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Abstract Recent years have shown that multivalued decision diagrams
(MDD) are a powerful tool for approaching combinatorial optimization prob-
lems (COPs). Relatively compact relaxed and restricted MDDs are employed
to obtain dual bounds and heuristic solutions and provide opportunities for
new branching schemes. We consider a prize-collecting sequencing problem in
which a subset of given jobs has to be found that is schedulable and yields max-
imum total prize. The primary aim of this work is to study different methods
for creating relaxed MDDs for this problem. To this end, we adopt and extend
the two main MDD compilation approaches found in the literature: top down
construction and incremental refinement. In a series of computational experi-
ments these methods are compared. The results indicate that for our problem
the incremental refinement method produces MDDs with stronger bounds.
Moreover, heuristic solutions are derived by compiling restricted MDDs and
by applying a general variable neighborhood search (GVNS). Here we observe
that the top down construction of restricted MDDs is able to yield better
solutions as the GVNS on small to medium-sized instances.

Keywords Sequencing · multivalued decision diagrams · incremental
refinement · particle therapy patient scheduling

1 Introduction

We consider a new prize-collecting variant of the Job Sequencing with One
Common and Multiple Secondary Resources (JSOCMSR) problem [14] which
we call PC-JSOCMSR. Given a set of jobs, each associated with a prize, the
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task is to find a subset of jobs with maximal total prize that is feasibly schedu-
lable. Each job requires one of several secondary resources during its whole
processing time and a single common resource for a part of its execution. More-
over, each job has to be performed within given time windows. This problem
originates from the context of particle therapy for cancer treatment [19,18,
21]. In this scenario the common resource corresponds to a particle beam that
can be directed into one of multiple treatment rooms which are represented
by the secondary resources. Jobs describe treatments that consist of several
tasks within a treatment room from which only one is the actual irradiation
using the beam. While the works concerning particle therapy deal with nu-
merous additional characteristics stemming from the real world application, it
is apparent that the most central aspect is the sequencing of the jobs.

In this work we explore the potential of applying the concept of decision
diagrams (DDs) to PC-JSOCMSR and in particular investigate different meth-
ods for creating them. DDs have been originally developed in the context of
circuit design [17]. In the course of the last decade DDs have shown to be also
a powerful tool for tackling combinatorial optimization problems (COPs) [4].
Essentially, DDs are layered directed acyclic multigraphs used to compactly
represent a COP’s set of feasible solutions. To this end, a DD has a root node
and each subsequent layer of the DD is associated with one of the decision
variables of the COP. Every arc in the DD describes an assignment of the
variable represented by the corresponding layer. Thus, a path starting from
the root node represents a variable assignment. The lengths of the arcs are
assigned in such a way that the length of a path corresponds to the objective
value of the corresponding variable assignment. Depending on whether the
COP’s objective is to maximize or to minimize a given objective function, we
are seeking a longest or a shortest inclusion maximal path to a valid terminal
node within the DD. The out-degrees of the DD’s nodes directly corresponds
with the domain sizes of the respective decision variables. If the COP is mod-
eled with binary variables, then all nodes either have two or zero outgoing arcs
and the DD is called binary decision diagram (BDD). In the more general case
with finite variable domains, the number of arcs leaving nodes is not restricted.
In this case, DDs are called multivalued decision diagrams (MDDs).

DDs resemble in many aspects a dynamic programming’s state graph [13].
Likewise, the size of exact DDs grows in general exponentially with the problem
size. To overcome the resulting limitations, Andersen et al. [2] proposed the
concept of relaxed DDs. The basic idea is to merge nodes on the same layer
and to redirect the affected arcs. This might introduce new paths in the DD
that, however, do not represent feasible solutions. Consequently, relaxed DDs
encode a superset of the feasible solutions and represent a discrete relaxation
of the problem that provides dual bounds. Another way to cope with the
in general exponential number of nodes are restricted DDs [6]. A restricted
DD is obtained from an exact DD by removing nodes and all incident arcs.
Clearly, this also removes all paths from the DD that included at least one
of the removed nodes. Therefore, a restricted DD represents only a subset of
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all feasible solutions, and it is used to obtain a feasible heuristic solution and
respective primal bound.

Beside upper and lower bounds, relaxed DDs in particular also provide
promising opportunities for new inference techniques in constraint program-
ming [8,16], novel branching schemes [5] for branch-and-bound, as well as
primal heuristics [6,5].

The concept of DDs has been successfully applied to a variety of prob-
lems, ranging from binary optimization problems to sequencing problems. The
former include set covering [7,6], maximum independent set [3,5], maximum
cut [5], and maximum 2-satisfiability [5] problems and are approached using
BDDs. Sequencing problems on the other hand typically suggest the use of
MDDs. In the literature already considered sequencing problems include the
time dependent traveling salesman problem with and without time windows
and the time-dependent sequential ordering problem [8,16]. For a comprehen-
sive overview on DDs see [4].

One fundamental difference to the DDs considered in the literature is the
price-collecting aspect. While the so far considered problems define solutions
by paths traversing all layers, in PC-JSOCMSR every path starting at the
root node corresponds to a valid solution. Two main approaches have been
proposed for compiling MDDs. The first starts at the root node and constructs
the MDD layer by layer [7,6]. If the number of nodes within a layer exceeds
a given limit, then either nodes are merged or removed to obtain a relaxed or
a restricted MDD, respectively. The second approach, starts with a simplistic
relaxed MDD and applies incremental refinements by splitting nodes in order
to iteratively strengthen the relaxation [8,16]. We adapt both approaches for
PC-JSOCMSR here and are, to our knowledge, the first who directly compare
the two techniques in an experimental fashion. Moreover, we investigate the
derivation of heuristic solutions by constructing a restricted MDD and provide
an independent general variable neighborhood search (GVNS) [10] to set the
DD-based approaches into perspective. Our computational experiments show
that the incremental refinement approach provides on most of our benchmark
instances better dual bounds than the top down compilation. While the top
down compilation for restricted MDDs outperforms the GVNS on small to
medium-sized instances, the GVNS is mostly superior on larger instances.

The remainder of this work is organized as follows. In the following we start
by giving a formal description of the considered problem. Section 3 provides
a recursive dynamic programming model for PC-JSOCMSR which serves as
basis for deriving MDDs in Section 4. Section 5 describes the top down com-
pilation of relaxed and restricted MDDs, while the incremental refinement
algorithm for PC-JSOCMSR is given in Section 6. Section 7 sketches the stan-
dalone GVNS. Results of computational experiments of all approaches are
discussed in Section 8. Finally, Section 9 concludes with an outlook on future
research directions.
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2 The Problem

The Prize-Collecting Job Sequencing with One Common and Multiple Sec-
ondary Resources (PC-JSOCMSR) problem is formally defined as follows. Let
J = {1, . . . , n} be a set of n jobs of which a subset shall be scheduled using
renewable resources R0 = {0}∪R with R = {1, . . . ,m}. To be processed, each
job j ∈ J requires a resource qj ∈ R for its entire processing time pj > 0 and
additionally resource 0 for a duration of p0j after time pprej from the job’s start;

0 < p0j ≤ pj−p
pre
j . For convenience, we denote with ppostj the duration after the

common resource is used until the job j is completed, i.e., ppostj = pj−pprej −p0j .
Moreover, we write Jr for the subset of all jobs in J which require secondary
resource r ∈ R.

