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Abstract. In the particle therapy patient scheduling problem (PTPSP)
cancer therapies consisting of sequences of treatments have to be planned
within a planning horizon of several months. In our previous works we
approached PTPSP by decomposing it into a day assignment part and
a sequencing part. The decomposition makes the problem more manage-
able, however, both levels are dependent on a large degree. The aim of
this work is to provide and a surrogate objective function that quickly
predicts the behavior of the sequencing part with reasonable precision,
allowing an improved day assignment w.r.t. the original problem.
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1 Introduction

In classical radiotherapy cancer treatments are provided by linear accelerators
that serve a dedicated treatment room exclusively. In contrast, particle therapy
uses beams, produced by either cyclotrons or synchrotrons, that can serve up to
five treatment rooms in an interleaved way. Several sequential tasks that do not
require the beam, like the positioning of the patients, have to be performed in the
treatment room before and after each irradiation. Switching the beam between
treatment rooms allows an effective utilization of the particle accelerator and
increases the throughput of the facility.

In a typical midterm planning scenario a schedule over the next few months
for performing therapies, consisting of a sequence of treatments, has to be deter-
mined. Midterm planning for classical radiotherapy has already attracted some
research starting with the works from Kapamara et al. [4] and Petrovic et al. [7].
In the following a variety of methods has been applied ranging from GRASP [8]
and steepest hill climbing methods [3] to MILP approaches [2, 1]. Due to the
one-to-one correspondence of treatment rooms and accelerators it is sufficient to
consider a coarser scheduling scenario in which treatments have to be assigned
only to days but do not have to be sequenced within the days.
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In a recent work [6] we studied the midterm planning for the particle therapy
treatment center MedAustron in Wiener Neustadt, Austria, which offers three
treatment rooms. Our approach consisted in decomposing the problem into a
day assignment and a sequencing part for each day, which are, however, not
independent. We provided a construction heuristic, a GRASP, and an iterated
greedy (IG) metaheuristic. Our computational experiments showed that the IG
performed the best. In the subsequent work [5] we improved our IG by exchang-
ing the construction operator with one that is able to preserve more sequencing
related information from the incumbent solution. This and the application of a
new local search method allowed to outperform the previous approaches.

The current work focuses on further improving the day assignment level by
using a fast to compute, more accurate surrogate model for estimating the op-
timal objective values for the sequencing subproblems. In particular, during the
day assignment phase the total duration of the schedule produced by the se-
quencing part has to be estimated for each day. We previously applied a lower
bound that, however, yielded avoidable overfull days. Hence, we study here sur-
rogate functions that consider more aspects of the problem at hand. The main
goal is to predict the overall objective function contribution of the sequencing
part with reasonable precision while being computationally fast enough to be
used in our existing approaches.

2 Particle Therapy Patient Scheduling Problem

In the particle therapy patient scheduling problem (PTPSP) a set of therapies
T has to be scheduled on consecutive days D considering a set of resources R.

Each therapy t ∈ T consists of a set of daily treatments (DTs) Ut =
{1, . . . , τt}. A DT comprises all tasks required to provide an irradiation and has
a window of days at which it can be applied. There is a minimal and maximal
number of DTs that have to be provided each week, a lower and upper bound of
days that are allowed to pass between two subsequent DTs, and a required break
of at least two consecutive days each week. Each DT u ∈ Ut has a processing
time pt,u ≥ 0 and a set of required resources Qt,u ⊆ R. In the execution of a
DT each resource r ∈ Qt,u is required during part of the whole processing time
specified by the time interval [P start

t,u,r , P
end
t,u,r) ⊆ [0, pt,u).

The days in the planning horizon D are partitioned into weeks. A subset
D′ ⊆ D are working days (usally Mondays till Fridays) on which DTs can be per-

formed. For each day d ∈ D′ we have a fundamental opening time [W̃ start
d , W̃ end

d )
that limits the availability of all resources on the considered day.

Resources r ∈ R have on each working day a regular availability period
[W start

r,d ,W end
r,d ) and an extended availability period [W end

r,d , W̃
end
d ] at which they

can be used, where the usage of the latter one results in additional costs. More-
over, the availability of resource r may be interrupted on day d by a set of

unavailability intervals
⋃
w=1,...,ωr,d

[W
start

r,d,w,W
end

r,d,w).

