1.5

1.0

0.5

0.0

0.5

RP
D

[%
]

Protein n = 500, m = 100
Median
Mean

Fig. 1: RPD of MPBSAEL,γ=20 over time in seconds. The dashed line marks the
average RPD value from MPBSIBS [10].

per iteration, including a reduction run with the total length. This should not
have a significant impact on the solution quality as long as the number of letters
to be added is sufficiently small. The allowed runtime for MPBS was set to 500
seconds for the DNA instances and to 2000 seconds for the protein instances and
300 seconds for the Rand instances.

We denote MPBS with our AEL-heuristic without cut-off by MPBSAEL, with
cut-off for γ ∈ {20, 40} by MPBSAEL,γ=20 and MPBSAEL,γ=40, respectively,
and with the heuristic function used in IBS by MPBSIBS. Figure 1 shows for
MPBSAEL,γ=20 how the mean and median solution length over all 10 instances
of an instance group change over time. Instead of providing the average solution
lengths, we present the relative percentage difference (RPD) which is obtained
by 100% · (l− lbest)/lbest, where l denotes the solution length and lbest the best-
known length as listed in [10]. It turned out that the reductions and perturbations
decrease the solution length frequently at the beginning, but after some time
improvements could be achieved only rarely.

Figure 2 shows the RPD for DNA and protein instances obtained by BSAEL,
BSAEL,γ∈{20,40}, MPBSAEL, and MPBSAEL,γ∈{20,40} as boxplots. We can ob-
serve here once more that BSAEL,γ∈{20,40} perform significantly better than the
BSAEL without cut-off. Further, turning to MPBS with its reductions and per-
turbations further improves the results in almost all cases significantly. For some
instances, the results are already better than the previously best-known ones.

Figure 3 shows the RPD over all instances of Real and Rand. For Real,
MPBSAEL,γ∈{20,40} outperforms IBS and is close to MPBSIBS. Furthermore, the
figure shows that the average solution length of MPBSAEL,γ∈{20,40} lies below
the one of MPBSIBS and thus MPBSAEL,γ∈{20,40} outperforms MPBSIBS. We
remark that a comparison on an instance-based basis is not possible as no values

12 Mayerhofer J., Kirchweger M., Huber M., Raidl G.

n
=

10
0,

m
=

10
0

n
=

50
0,

m
=

10
0

n
=

10
0,

m
=

50
0

n
=

50
0,

m
=

50
0

n
=

10
0,

m
=

10
00

n
=

50
0,

m
=

10
00

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

RP
D

[%
]

DNA Instances
BSAEL
BSAEL, = 20
BSAEL, = 40
MPBSAEL
MPBSAEL, = 20
MPBSAEL, = 40

n
=

10
0,

m
=

10
0

n
=

50
0,

m
=

10
0

n
=

10
0,

m
=

50
0

2

0

2

4

6

8

RP
D

[%
]

Protein Instances

BSAEL
BSAEL, = 20
BSAEL, = 40
MPBSAEL
MPBSAEL, = 20
MPBSAEL, = 40

Fig. 2: Boxplots of the RPD for AEL and MPBSAEL on DNA and Protein in-
stances. Dotted lines mark the average RPD from MPBSIBS [10] and dashed
lines the average RPD from IBS [10].

BS
AE

L
BS

AE
L,

=
20

BS
AE

L,
=

40
MP

BS
AE

L
MP

BS
AE

L,
=

20
MP

BS
AE

L,
=

40

4
2
0
2
4
6
8

RP
D

[%
]

All Real Instances

BS
AE

L
BS

AE
L,

=
20

BS
AE

L,
=

40
MP

BS
AE

L
MP

BS
AE

L,
=

20
MP

BS
AE

L,
=

40

0
2
4
6
8

10
12
14

RP
D

[%
]

All Rand Instances

Fig. 3: Boxplots of the RPD for AEL and MPBSAEL over all Real and all Rand
instances. Dotted lines mark the average RPD value from MPBSIBS [10] and
dashed lines the average RPD from IBS [10].

per instance are reported for MPBSIBS in [10]. Concerning Rand, we observe that
BSAEL has almost the same average solution quality as IBS. Also MPBSAEL,
MPBSAEL,γ=40 and MPBSIBS have a similar solution quality.