We associate with each job j a set of time windows Wj =
⋃

w=0,...,ωj
Wj,w

with Wj,w = [W start
j,w ,W end

j,w ], where W end
j,w − W start

j,w ≥ pj . Jobs can only be
performed within these time windows and are assumed to be non-preemptive,
i.e., may not be interrupted. We denote the whole relevant time horizon, en-
compassing all time windows of all jobs, with [Tmin, Tmax].

Finally, each job j has associated a prize (utility value, priority) zj > 0. We
assume that there exists, in general, no schedule that assigns feasible starting
times to all jobs in J . Instead, we aim for a subset of jobs S ⊆ J that can be
feasibly scheduled and maximizes the total prize of these jobs, i.e.,

Z(S) =
∑
j∈S

zj . (1)

A schedule of S implies a total ordering of the scheduled jobs because all jobs
require resource 0 and this resource can be used by only one job at a time. Vice
versa, such an ordering π = (πi)i=1,...,|S| of S can be decoded into a schedule by
scheduling each job from S in the order given by π at the earliest feasible time
after the preceding job. If at least one of the jobs cannot be feasibly scheduled
in this way, then ordering π does not represent a feasible solution. We call
the schedule obtained from ordering π by the above decoding a normalized
schedule. Clearly, for every feasible solution there exists a normalized schedule
with the same objective value. Hence, we write Z(π) for the total prize of the
normalized solution given by the ordering π of jobs.

Above problem variant extends the Job Sequencing with One Common
and Multiple Secondary Resources (JSOCMSR) problem originally proposed
by Horn et al. [14] by the considered time windows and the maximization
of the scheduled jobs’ prizes. In Horn et al.’s JSOCMSR, the objective is
to minimize the makespan. Horn et al. showed that the decision variant of
JSOCMSR is NP-hard for m ≥ 2. PC-JSOCMSR is NP-hard as well, which
can be shown by a simple reduction. To this end, we construct an instance
for PC-JSOCMSR by associating each job with a single time window [0,M ],
where M is the given constant for the makespan. There exists a solution for
the decision variant of JSOCMSR if and only if there exists a solution for the
constructed PC-JSOCMSR instance in which all jobs can be scheduled.
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In a concurrently submitted work, Horn et al. [15] focus on solving the PC-
JSOCMSR exactly by means of A* search, mixed integer programming, and
constraint programming. While excellent results are obtained in particular
for the A* search, the applicability of these methods is strongly limited to
rather small or medium sized-problem instances. A sequencing problem with
similar job characteristics to ours, requiring one common and a secondary
resource, has been considered by Van der Veen et al. [22]. However, in their
case post-processing times are negligible and as a result the problem reduces
to a special variant of the traveling salesman problem that can be efficiently
solved in polynomial time. Last but not least, we point out that PC-JSOCMSR
is somewhat related to variants of no-wait flowshop problems [1] and more
general resource-constrained project scheduling problems [11].

3 Recursive Model for PC-JSOCMSR

We provide a dynamic-programming-like recursive model for PC-JSOCMSR.
The induced state graph will then serve as a basis for deriving MDDs. To
simplify the handling of time windows let us define the function earliest feasible
time eft(j, t) that computes for a given job j and time point t the earliest time
not smaller than t at which job j can be performed according to the time
windows, i.e.,

eft(j, t) = min{Tmax, t′ ≥ t | [t′, t′ + pj ] ⊆Wj}. (2)

Note that eft(j, t) = Tmax if job j cannot be scheduled within its time windows.

The main components of the recursive model are the states, the control
variables that conduct transitions between states, and finally the prizes as-
sociated with the transitions. In our recursive formulation a state is a tuple
(P, t) consisting of the set P ⊆ J of jobs that are still available for scheduling
and a vector t = (tr)r∈R0

of the earliest times from which on each resource
r is available. The initial state corresponding to the original PC-JSOCMSR
instance without any jobs scheduled yet is r = (J, (Tmin, . . . , Tmin)).

The control variables are π1, . . . , πn ∈ J . Starting from the root node
they select the jobs to be scheduled. Variable π1 selects the first job j to be
scheduled, and we transition from state r to a successor state (P ′, t′), where
π2 decides with which next job to continue. This is repeated for all control
variables. If a job selected by a control variable cannot be feasibly scheduled
as next job, then we obtain the special infeasible state 0̂. Any further transition
from 0̂ yields 0̂ again.

To specify the transitions, let the starting time of a next job j ∈ J w.r.t.
a state (P, t) be

s((P, t), j) =

{
eft(j,max(t0 − pprej , tqj )) if j ∈ P
Tmax else.

(3)
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The transition function to obtain the successor (P ′, t′) of state (P, t) when
scheduling job j ∈ J next is

τ((P, t), j) =

{
(P \ {j}, t′) if s((P, t), j) 6= Tmax

0̂ else,
(4)

with

t′0 = s((P, t), j) + pprej + p0j (5)

t′r = s((P, t), j) + pj for r = qj (6)

t′r = tr for r ∈ R \ {qj}. (7)

All states except the infeasible state 0̂ are possible final states. The prize
associated with a state transition is job j’s prize zj . Any sequence of state
transitions τ(. . . τ(r, π1) . . . , πi) yielding a feasible state (P, t) from the initial
state r represents a solution. In fact, the respective states map directly to
the normalized schedule obtained by decoding the jobs π1, . . . , πi as stated in
Section 2. Moreover, the sum of the prizes of all these transitions corresponds
to Z(π1, . . . , πi), the total prize of the solution.

Note that a feasible state does not have to describe a single solution, be-
cause the same state might be reached by multiple transition sequences. These
different transition sequences yielding the same state might also have distinct
total prizes. Since we are maximizing the total price, we are primarily inter-
ested in sequences with maximum total prize. To this end, let Z lp(P, t) be this
maximum total prize for any sequence τ(. . . τ(r, π1) . . . , πi) resulting in state
(P, t). Ultimately, we are looking for a feasible state with maximum Z lp(P, t).

Looking at these relationships from a dynamic programming perspective,
we can express the maximum total prize for jobs that can still be scheduled
from any feasible state (P, t) onward by

Z∗(P, t) = max{0, zj + Z∗(τ((P, t), j)) | j ∈ P ∧ τ((P, t), j) 6= 0̂}, (8)

and Z∗(r) then denotes the overall maximum achievable prize, i.e., the optimal
solution value.

Strengthening of States. The individual states obtained by the transitions can
be safely strengthened in many cases, typically leading to a smaller state graph.
We aim at replacing state (P, t) by state (P ′, t′) with either P ′ ⊂ P or t′r > tr
for one or more r ∈ R0 without losing possible solutions. This is done by
first considering the earliest starting times s((P, t), j) for all jobs j ∈ P . Jobs
that cannot be feasibly scheduled next can be safely removed from P , i.e.,
P ′ = {j ∈ P | s((P, t), j) 6= Tmax}.