A solution for the PTPSP is a tuple (Z, S), where Z = {Zt,u ∈ D′ : t ∈
T, u ∈ Ut} are the days and S = {St,u ≥ 0 : t ∈ T, u ∈ Ut} are the times at



which the DTs are planned. A solution is feasible if all resource availabilities,
and all operational constraints are respected. We aim at minimizing the use of
extended availability periods while finishing each therapy as early as possible.
More formally, the objective is to minimize

γext
∑
r∈R

∑
d∈D′

ηr,d + γfinish
∑
t∈T

(
Zt,τt − Zearliest

t,τt

)
, (1)

where γext and γfinish are scalar weights, ηr,d = max({St,u + P end
t,u,r −W end

r,d | t ∈
T, u ∈ Ut, r ∈ Qt,u, Zt,u = d}∪{0}) is the used time of the extended availability
period of resource r on day d, and Zearliest

t,τt is a lower bound on the earliest
possible finishing day for the last DT of therapy t (see [6]).

3 Solution Approach and Time Estimation

The PTPSP naturally decomposes into the day assignment (DA) level in which
DTs are assigned to days and the time assignment (TA) level that consists of
finding starting times for the DTs. In other words, Z are the first level and S are
the second level decision variables. Clearly, those two levels are dependent on
a large degree. Nevertheless, this problem decomposition is beneficial because
we can separate the detailed resource model from the remaining operational
constraints. Thus, in the TA level each day becomes independent and can be
solved separately.

A central aspect of the DA is to find a well-paired allocation of DTs to
days that causes as little use of extended availability periods as possible. Since
determining ηr,d requires the exact starting times, the usage of the resources’
availability periods for a given candidate set of DTs has to be estimated. Thus,
the DA uses a modified version of (1) that replaces ηr,d with the surrogate η̂r,d =

max(0, λ̂r,d − hr,d), where λ̂r,d estimates the required time and hr,d denotes the
aggregated regular availability of resource r on day d. In our previous works [6, 5]

we used for λ̂r,d the trivial lower bound given by aggregated resource demands∑
(t,u):t∈T, u∈Ut,r∈Qt,u, Zt,u=d(P

end
t,u,r − P start

t,u,r ). Consequently, the DA frequently
underestimated the resource consumption, which resulted in avoidable use of
extended availability periods in the TA. In this work, we aim at more accurately
estimating λ̂r,d for the main bottleneck resources, the beam and the rooms.

4 Estimating the Makespan under Complete Resource
Availability

In the following we first concentrate on estimating the makespan required for a
given non-empty set G of DTs under the assumption that all required resources
are available without any further restrictions. We start by determining estima-
tions of the makespan for three special cases. Afterwards, an estimation for the
general case is derived that is based on the estimation for these special cases.
Let nr = |{(t, u) ∈ G | r ∈ Qt,u}| be the number of DTs requiring resource



r ∈ {1, 2, 3,B}, where 1, 2, 3 represent the rooms and B the beam, respectively.
Furthermore, let

P̄r =

{∑
(t,u)∈G(P end

t,u,r−P
start
t,u,r)

nr
if nr > 0

0 else
(2)

be the average time resource r ∈ {1, 2, 3,B} is required by DTs in G. Moreover,
let P irb and P ira be the minimum durations a room is required before and after
the beam resource, respectively, and let P orb and P ora be the minimum times
required by any DT before and after the usage of the room resource, respectively.

In the first special case we assume that all DTs in G require the same room.
Hence, w.r.t. to the room resource all DTs have to be scheduled in a strictly
sequential way. The beam will have substantial breaks. In this case the makespan
can be estimated using the total time the respective room resource is required
and some constant offset for the tasks outside of the room, i.e., by

max{P̄1n1, P̄2n2, P̄3n3}+ P orb + P ora. (3)

Observe that because only one room is used exactly one term of the maximum
function in (3) is greater than zero.

The second special case supposes that the DTs are provided in two rooms.
DTs will be scheduled alternatingly between the two rooms. It can be assumed
that the tasks apart the irradiation take in general longer than the irradiation
itself. Consequently, there will be frequently breaks on the beam resource. In
most cases, the makespan will be determined by the utilization of the room that
is required the most. An estimation of the makespan for this special case is given
by (3) again. In contrast to the previous scenario two terms of the maximum
function are greater than zero.

The third special case assumes that the DTs are distributed evenly among
the three treatment rooms. In such situations the rooms will be used in an
interleaved way s.t. the beam cycles between all three rooms. In this way, the
beam will typically be used most efficiently and it can be expected that the beam
is used without idle time. The makespan can be estimated by the total time the
beam resource is used plus a constant offset for the first and last scheduled DTs:

P̄BnB + P irb + P ira + P orb + P ora. (4)

In practice we will mostly have a mixture of the three discussed cases. A
lower bound for the makespan can be derived by combining (3) and (4):

MSLB = max{P̄1n1, P̄2n2, P̄3n3, P̄BnB + P irb + P ira}+ P orb + P ora. (5)

Equation (5) is a lower bound for the makespan since P orb, P ora, P irb, and
P ira are the minimum durations that have to precede and follow the first and last
use of the respective resources and the fact that the total resource requirement is
a trivial lower bound. Basically, MSLB assumes that there is a schedule without
idle time on the resource that is used the most. Let nmax = maxr∈{1,2,3} nr and



nmin = minr∈{1,2,3} nr. We can expect MSLB to be a tight estimate if either
nmax ≥ nB−nmax−1, i.e., one room clearly dominates, or nmax ≤ nmin + 1, i.e.,
the DTs are evenly distributed among the three rooms.