Tables 3 and 4 list average solution lengths and standard deviations of the
MPBS variants including the results from [10]. Similarly to Table 1 and 2, we
observe that for small random instances our approach does not improve on the
previous approach while for almost all larger instances, we could achieve better
results. The approaches MPBSAEL,γ∈{20,40} each outperform MPBSIBS on six
out of nine Real instance classes on average. In total only one DNA and one
protein instance class remain where MPBSIBS was better on average.

A New Beam Search for the Shortest Common Supersequence Problem 13

|Σ| MPBSAEL MPBSAEL,γ=20 MPBSAEL,γ=40 MPBSIBS

l σl l σl l σl l

2 109.0 1.7 109.4 1.6 109.0 1.7 108.8
4 139.8 1.6 140.4 1.9 139.6 1.5 139.8
8 177.6 1.5 180.6 1.4 177.8 1.9 177.2
16 227.6 3.9 232.2 3.9 228.0 1.7 227.7
24 257.6 3.0 264.2 2.8 259.6 3.3 257.3

Table 3: Average solution lengths and standard deviations of the MPBS variants
obtained on the Rand instances; results for MPBSIBS from [10]; runtime: 300s.

n m MPBSAEL MPBSAEL,γ=20 MPBSAEL,γ=40 MPBSIBS

l σl l σl l σl l

DNA 100 100 268.6 1.7 267.5 1.6 267.9 1.8 268.1
DNA 500 100 284.6 1.7 283.7 1.6 284.8 1.1 285.0
DNA 100 500 1286.1 10.0 1275.1 6.1 1272.8 6.2 1276.0
DNA 500 500 1353.1 6.4 1341.1 8.0 1338.6 6.6 1343.1
DNA 100 1000 2559.2 25.4 2541.5 10.6 2532.3 11.0 2529.1
DNA 500 1000 2672.5 23.1 2649.9 21.1 2637.9 20.3 2647.9

PROTEIN 100 100 897.5 17.6 880.0 13.0 887.7 8.2 880.2
PROTEIN 500 100 1103.7 26.2 1060.5 14.7 1075.9 11.9 1092.2
PROTEIN 100 500 4430.9 70.3 4382.6 51.8 4378.1 41.1 4296.7

Table 4: Average solution lengths and standard deviations of the MPBS variants
obtained on the Real instances; results for MPBSIBS from [10]; runtime: 500s
for DNA instances, 2000s for protein instances.

5.4 Improving the Best-Known Solutions

By using a significantly larger beam width than 100, i.e., beam width β ∈
{1000, 2000, 5000, 10000} and a timeout of eight hours per instance, we were
able to improve several so far best-known solutions. In these experiments we
considered BSAEL, and BSAEL,γ∈{20,40,50}. Also, we consider MPBSAEL, and
MPBSAEL,γ∈{20,40,50}, with the settings given in Section 5.3, but with a timeout
of eight hours per instance. Table 5 list for each instance group from Real the
approach that achieved the best average solution length together with this so-
lution value. In the case of ties, we list the fastest approach for BSAEL, i.e., the
one with smaller beam width, or all approaches in case of MPBS. For compari-
son, the table also lists the so far best-known average solution lengths from [10].
Table 6 list the results for Rand with BSAEL, since no other method yields better
results. Our new solutions can be found online2. f

For all the instance groups, better or the same average results could be found.
The table also shows that a higher beam width yields better results. Further,
we can see that even for small γ the algorithm performs relatively well and
sometimes even returns better results than for higher γ values, especially for the
protein instances. This might be due to the larger alphabet size in comparison
to the DNA instances. In total, we found new on average best solutions for all
instance classes of Real, three times with MPBSAEL with different γ values, three