Afterwards, we set the times t′r, ∀r ∈ R0, to the earliest time resource r
is actually used by the jobs in P ′. If a resource is not required by any of the
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r

u1 u2 u3 u4

u5 u6

u7

1(2)

2(1) 3(2)

4(3)

4(3) 4(3)

1(2)

4(3)

1(2)

4(3)

j pj pprej p0j qj zj Wj

1 4 1 2 1 2 [3, 8]
2 3 1 1 1 1 [0, 4]
3 4 0 3 2 2 [0, 4]
4 3 1 2 2 3 [3, 8]

V P t

r {1, 2, 3, 4} (0, 0, 0)
u1 {4} (6, 8, 5)
u2 {1, 4} (4, 3, 3)
u3 {1, 4} (4, 3, 4)
u4 {} (8, 8, 8)
u5 {} (8, 8, 8)
u6 {3} (6, 8, 5)
u7 {} (8, 8, 8)

R1

R0

R2

0 1 2 3 4 5 6 7 8

3(2)

1(2)

4(3)

Instance:

States:

Optimal solution π: Z(π) = 7

Fig. 1: A MDD for an example instance with four jobs and two secondary
resources.

remaining jobs then we set the corresponding time t′r to Tmax. More formally,

t′0 = min
j∈P ′

(s((P, t), j) + pprej ) (9)

t′r =

{
minj∈Jr∩P ′ s((P, t), j) if Jr ∩ P ′ 6= ∅
Tmax else

∀r ∈ R. (10)

4 Multivalued Decision Diagrams for PC-JSOCMSR

This section explains the relationships between the state graph of a PC-
JSOCMSR problem instance and exact, relaxed, and restricted MDDs. An
exact MDD is a layered directed acyclic multi-graph G = (V,A) with node set
V and arc set A. The node set V is partitioned into layers L0, . . . , Ln. The
first layer L0 consists only of a single node associated with the initial state r.
Each subsequent layer Li contains nodes for all states obtained from feasible
state transitions from states associated with nodes in layer Li−1. Moreover,
the MDD has arcs for all feasible state transitions in the state graph connect-
ing the corresponding nodes. Observe that arcs exist only between directly
successive layers and there might be nodes for identical states on different lay-
ers. The length of these arcs are the state transition prizes zj . The infeasible
state 0̂ and all transitions to it are omitted. In the literature, a target node is
typically defined and arcs with zero length exist from any feasible end node to
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this target. Since in our case any node represents a valid end state, we deviate
here from the literature and do not make explicit use of this target state.

Let us denote by j(a) ∈ J the job that is considered in the state transition
associated with arc a ∈ A. Moreover, let A+(u) and A−(u) indicate the set of
all incoming and outgoing arcs of a node u ∈ V , respectively. Moreover, for
a node u we write P (u) and t(u) as a shorthand for the set P and vector t
of the node’s state. In particular, we denote with tr(u) for a state u the time
from which on each resource r ∈ R0 is available for performing a next job.

An optimal solution is obtained from an exact MDD by determining a
longest path from r to some end node v and scheduling the jobs associated
with each arc in the respective order and at the starting times s((P, t), j).
The length of this path, i.e., the sum of the respective arcs’ transition prizes,
corresponds to the optimal solution value Z∗(r).

Figure 1 shows an exact MDD for an instance with four jobs and two
secondary resources. Details of the PC-JSOCMSR instance are given on the
top right, while the MDD is depicted on the top left. Each arc’s label indicates
the job that is scheduled by the respective state transition and in parentheses
the arc’s length. We indicate with dashed arcs the in our case unique longest
path of length seven. The corresponding optimal solution, scheduling the jobs
π = (3, 1, 4) with a total prize of Z(π) = 7, is shown on the bottom left.
Moreover, states of all nodes are given on the bottom right.

Exact MDDs grow in general in an exponential way with the problem size
as they basically represent the complete state graph. We are more interested
in more compact MDDs that represent the state graph only in an approximate
way. This is usually done by limiting the number of nodes allowed in each layer
to a fixed maximum β ≥ 1. The number of nodes in a layer is called the layer’s
width, and the maximum width over all layers is the width of an MDD. To
receive MDDs of limited width, there have been proposed two concepts with
contrary effects: relaxed MDDs [2] and restricted MDDs [6].

Relaxed MDDs cover all feasible solutions as a subset plus possibly a set of
solutions that are invalid for the original problem. Thus, they represent a
discrete relaxation of the original problem, and the length of a longest path of
a relaxed MDD is a dual bound to the original problem’s optimal solution value
Z∗(r). To have limited width, a relaxed MDD in general superimposes states
of the original state graph: Sets of states of an exact MDD are combined into
so-called merged nodes; all affected arcs are redirected to the respective merged
node. To ensure that a valid relaxation is obtained, the state of a merged node
must be set so that it is in no dimension stricter than each original state. In
case of our PC-JSOCMSR, if a set M of original states is merged, the state of
the respective merged node is

⊕(M) =

 ⋃
(P,t)∈M

P,

(
min

(P,t)∈M
tr

)
r∈R0

 . (11)
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r

u1 u2 u′

u5 u6

u7

1(2) 2(1)

3(2)

4(3)

4(3) 4(3)

4(3)

1(2) 1(2)

4(3)

(a) Relaxed MDD

r

u1 u2 u4

u5 u6

u7

1(2)
2(1)

4(3)

4(3)
4(3)

1(2)

4(3)

(b) Restricted MDD

Fig. 2: A relaxed and a restricted MDD for the example instance in Fig. 1.

Figure 2a shows for the exact MDD in Figure 1 a relaxed MDD where
nodes u3 and u4 are merged resulting in node u′. The width of the relaxed
MDD decreases from four to three. Recall that the optimal solution of the
considered instance has a total prize of seven. The longest path within the
relaxed MDD, indicated by the dashed arcs, has a total length of eight. This
is achieved by scheduling job 4 twice, which clearly does not correspond to
a feasible solution of the original problem. Moreover, notice that the relaxed
MDD contains all paths from the exact MDD. The original optimal solution
is still represented by a respective path, however, it is not a longest anymore.
The state of the merged node is given by ({1, 4}, (4, 3, 4)), while the states of
all remaining nodes do not change.

Restricted MDDs are the second option for approximate MDDs with limited
width. They are obtained by removing nodes from an exact MDD with all
incoming and outgoing arcs. Whenever a node is removed, also all paths con-
taining the node are not anymore encoded in the MDD. Consequently, a re-
stricted MDD represents only a subset of all feasible solutions, and the length
of a longest path in a restricted MDD might be shorter than one in an exact
MDD. For this reason the length of a longest path in a restricted MDD is a
primal bound to the original problem’s optimal solution value Z∗(r).

A restricted MDD for the exact MDD from Figure 1 is depicted in Fig-
ure 2b. The node u3 and all its incoming and outgoing arcs are removed. All
other nodes, arcs, and states remain unchanged. The longest path in the re-
stricted MDD, again indicated by dashed arcs, has a total length of six. This
longest path encodes a feasible solution to the original problem, however, not
an optimal one.
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5 Top-Down Construction

The top-down construction [5,6,3] compiles exact MDDs, as well as relaxed
and restricted MDDs by traversing the state graph in a breadth-first fashion.
The method starts with an empty first layer L0 and adds a node for the initial
state r. Then, one layer after the other is filled with nodes. For a subsequent
layer Li, this is done by adding all feasible states that can be obtained by a
transition from any node u ∈ Li−1, i.e.,

Li = {τ(u, j) | u ∈ Li−1, j ∈ P (u)}. (12)

Note that identical states produced by different transitions are represented by
a single common node within a layer. In addition to the nodes, we also add
corresponding arcs for each of the conducted transitions.