To strengthen the estimation also for cases in-between, we consider the sim-
plified scenario in which all DTs have exactly the same timing and resource
requirements, except that they are distributed among the three rooms. A good
schedule would certainly cycle between all three rooms, but not to an extent
that remaining DTs have to be scheduled sequentially in a single room.

Let N123 be the maximal number of cycles between the three treatment
rooms, such that all remaining DTs can be scheduled alternatingly between two
rooms. In such a scenario, the following condition must hold:

nmax −N123 − 1 = (nmin −N123) + (|G| − nmax − nmin −N123). (6)

The intuition of the formula above is to compare the number of DTs that remain
in each room after cycling between all three rooms for N123 times. Note that
the minus one represents the fact that the schedule might start and end with
the room that is required the most. Equation (6) yields N123 = |G| − 2nmax + 1.
After excluding the corner cases where N123 becomes negative or larger than
nmin we obtain

N123 = min(nmin,max(0, |G| − 2nmax + 1)). (7)

We can now strengthen the estimation of the makespan by using for N123 cycles
between the rooms the estimation for the third special case and for the remaining
DTs the estimation for the second special case as follows:

MSES = max{P̄BnB + P irb + P ira,

P̄1n1, P̄2n2, P̄3n3,

3P̄BN123 + P̄1(n1 −N123),

3P̄BN123 + P̄2(n2 −N123),

3P̄BN123 + P̄3(n3 −N123)}+ P orb + P ora. (8)

Notice that MSES is in contrast to MSLB not a lower bound anymore.

5 Application of the Time Estimation in PTPSP

In this section the ideas developed in Section 4 will be used to obtain enhanced
estimations for the total times the beam and each room is required. To this end,
for a considered day d ∈ D′ let G be the set of all DTs assigned to day d. Since
the beam and the rooms are normally available the whole day, we can assume
that they have in general the same regular availability periods.

The total time the beam resource is required can be estimated almost anal-
ogously to (8) with the only difference that we have to disregard the time after



the last DT has stopped using the beam. Thus, in the estimation, given by

λ̂B,d = max{P̄BnB + P irb,

P̄1n1 − P ira, P̄2n2 − P ira, P̄3n3 − P ira,

3P̄BN123 + max(P irb, P̄1 · (n1 −N123)− P ira),

3P̄BN123 + max(P irb, P̄2 · (n2 −N123)− P ira),

3P̄BN123 + max(P irb, P̄3 · (n3 −N123)− P ira)}+ P orb, (9)

we have to subtract P ira whenever the room resources are used for the estimation.
The total time the rooms are needed is estimated by

λ̂r∈{1,2,3},d = max{Trnr,
3P̄BN123 + max(Tr(nr −N123), P irb + P ira)}+ P orb. (10)

In contrast to the beam resource we can only use the considered room for the
prediction. We can strengthen the estimation for the room resource that is used
the most, i.e., for rmax = arg maxr∈{1,2,3} nr. This room is most likely the last
one used and, hence, it is used at least as much as the beam resource. The
strengthened estimation for room resource rmax is then given by

λ̂∗rmax,d = max{λ̂rmax,d, P̄BnB + P irb + P ira}. (11)

6 Computational Study

In this section we study the performance impact of applying the presented time
estimation within our so far best performing approach, the enhanced iterated
greedy (EIG) from [5]. Moreover, we determine the accuracy of the surrogate
functions on final solutions.

All experiments are applied on the benchmark instances from [5] which re-
semble expected situations at MedAustron. The instances consider 50, 70, 100,
150, 200, and 300 therapies, which have to start within windows of 14 days.
The beam and the three rooms are regularly available from W̃ start

d for 14 hours
and have an extended availability period of 10 hours. Besides the beam and the
rooms, there are further resources, such as the personnel, which are, however,
sufficiently dimensioned to be not the primary reasons of substantial use of ex-
tended service time. A characteristic of the instances is that there is a ramp-up
phase until the facility is used at full capacity followed by a wind-down phase
until the last therapy is finished. At full capacity and strongly depending on the
specific DTs there can be planned around 60 DTs.