2 Excluded to not give away information about the authors.

14 Mayerhofer J., Kirchweger M., Huber M., Raidl G.

n m method β best-found best-known

l σl lbest σl

DNA 100 100 MPBSAEL,γ=20 - 266.0 1.8 267.0 1.8
DNA 500 100 MPBSAEL,γ=20 - 282.3 0.9 284.0 1.9
DNA 100 500 BSAEL,γ=50 10000 1269.4 6.4 1273.5 7.2
DNA 500 500 MPBSAEL,γ∈{40,50} - 1333.1 6.3 1340.6 4.4
DNA 100 1000 BSAEL,γ=50 10000 2521.4 11.4 2526.3 12.5
DNA 500 1000 BSAEL,γ=50 10000 2631.1 18.3 2644.5 22.3

PROTEIN 100 100 BSAEL,γ=20 5000 850.6 9.3 873.8 8.5
PROTEIN 500 100 BSAEL,γ=20 5000 1040.7 14.9 1084.7 14.4
PROTEIN 100 500 BSAEL,γ=40 5000 4201.2 38.2 4280.0 44.5

Table 5: Average solution lengths on Real with BSAEL, BSAEL,γ∈{20,40,50},
MPBSAEL, MPBSAEL,γ∈{20,40,50} and high beam widths given in the table in
comparison to the previously best-known results.

|Σ| β best-found best-known

l σl lbest σl

2 1000 108.8 1.3 108.8 1.3
4 2000 139.2 1.2 139.2 1.2
8 5000 176.0 1.6 176.0 1.7

16 5000 222.4 3.3 224.6 3.4
24 5000 249.4 1.9 252.4 1.6

Table 6: Average solution lengths on Rand with BSAEL and high beam widths
given in the table in comparison to the previously best-known results.

times with BSAEL,γ=50, two times with BSAEL,γ=20 and once with BSAEL,γ=40.
For the Rand instance classes, we found the same average solutions for three
out of five instance classes and new on average best solutions for the other two
instance classes with a higher alphabet size of |Σ| ∈ {16, 24}.

6 Conclusions and Future Work

Inspired by previous work for the longest common subsequence problem, we de-
veloped a novel approximate expected length calculation for the SCSP and used
it to guide a respective BS heuristic as well as the more advanced MPBS from
[10]. To reduce ties that arise from numerical imprecisions in case of larger in-
stances and impact performance, an effective cut-off approach was introduced.
Our experiments show that by applying AEL instead of the heuristic used in
IBS [17], we were able to achieve better results on most of the benchmark in-
stances and to outperform MPBSIBS, the so-far leading approach for the SCSP,
on average. While AEL works particularly well on benchmark set Real, Rand
instances turned out to be more challenging for AEL due to their particularity
that the input strings differ heavily in their lengths. By using AEL in conjunc-
tion with higher beam widths and allowing longer runtimes, we could ultimately
find new best-known solutions for almost all benchmark instances.

In future work, it would be interesting to adapt AEL for different variants
of the SCSP, such as the constrained SCSP, or to apply machine learning tech-

A New Beam Search for the Shortest Common Supersequence Problem 15

niques, in particular, reinforcement learning based, in order to learn a possibly
even more appropriate guidance heuristic.

References

1. Barone, P., Bonizzoni, P., Vedova, G.D., Mauri, G.: An approximation algorithm
for the shortest common supersequence problem: An experimental analysis. In:
Proc. of the 2001 ACM Symposium on Applied Computing. p. 56–60. ACM (2001)

2. Blum, C., Blesa, M.J.: Probabilistic beam search for the longest common subse-
quence problem. In: Stützle, T., et al. (eds.) Engineering Stochastic Local Search
Algorithms. Designing, Implementing and Analyzing Effective Heuristics, Interna-
tional Workshop. LNCS, vol. 4638, pp. 150–161. Springer (2007)

3. Blum, C., Cotta, C., Fernández, A.J., Gallardo, J.E.: A Probabilistic Beam
Search Approach to the Shortest Common Supersequence Problem. In: Cotta, C.,
van Hemert, J. (eds.) Evolutionary Computation in Combinatorial Optimization.
LNCS, vol. 4446, pp. 36–47. Springer (2007)