When we are compiling relaxed or restricted MDDs, we have to check at
this point the width of the current layer Li. If it exceeds a given maximum β,
nodes have either to be merged or dropped, respectively. The quality of the
obtained primal and dual bounds from the produced relaxed and restricted
MDDs is predominantly influenced by the strategy to select the nodes for merg-
ing or removal. The basic idea is to prefer nodes for merging or removal that
are unlikely part of any optimal solution. Bergman et al. [3] considered three
different merging heuristics: random nodes, nodes with the shortest longest
path Z lp(u), and nodes with the most elements in P (u). In their experiments
the second strategy achieved the best results. Moreover, Bergman et al. [6] sug-
gest the same node selection heuristic for the compilation of restricted MDDs.
We observed that merging or removing nodes with the smallest Z lp(u) values
is disadvantageous for PC-JSOCMSR. This can be explained by the fact that
this strategy focuses just on the longest path, but does not respect how well
the jobs fit next to each other. Therefore, we set the longest path to a node
into perspective with the time the common resource is occupied by the cor-
responding jobs. The nodes within the currently considered layer Li, i > 0,
are sorted according to the ratio Z lp(u)/(t0(u)−Tmin) in increasing order. We
then merge respectively remove the first nodes until the width of Li becomes β.
Afterwards, we continue with the next layer. The algorithm terminates when
either no further state transitions are possible or we completed layer Ln.

6 Incremental Refinement

The basic idea of an incremental refinement approach is to apply filtering
and refinement steps iteratively on an initial simple relaxed MDD in order to
improve it and approximate an exact MDD. Filtering steps remove arcs that
are only contained in root to sink paths that represent infeasible solutions. The
refinement steps consist of splitting nodes to represent so far merged states in
more detail and as a consequence to trigger further filtering of arcs. The main
goal of incremental refinement is to decrease the length of longest paths in the
MDD, i.e., the obtained upper bound on an instance’s solution value.
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Incremental refinement has been initially proposed by Hadzic et al. [9] and
Hoda et al. [12] for constraint satisfaction systems. The central aspect of this
approach is the division of filtering and refinement into independent opera-
tions. As a consequence, the overall algorithm can apply and combine these
operations however it is appropriate. A relaxed MDD for the PC-JSOCMSR
problem contains in general paths that do not represent feasible solutions,
either because jobs occur more than once or not all jobs can be scheduled
within their time windows. Therefore, we have to find refinement and filtering
operations that allow us to exclude job repetitions and time window violations.

Due to the fact that exact MDDs have in general an exponential number of
nodes w.r.t. the problem size, we cannot hope to apply refinement and filter-
ing until all invalid paths are sorted out for problem instances of practically
relevant size. Hence, a key aspect of an incremental refinement approach is
the order in which the refinement steps are applied on the nodes. The works
from Cire and van Hoeve [8] and Kinable et al. [16] provide an incremental
refinement method for sequencing problems in which a permutation of jobs has
to be found. Essentially, they order the jobs according to the processing times
and with it to a certain extent according to the length of the corresponding
arcs within the MDD. Their approach removes repetitions of jobs according
to that order until the maximal allowed width of the MDD is reached. The
rationale behind this strategy is that repetitions of jobs represented by long
arcs are more frequently contained within longest paths. For PC-JSOCMSR
this method is, however, not suitable because we have to assume that only a
fraction of the jobs can be actually scheduled. Hence, it is not clear in advance
which jobs play a key role for deriving a good approximation of an exact MDD.

Our incremental refinement for PC-JSOCMSR uses a current longest path
as guidance. We follow the arcs on such a longest path, starting from the
root node, and check for each arc whether the associated job can be feasibly
scheduled. In case that a job occurs more than once, we refine the MDD s.t.
repetitions of this job are not possible anymore. If a job cannot be feasibly
scheduled within its time windows, we split nodes to allow excluding this path.

Algorithm 1 shows an outline of the proposed Incremental Refinement
Guided by Longest Paths (IRLP). It acts on a given relaxed MDD, which
is obtained in our case by the top down construction from Section 5 with a
small initial width. In each iteration of the main while loop we obtain a longest
path. If the sequence of jobs represented by the path can be feasibly scheduled,
then we have found an optimal solution and terminate.

Depending on whether we detected a job repetition or a time window vi-
olation on the currently considered longest path the following steps differ. In
the former case we traverse the MDD starting from the root node r layer by
layer. For each considered node we try to filter arcs and update the node’s
state if necessary. Afterwards we check if the node has to be refined and per-
form a node split if it allows to remove the considered job repetition. In the
latter case of a time window violation we perform a much more local refine-
ment operation in which only nodes along the considered path are split. In
the subsequent filtering we consider all nodes reachable from the previously
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Algorithm 1: Incremental Refinement Guided by Longest Paths (IRLP)

Input: initial relaxed MDD G = (V,A) with root node r
1 while termination criterion not met do
2 Let p be a longest path in G;
3 if p admits a feasible schedule then
4 return; /* optimal solution has been found */

5 if p contains a job repetition then
6 for node u in a top down traversal of G do
7 update node u and filter incoming and outgoing arcs;
8 split node u into two if it allows to avoid the node repetition;

9 else /* p contains a time window violation */

10 Split nodes on p to avoid the identified time window violation;
11 for node u in a top down traversal do
12 update node u and filter incoming and outgoing arcs;

split nodes. Notice that the refinement of job repetitions is preferred over the
refinement of time window violations if both are contained in the longest path.
This has shown to be advantageous especially when considering a time limit
as termination criterion. The applied filtering techniques and the updating
of the nodes’ state are described in Section 6.1. The two types of refinement
operations are presented in more detail in Section 6.2 and Section 6.3.

6.1 Node Updates and Filtering

Filtering applied in an incremental refinement method aims at identifying and
removing arcs that are only contained in paths corresponding to infeasible
solutions. The filtering techniques generally rely on the Markovian property
of the MDD’s states, which means that a state is defined by its predecessors
and the transitions. This allows specifying tests that use information local to a
considered node to decide whether incoming or outgoing arcs can be removed.

An intrinsic part of the presented filtering method is to keep the node’s
states always up to date, which is necessary because the removal of a node’s
incoming arcs may change its associated state. Moreover, an adjustment of
a node’s state may imply further changes on the nodes reachable from the
currently considered node. Therefore, we traverse the MDD s.t. we reach a
node after we have processed all its predecessors. Consequently, we end up in
each iteration of the IRLP with an MDD where all states fulfill the Markovian
property. For each considered node we first update the node’s state and then
check whether incoming or outgoing arcs can be removed. In case incoming
arcs are removed the node’s state has to be reevaluated again. An update of a
state consists of reassessing and merging the transitions from all predecessors,
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which means for a node u to compute

⊕
(
{τ(v, j(a)) | a = (v, u) ∈ A+(u)}

)
. (13)

Such a state update is a computational expensive operation and should only be
performed if a node’s state may actually change. For this reason, we recompute
a node’s state only if either a predecessors state has changed or if an incoming
arc has been removed.