Table 1 compares the performance between the EIG, as presented in [5], with
the variant of the EIG where in the DA the time required from the beam and
room resources phase is estimated by (9), (10), and (11). Both algorithms use
as termination criterion a time limit of 20 CPU-minutes and are executed on
each of the benchmark instances for 30 times. Table 1 shows the mean objec-
tive values obj and the median use of extended service periods ext[h] in hours



Table 1. Average objective values obj and average use of extended service periods
in hours ext[h] of 30 runs with a time limit of 20 CPU-minutes and corresponding
standard deviations σ(obj) and σ(ext) for EIG and EIG with time estimation.

Instance EIG EIG+TE

obj σ(obj) ext[h] σ(ext) obj σ(obj) ext[h] σ(ext)

100-01 11.558 0.976 5.483 0.976 9.046 0.468 2.633 0.468
100-02 15.508 2.372 8.158 2.372 9.737 0.774 1.933 0.774
100-03 8.488 0.497 3.192 0.497 6.435 0.161 0.883 0.161
100-04 14.257 1.566 7.117 1.566 8.884 0.473 1.125 0.473
100-05 13.826 1.755 7.817 1.755 6.823 0.235 0.000 0.235
150-01 18.916 1.760 7.417 1.760 14.068 0.387 1.733 0.387
150-02 52.166 4.722 39.500 4.722 43.950 3.475 30.092 3.475
150-03 32.886 3.757 20.233 3.757 32.740 3.390 20.142 3.390
150-04 18.620 1.659 6.875 1.659 12.395 0.466 0.033 0.466
150-05 24.286 3.833 15.483 3.833 10.628 0.631 0.917 0.631
200-01 48.102 3.935 34.000 3.935 35.945 5.275 17.225 5.275
200-02 38.085 2.824 21.533 2.824 35.206 3.855 16.442 3.855
200-03 31.158 3.574 13.075 3.574 20.454 0.895 1.108 0.895
200-04 30.913 2.576 16.800 2.576 18.860 1.324 2.075 1.324
200-05 29.846 2.384 17.092 2.384 19.876 2.550 5.600 2.550
300-01 23.654 2.739 12.067 2.739 16.429 1.459 4.000 1.459
300-02 61.320 5.063 41.200 5.063 52.510 5.979 27.608 5.979
300-03 41.415 4.254 25.392 4.254 23.707 2.900 6.350 2.900
300-04 108.118 7.221 85.608 7.221 77.244 4.501 50.367 4.501
300-05 18.684 1.634 6.800 1.634 13.219 0.586 0.833 0.586

with the corresponding standard deviations σ(obj) and σ(ext) of finally obtained
solutions. The results indicate that the application of the presented estimation
considerably reduces the used extended service periods over all benchmark in-
stances. The surrogate functions are, however, not necessarily a lower bound.
Thus, we might occasionally overestimate the required time for the bottleneck
resources yielding underutilized days. This has in general the consequence that
the finishing day of therapies are delayed, which is penalized with the second
term of our objective function. This raises the question whether this trade-off
is indeed beneficial w.r.t. the objective function (1) using the same weights as
in [5, 6]. This is indeed the case, since the EIG with the presented time estimation
performs on all benchmark instances significantly better than the one without
according to a Wilcoxon rank sum test with a significance level of 95%. The
performance improvement can be explained by the increased accuracy of λ̂r,d.
While using the trivial lower bound given by aggregated resource demands, the
EIG’s DA level underestimates on average the required time from the beam and
the most used room by 27.7 and 101.6 minutes (i.e., by 6.5% and 15.3%) with a
standard deviation of 20.2 and 57.2, respectively. With the presented estimation
the DA level is on average off by 9.17 minutes for the beam and by 10.9 minutes



for the most used room (i.e., by 2% and 2.4%) with a standard deviation of 8.6
and 9.6, respectively.

7 Conclusion

In this work, we presented a surrogate model for estimating the total times the
bottleneck resources required to optimally schedule sets of DTs. This surrogate
model is applied to quickly estimate the use of extended service times at the
upper DA level of the PTPSP. We evaluated the effects of the presented surrogate
model in the so far best performing algorithm, the EIG from [5]. Results show
that on all considered benchmark instances the use of extended service periods
as well as the whole objective value can be significantly decreased. This can be
explained by the substantial gain in accuracy of the new surrogate model and
with it the better adjustment of the two levels.

The focus of this work is on resources that are shared by all DTs and are
tightly coupled with the throughput of the facility. There are, however, certain
resources, like the anesthetist, that are required by some DTs and are available
only for the first half of the working day. The interaction of DTs requiring those
resources are not considered so far and sometimes result in the use of extended
service times that might be avoidable by further improvements.
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