4. Branke, J., Middendorf, M.: Searching for shortest common supersequences by
means of a heuristic-based genetic algorithm. In: Proceedings of the Second Nordic
Workshop on Genetic Algorithms. pp. 105–113. University of Vaasa, Finland (1996)

5. Cotta, C.: A comparison of evolutionary approaches to the shortest common su-
persequence problem. In: Cabestany, J., et al. (eds.) Computational Intelligence
and Bioinspired Systems, 8th International Work-Conference on Artificial Neural
Networks. LNCS, vol. 3512, pp. 50–58. Springer (2005)

6. Djukanovic, M., Raidl, G.R., Blum, C.: A beam search for the longest common
subsequence problem guided by a novel approximate expected length calculation.
In: Nicosia, G., et al. (eds.) Proc. of the 5th Int. Conf. on Machine Learning,
Optimization, and Data Science. LNCS, vol. 11943, pp. 154–167. Springer (2019)

7. Djukanovic, M., Raidl, G.R., Blum, C.: Anytime algorithms for the longest common
palindromic subsequence problem. Computers & Operations Research 114, 104827
(2020)

8. Foulser, D.E., Li, M., Yang, Q.: Theory and algorithms for plan merging. Artificial
Intelligence 57(2-3), 143–181 (1992)

9. Gallardo, J.E., Cotta, C., Fernandez, A.J.: On the Hybridization of Memetic Algo-
rithms With Branch-and-Bound Techniques. IEEE Transactions on Systems, Man
and Cybernetics, Part B 37(1), 77–83 (2007)

10. Gallardo, J.E.: A Multilevel Probabilistic Beam Search Algorithm for the Shortest
Common Supersequence Problem. PLOS ONE 7(12), e52427 (2012), public Library
of Science

11. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., USA (1990)

12. Irving, R.W., Fraser, C.B.: Maximal common subsequences and minimal common
supersequences. In: Crochemore, M., Gusfield, D. (eds.) Combinatorial Pattern
Matching. vol. 807, pp. 173–183. Springer (1994)

13. Jiang, T., Li, M.: On the approximation of shortest common supersequences and
longest common subsequences. SIAM J. Comput. 24(5), 1122–1139 (1995)

14. Kang, N., Pui, C.K., Wai, L.H., Louxin, Z.: A post-processing method for opti-
mizing synthesis strategy for oligonucleotide microarrays. Nucleic Acids Research
33(17), e144–e144 (2005)

16 Mayerhofer J., Kirchweger M., Huber M., Raidl G.

15. Kasif, S., Weng, Z., Derti, A., Beigel, R., DeLisi, C.: A computational framework
for optimal masking in the synthesis of oligonucleotide microarrays. Nucleic Acids
Research 30(20), e106 (2002)

16. Maier, D.: The complexity of some problems on subsequences and supersequences.
Journal of the ACM 25(2), 322–336 (1978)

17. Mousavi, S.R., Bahri, F., Tabataba, F.: An enhanced beam search algorithm for the
shortest common supersequence problem. Eng. Appl. Artif. Intell. 25(3), 457–467
(2012)

18. Ning, K., Leong, H.W.: Towards a better solution to the shortest common super-
sequence problem: the deposition and reduction algorithm. BMC Bioinformatics
7(S4), S12 (2006)

19. Räihä, K., Ukkonen, E.: The shortest common supersequence problem over binary
alphabet is NP-complete. Theor. Comput. Sci. 16, 187–198 (1981)

20. Sellis, T.K.: Multiple-query optimization. ACM Trans. Database Syst. 13(1), 23–52
(1988)

21. Storer, J.A.: Data Compression: Methods and Theory. Comp. Sci. Press (1988)
22. Sven, R.: The shortest common supersequence problem in a microarray production

setting. Bioinformatics 19, ii156–ii161 (2003)
23. Timkovskii, V.G.: Complexity of common subsequence and supersequence prob-

lems and related problems. Cybernetics 25(5), 565–580 (1990)

	A Beam Search for the Shortest Common Supersequence Problem Guided by an Approximate Expected Length Calculation