Let (P, t) and (P ′, t′) be node u’s state before and after a reevaluation,
respectively. Due to the definition of the relaxation scheme (11) and the fact
that we are only removing arcs during filtering, it holds that t′r ≥ tr for all
r ∈ R0 and P ′ ⊆ P . In case P ′ ⊂ P , we remove all outgoing arcs a ∈ A−(u)
with j(a) 6∈ P ′ since they cannot be part of any feasible solution represented by
a path reaching u from r. If any node except r ends up without any incoming
arc, it is removed together with all its outgoing arcs.

6.2 Refinement of Job Repetitions

We discuss in this section a technique that modifies an MDD in such a way
that a considered job j occurs on each path at most once. This method is
conceptually an adaptation from the one proposed by Cire and van Hoeve [8],
but takes into account that in PC-JSOCMSR usually only a subset of the
jobs can be scheduled. The refinement is based on the observation that a job
repetition occurs if a job j is contained on a path starting from node r to
a node u and job j is still included in P (u). Consequently, node u has an
outgoing arc associated with job j which represents a repetition. Before we
can derive a splitting strategy, we first have to verify if the above condition is
sufficient to detect all job repetitions. To this end we denote with Some↓u ⊆ J
the subset of jobs appearing in some path from r to a node u ∈ V . For a node
u ∈ V the set Some↓u can be calculated recursively by

Some↓u =
⋃

a=(v,u)∈A+(u)

(
Some↓v ∪ {j(a)}

)
. (14)

We show next that we can determine repetitions of a considered job j occuring
on some path in a MDD by using P (u) and Some↓u of the nodes u in the MDD.

Lemma 1 A job j is assigned on each path starting from r at most once if
and only if j 6∈ Some↓u ∩ P (u) holds for all nodes u ∈ V .

Proof Assume first that a job j is associated with at most one arc in every
path starting from r of a given MDD G and consider an arbitrary node u ∈ V .
If no path from r to u has an arc labeled j then it holds by definition that
j 6∈ Some↓u and consequently j 6∈ Some↓u ∩ P (u). If on the other hand there
exists a path from r to u with an arc associated with j then no path starting
from u can contain an arc labeled j. Moreover, it holds by definition that
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a node v ∈ V can only have an outgoing arc a with j(a) = j if j ∈ P (u).
Therefore, j 6∈ P (u) and j 6∈ Some↓u ∩ P (u).

Conversely, suppose that j 6∈ Some↓u ∩ P (u) for all nodes u ∈ V . In case
j 6∈ Some↓u we cannot have a repetition of node j on any path from r to u. If
a node u is reached by an arc associated with job j then j ∈ Some↓u and thus,
j 6∈ P (u). Since node u can have only outgoing arcs for the jobs in P (u), node
u cannot have an outgoing arc labeled j. Moreover, since j ∈ Some↓v for all
nodes v reachable from node u we can conclude by the same argument that
also for these nodes j 6∈ P (u) and hence there are no respective outgoing arcs.
Thus, job j is assigned on each path starting from r at most once. ut

Whenever we detect a node repetition, i.e., j ∈ Some↓u ∩ P (u) for some node
u, we perform a node split to obtain a node u1 with j 6∈ P (u) and a node u2
with j 6∈ Some↓u as follows.

Theorem 1 Given job j and a MDD, we replace all nodes u ∈ V with j ∈
Some↓u ∩ P (u) by two nodes u1 and u2, s.t. all incoming arcs a = (v, u) are
redirected to u1 if j 6∈ P (τ(v, j(a))) and to u2 otherwise. All outgoing arcs are
replicated for both nodes. The resulting MDD satisfies j 6∈ Some↓u ∩ P (u) for
all nodes u ∈ V .

Proof For the root node r we have by definition that Some↓r = ∅ and, thus,
j 6∈ Some↓u ∩P (u). Assume as induction hypothesis that the desired condition
j 6∈ Some↓u ∩ P (u) holds for all predecessors of a node u. In addition, consider
that we have replaced node u by the nodes u1 and u2 as described above. From
the relaxation scheme (11) we know that set P of node u1 cannot contain j.
For all of u2’s incoming arcs a = (v, u2) it holds that j 6∈ Some↓v since otherwise
P (τ(v, j(a))) could not contain j. Consequently, u1 as well as u2 satisfy the
stated condition. ut

The actual refinement is done by enforcing Lemma 1 in a single top down
pass. To this end, we start with the root node and process all nodes layer
by layer. For each considered node u we first update its state if needed and
apply the filtering as described in Section 6.1. Afterwards, we determine the
set Some↓u and split node u as described in Theorem 1 if necessary. Whenever
a node is split, new states are calculated for the two new nodes. Furthermore,
we perform filtering on the new nodes’ incoming and outgoing arcs.

6.3 Refinement of Time Window Violations

Let sequence (u1, a1, u2, . . . , uk, ak, uk+1) of alternating nodes and arcs de-
note a path in our MDD starting at the root node r (i.e., u1 = r) where
(u1, a1, u2, . . . , uk−1, ak−1, uk) corresponds to a feasible solution but the job
represented by arc ak cannot be additionally scheduled within its time win-
dows. For the considered path we denote with (u↓1, . . . , u

↓
k) the not relaxed

states along the considered path. That is, u↓1 = r and u↓i = τ(u↓i−1, j(ai−1))
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for 1 < i ≤ k. Due to the state relaxations of the nodes in the MDD we observe
that j(ak) ∈ P (uk) but j(ak) 6∈ P (u↓k). The basic idea is to split the nodes on
the path in such way that job j(k) can be removed from P (uk) and with it
also the arc ak.

In general, it is not sufficient to just split node uk but a subset of the path’s
nodes ul, . . . , uk, with 1 < l ≤ k, has to be refined. Ideally, the number of nodes
to be refined should be small and the refinement should exclude other time
window violations as well. We compute the subset of nodes to be refined as
follows: We first check whether s(τ(uk−1, j(ak−1)), j(ak)) evaluates to Tmax.
If it does, then job j(ak) cannot be feasibly scheduled on the state resulting
from the transition from state uk−1. Consequently, it suffices to refine node uk.
If it does not, then we consider one predecessor more, i.e., we check whether
s(τ(τ(uk−2, j(ak−2)), j(ak−1)), j(ak)) results in Tmax. This step is repeated
until we find a node ul−1 on the considered path which allows excluding job
j(ak) if we follow exact transitions from it.

The actual refinement works as follows: We replace each node ui with
i = l, . . . , k by nodes ui,1 and ui,2. The incoming arcs a = (v, ui) ∈ A+(ui) are
redirected to ui,1 if tr(τ(v, j(a))) ≥ tr(τ(ui−1, j(ai−1))) for all r ∈ R0, oth-
erwise, they are redirected to ui,2. Outgoing arcs of ui are replicated for ui,1
and ui,2. After a node split we determine for the two resulting nodes the cor-
responding states and perform a filtering of their incoming and outgoing arcs
as described in Section 6.1. Last but not least, we have to possibly reevaluate
the states and filter all incident arcs of all nodes reachable from each node ui.

7 General Variable Neighborhood Search

In this section the General Variable Neighborhood Search (GVNS) is pre-
sented which serves us as a reference approach for obtaining heuristic solutions.
GVNS [10] is a prominent local search based metaheuristic which operates on
multiple neighborhoods. The basic idea is to systematically change local search
neighborhood structures until a local optimum in respect to all these neigh-
borhood structures is found. This part is called variable neighborhood descent
(VND). To further diversify the search, the GVNS performs so-called shaking
for local optimal solutions by applying random moves in larger neighborhoods.
These perturbed solutions then undergo VND again, and the whole process is
repeated until a termination condition is met at which point the best solution
encountered is returned.

In the context of this metaheuristic we represent a solution by a permuta-
tion π = (πi)i=1,...,|J| of the entire set of jobs J . Starting times and the subset
of jobs S ⊆ J that actually is scheduled is obtained by considering all jobs in
the order of π and determining each job’s earliest feasible time; jobs that can-
not be feasibly scheduled w.r.t. their time windows anymore are skipped. This
solution representation allows us to use rather simple neighborhood structures.

Our GVNS for PC-JSOCMSR starts with a random permutation of the
jobs J as initial solution. In a preliminary study, we also used initial solutions
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computed by a FRB4k [20] construction heuristic. Although this construc-
tion heuristic provided much better starting solutions, we could not observe
significant differences in the quality of final solutions returned by the GVNS.

We employ in our GVNS two local search neighborhood structures. The
first one considers all exchanges of pairs of jobs within the permutation, while
the second considers the removal of any single job and its re-insertion at an-
other position. To avoid the consideration of moves that do not change the
actual schedule, we require that each move changes either S or the order of
the jobs within S.

In the VND, we apply any possible improving exchange move before consid-
ering the moves that remove and reinsert jobs. Each neighborhood is searched
in a first improvement fashion. As shaking we perform a sequence of k random
remove-and-insert moves. Whenever a new incumbent local optimal solution
is found, the following shaking starts with k = 1. Parameter k is increased by
one up to a maximum value kmax after every unsuccessful shaking followed by
the VND. After reaching kmax, k is reset to one again.

8 Computational Study

We performed an experimental evaluation of the proposed approaches, i.e.,
the top down construction (TDC) for relaxed and reduced MDDs, the incre-
mental refinement guided by longest paths (ILRP), and the general variable
neighborhood search (GVNS). The algorithms are implemented in C++ and
have been compiled by GNU G++ 7.3.1. All experiments are performed on
a single core of an Intel Xeon E5-2640 v4 CPU with 2.40GHz and 16 GB of
memory.

We use the same two types of test instances as in [15] but extend these to
also include particularly larger instances with up to 300 jobs; all instances are
available at http://www.ac.tuwien.ac.at/research/problem-instances. Each set
contains in total 840 instances with 30 instances for each combination of
n ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 200, 300} jobs and m ∈ {2, 3}
secondary resources. In the first set B of balanced benchmark instances the sec-
ondary resources are equally distributed among the jobs and each job requires
in expectation the common resource for the second third of its processing time.
To this end a job’s secondary resource is uniformly sampled from R. The pro-
cessing time of a job j is determined by sampling values for pprej , ppostj from

U{0, 8} and for p0j from U{1, 8}. In the second set S of benchmark instances,
which we regard as skewed, one of the secondary resources is required predom-
inantly and in expectation the common resource is required more than the
half the job’s processing time. In detail, a job’s secondary resource is set to
m with a probability of 0.5 while the other resources in R are selected with a
probability of 1/(2m − 2). The duration p0j of the jobs j ∈ J are chosen uni-
formly from {1, . . . , 13} and the pre-processing and post-processing times pprej

and ppostj are both uniformly selected from {0, . . . , 5}. The remaining charac-
teristics of the two benchmark sets are obtained in the same way: The prize zj
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associated with each job is sampled uniformly from {p0j , . . . , 2p0j} in order to
correlate with the time the common resource is used. For the jobs we generate
between one and three time windows in such a way that approximately 30%
of the jobs fit into a schedule. To this end, we sample for each job the num-
ber of time windows ωj from {1, 2, 3}. Moreover, let E(p0) be the expected
duration a job requires the common resource and let T = b0.3nE(p0)c be the
total expected time required from the common resource to schedule 30% of all
jobs. The ωj time windows Wj for job j are generated as follows: We choose a
start time W start

jw uniformly from {0, . . . , T − pj} and an end time W end
jw from

{W start
jw +max(pj , b0.1T/ωjc), . . . ,W start

jw +max(pj , b0.4T/ωjc)}. If we obtain
overlapping time windows, they are merged and ωj is adjusted accordingly.

The initial relaxed MDD used by incremental refinement methods in the
literature [8,16] are typically trivial ones of width one and can be obtained by
calling TDC with β = 1. For PC-JSOCMSR there is a more meaningful initial
relaxed MDD of maximum width m, where on each layer all states are merged
that are obtained by jobs requiring the same secondary resource. This initial
relaxed MDD has in general already significantly stronger states than the re-
laxed MDD of width one, because in the latter the advances on the times tr for
the secondary resources r ∈ R cancel each other out. Preliminary experiments
showed that small instances can be optimally solved with fewer iterations and
on larger instances stronger bounds can be obtained when starting with the
width m initial relaxed MDD. Hence, we do this in all our further IRLP runs.

In other preliminary experiments we investigated different configurations
of the GVNS. We tried changing the order of the neighborhood structures
within the VND and also shaking operators based on exchanging the positions
of randomly selected jobs. The configuration described in Section 7 was found
to work best. Moreover, we tuned the maximum shaking size parameter kmax.
Rather small values for kmax turned out to typically yield better results, and
we decided to use kmax = 4 for all further GVNS runs in this work.

In the first series of experiments we compare the quality of relaxed MDDs
compiled by TDC and IRLP, respectively. IRLP was performed with a CPU-
time limit of 900 seconds per run, while for TDC we used different values for the
maximum width β in dependence of the number of jobs so that the required
CPU-time was in a similar order of magnitude. In Table 1 each row shows
average results of 30 instances. The first three columns describe the instance

properties. For both approaches mean dual bounds Z lp are listed together with
the corresponding standard deviations σ(Z lp), the median numbers of nodes
of the relaxed MDD |V | and median completion times t in seconds. Moreover,
for TDC the employed maximum width β are given.

On the smallest instances both algorithms produce relaxed MDDs with
the same dual bounds. In these cases the obtained bounds correspond to the
optimal objective values, which we verified by checking that the longest paths
indeed correspond to feasible schedules. In fact, TDC could solve several in-
stances with up to 60 jobs, while IRLP found optimal solution for some in-
stances with up to 50 jobs. While on the medium to large instances with
balanced jobs we cannot observe a clear tendency which method provides
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TDC (relaxed MDDs) IRLP

type m n β |V | t[s] Zlp σ(Zlp) |V | t[s] Zlp σ(Zlp)

B 2 010 750000 42 <1 30.93 6.91 23 <1 30.93 6.91
B 2 020 750000 526 <1 50.37 5.71 211 <1 50.37 5.71
B 2 030 750000 5365 <1 75.33 6.41 1512 <1 75.33 6.41
B 2 040 750000 78336 <1 98.93 7.05 15412 3 98.93 7.05
B 2 050 750000 850366 18 123.83 9.86 318803 546 126.43 10.81
B 2 060 750000 6192518 214 181.07 26.79 2335222 900 176.33 13.96
B 2 070 100000 1821669 136 314.30 30.97 6215126 900 254.47 29.97
B 2 080 100000 2291714 243 400.57 35.81 6024638 900 344.60 47.45
B 2 090 100000 3109741 439 497.17 51.51 5090946 900 455.33 65.90
B 2 100 100000 3885520 683 605.10 47.07 4398464 900 592.17 101.08
B 2 120 20000 1096548 279 868.50 85.35 3179408 900 869.07 149.07
B 2 150 20000 1678748 690 1245.50 99.96 2181138 900 1401.43 144.24
B 2 200 2000 289016 232 2176.47 206.23 1417247 900 2280.40 115.94
B 2 300 2000 512774 974 3830.17 291.98 653796 900 3859.80 116.19

B 3 010 750000 52 <1 36.17 6.22 32 <1 36.17 6.22
B 3 020 750000 978 <1 59.27 7.85 380 <1 59.27 7.85
B 3 030 750000 13766 <1 86.30 7.08 5288 <1 86.30 7.08
B 3 040 750000 215763 3 112.00 7.79 90962 62 113.30 10.26
B 3 050 750000 3893395 84 154.43 24.57 1062443 900 162.50 16.76
B 3 060 750000 10316441 474 241.53 16.68 4979876 900 222.70 15.49
B 3 070 100000 2441857 193 405.50 51.30 6249028 900 333.27 44.50
B 3 080 100000 3282533 355 527.47 56.95 5043693 900 475.93 60.71
B 3 090 100000 4259832 664 655.80 68.22 4396132 900 668.17 78.08
B 3 100 100000 5214238 981 783.30 76.89 4165105 900 836.00 68.41
B 3 120 20000 1552652 402 1176.57 91.67 2929735 900 1182.13 75.22
B 3 150 20000 2290835 1000 1687.27 137.87 1966246 900 1617.47 97.65
B 3 200 2000 381135 294 2827.77 161.11 1219677 900 2358.40 130.83
B 3 300 2000 598301 1318 4562.17 122.92 624125 900 3910.40 126.29

S 2 010 450000 40 <1 50.93 8.36 24 <1 50.93 8.36
S 2 020 450000 1039 <1 89.93 8.23 488 <1 89.93 8.23
S 2 030 450000 21220 <1 131.37 10.37 12844 1 131.37 10.37
S 2 040 450000 430093 7 180.07 12.40 224069 846 188.23 17.88
S 2 050 450000 4394388 128 300.13 50.61 2758488 900 298.53 29.54
S 2 060 450000 8549486 530 535.90 77.47 8545772 900 463.13 44.04
S 2 070 100000 3230809 321 835.43 119.97 7408548 900 716.60 75.70
S 2 080 100000 4362590 546 1091.63 124.31 5833584 900 929.53 93.06
S 2 090 100000 5475532 893 1315.33 120.45 5709749 900 1151.37 97.06
S 2 100 20000 1439179 287 1754.63 163.18 4079702 900 1452.43 104.42
S 2 120 20000 1840614 537 2276.60 236.54 3181630 900 1889.30 138.76
S 2 150 20000 2756871 1218 3315.60 209.25 2212340 900 2598.13 158.57
S 2 200 1000 199201 180 4853.90 171.69 1329764 900 3767.77 175.68
S 2 300 1000 299301 791 7483.10 187.80 709368 900 6248.70 215.87

S 3 010 450000 46 <1 51.97 9.76 36 <1 51.97 9.76
S 3 020 450000 1216 <1 96.47 9.13 590 <1 96.47 9.13
S 3 030 450000 23358 <1 135.90 9.42 12876 1 135.90 9.42
S 3 040 450000 1099240 15 191.20 17.19 546542 900 209.87 21.34
S 3 050 450000 5968862 211 357.60 57.78 8100255 900 341.10 34.04
S 3 060 450000 11241455 663 610.37 70.78 9070003 900 543.30 72.51
S 3 070 100000 4134692 401 956.73 114.00 7121952 900 777.30 71.35
S 3 080 100000 4676286 624 1219.10 166.32 5641192 900 1010.37 67.65
S 3 090 100000 6803302 1145 1623.87 162.81 4885392 900 1242.83 103.29
S 3 100 20000 1691990 313 2013.37 239.78 4010372 900 1484.23 131.57
S 3 120 20000 2298596 648 2696.10 208.48 2871102 900 1926.03 155.76
S 3 150 20000 2973857 1456 3510.93 225.37 2051886 900 2666.63 105.56
S 3 200 1000 199201 208 4904.30 165.27 1242001 900 3895.57 194.89
S 3 300 1000 299301 800 7508.93 188.07 541252 900 6379.87 253.42

Table 1: Comparison of the relaxed MDDs obtained from TDC and IRLP.
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tighter bounds, IRLP outperforms TDC by a rather large margin on almost
all skewed instances. Notice that the size of the relaxed MDDs produced by
both algorithms peaks by instances with 60 or 70 jobs and declines for larger
benchmark instances. This can be explained for the TDC by the increasing
number of state transitions that have to be performed for each layer and by the
increasing number of nodes that have to be merged as a result. For IRLP the
reason is similar. IRLP has to reevaluate for larger instances more frequently
nodes with many incoming arcs.

In a second series of experiments the heuristic solutions obtained by the
TDC for restricted MDDs are compared with the ones computed by the GVNS.
We employ for the GNVS a time limit of 900 CPU-seconds as termination
criterion. For TDC, different maximum widths β were used again so that
the running times are in a similar order of magnitude. Table 2 shows the
obtained results. The first three columns describe the instance properties and
each row shows average results of 30 corresponding instances. The means and
the corresponding standard deviations of the final objective values for TDC
and GVNS are shown in the columns Z lp, σ(Z lp), obj and σ(obj), respectively.
In addition, for TDC the maximum width β, median number of nodes in the
restricted MDD |V |, and median computation times t in seconds are listed.
Moreover, column tbest shows for the GVNS median times in seconds when
the best solution has been found.

The TDC for restricted MDDs is able to outperform the GVNS on most of
our benchmark instances. Only for the largest instances with three secondary
resources or skewed jobs, GVNS is able to provide better results. The main
reason for the superior performance of the TDC on instances with balanced
jobs and two secondary resources is that the corresponding exact MDDs are
much smaller compared with the other instances. This can be seen on the
smallest instances where the imposed maximum width is not yet restrictive. On
the instances with 30 jobs, for example, the resulting MDDs for balanced jobs
with two secondary resources have on average 5365 nodes, with three secondary
resources 13766 nodes, and for the instances with skewed jobs there are 21220
and 23358 nodes. It is safe to assume that this difference in size becomes
even larger with more jobs. To stay within the memory and time limits, the
maximum allowed width has to be decreased with the increasing number of
jobs, which becomes more and more restrictive for the largest instances. Note
that this relation can also be observed in Table 1 for relaxed MDDs. The
GVNS approach, on the other hand, seems to be less affected by the instance
type or by the number of secondary resources. This can be seen by the times
the GVNS finds the final solution, which increases with the instance size but
does not change substantially with the instance properties.

Concerning the gaps between the upper bounds obtained from the relaxed
MDDs and the lower bounds from the heuristic solutions (compare Tables 1
and 2), we can observe that they are only small for the small and medium
sized instances but become rather large for our largest instances. For example
for the skewed instances with 300 jobs, this gap even exceeds 340%. This also
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TDC (restricted MDDs) GVNS

type m n β |V | t[s] Zlp σ(Zlp) obj σ(obj) tbest[s]

B 2 010 750000 42 <1 30.93 6.91 30.93 6.91 <1
B 2 020 750000 526 <1 50.37 5.71 50.37 5.71 <1
B 2 030 750000 5365 <1 75.33 6.41 75.33 6.41 <1
B 2 040 750000 78336 1 98.93 7.05 98.90 7.01 <1
B 2 050 750000 850366 23 123.27 10.33 123.20 10.34 <1
B 2 060 750000 6149522 212 146.80 10.39 146.53 10.38 <1
B 2 070 750000 10039410 697 172.23 11.17 171.93 11.41 8
B 2 080 150000 2678998 259 199.97 13.36 199.47 13.13 8
B 2 090 150000 3275627 424 231.83 13.36 230.70 13.73 31
B 2 100 150000 3756246 610 260.40 11.52 258.83 11.71 67
B 2 120 50000 1592216 371 315.90 13.05 312.80 12.44 186
B 2 150 50000 2132142 799 402.43 18.65 396.50 17.47 551
B 2 200 6000 353180 226 528.17 18.96 526.83 18.73 459
B 2 300 6000 524990 766 796.17 16.68 791.67 17.26 751

B 3 010 750000 52 <1 36.17 6.22 36.17 6.22 <1
B 3 020 750000 978 <1 59.27 7.85 59.27 7.85 <1
B 3 030 750000 13766 <1 86.30 7.08 86.30 7.08 <1
B 3 040 750000 215763 8 112.00 7.79 111.93 7.85 <1
B 3 050 750000 3891532 105 140.33 10.40 140.27 10.40 1
B 3 060 750000 9554024 414 165.13 8.83 164.80 8.80 7
B 3 070 750000 13161224 1045 194.83 11.13 194.17 11.26 44
B 3 080 150000 3626754 354 227.87 13.54 226.70 13.34 72
B 3 090 150000 4210254 585 257.53 8.67 255.27 9.14 55
B 3 100 150000 4902283 822 290.53 14.30 288.03 14.60 274
B 3 120 50000 1996235 459 352.27 15.12 348.63 14.12 255
B 3 150 50000 2489353 936 439.87 15.88 436.30 16.68 358
B 3 200 6000 408372 245 579.97 18.74 583.80 16.31 507
B 3 300 6000 606960 830 847.67 16.25 865.20 19.25 707

S 2 010 750000 40 <1 50.93 8.36 50.93 8.36 <1
S 2 020 750000 1039 <1 89.93 8.23 89.93 8.23 <1
S 2 030 750000 21220 <1 131.37 10.37 131.37 10.37 <1
S 2 040 750000 430093 10 180.07 12.40 180.00 12.38 <1
S 2 050 750000 6335677 175 225.67 12.77 225.40 12.80 1
S 2 060 750000 10873978 679 277.53 11.67 276.87 11.97 10
S 2 070 150000 3233630 293 326.20 14.24 325.20 14.51 42
S 2 080 150000 3959832 452 375.80 16.50 374.23 16.66 70
S 2 090 150000 4495445 655 421.50 17.43 419.27 17.37 159
S 2 100 150000 5105289 962 479.13 20.91 476.03 20.84 259
S 2 120 50000 2072133 525 574.37 21.79 570.70 22.32 239
S 2 150 50000 2741184 1062 715.93 14.22 716.37 16.28 401
S 2 200 6000 432746 270 931.57 21.90 948.87 22.25 632
S 2 300 6000 668570 938 1382.70 30.42 1424.07 38.56 784

S 3 010 750000 46 <1 51.97 9.76 51.97 9.76 <1
S 3 020 750000 1216 <1 96.47 9.13 96.47 9.13 <1
S 3 030 750000 23358 <1 135.90 9.42 135.90 9.42 <1
S 3 040 750000 1099240 31 185.43 10.92 185.43 10.92 <1
S 3 050 750000 8572086 298 234.40 10.92 234.17 11.10 9
S 3 060 750000 13723665 842 286.97 13.00 286.10 13.13 9
S 3 070 150000 3656983 326 331.30 17.37 330.20 17.71 51
S 3 080 150000 4253940 475 384.77 17.27 383.33 17.38 37
S 3 090 150000 5157731 754 429.60 16.92 427.97 16.93 119
S 3 100 150000 5794926 1035 487.30 19.41 486.00 18.28 163
S 3 120 50000 2308306 575 565.13 17.12 568.63 16.74 448
S 3 150 50000 2904060 1060 708.07 21.61 716.00 20.42 442
S 3 200 6000 460541 267 928.80 24.19 961.70 24.27 519
S 3 300 6000 715920 926 1378.53 38.42 1428.57 39.68 747

Table 2: Comparison of heuristic solutions obtained from restriced MDDs com-
piled by TDC and the GVNS.
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somewhat illustrates the difficulty of the considered problem and the limits of
MDDs – or at least the limits of the considered construction methods.

9 Conclusions and Future Work

In this work we studied the application of multivalued decision diagrams
(MDDs) for the prize-collecting job sequencing with one common and multiple
secondary resources (PC-JSOCMSR) problem. To this end, we first presented
a recursive model and showed how to obtain MDDs from the problem’s state
graph. Whenever, the size of MDDs become to large relaxed and restricted
MDDs are employed to obtain dual bounds and heuristic solutions, respec-
tively. We adapted the two main compilation techniques for relaxed MDDs
proposed in the literature to PC-JSOCMSR: top down construction (TDC)
and incremental refinement (IR). To obtain restricted MDDs we use a vari-
ant of the TDC. In our computational study we first compared the relaxed
MDDs obtained by TDC and IR. While both methods perform rather similar
on balanced instances, IRLP is clearly superior on the benchmark instances
sampled from skewed distributions. Afterwards, we assessed the quality of the
restricted MDDs compiled with the TDC by comparing the obtained heuristic
solutions with the ones from an independent general variable neighborhood
search (GVNS). While the TDC performs better than the GVNS on small to
medium-sized instances, the GVNS is mostly superior on the largest instances
of our benchmark suite.

The focus of this paper is on the compilation of MDDs themself. A next
step is to exploit the produced MDDs in various ways in other algorithmic
frameworks to ultimately solve also larger instances of the problem in better
ways. For example highly promising are novel branching schemes on the basis
of relaxed MDDs as described in [5] or the utilization of MDDs in new inference
techniques in constraint programming, see e.g. [8]. Last but not least, relaxed
MDDs also have a great potential to provide guidance for finding good heuristic
solutions in advanced metaheuristics.

A further promising future research direction seems to be to rethink the
strict layered structure of the MDDs. For problems like PC-JSOCMSR their
exist equivalent states on different layers. If we allow “long arcs” over multiple
layers, such equivalent states may be represented by a single node possibly
yielding more compact MDDs. Such a generalization provides new opportuni-
ties for merging states but also bears new challenges on how to identify nodes
to be merged efficiently.
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